Part of Advances in Neural Information Processing Systems 17 (NIPS 2004)
Kosuke Hamaguchi, Masato Okada, Kazuyuki Aihara
Repeated spike patterns have often been taken as evidence for the synfire chain, a phenomenon that a stable spike synchrony propagates through a feedforward network. Inter-spike intervals which represent a repeated spike pattern are influenced by the propagation speed of a spike packet. However, the relation between the propagation speed and network struc- ture is not well understood. While it is apparent that the propagation speed depends on the excitatory synapse strength, it might also be related to spike patterns. We analyze a feedforward network with Mexican-Hat- type connectivity (FMH) using the Fokker-Planck equation. We show that both a uniform and a localized spike packet are stable in the FMH in a certain parameter region. We also demonstrate that the propagation speed depends on the distinct firing patterns in the same network.