Active Learning for Anomaly and Rare-Category Detection

Part of Advances in Neural Information Processing Systems 17 (NIPS 2004)

Bibtex Metadata Paper


Dan Pelleg, Andrew Moore


We introduce a novel active-learning scenario in which a user wants to work with a learning algorithm to identify useful anomalies. These are distinguished from the traditional statistical definition of anomalies as outliers or merely ill-modeled points. Our distinction is that the useful- ness of anomalies is categorized subjectively by the user. We make two additional assumptions. First, there exist extremely few useful anoma- lies to be hunted down within a massive dataset. Second, both useful and useless anomalies may sometimes exist within tiny classes of similar anomalies. The challenge is thus to identify "rare category" records in an unlabeled noisy set with help (in the form of class labels) from a human expert who has a small budget of datapoints that they are prepared to cat- egorize. We propose a technique to meet this challenge, which assumes a mixture model fit to the data, but otherwise makes no assumptions on the particular form of the mixture components. This property promises wide applicability in real-life scenarios and for various statistical mod- els. We give an overview of several alternative methods, highlighting their strengths and weaknesses, and conclude with a detailed empirical analysis. We show that our method can quickly zoom in on an anomaly set containing a few tens of points in a dataset of hundreds of thousands.