We consider learning to classify cognitive states of human subjects, based on their brain activity observed via functional Magnetic Resonance Imaging (fMRI). This problem is important because such classifiers con- stitute “virtual sensors” of hidden cognitive states, which may be useful in cognitive science research and clinical applications. In recent work, Mitchell, et al. [6,7,9] have demonstrated the feasibility of training such classifiers for individual human subjects (e.g., to distinguish whether the subject is reading an ambiguous or unambiguous sentence, or whether they are reading a noun or a verb). Here we extend that line of research, exploring how to train classifiers that can be applied across multiple hu- man subjects, including subjects who were not involved in training the classifier. We describe the design of several machine learning approaches to training multiple-subject classifiers, and report experimental results demonstrating the success of these methods in learning cross-subject classifiers for two different fMRI data sets.