Part of Advances in Neural Information Processing Systems 14 (NIPS 2001)
Olivier Chapelle, Bernhard Schölkopf
The choice of an SVM kernel corresponds to the choice of a rep(cid:173) resentation of the data in a feature space and, to improve per(cid:173) formance, it should therefore incorporate prior knowledge such as known transformation invariances. We propose a technique which extends earlier work and aims at incorporating invariances in non(cid:173) linear kernels. We show on a digit recognition task that the pro(cid:173) posed approach is superior to the Virtual Support Vector method, which previously had been the method of choice.