Computing with Finite and Infinite Networks

Part of Advances in Neural Information Processing Systems 13 (NIPS 2000)

Bibtex Metadata Paper

Authors

Ole Winther

Abstract

Using statistical mechanics results, I calculate learning curves (average generalization error) for Gaussian processes (GPs) and Bayesian neural networks (NNs) used for regression. Applying the results to learning a teacher defined by a two-layer network, I can directly compare GP and Bayesian NN learning. I find that a GP in general requires CJ (d S )-training examples to learn input features of order s (d is the input dimension), whereas a NN can learn the task with order the number of adjustable weights training examples. Since a GP can be considered as an infinite NN, the results show that even in the Bayesian approach, it is important to limit the complexity of the learning machine. The theoretical findings are confirmed in simulations with analytical GP learning and a NN mean field algorithm.