Assessing the Quality of Learned Local Models

Part of Advances in Neural Information Processing Systems 6 (NIPS 1993)

Bibtex Metadata Paper


Stefan Schaal, Christopher Atkeson


An approach is presented to learning high dimensional functions in the case where the learning algorithm can affect the generation of new data. A local modeling algorithm, locally weighted regression, is used to represent the learned function. Architectural parameters of the approach, such as distance metrics, are also localized and become a function of the query point instead of being global. Statistical tests are given for when a local model is good enough and sampling should be moved to a new area. Our methods explicitly deal with the case where prediction accuracy requirements exist during exploration: By gradually shifting a "center of exploration" and controlling the speed of the shift with local pre(cid:173) diction accuracy, a goal-directed exploration of state space takes place along the fringes of the current data support until the task goal is achieved. We illustrate this approach with simulation results and results from a real robot learning a complex juggling task.