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Abstract

We propose a novel approach for rendering high-quality spatial audio for 3D
scenes that is in synchrony with the visual stream but does not rely or explicitly
conditioned on the visual rendering. We demonstrate that such an approach enables
the experience of immersive virtual tourism - performing a real-time dynamic
navigation within the scene, experiencing both audio and visual content. Current
audio-visual rendering approaches typically rely on visual cues, such as images, and
thus visual artifacts could cause inconsistency in the audio quality. Furthermore,
when such approaches are incorporated with visual rendering, audio generation
at each viewpoint occurs after the rendering of the image of the viewpoint and
thus could lead to audio lag that affects the integration of audio and visual streams.
Our proposed approach, AV-Cloud, overcomes these challenges by learning the
representation of the audio-visual scene based on a set of sparse AV anchor points,
that constitute the Audio-Visual Cloud, and are derived from the camera calibration.
The Audio-Visual Cloud serves as an audio-visual representation from which
the generation of spatial audio for arbitrary listener location can be generated.
In particular, we propose a novel module Audio-Visual Cloud Splatting which
decodes AV anchor points into a spatial audio transfer function for the arbitrary
viewpoint of the target listener. This function, applied through the Spatial Audio
Render Head module, transforms monaural input into viewpoint-specific spatial
audio. As a result, AV-Cloud efficiently renders the spatial audio aligned with
any visual viewpoint and eliminates the need for pre-rendered images. We show
that AV-Cloud surpasses current state-of-the-art accuracy on audio reconstruction,
perceptive quality, and acoustic effects on two real-world datasets. AV-Cloud also
outperforms previous methods when tested on scenes “in the wild”.

1 Introduction
With the advent of visual rendering for 3D scenes, it is now possible to reconstruct a scene as a set of
cloud points from a collection of real-world images or videos [1, 2, 3]. It is then possible to embark on
virtual tourism through the scene, which would traverse it through novel paths and various viewpoints
in real-time, where in each frame, the scene is rendered with remarkable photo realism. While visual
realism and visual perception of current virtual tourism methods are striking [3, 4, 5, 6, 7], additional
modalities such as sound could enhance and contribute to a fuller, more dynamic, and more immersive
experience. Imagine attending a virtual tour of the Trevi Fountain in Rome, where you can not only
view the fountain from different locations but also hear its magical sounds. Furthermore, these sounds
would adapt based on your view perspectives while exploring the scene.

Indeed, as visual rendering creates 3D scenes, audio rendering produces dynamic spatial sounds,
adding the natural auditory perception to the perception of the scene. Combined together, visual and

∗Department of Electrical & Computer Engineering, University of Washington, Seattle, USA
†Department of Applied Mathematics, University of Washington, Seattle, USA
‡Corresponding author: shlizee@uw.edu

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Figure 1: AV-Cloud is an audio rendering framework synchronic with the visual perspective. Given
video collections, it constructs Audio-Visual Anchors for scene representation and transforms monau-
ral reference sound into spatial audio.

audio components provide a cohesive, immersive experience that allows to explore and interact within
virtual spaces. The creation of such an experience requires the rendering ofhigh-quality spatial audio
which issynchronized with the visual rendering.In addition to real-time speed requirements, this
task is challenging since such audio rendering requires careful modeling of comprehensive factors
such as magnitude changes and spatial effects (e.g., left-right channel energy ratios for stereo audio)
that match with view perspectives and reverberation that enhances the sound's situational presence
within a scene. While, in principle, the spatial audio can be rendered in a scene by comprehensive
modeling of the Room Impulse Response (RIR) [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
that will be convolved with sounds emitted from emitters, achieving high �delity modeling of RIR is
reserved for synthetic scenes with simulated RIR or scenes that have been thoroughly scanned for
such purpose. Indeed, accurate modeling of RIR demands a thorough understanding of the scene
properties such as the scene geometry and surface materials, all of which are challenging to estimate
for scenes reconstructed from “in-the-wild” sparse collections of images or videos. Furthermore,
knowledge of the locations of the emitters will need to be known to reconstruct the spatial sound.

To address the challenges of RIR reconstruction for various real scenes, alternative methods propose
to reconstruct spatial audio based on images [22, 23, 24, 25, 26, 27, 28, 29] at the target viewpoint.
Such an approach could be advantageous since could apply to in-the-wild reconstructed scenes
with an easier setup and set a suitable audio renderer which follows visual rendering. While such
image-based approaches pave the way to audio-visual rendering, their accuracy relies on the visual
accuracy of rendered images such that visual artifacts will impact the sound quality. Additionally, by
design, such audio rendering is sequential and occurs after visual rendering. These factors create a
lag that needs to be constantly addressed to achieve synchrony in audio-visual rendering, affecting
real-time audio-visual rendering by preventing the seamless integration of audio and visual streams.

In this work, we propose to address the above described challenges by introducing a novel framework,
AV-Cloud, which is a point-based audio-visual rendering framework that supports high-quality spatial
audio rendering from any viewpoint. AV-Cloud does not rely on pre-rendered visual cues (e.g.
rendered images) and thus enables spatial audio rendering simultaneously with visual rendering.

Speci�cally, as illustrated in Figure 1, AV-Cloud approach starts from a sparse set of Structure-
from-Motion (SfM) points [1], derived from camera calibration and estimated from a collection of
real-world videos. SfM points provide detailed 3D scene geometry for accurate spatial rendering and
serving as consistent initial inputs for synchronizing visual and audio rendering processes. AV-Cloud
then establishes clusters of these points and initializes representative Audio-Visual Anchors (AV
anchors), each bound with 3D coordinates, RGB visual features, and audio effect latent features for
a point-based audio-visual scene representation. AV anchors then undergo splatting by the Audio-
Visual Cloud Splatting (AVCS) module, which decodes them into spatial audio transfer function by
dynamically adjusting the contribution of each anchor based on the viewpoint pose of the listener.
Together with the Spatial Audio Render Head (SARH), AV-Cloud converts monaural reference sound
into viewpoint-speci�c stereo audio, effectively adjusting the acoustic effects. Optimization of the
reusable AV-Cloud across all training samples allows for effective generalization of spatial audio
rendering to accommodate novel viewpoints while using a minimal set of parameters.

In summary, our main contributions in this work are as follows: 1) We introduce a novel point-based
audio-visual rendering framework, AV-Cloud, which enables high-quality audio rendering from any
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viewpoint without reliance on pre-rendered cues and thus better preserves synchrony with visual
rendering. 2) We de�ne Audio-Visual Anchors for scene representation and propose the Audio-
Visual Cloud Splatting module. This module, along with a Spatial Audio Render Head, dynamically
adjusts AV anchor contributions based on view perspectives to render high-quality stereo sound with
accurate acoustic effects. 3) Our framework surpasses state-of-the-art(SOTA) accuracy in spatial
audio reconstruction, perceptual quality, and acoustic effects on two common real-world benchmarks.
It also outperforms existing methods in experiments “in the wild” at a real-time inference speed.

2 Related Works

Spatial Audio Scene Reconstruction.Most traditional audio scene reconstruction methods recon-
struct spatial sound at arbitrary listener locations by convolving the sound waveform of each emitter
with corresponding Room Impulse Response (RIR) and then perform summation of the outcomes of
each emitter. Conventional RIR modeling methods were based on solving the acoustic wave equa-
tion [8, 9, 10, 11] or treat sound propagation as optic rays [12, 13, 14, 15, 16, 17]. Recent methods
utilize deep learning approaches to generate spatial RIRs for emitter-receiver pairs. Particularly,
in [18, 19, 20, 21], a deep generative model is learned, while alternative methods [30, 31, 32] learn
an implicit neural function to represent RIR. Since RIR is the complex outcome of sound propagation
through the scene geometry and interaction with surfaces, the aforementioned RIR generators are
conditioned on the locations of the emitters and scene properties such as geometry [31, 32, 19],
mesh [20] and visual at target viewpoint [21].

In real-world applications, the explicit emitter location and detailed scene geometry information
are challenging to capture without special setups. To overcome this requirement, it was proposed
to reconstruct spatial audio scenes from images, giving rise to methods such as visual acoustic
matching [22, 23, 27] and visual-guided audio spatialization [24, 25, 26]. These methods primarily
focused on matching environmental levels, that could introduce inaccuracies in learning acoustic
effect difference during continuous viewpoint changes. To address these limitations, the study
in [28] introduced a novel-view acoustic synthesis task and a neural rendering approach that learns
to synthesize the sound of an arbitrary perspective in the space guided by visual images. This
was followed by the study in [29] which utilized NeRF-based rendering method [33] to synthesize
novel videos with spatial sound from arbitrary camera poses. Both [28] and [29] rely on viewpoint
information rather than uniform scene representations for audio rendering which may result in
inaccuracies when tested on novel camera poses. Furthermore, the requirement of view images as
input, could reduce the audio rendering quality due to visual artifacts and introduce rendering delays.
Our method renders spatial audio in synchrony with the visual rendering for any viewpoint since
audio is rendered directly from the learned scene representation.

Point-based Neural Rendering for Audio-Visual Scenes.Point-based methods were shown to
render disconnected and unstructured geometry samples such as point clouds in an ef�cient way [34].
Points capture the underlying data of a 3D scene, and hold essential physical information critical for
precise depiction in both visual and audio rendering. In some instances, point sample rendering for
visual content could lead to holes due to the extreme discontinuity of points. Traditionally, this issue
was addressed by splatting the points to extents larger than a pixel [35, 36, 37, 38]. This approach
helps in mitigating discontinuities. Notably, a recent method 3D-GS[3] utilizes 3D Gaussians for a
�exible and expressive scene representation, leveraging explicit representation and differential point-
based splatting methods for real-time rendering of novel views. In contrast to traditional point-based
methods that require Multi-View Stereo (MVS) data [39, 40, 41], 3D-GS achieves high-quality results
from Structure-from-Motion (SfM) points only [1] from camera calibration as input, optimizing
properties such as position, opacity, anisotropic covariance at each point.

For spatial audio rendering, the mapping of 3D points to audio signals is more complex than projecting
points from 3D to 2D for visual rendering. Therefore, implicit neural �eld representations are popular
for point-based neural audio rendering [32, 42, 43, 44]. Speci�cally, in [42], distinct local feature
grids were used for the emitter and the receiver as an inductive bias to generalize to novel inputs,
while in [32], scene geometry features were disentangled with three modules to generate independent
features for the emitter, the boundary points, and the listener, respectively, enhancing feature reuse.
These methods rely on knowledge of the locations of the emitter and the listener, and they do not
adapt to the orientation of the viewer. Such property is key for realistic spatial effects. In contrast,
AV-Cloud dynamically weighs the points based on target perspectives to support view-based audio
rendering.
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3 Methods

Given a collection of videos, we aim to render spatial audio synchronized with arbitrary listener
viewpoint given monaural reference sound. As shown in Figure 1, for each scene, SfM points are
estimated from training videos and camera calibration [1]. We de�neN Audio-Visual Anchors after
clustering the SfM points, initializing their features on 3D coordinates, RGB and audio effect to
construct point-based audio-visual representation for the 3D scene. We then introduce the Audio-
Visual Cloud Splatting (AVCS) module to decode spatial audio transfer function conditioned on the
listener viewpoint. The transfer function together with the Spatial Audio Render Head (SARH) will
transfer the input reference sound to target stereo audio at that viewpoint. Our method renders spatial
audio directly from Audio-Visual Anchors without the need for pre-rendered images or speci�ed
locations of the emitters.

3.1 Structure from Motion

Structure from Motion (SfM) is a technique that is used to reconstruct a three-dimensional structure of
the environment from a sequence of images [1]. SfM points represent distinct, recognizable features
in the scene, which are detected and used to estimate the viewpoint of the camera. This process
results in a detailed 3D point cloud that captures the spatial con�guration of the scene.

SfM points are particularly bene�cial for Audio-Visual (AV) reconstruction due to two key factors:
1) They provide detailed 3D scene geometry, which is essential for spatial information in both visual
and audio rendering. The points capture physical boundaries and surfaces in the scene from which
sound waves can re�ect, diffract, or be absorbed. This geometric data is critical for creating realistic
audio-visual scenes and can be reused by any emitter or listener within the environment. 2) SfM
points can also be used as starting points for visual renderer such as 3D-GS [3], facilitating the
parallel synchronization of audio and visual rendering. In our work, given training videos, we employ
COLMAP [1, 2] to estimate the SfM points together with the camera calibration.

3.2 Audio-Visual Anchors

We use Audio-Visual Anchors as basic units for construction of point-based audio-visual scene
representation. The anchors are clustered from SfM points described in Section 3.1. However,
there are often multiple (tens of thousands) of raw SfM points with less than 0.5m of each other.
This density is too high given that grid resolutions for room acoustic tasks are usually larger than
0.5m [32, 45, 42]. For ef�ciency, we �rst merge points within every 0.25m, averaging their RGB
values to form a single grid. We then select representativeN anchors from the initial SfM points
using K-Means based on their location distribution. After clustering, we initialize the anchor features
as follows: 1)3D coordinates: Each cluster center(x i ; yi ; zi ) is taken as the 3D coordinate of the
corresponding anchor; 2)RGB feature: The RGB values of theK nearest points are concatenated to
form the initial RGB feature, with a dimension ofRN � K � 3; and 3)Latent Audio Embedding: A
latent audio embeddingei 2 RC is used to represent audio effects. This embedding captures how the
anchor region contributes to sound propagation from different listener viewpoints.

3.3 Audio-Visual Cloud Splatting (AVCS)

We introduce the Audio-Visual Cloud Splatting (AVCS) module for decoding audio spatial effect
transfer function from a point-based scene representation given any listener viewpoint. As illustrated
in Figure 2, AVCS involves two primary components: 1) Anchor Projection and 2) Visual-to-Audio
Splatting Transformer. At the onset, each Audio-Visual Anchor is projected to the head coordinate
system of the target listener, followed by the integration of anchor features for each audio frequency
band using a Visual-to-Audio Splatting Transformer. The transformer outputs two acoustic masks:
a mixture maskm m and a difference maskm d. The masks act as transfer functions to convert the
monaural reference sound into stereo audio at the viewpoint of the listener.

Anchor Projection

We de�ne the viewpoint pose as {R = ( Rx ; Ry ; Rz ); T = ( Tx ; Ty ; Tz )}, whereR andT represent
the rotation matrix and translation vector in the 3D world coordinate system, respectively. Given
Anchor i located atp i = ( x i ; yi ; zi ) in the world coordinate system, we calculate the projected
Relative Vectorr i 2 RC in the listener head coordinate system:

r i = �( R � (p i � T )) ; (1)

where� represents positional encoding applied to obtain the higher-dimensional embedding ofr i .
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Figure 2: AVCS consists of two components: Anchor Projection (left) and Visual-to-Audio Splatting
Transformer (right). Audio-Visual Anchors are projected into the coordinate system of the listener
head, and the transformer decodes features for each audio frequency band, outputting two acoustic
masks to convert the monaural reference sound into stereo audio at the target viewpoint.

Visual-to-Audio Splatting Transformer

Given the emitter, sound effects can vary with viewpoint poses and sound frequencies due to
differences in sound propagation process. Considering this, we propose the Visual-to-Audio Splatting
Transformer to dynamically weigh the contribution of each anchor by frequencies and view poses.

The input to the transformer consists ofkey, query, andvaluesequences. Speci�cally, thequeriesare
embedded indicesfk 2 RF � C jk = 1 ; 2; :::; F corresponding toF frequency bands. Thekeysconsist
of a combination of the RGB visual features of each anchor and its relative vectorr i in the listener's
head coordinate system, shaped asRN � C . These visual features are to enhance scene understanding
and distinguish between anchors at different locations. A two-layer multi-layer perceptron (MLP) is
used to reduce the dimensionality of initial RGB features fromRK � 3 to v i 2 RC of each anchor.
Thevaluesare also composed of the relative vectorr i , similarly shaped asRN � C .

As depicted in Figure 2 (right), for frequency bandk = f 1; 2; :::; F g, the decoding process of the
Visual-to-Audio Splatting Transformer layer is formulated as

aki = sof tmax (
fk � (r i + v i )T

p
C

)( i = 1 ; 2; :::; N ); d k =
NX

i =1

aki r i ; e0
k =

NX

i =1

aki ei ; (2)

where thesoftmaxfunction normalizes the contribution of each anchor.

The output of the transformer consists of: 1) AnAttention Mask aki ; 2 RF � N , which indicates
the contribution weight of each anchor and represents the in�uence of each anchor on the spatial
audio effect across frequency bands (higher weights indicate greater in�uence, examples shown in
Figure 6); and 2)integrated Relative Vector embeddingof the anchors for each frequency band w.r.t
the target viewpoint pose, shaped asRF � C , which is closely related to the target head orientation.

The decoding process dynamically “enhances” anchors into the frequency domain for varying
viewpoints by applying the attention scoreaki as weights to the audio embeddingei (obtaining the
mixture Audio Embeddinge0) and the Relative Vector embeddingr i (obtaining integrated Relative
Vector embeddingd), as depicted in Equation 2. This results in a transfer function to manipulate
spatial sound effects through two acoustic masks. The �rst mask, the mixture maskm m 2 RF , is
derived from the mixture Audio Embeddinge0 2 RF � C and re�ects changes in the audio magnitude
of the output mixture sound. The second mask, the difference maskm d 2 RF , is computed from
the integrated Relative Vector embeddingd 2 RF � C . The difference mask is sensitive to the head
orientation of the listener and affects the energy distribution difference of stereo channels.

m m = F Cm (e0); m d = 2 � � (F Cd (d)) � 1; (3)

whereFCm andFCd indicate the Fully Connected Layers,� represents the sigmoid function used
to constrain the range of the left-right spectrogram magnitude difference.
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Figure 3: SARH implements a single-layer residual structure to transform monaural reference sound
into stereo audio. It contains two convolution modules: Time Filters and Conv2D layers to adjust
energy distribution in both the time and frequency domain and enhance the stereo output.

3.4 Spatial Audio Render Head (SARH)

After obtaining the acoustic masks from the Visual-to-Audio Splatting Transformer, we design the
Spatial Audio Render Head (SARH) as illustrated in Figure 3. SARH transfers the input monaural
reference sound into stereo audio. We �rst apply the Short-Time Fourier Transform (STFT) to the
reference sound, extracting its spectrogramS 2 RF � T . To generate stereo audio, we calculate the
left SL 2 RF � T and right channel spectrogram outputsSR 2 RF � T as follows:

Sm = m m S; SL = (1 � m d )Sm ; SR = (1 + m d )Sm (4)

SARH utilizes a single-layer residual structure, which contains two convolution modules in the
residual unit:Time Filters andConv2D Layers. These modules adjust the energy distribution across
both the time and frequency domains to enhance the stereo output.

Time Filters. Given that the reference sound may have distinct acoustic properties, such as re-
verberation time, the �rst convolution module, Time Filters, adjusts the energy distribution of the
mixture output spectrogramSm across the time domain, for more accurate acoustic effects and
higher sound quality. We condition on the integrated Relative Vector embeddingd to generate
convolution kernels and biases of the �lters, where the input and output channel dimension of �lters
are both the time window numberT of the spectrogram. An alternative approach utilizes an attention
decoder layer, similar to that described in Section 3.3. Here, the query consists of embedded indices
f t k 2 RT � C jk = 1 ; 2; :::; Tg of T time windows. The key is determined by Spherical Harmonics
parameters, which are based on the vector from each anchor to the viewpoint in the world coordinate
system (head orientation is not considered for these time domain adjustments on the mixture spectro-
gram). The value is latent Time Filter Embedding of each anchor which decodes into a convolution
�lter kernel with the shape ofRT � T and biasRF � T . This setting reduces parameters while still
keeps competitive accuracy, as detailed in the experiments in Section 4.2.

Conv2D Layers.After processing through the Time Filters, Conv2D Layers smooth and enhance the
time-frequency domain energy distribution. To obtain the inputs, the new mixture output spectrogram
S0

m is concatenated with {m m , � m d andSL } for the left channel, {m m , m d andSR } for the right
channel, respectively. A lightweight stacked Conv2D layer network then processes these inputs to
re�ne the time-frequency energy distribution and generatesS0

L andS0
R . At the �nal stage, the

original stereo output spectrogramsSL andSR are added toS0
L andS0

R via skip connections
respectively to obtain �nal output~SL and~SR , as shown in Equation 4.

3.5 Training

We implement an end-to-end training strategy to minimize the discrepancy between the rendered
and target stereo spectrograms. To calculate the loss, we �rst encode the ground truth stereo audio
using the Short-Time Fourier Transform (STFT) to spectrograms and then apply the Mean Squared
Error (MSE) loss between the logarithm of the predicted spectrogram and the ground-truth (GT)
spectrogram magnitudes on both the left and right channels. The loss function is of the form

L =
1
2

�
MSE(log j~SL j; log jŜL j) + MSE(log j~SR j; log jŜR j)

�
; (5)

where~SL and~SR are predicted stereo spectrograms,ŜL andŜR are GT stereo spectrograms. As
in [46, 29], we exclusively focus on the distance of the magnitude values and do not supervise exact
phase values in order to preserve higher audio quality of the output.
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4 Experiments

4.1 Datasets and Metrics

DatasetsThis work focuses on audio-visual synthesis for real-world scenes. Real-world data present
challenges such as background noise and discrepancies in sound propagation compared to simulated
environments. We have conducted experiments on the following two real-world datasets.

1) RWAVS Dataset[29]: RWAVS includes audio-visual data from 13 everyday indoor and outdoor
settings featuring multiple viewpoints across diverse environments. Each recording captures both
visual and auditory data with key frames captured at 1 frame per second (FPS). Camera poses are
estimated using COLMAP [47], and each key frame is paired with 1 sec of binaural audio and source
audio. The dataset is considered particularly challenging due to its diverse environments and varying
camera poses. As in [29], we split 80% data as training samples and the rest for validation, with all
audio resampled to a frequency of 22050 Hz. We optimize a single model per scene for all methods
and report the average results across all scenes in Table 1.

2) Replay-NVAS Dataset[46]: Replay-NVAS consists of multi-view recordings of scenes within
a single apartment, capturing 46 different daily scenarios such as conversations, dinners and yoga
sessions from 8 viewpoints with captured stereo sounds. Each human participant wears a near-range
microphone to record their clean speech audio which serves as reference sound in our experiments.
This dataset is challenging due to its wide range of social activities, ambient noise, room reverbera-
tions, overlapping speech and dynamic human performers. As in [46], we apply bandpass �ltering
to cut frequencies below 150 Hz to reduce acoustic variations among viewpoints and resample the
audio samples to a frequency of 16000 Hz. 28/6/7 multi-view videos are used for training, validation
and testing, respectively. We use COLMAP to estimate camera poses together for all videos.

Metrics We evaluate audio reconstruction performance using �ve key metrics(the lower the better).
1) Magnitude Spectrogram Distance (MAG ) [46] assesses the closeness of the reconstructed audio
to the ground truth by measuring the distance in the magnitude spectrogram. 2) Left-Right Energy
Ratio Error (LRE) [46] evaluates the accuracy of spatial sound by calculating the difference of ratio
of the energy between left and right channels. 3) Energy Envelope Error (ENV) [24] assesses the
Euclidean distance between the energy envelopes of the groundtruth and predicted left and right
audio waveform channels. 4) RT60 Error (RTE) [22, 23] quanti�es inaccuracies in the predicted
reverberation time as it decays by 60dB using a pretrained model for estimation. 5) Deep Perceptual
Audio Metric (DPAM) [48], a deep learning-based perceptual quality metric aligned with human
judgments. These metrics span various aspects, from spectrogram accuracy to spatial and acoustic
properties, integrating both technical and perceptual elements of sound quality. Furthermore, we
report the speed results in FPS in Tables 1. Speed tests are conducted on a GeForce RTX 2080 Ti,
with results averaged over 1000 samples.

4.2 Comparison with Baselines

We compare our method with the following baseline approaches: 1)MonoMono [29]: Duplicates
the source audio to synthesize binaural audio. 2)Mono-Energy [29]: Scales input audio to match the
known average energy of the target audio and duplicates it to stereo channels. 3)Stereo-Energy[29]:
Scales the energy of the input audio for each channel based on the known energy levels of the target
audio. 4) Digital Signal Processing (DSP) [49, 46]: Utilizes digital signal processing to adjust
audio based on the distance of the source, azimuth, and elevation, applying head-related transfer
functions (HRTFs) to estimate the spatial audio at the target microphone location. 5)ViGAS [46]:
Transforms the sound to the target viewpoint by reasoning about the observed audio and visual
stream. 6)VAM [22]: Matches the acoustics of input audio with a target image that is adapted by
incorporating the image from the source viewpoint with the target viewpoint pose. 7)AV-NeRF [29]:
A NeRF-based system that synthesizes binaural audio for a given camera pose by �rst rendering a pair
of RGB and depth images from the same camera position. 8)NACF [43]: Neural Acoustic Context
Field that parameterizes an audio scene by incorporating multiple acoustic contexts such as geometry,
material properties, and spatial information, adapted here to predict waveform masks to render target
audio. 9)INRAS [32]: Uses implicit neural �elds to disentangle and represent audio scenes for
waveform masks prediction. 10)NAF [42]: Employs local feature grids and an implicit decoder to
model sound propagation in physical scenes, modi�ed to predict magnitude masks on time-frequency
domain. ForNACF, INRASandNAF we employ the same set of Audio-Visual Anchors in place
of the grids that has been traditionally used in these methods for fair comparison. We report main
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Dataset Methods # Params FPS Image MAG LRE ENV RTE DPAM
Mono-Mono - - 7 1.460 1.328 0.445 0.132 0.756
Mono-Energy - - 7 0.532 1.328 0.156 0.145 0.510
Stereo-Energy - - 7 0.560 - 0.160 0.143 0.535
DSP [50] 163M - 7 1.016 3.468 0.274 0.119 0.588
VAM [51] 46.7M 66 3 0.390 0.996 0.156 0.079 0.459

RWAVS ViGAS [28] 13.1M 34 3 0.370 1.089 0.147 0.094 0.357
[29] AVNeRF [29] 12.0M 119 3 0.370 1.013 0.145 0.098 0.381

NACF [43] 0.44M 41 7 0.459 1.364 0.176 0.138 0.506
INRAS [32] 0.31M 180 7 0.455 1.503 0.179 0.148 0.485
NAF [42] 0.22M 99 7 0.448 1.204 0.522 0.138 0.353
AV-Cloud (Ours) 3.91M 83 7 0.351 0.936 0.145 0.074 0.276
AV-Cloud-SH 1.29M 171 7 0.355 0.983 0.147 0.073 0.276
AV-Cloud-sim-SH 0.51M 301 7 0.359 0.996 0.147 0.076 0.291

Mono-Mono - - 7 0.313 0.934 0.127 0.366 0.521
Mono-Energy - - 7 0.191 0.934 0.050 0.356 0.496
Stereo-Energy - - 7 0.196 - 0.054 0.357 0.473
DSP [50] 163M - 7 0.228 6.186 0.066 0.338 0.482
VAM [51] 46.5M 66 3 0.239 0.824 0.062 0.147 0.458

Replay- ViGAS[28] 12.7M 34 3 0.193 0.698 0.054 0.137 1.177
NVAS AVNeRF [29] 11.8M 119 3 0.214 0.773 0.055 0.159 0.290
[28] NACF [43] 0.54M 45 7 0.298 0.722 0.079 0.332 0.544

INRAS [32] 0.32M 162 7 0.211 0.928 0.058 0.340 0.807
NAF [42] 0.23M 100 7 0.208 0.820 0.059 0.388 0.565
AV-Cloud (Ours) 2.47M 103 7 0.180 0.600 0.052 0.065 0.234
AV-Cloud-SH 1.24M 133 7 0.181 0.673 0.053 0.065 0.244
AV-Cloud-sim-SH 0.48M 207 7 0.180 0.689 0.052 0.062 0.231

Table 1: Comparison of AV-Cloud with state-of-the-art methods. For each metric, the top1 value is
highlighted in bold, the second best is underlined, lower is better.

comparison results on the RWAVS and Replay-NVAS datasets in Table 1. The implementation details
of AV-Cloud are introduced in Appendix A.1.

Our experiments results summarized in Table 1 show that AV-Cloud signi�cantly surpasses baselines
across the acoustic metrics, even with relatively fewer model parameters and higher inference speed.
Non-learning methods such asMono-EnergyandStereo-Energy, that assume prior knowledge of the
target sound energy distribution, perform well on metrics such as ENV and LRE, but are impractical
for real-world applications due to their reliance on unavailable data. TheDSPstruggles due to dif�-
culties in estimating precise distances and scene-speci�c variations in HRTF functions. Image-based
methods such asVAM [22], ViGAS[46] andAVNeRF[29] necessitate extensive model parameters
and depend on the visual rendering results. Point-based methods such asNACF[43], INRAS[32]
andNAF [42] construct implicit neural representations of scenes but do not account for how points
contribute across viewpoints. This results in less effective representation and generalization capa-
bilities. In contrast,AV-Cloudleverages Audio-Visual Anchors clustered from sparse SfM points
and dynamically reweighs them to enhance spatial audio accuracy.AV-Cloudenhances the audio
rendering metrics such as MAG (> 5%), LRE (> 6%), and perceptual quality DPAM (> 19%), outper-
forming even image-based methods. Additionally, our Spatial Render Head adjusts reverberation
effects through Time Filters and achieves more accurate outcomes on the acoustics represented by
the metric RTE. Speci�cally for the challenging indoor scenario Replay-NVAS set,AV-Cloudreduces
RTE by 53% relative to the second best methodViGAS.

As outlined in Section 3.4, we also propose an alternative approach (AV-Cloud-SH) with an attention
decoder layer to derive Time Filters, with keys based on Spherical Harmonics (SH) parameters. This
strategy cuts parameter count by> 50% and at the same time it maintains competitive accuracy.
To reduce the complexity of the model, we developed the Visual-to-Audio Splatting Transformer
(Section 3.3) using a single attention decoder layer (AV-Cloud-sim-SH), resulting in 0.51M parameters.
This is comparable to other point-based methods such asNACF, INRASandNAF but achieves
inference speeds approximately 30% faster. WhenAV-Cloud-sim-SHis compared to these three
methods on RWAVS validation set, it enhances the accuracy of MAG and LRE by 20% and 17%
respectively, and signi�cantly reduces the acoustic reverberation error RTE by 45%, and improves
perceptual quality, DPAM, by 18%.
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Methods MAG LRE ENV RTE DPAM

AV-Cloud 0.351 0.936 0.145 0.074 0.276
baseline 0.488 1.329 0.240 0.130 0.357
w/o AVCS 0.368 1.124 0.150 0.080 0.318
w/o time 0.356 0.984 0.146 0.084 0.281
w/o a_emb 0.354 0.975 0.146 0.072 0.282
w/o rgb 0.361 1.014 0.148 0.077 0.291
w/o 2 masks 0.357 0.983 0.147 0.070 0.280
w/o conv2d 0.359 1.019 0.148 0.074 0.280

Table 2:Ablations on RWAVS validation set.

Methods NAF AVNeRF AV-Cloud
Votes 15% 37% 48%

Table 3:Human Study for In-the-Wild Ex-
periments. AV-Cloud is preferred over the
other two methods by a large margin.

4.3 Ablation Studies

We conducted ablation studies on RWAVS validation set to verify the contribution of key components.

Baseline.We use an MLP to predict mixture and difference masks across all frequency bands, based
on the viewpoint pose, and render the target spatial sound using Equation 4 as ourbaseline. Compared
to the full AV-Cloudand other variants in Table 2, thebaselinedoes not perform well across all
metrics. This indicates limited generalization to novel views when solely considering viewpoint
poses.

Audio-Visual Cloud Splatting (AVCS). To verify the contribution of AVCS module in Section 3.3,
we implement a variantw/o AVCSthat replaces the AVCS module with an MLP asbaselineto
generate the mixture and difference masks directly from viewpoint poses. It appears thatw/o AVCS
struggles to capture the relationship between left-right channel energy and viewpoint poses, reducing
the LRE accuracy by 20% comparing to fullAV-Cloud. The AVCS module dynamically adjusts
anchor contributions for audio rendering based on the viewpoint of the listener which results in more
accurate spatial audio effects. Example attention weights of AV anchors are visualized in Figure 6.

Visual Feature Contribution. To evaluate the impact of visual features, we remove the RGB features
from the Visual-to-Audio Splatting Transformer, as reported in Section 3.3 asw/o rgb. This change
decreases perceptual quality by 5%, spatial effect accuracy LRE by 8%, and increases the MAG error
from 0.351 to 0.361. It demonstrates that RGB features can enhance anchor distinction and improve
the ability of the attention mechanism to weigh contributions based on scene understanding.

Audio Embedding. The latent Audio Embeddingei for each Audio-Visual Anchor adjusts the audio
mix based on distance and acoustic effects between the emitters and the listener. Removingei (w/o
a_embin Table 2) and using only the Relative Vector embeddingd to predict the mixture maskmm ,
similarly to the difference maskmd, decreases audio rendering accuracy. While this variant slightly
improves the RTE accuracy (error -0.002) it reduces the accuracy of the spatial effect metric LRE
by 4%. The difference mask and mixture mask target distinct audio factors, with the mixture mask
emphasizing scene properties and listener-emitter locations. The difference mask focuses on the head
orientation. Thus decoupling the prediction with two masks and Audio Embedding is more effective.

Spatial Audio Render Head (SARH).Our results of comparing thebaselineandw/o AVCSdemon-
strate that the use of the residual convolution module of SARH signi�cantly improves rendering
accuracy: MAG by 25%, ENV by 38%, RTE by 38%, and DPAM by 11% (Table 2). In thew/o
timevariant, where only the 2D convolutional layer is retained, reverberation time error increases
from 0.074 to 0.084, and LRE error increases by 5%, demonstrating the key role of Time Filters in
adjusting the time domain energy distribution, which in turn impacts reverberation time and overall
acoustic quality. Thew/o 2 masksvariant, where a direct prediction of the two-channel spatial effect
transfer mask is utilized instead of predicting the difference and mixture masks separately, results
in an increase in error metrics, particularly notable for LRE. Similarly, for thew/o conv2dvariant,
where the Conv2D layers are removed, relying solely on Time Filters, the error metrics also show an
increase. These ablations highlight the signi�cant contribution of the SARH module, emphasizing
the signi�cant roles of its key components, Time Filters and Conv2D layers. SARH along with the
residual module improve rendering accuracy and overall audio quality.
4.4 Qualitative Results Comparison
In Figure 4, we illustrate the rendered spectrogram (for mixture sound) and stereo waveforms
compared across the methods along with input and GT. The region circled in blue on the spectrogram
highlights the location of the reverberation effect in the spectrogram. For indoor scenes reverberation
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Figure 4: Qualitative Results Comparisons. Left: output spectrogram and stereo waveforms;
Bottom Right: LRE error bar chart. The blue-circled region on the spectrogram highlights the
reverberation effect, demonstrating ability of AV-Cloud to capture prolonged energy decay.

indeed has a longer energy decay due to wall re�ections. As can be observed from comparing
the spectrogram and GT, methods signi�cantly vary in their ability to reproduce the reverberation.
Speci�cally, NAF does not convey reverberation from input to target sound,AVNeRFshows better
rendering but is not accurate enough in reverberation and spectrogram magnitude. Both methods
produce waveforms that differ signi�cantly from GT.ViGASrenders a more accurate waveform
but lacks precision in reverberation and perceptual quality. AV-Cloud turns out to reproduce the
effect closer to GT. This can be also seen from the barchart depicting the LRE error (bottom right)
which indicates such spatial effect as reverberation. LRE value for AV-Cloud is signi�cantly lower in
comparison to other methods.

4.5 In-the-Wild Experiments
We tested our method in a real-world virtual tourism scenario in a scene which includes a fountain.
We generated audio samples for �ve different routes and conducted a human study with 76 partici-
pants, who watched navigation videos featuring changing viewpoints and spatial audio rendered by
NAF, AVNeRF, and ourAV-Cloud, and then chose the video which sound best matched the visual
perspectives. Participants were instructed to select the video where spatial audio matches the visual
content, focusing on left-right ear effects and overall synchronization. As shown in Table 3,AV-Cloud
received a majority vote of 48%, outperformingAVNeRFandNAF. Furthermore, we developed a
webGL-based platform that enables real-time audio-visual rendering based on view perspectives with
an Apple M2 chip. More details can be found in the Appendix A.2.

5 Conclusion

In this work, we introduced a novel point-based audio-visual rendering framework, AV-Cloud,
which allows for high-quality audio rendering from any viewpoint without the need for pre-rendered
images and is synchronized with visual rendering. AV-Cloud is based on Audio-Visual Anchors that
enhance scene representation. The Audio-Visual Cloud Splatting module dynamically adjusts anchor
contributions conditioned on the target viewpoint. Experiments show that AV-Cloud achieves higher
accuracy and reliability in spatial audio rendering and outperforms existing methods in real-world
experiments. We also discuss the limitations and broader impacts of our work in Section A.9 and
A.10 respectively.
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