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Abstract

We propose a new algorithm for model-based distributional reinforcement learning
(RL), and prove that it is minimax-optimal for approximating return distributions
in the generative model regime (up to logarithmic factors), the first result of
this kind for any distributional RL algorithm. Our analysis also provides new
theoretical perspectives on categorical approaches to distributional RL, as well
as introducing a new distributional Bellman equation, the stochastic categorical
CDF Bellman equation, which we expect to be of independent interest. Finally, we
provide an experimental study comparing a variety of model-based distributional
RL algorithms, with several key takeaways for practitioners.

1 Introduction

In distributional reinforcement learning, the aim is to predict the full probability distribution of
possible returns at each state, rather than just the mean return (Morimura et al., 2010a; Bellemare
et al., 2017, 2023). Applications of distributional reinforcement learning range from dopamine
response modelling in neuroscience (Dabney et al., 2020), to driving risk-sensitive decision-making
and exploration in domains such as robotics (Bodnar et al., 2020), healthcare (Böck et al., 2022),
and algorithm discovery (Fawzi et al., 2022), as well as forming a core component of many deep
reinforcement learning architectures (Bellemare et al., 2017; Dabney et al., 2018b,a; Yang et al.,
2019; Bellemare et al., 2020; Shahriari et al., 2022; Wurman et al., 2022).

The full distribution of returns is a much richer signal than the expectation to predict. A foundational,
as-yet-unanswered problem is how many sampled transitions are required to accurately estimate
return distributions, and in particular, whether this task is statistically harder than estimating just
the value function. We study these questions in the setting where sampled transitions are given by a
generative model (Kearns et al., 2002; Kakade, 2003; Azar et al., 2013).

We provide a new distributional RL algorithm, the direct categorical fixed-point algorithm (DCFP),
and prove that the number of samples required by this algorithm for accurate return distribution
estimation matches the lower bound established by Zhang et al. (2023), up to logarithmic factors.
This resolves the foundational question above, and, perhaps surprisingly, shows that in this setting,
distributional RL is essentially no harder, statistically speaking, than learning a value function.

In addition to this central result, our analysis provides new perspectives on categorical approaches
to distributional RL (Bellemare et al., 2017), including a new distributional Bellman equation, the
stochastic categorical CDF Bellman equation (see Section 5.2), which we expect to be of broad
use in future work on categorical distributional RL. We also provide an empirical study, comparing
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the newly-proposed DCFP algorithm to existing approaches to distributional RL such as quantile
dynamic programming (QDP; Dabney et al., 2018b; Rowland et al., 2024), and identify several
key findings for practitioners, including the importance of levels of environment stochasticity and
discount factor for the relative performance of these algorithms.

2 Background

Throughout the paper, we consider the problem of evaluation in an infinite-horizon Markov reward
process (MRP), with finite state space X , transition probabilities P ∈ RX×X , reward function
r : X → [0, 1], and discount factor γ ∈ [0, 1); this encompasses the problem of policy evaluation in
Markov decision processes (Sutton and Barto, 2018). A random trajectory (Xt, Rt)t≥0 is generated
from an initial state X0 = x according to the conditional distributions Xt | (X0, . . . , Xt−1) ∼
P (·|Xt−1), and Rt = r(Xt). The return associated with the trajectory is given by the quantity∑

t≥0 γ
tRt. In RL, a central task is to estimate the value function V ∗ : X → R, defined by

V ∗(x) = E[
∑

t≥0 γ
tRt | X0 = x] , (1)

given some form of observations from the MRP. The value function defines the expected return,
conditional on each possible starting state in the MRP. The value function satisfies the Bellman
equation V ∗ = TV ∗, where T : RX → RX is defined by

(TV )(x) = Ex[R+ γV (X ′)] , (2)

where (x,R,X ′) is a random transition in the environment, distributed as described above. When
the transition probabilities of the MRP are known, the right-hand side can be evaluated as an affine
transformation of V . MRP theory (see, e.g., Puterman, 2014 for an overview) then shows how (an
approximation to) V ∗ can be obtained. For example, a dynamic programming approach takes an
initial approximation V0 ∈ [0, (1− γ)−1]X , and the sequence (Vk)

∞
k=0 is computed via the update

Vk+1 = TVk; it is guaranteed that ∥Vk − V ∗∥∞ ≤ γk(1 − γ)−1. Alternatively, the linear system
V = TV can be solved directly with linear-algebraic methods to obtain V ∗ as its unique solution.

2.1 Reinforcement learning with a generative model

In many settings the transition probabilities of the MRP are unknown, and the value function must
be estimated based on data comprising sampled transitions, introducing a statistical element to the
problem. A commonly used model for this data is a generative model (Kearns et al., 2002; Kakade,
2003). In this setting, for each state x ∈ X , we observe N i.i.d. samples (Xx

i )
N
i=1 from P (·|x), and

this collection of N |X | samples may then be used by an algorithm to estimate the value function.
Azar et al. (2013) showed that at least N = Ω(ε−2(1 − γ)−3 log(|X |/δ)) samples are required to
obtain ε-accurate estimates of the value function with high probability (measured in L∞ norm),
and also showed that this bound is attained (up to logarithmic factors) by a certainty equivalence
algorithm, which treats the empirically observed transition frequencies as the true ones, and solves
for the value function of the corresponding MRP.

2.2 Distributional reinforcement learning

Distributional RL aims to capture the full probability distribution of the random return at each state,
not just its mean. Mathematically, the object of interest is the return-distribution function (RDF)
η∗ : X →P(R), defined by

η∗(x) = D
(∑∞

t=0 γ
tRt | X0 = x

)
, (3)

where D extracts the probability distribution of the input random variable. The distributional
perspective on reinforcement learning has proved practically useful in a wide variety of applications,
including healthcare (Böck et al., 2022), navigation (Bellemare et al., 2020), and algorithm discovery
(Fawzi et al., 2022). The central equation behind dynamic programming approaches to approximating
the return distribution function is the distributional Bellman equation (Sobel, 1982; Morimura
et al., 2010a; Bellemare et al., 2017), given by η∗ = T η∗, where T : P(R)X → P(R)X is the
distributional Bellman operator, defined by

(T η)(x) = D
(
R+ γG(X ′) | X = x

)
,

where independent from the random transition (X,R,X ′), we have G(x) ∼ η(x) for each x ∈ X .
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2.3 Categorical dynamic programming

Given an initial RDF approximation η ∈P([0, (1− γ)−1])X , it also holds that the update η ← T η
converges to η∗ in an appropriate sense (e.g., in Wasserstein distance; see Bellemare et al., 2017), in
analogy with dynamic programming algorithms for the value function, as described above. However,
generally it is not possible to tractably implement repeated computation of the update η ← T η as
a means of computing approximations to return distributions; probability distributions are infinite-
dimensional objects, and as such computational costs quickly become prohibitive. Instead, the use of
some kind of approximate, tractable representation of probability distributions is typically required.

Representations. In this paper, we focus on the categorical approach to distributional reinforcement
learning (Bellemare et al., 2017), in which estimates of return distributions are represented as
categorical distributions over a finite number of outcomes z1 < · · · < zm. We will take {z1, . . . , zm}
to be an equally spaced grid over the range of possible returns [0, (1− γ)−1], so that zi = i−1

m−1 (1−
γ)−1 for i = 1, . . . ,m. Approximations of the RDF are then represented in the form

η(x) =
∑m

i=1 pi(x)δzi . (4)

Here, δz is the Dirac distribution at the outcome z, and p = ((pi(x))
m
i=1 : x ∈ X ) are adjustable

probability mass parameters; see Figure 1(a). The number of categories m can be interpreted as
controlling the expressivity of the representation, and should be carefully chosen in practice to trade
off between increased accuracy (larger m), and computational tractability (smaller m).

Dynamic programming. The iteration η ← T η cannot be used to update the parameters p in
Equation (4) directly, since the distributions (T η)(x) are no longer supported on {z1, . . . , zm}, and
so cannot be expressed in the form given in Equation (4); see Figure 1(b). Bellemare et al. (2017)
circumvent this issue by projecting the resulting distributions back onto the support set {z1, . . . , zm}
via a map Πm : P([0, (1 − γ)−1]) → P({z1, . . . , zm}]). Intuitively, Πm can be thought of as
allocating each outcome z ∈ [zi, zi+1] to its neighbouring gridpoints zi and zi+1, in proportion to
their proximity, so that the projection of the Dirac distribution δz , is defined by

Πmδz =
zi+1 − z
zi+1 − zi

δzi +
z − zi
zi+1 − zi

δzi+1 .

In this paper, we work with the equivalent definition of the projection Πm given by Rowland et al.
(2018, Proposition 6), in which the probability mass assigned to zi by Πmν is given by the expectation
EZ∼ν [hi(Z)], where hi : [0, (1−γ)−1]→ [0, 1] is the “hat function” at zi, which linearly interpolates
between a value of 1 at zi, and 0 at neighbouring gridpoints zi−1, zi+1, and is 0 outside this range.
Figure 1(c) illustrates hi and hm; see Appendix B for a restatement of the full definition given by
Rowland et al. (2018).

The projected update η ← ΠmT η is thus guaranteed to keep η in the space of approximations of
the form given in Equation (4), and can be viewed as a tractable alternative to the update η ← T η
described above. Rowland et al. (2018) show that despite the introduction of the additional projection
map Πm, repeated computation of the update η ← ΠmT η, referred to as categorical dynamic
programming (CDP), is guaranteed to convergence to a categorical fixed point, and further, the
categorical fixed point can be made arbitrarily close to the true RDF η∗ by increasing m, as measured
by Cramér distance (Cramér, 1928; Székely, 2003; Székely and Rizzo, 2013).

Figure 1: (a) The density of a distribution ν (grey), and its categorical projection Πmν ∈
P({z1, . . . , zm}) (blue). (b) A categorical distribution (blue); its update after being scaled by γ and
shifted by r by the distributional Bellman operator T , moving its support off the grid {z1, . . . , zm}
(pink); the resulting realigned distribution supported on the grid {z1, . . . , zm} after projection via
Πm (green). (c) Hat functions hi (solid) and hm (dashed).
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Definition 2.1. The Cramér distance ℓ2 : P(R)×P(R)→ R is defined by

ℓ2(ν, ν
′) =

[ ∫
R
(Fν(t)− Fν′(t))2 dt

]1/2
,

where Fν , Fν′ are the CDFs of ν, ν′, respectively. The supremum-Cramér distance ℓ2 on P(R)X is
defined by

ℓ2(η, η
′) = max

x∈X
ℓ2(η(x), η

′(x)) .

The central convergence results concerning CDP are summarised below.

Proposition 2.2. (Rowland et al., 2018). The operator ΠmT : P([0, (1− γ)−1])X →P([0, (1−
γ)−1])X is a contraction mapping with respect to ℓ2, with contraction factor

√
γ, and has a unique

fixed point, ηC ∈P({z1, . . . , zm})X . As a result, for any η0 ∈P([0, (1− γ)−1])X , with ηk+1 =
ΠmT ηk, we have ℓ2(ηk, ηC) ≤ (1− γ)−1γk. Further, the distance between ηC and the true RDF η∗
can be bounded as

ℓ2(ηC, η
∗) ≤ 1

(1− γ)
√
m− 1

. (5)

This establishes CDP as a principled approach to approximating return distributions, and also
quantifies the accuracy achievable with CDP using m categories, which will be central in informing
our choice of m to obtain a sample-efficient, accurate algorithm below.

3 Distributional reinforcement learning with a generative model

The central problem we study in this paper is how to do sample-efficient distributional RL with a
generative model. That is, given the samples ((Xx

i )
N
i=1 : x ∈ X ) described in Section 2.1, how

accurate of an approximation to the return-distribution function in Equation (3) can one compute?

This question was raised by Zhang et al. (2023), who proposed to perform distributional dynamic
programming updates η ← T̂ η as described in Section 2.2, using the empirical distributional
Bellman operator T̂ derived from the empirical transition probabilities P̂ , defined by P̂ (y|x) =

N−1
∑N

i=1 1{Xx
i = y}, producing an estimate η̂ ∈ P([0, (1 − γ)−1]) of the true RDF η∗ such

that for any ε > 0 and δ ∈ (0, 1), we have w1(η̂(x), η
∗(x)) ≤ ε with probability at least 1 − δ

for all x ∈ X , whenever N = Ω̃(ε−2(1− γ)−4polylog(1/δ)). Here, w1 denotes the Wasserstein-1
distance between probability distributions, defined for any ν, ν′ ∈ P(R) with CDFs Fν , Fν′ by
w1(ν, ν

′) =
∫
R |Fν(t)− Fν′(t)| dt . We focus on the Wasserstein-1 distance as the main metric of

interest in this paper as it is particularly compatible with existing methods for analysing categorical
approaches to distributional RL, and it provides upper bounds for differences of many statistical
functionals of interest, such as expectations of Lipschitz functions (Villani, 2009; Peyré and Cuturi,
2019); and conditional-value-at-risk (Rockafellar and Uryasev, 2000, 2002; Bhat and Prashanth, 2019,
CVaR). Zhang et al. (2023) also prove a lower bound of N = Ω̃(ε−2(1− γ)−3) samples required
to obtain such an accurate prediction with high probability, which follows from a reduction to the
mean-return case (Azar et al., 2013).

There are two natural questions that the analysis of Zhang et al. (2023) leaves open. Firstly, can the
gap between the lower bound and upper bound as a function of (1− γ)−1 described above be closed?
Zhang et al. (2023) conjecture that their analysis is loose, and that this gap can indeed be closed.
Second, we also note that the distributional dynamic programming procedure η ← T̂ η proposed by
Zhang et al. (2023), without incorporating any restrictions on the representations of distributions,
runs into severe space and memory issues, and is not practical to run (and indeed Zhang et al. (2023)
introduce approximations to the algorithm when running empirically for these reasons). A remaining
question is then whether there are tractable algorithms that can achieve the lower bound on sample
complexity described above. Our contributions below provide a new, tractable distributional RL
algorithm that attains (up to logarithmic factors) the lower bound on sample complexity provided by
Zhang et al. (2023), resolving these questions.
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4 Direct categorical fixed-point computation

Our approach to obtaining a sample-efficient algorithm that is near-minimax-optimal in the sense de-
scribed above begins with the categorical approach to distributional dynamic programming described
in Section 2.3. We begin first by introducing a new algorithm for computing the categorical fixed
point ηC referred to in Proposition 2.2 directly, that avoids computing an approximate solution via
dynamic programming iterations η ← ΠmT η. We expect this algorithm to be of independent interest
within the field of distributional reinforcement learning.

4.1 Direct categorical fixed-point computation

Our first contribution is to develop a new computational perspective on the projected categorical
Bellman operator ΠmT , which results in a new algorithm for computing the fixed point ηC exactly,
without requiring the iterative CDP algorithm described in Section 2.3.

CDF operator and fixed-point equation. We first formulate the application of the projected
categorical Bellman operator ΠmT as a linear map, and give an explicit expression for the matrix
representing this linear map when the input RDFs are represented with cumulative distribution
functions (CDFs). We consider the effect of applying ΠmT to an RDF η = P({z1, . . . , zm})X ,
with η(x) =

∑m
i=1 pi(x)δzi . By Rowland et al. (2018, Proposition 6), the updated probabilities for

(ΠmT η)(x) =
∑m

i=1 p
′
i(x)δzi can be expressed as

p′i(x) =
∑
y∈X

m∑
j=1

P (y|x)hxi,jpj(y) , (6)

where hxi,j = hi(r(x) + γzj). We convert this into an expression for cumulative probabilities, rather
than individual probability masses, to obtain a simpler analysis below. To do so, we introduce
the encoding of η ∈ P({z1, . . . , zm})X into corresponding CDF values F ∈ RX×m, where
Fi(x) = η(x)([z1, zi]) denotes the cumulative mass at state x over the set {z1, . . . , zi}.
Proposition 4.1. If η ∈P({z1, . . . , zm})X is an RDF with corresponding CDF values F ∈ RX×m,
then the corresponding CDF values F ′ ∈ RX×m for ΠmT η satisfy

F ′
i (x) =

∑
y∈X

m∑
j=1

P (y|x)(Hx
i,j −Hx

i,j+1)Fj(y) , (7)

where

Hx
i,j =

∑
l≤i hl(r(x) + γzj) (8)

for j = 1, . . . ,m, and by convention we take Hx
i,m+1 = 0.

Under this notation, we can rewrite Equation (7) simply as a matrix-vector multiplication in RX×[m]:

F ′ = TPF ,

where TP is the (X × [m])× (X × [m]) square matrix, with entries given by

TP (x, i; y, j) = P (y|x)(Hx
i,j −Hx

i,j+1) , (9)

and F, F ′ ∈ RX×m above are interpreted in vectorised form. We drop dependence on m from the
notation TP for conciseness. Thus, CDP can be implemented via simple matrix multiplication on
CDF values, and the CDF values F ∗ for the categorical fixed point ηC solve the equation

F = TPF , or equivalently (I − TP )F = 0 . (10)

Obtaining a system with unique solution. Equation (10) suggests that we can directly solve a linear
system to obtain the exact categorical fixed point, rather than performing the iterative CDP algorithm
to obtain an approximation. Note, however, that F ∗ is not the unique solution of Equation (10); for
example, F = 0 is also a solution. This arises because in Equation (10), the distribution masses at
each state (that is, Fm(x)), are unconstrained. By contrast, Proposition 2.2 establishes that ηC is the
unique solution of η = ΠmT η in the space P([z1, zm])X , where each element η(x) is constrained
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to be a probability distribution a priori. Thus, Equation (10) requires some modification to obtain
a linear system with a unique solution. This is obtained by removing Fm(x) as a variable from the
system (for each x ∈ X )), replacing it by the constant 1, and removing redundant rows from the
resulting linear system, as the following proposition describes; the “axis-aligned” nature of these
constraints is the benefit of working with CDF values.
Proposition 4.2. The linear system in Equation (10), with the additional linear constraints Fm(x) =

1 for all x ∈ X , is equivalent to the following linear system in F̃ ∈ RX×[m−1]:

(I − T̃P )F̃ = H̃ , (11)

where the (x, i; y, j) coordinate of T̃P (for 1 ≤ i, j ≤ m− 1) is

T̃P (x, i; y, j) = P (y|x)(Hx
i,j −Hx

i,j+1) ,

and for each x ∈ X , 1 ≤ i ≤ m− 1, we have H̃(x, i) = Hx
i,m.

Having moved to the inhomogeneous system over RX×[m−1] in Equation (11), we can deduce the
following via the contraction theory in Proposition 2.2.
Proposition 4.3. The linear system in Equation (11) has a unique solution, which is precisely the
CDF values ((F ∗

i (x))
m−1
i=1 : x ∈ X ) of the categorical fixed point.

The direct categorical fixed-point algorithm (DCFP) consists of solving the linear system in Equa-
tion (11) to obtain the exact categorical fixed point; see Algorithm 1 for a summary, and Appendix G.5
for more details on implementations.

Algorithm 1: The direct categorical fixed-point algorithm (DCFP).
1 Calculate matrices (Hx : x ∈ X ) via Equation (8).
2 Calculate matrix T̃P and vector H̃ via Equation (9).
3 Call linear system solver on Equation (11).
4 Obtain resulting solution F̃ ∗ ∈ RX×[m−1].
5 Return F ∗, obtained by appending the values F ∗

m(x) = 1 to the solution F̃ ∗.

Complexity and implementation details. Representing T̃P as a dense matrix requires O(|X |2m2)
space, and solving the corresponding linear system in Equation (11) with a standard linear solver
requires O(|X |3m3) time. However, in many problems there are cases where the DCFP algorithm
can be implemented more efficiently. Crucially, T̃P often has sparse structure, and so sparse linear
solvers may afford an opportunity to make substantial improvements in computational efficiency. We
explore this point further empirically in Section 6, and give a theoretical perspective in Appendix G.

4.2 DCFP with a generative model

We now return to the setting where the Markov reward process in which we are performing evaluation
is unknown, and instead we have access to the random next-state samples ((Xx

i )
N
i=1 : x ∈ X ),

as described in Section 3. Our model-based DCFP algorithm proceeds by first constructing the
corresponding empirical transition probabilities P̂ , so that P̂ (y|x) = N−1

∑N
i=1 1{Xx

i = y}, and
then calls the DCFP procedure outlined in Algorithm 1, treating P̂ as the true transition probabilities
of the MRP when constructing the matrix in Line 2, which we denote here by TP̂ , to reflect the
fact that it is built from P̂ . This produces the output CDF values F̂ , from which estimated return
distributions can be decoded (with the convention F̂0(x) = 0) as

η̂(x) =

m∑
i=1

(F̂i(x)− F̂i−1(x))δzi . (12)

5 Sample complexity analysis

Our goal now is to analyse the sample complexity of model-based DCFP, as described in the previous
section. We first introduce a notational shorthand that will be of extensive use in the statement and
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proof of this result: when writing distances between distributions, such as w1(η
∗(x), F̂ (x)), we

identify CDF vectors F̂ (x) ∈ Rm with the distributions they represent as in Equation (12). The core
theoretical result of the paper is as follows.
Theorem 5.1. Let ε ∈ (0, (1 − γ)−1/2) and δ ∈ (0, 1), and suppose the number of categories
satisfies m ≥ 4(1− γ)−2ε−2 + 1. Then the output F̂ of model-based DCFP with N = Ω(ε−2(1−
γ)−3polylog(|X |/δ)) samples satisfies, with probability at least 1− δ,

max
x∈X

w1(η
∗(x), F̂ (x)) ≤ ε .

This result establishes that model-based DCFP attains the minimax lower-bound (up to logarithmic
factors) for high-probability return distribution estimation in Wasserstein distance, resolving an open
question raised by Zhang et al. (2023); in a certain sense, estimation of return distributions is no
more statistically difficult than that of mean returns with a generative model. Note there is no direct
dependence of N on m, so there is no statistical penalty to using a large number of categories m.

Extensions. We note that this core result can be straightforwardly extended in several directions. In
particular, similar bounds apply in the case of predicting returns for learnt near-optimal policies in
MDPs (see Section F.2), for the iterative categorical DP algorithm in place of DCFP (when using
sufficiently many DP updates; see Section F.1), and in the case of stochastic rewards (see Section F.3).

5.1 Structure of the proof of Theorem 5.1

The remainder of this section provides a sketch proof of Theorem 5.1; a complete proof is provided in
the appendix. The proof is broadly motivated by the approaches of Azar et al. (2013), Agarwal et al.
(2020), and Pananjady and Wainwright (2020), who analyse the mean-return case, and we highlight
where key ideas and new mathematical objects are required in this distributional setting. In particular,
we highlight the use of the stochastic categorical CDF Bellman equation, a new distributional
Bellman equation that plays a key role in our analysis, which we expect to be of independent interest.

Reduction to Cramér distance. The first step of the analysis is to reduce Theorem 5.1 to a statement
about approximation in Cramér distance, which is much better suited to the analysis of DCFP, owing
to the results described in Section 2.3. This can be done by upper-bounding Wasserstein distance by
Cramér distance using the following result, which is proven in the appendix via Jensen’s inequality.
Lemma 5.2. For any two distributions ν, ν′ ∈P([0, (1− γ)−1]), we have

w1(ν, ν
′) ≤ (1− γ)−1/2ℓ2(ν, ν

′) .

Theorem 5.1 is now reducible to the following, stated in terms of the Cramér distance.
Theorem 5.3. Let ε ∈ (0, 1) and δ ∈ (0, 1), and suppose the number of categories satisfies
m ≥ 4(1 − γ)−2ε−2 + 1. Then the output F̂ of model-based DCFP with N = Ω(ε−2(1 −
γ)−2polylog(|X |/δ)) samples satisfies, with probability at least 1− δ,

max
x∈X

ℓ2(η
∗(x), F̂ (x)) ≤ ε . (13)

Reduction to categorical fixed-point error. Our first step in proving Theorem 5.3 is to use
the triangle inequality to split the Cramér distance on the left-hand side of Equation (13) into a
representation approximation error, and sample-based error:

ℓ2(η
∗, F̂ ) ≤ ℓ2(η∗, F ∗) + ℓ2(F

∗, F̂ ) ≤ 1

(1− γ)
√
m− 1

+ ℓ2(F
∗, F̂ ) ,

with the second inequality following from the fixed-point quality bound in Equation (5). With m
as specified in the theorem statement, the first term in the right-hand side above is bounded by ε/2.
Thus, it suffices to focus on the second term on the right-hand side, which quantifies the sample-based
error in estimating the categorical fixed point F ∗.

Concentration. Through a combination of the use of a version of Bernstein’s inequality in Hilbert
space (Chatalic et al., 2022) and propagation of this inequality across time steps in the MRP, we next
arrive at the following inequality with probability at least 1− δ:

ℓ2(F̂ (x), F
∗(x)) ≤ Õ

(
1√

N(1− γ)

√
∥(I − γP̂ )−1σP̂ ∥∞ +

1

(1− γ)3/2N3/4

)
. (14)
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Here, σP̂ ∈ RX is an instance of a new class of distributional object, the local squared-Cramér
variation. The general definition is given below, for the case of a general transition matrixQ ∈ RX×X ,
to avoid conflation with the specific transition matrices P and P̂ that Theorem 5.3 is concerned with.

Definition 5.4. For a given transition matrix Q, the single-sample operator T̂Q : RX×m → RX×m

is the random operator given by: (i) constructing a random transition matrix Q̂ by, for each x ∈ X ,
sampling X ′ ∼ Q(·|x), and setting Q̂(X ′|x) = 1; (ii) setting T̂Q = TQ̂.

Definition 5.5. For a given transition matrix Q with corresponding CDP fixed point FQ ∈ RX×m,
the local squared-Cramér variation at Q, σQ ∈ RX , is defined by

σQ(x) = E[ℓ22((T̂QFQ)(x), FQ(x))] .

Intuitively, the local squared-Cramér variation σQ encodes the variability of the fixed point FQ after
a sample-based, rather than exact, dynamic programming update. From this point of view, it is a
natural quantity to arise in Equation (14), and plays a similar role to the variance in the classical
Bernstein inequality (Bernstein, 1946).

In Corollary 5.12 below, we will deduce that under the conditions of Theorem 5.3, we have

∥(I − γP̂ )−1σP̂ ∥∞ ≤
2

1− γ
. (15)

Substituting this into Equation (14) gives

ℓ2(F̂ (x), F
∗(x)) ≤ Õ

(
1

(1− γ)
√
N

+
1

(1− γ)3/2N3/4

)
with probability at least 1 − δ, for all x ∈ X . Now, taking N = Ω̃((1 − γ)−2ε−2) yields that this
expression is O(ε), which completes the sketch proof of Theorem 5.3. What remains to be described
is how to arrive at the bound in Equation (15); the section below provides a high-level overview of
the technical details involved in obtaining it.

5.2 The stochastic categorical CDF Bellman equation

The central idea is to relate the local squared-Cramér variation to a corresponding global notion of
variation, in analogy with the variance Bellman equation (Sobel, 1982) used by Azar et al. (2013)
in the mean-return case. To define this corresponding global notion, we begin by defining a new
type of distributional Bellman equation, which can be intuitively thought of as encoding the result
of repeatedly applying a sequence of independent single-sample operators. Again, we work with a
general transition matrix Q.
Definition 5.6. For a general transition matrix Q, the stochastic categorical CDF (SC-CDF) Bellman
equation is given by

Φ(x)
D
= (T̂QΦ)(x) , (16)

where D
= denotes equality in distribution. Here, T̂Q is a single-sample operator with respect to Q,

as in Definition 5.4. Each Φ(x) is a random variable taking values in the space of valid CDF values
F = {F ∈ Rm : 0 ≤ F1 ≤ · · · ≤ Fm−1 ≤ Fm = 1} for distributions in P({z1, . . . , zm}), and is
taken to be independent of the random operator T̂Q.

The intuition is that “unravelling” Equation (16) should lead to a solution of the form

Φ(x)
D
= lim

k→∞
T̂

(k)
Q · · · T̂ (1)

Q F ,

where (T̂
(i)
Q )ki=1 are independent single-sample operators, so that Φ(x) encodes the fluctuations due

to repeated CDP updates with randomly-sampled transitions. To make this intuition precise, we first
verify that the SC-CDF Bellman equation has a unique solution.
Proposition 5.7. The SC-CDF Bellman equation in Equation (16) has a unique solution, in the sense
that there is a unique distribution for each Φ(x) such that Equation (16) holds for each x ∈ X .
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Figure 2: Left: Example MRP with r(x0) = 1, r(x1) = 0, γ = 0.9. Right: Categorical fixed point
F ∗(x0) with m = 15, and 5 independent samples from the random CDF Φ∗(x0).

We write ΦQ for the collection of random CDFs that satisfy the SC-CDF Bellman equation in
Equation (16), whose existence is guaranteed by Proposition 5.7. We next relate ΦQ to the standard
categorical fixed point FQ.
Proposition 5.8. For all x ∈ X , we have

E[ΦQ(x)] = FQ(x) .

Proposition 5.8 shows that ΦQ can indeed thought of as encoding random variation around the usual
categorical fixed point FQ; see Figure 2. This motivates the following.
Definition 5.9. For a given transition matrix Q with corresponding CDP fixed point FQ ∈ RX×m,
the global squared-Cramér variation at Q, ΣQ ∈ RX , is defined by

ΣQ(x) = E[ℓ22(ΦQ(x), FQ(x))] .

Remark 5.10. Note that ΦQ(x) is a doubly distributional object. It represents a probability distribu-
tion centred around the object FQ(x), which itself already provides a summary of the distribution of
the return. This reveals a dual perspective on distributional RL itself. The distributional predictions
made can serve several purposes: (i) modelling the aleatoric uncertainty in the return, as is the case
in the work of Bellemare et al. (2017) and much subsequent algorithmic work, and/or (ii) serving to
model specific types of epistemic uncertainty in the estimation of a non-random object from random
data, as used in the analysis of Azar et al. (2013) and much subsequent work on the sample complexity
of reinforcement learning. The object ΦQ is motivated by both of these concerns simultaneously.

The following Bellman-like inequality draws a relationship between local and global squared-Cramér
variation, allowing us to make progress from Equation (15).
Proposition 5.11. We have

ΣQ ≥ σQ + γQΣQ −
(

2

m
√
1− γ

+
1

m2(1− γ)2

)
1 ,

where 1 ∈ RX is a vector of ones, and the inequality above is interpreted component-wise.

Rearrangement and bounding of the quantities in the inequality of Proposition 5.11, in the specific
case Q = P̂ , yields the required inequality in Equation (15) that completes the proof of Theorem 5.3.

Corollary 5.12. We can bound the term ∥(I − γP̂ )−1σP̂ ∥∞ appearing in Equation (14) under the
assumptions of Theorem 5.3 as follows:

∥(I − γP̂ )−1σP̂ ∥∞ ≤ ∥ΣP̂ ∥∞ +
1

1− γ
≤ 2

1− γ
.

6 Empirical evaluation

To complement our theoretical analysis, which focuses on worst-case sample complexity bounds, we
report empirical findings for implementations of several model-based distributional RL algorithms in
the generative model setting. We compare the new DCFP algorithm introduced in Section 4.1 with
quantile dynamic programming (Dabney et al., 2018b; Bellemare et al., 2023, QDP) a distinct ap-
proach to distributional RL in which return distributions are approximated via dynamic programming
with a finite number of quantiles.
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Figure 3: Approximation error/wallclock time for a variety of distributional RL methods, discount
factors, numbers of atoms, and numbers of environment samples.

In Figure 3 (left), we report results of running DCFP and QDP on a 5-state environment with
transition matrix randomly sampled from Dirichlet distributions, and entries of the immediate
reward function r ∈ RX randomly sampled from Unif([0, 1]), with varying numbers of atoms m,
environment samples per state N , and discount γ. We report the maximum w1-error against true
return distributions (estimated via Monte Carlo sampling). All runs are repeated 30 times, and
error bars are 95% bootstrapped confidence intervals. Sufficient DP iterations ensure approximate
convergence to their fixed points. In Figure 3 (right), we plot estimation error against wallclock time
for m = 100, N = 106, including results for CDP (which approximates the solution of DCFP via
dynamic programming; Section 2.3); line plots indicate the estimation error/wallclock time trade-off
as we increase the number of DP iterations. Both DCFP and CDP methods benefit from setting the
atom support based on maximal/minimal values of r, as described in Appendix G.

For low discount factors and atom counts QDP generally outperforms DCFP in terms of asymptotic
estimation error, due to QDP’s ability to modify its atom support to regions of the interval [0, (1−
γ)−1] where mass is concentrated. However, we note that DCFP is generally faster than QDP.
Further, DCFP generally outperforms QDP, in terms of both speed and estimation error, under
larger discounts and/or larger atom count. We also note that particularly at high discounts, DCFP
outperforms CDP in terms of wallclock time, due to DP methods requiring many iterations to converge
in these cases (Rowland et al., 2018). Full results, including on several further environments, are
given in Appendix G: key findings include that QDP works particularly well in near-deterministic
environments, and DCFP works particularly well in settings where there are short high-probability
paths from a state to itself.

7 Conclusion

We have introduced a new algorithm, DCFP, for directly computing the fixed point of CDP, a widely
used distributional reinforcement learning algorithm. We then showed that this algorithm, with an
appropriately chosen number of categories m, achieves the minimax lower bound (up to logarithmic
factors) for sample complexity of return-distribution estimation in Wasserstein distance with a
generative model. Thus, this paper closes an open question raised by Zhang et al. (2023) by exhibiting
an algorithm that obtains this lower bound, and shows that estimation of return distributions via a
generative model is essentially no harder statistically than the task of estimating a value function.

Our analysis also casts new light on categorical approaches to distributional reinforcement learning
in general. The newly introduced stochastic categorical CDF Bellman equation serves to encode
information about statistical fluctuations of categorical approaches to distributional RL, and we expect
it to be of further use in theoretical work in distributional RL generally. Our experimental results also
highlight salient differences in performance for distributional RL algorithms making use of distinct
representations, depending on levels of environment stochasticity and discount factor in particular.
We believe further investigation of these phenomena is an interesting direction for future work.
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APPENDICES:
Near-Minimax-Optimal Distributional Reinforcement Learning

with a Generative Model

For convenience, we provide a summary of the contents of the appendices below.

• Appendix A provides a detailed discussion of related work.
• Appendix B provides additional convenient notation for the categorical CDF operator TP , in

particular expressing it as the combination of a scaling/shifting/projecting operation, and a mixing
operation over the state to be bootstrapped from. Several additional self-contained contraction
results are given that are used within the main proofs of the paper.

• Appendix C provides proofs for the results in Section 4 concerning the formation of the linear
system that is solved by the DCFP algorithm, and verification that the derived system has the
unique desired solution.

• Appendix D provides proofs relating to the stochastic categorical CDF Bellman equation, in
particular establishing the desired unique solution to this new distributional Bellman equation, and
proving a key bound on the local squared-Cramér variation that is used within the proof of the
main theorem of the paper.

• Appendix E provides the proof of the main result of the paper, Theorem 5.1, giving full details for
the steps traced through in the sketch proof in the main paper.

• Appendix F provides discussion of several straightforward extensions of the main result, Theo-
rem 5.1.

• Appendix G provides full details relating to the experiments in the main paper, as well as additional
empirical comparisons between methods for distributional RL with a generative model.

A Related work

Other families of model-based distributional RL algorithms. There are many approaches to
distributional RL; important choices studied previously include moments (Sobel, 1982), exponential
families (Morimura et al., 2010b), categorical distributions (Bellemare et al., 2017), collections
of particles (Morimura et al., 2010a; Nguyen-Tang et al., 2021), quantiles (Dabney et al., 2018b),
and generative models (Doan et al., 2018; Dabney et al., 2018a; Freirich et al., 2019; Yang et al.,
2019; Yue et al., 2020). Our choice of categorical representations in this work is motivated by
several considerations: (i) the existence of principled dynamic programming methods for these
representations, with corresponding convergence theory (Rowland et al., 2018); (ii) the flexibility of
these representations to trade-off computational complexity with accuracy (by varying m) (Rowland
et al., 2018); (iii) the mathematical structure of the dynamic programming operator (linear), as
described in this work; and (iv) the availability of an efficient algorithm to exactly compute the DP
fixed point (the DCFP algorithm proposed in Section 4.1).

An interesting and important direction, given our empirical findings in Section 6, is whether analyses
can also be carried out for other approaches to distributional dynamic programming, such as quantile
dynamic programming (QDP; Dabney et al., 2018b; Rowland et al., 2024; Bellemare et al., 2023),
and fitted likelihood estimation (FLE; Wu et al., 2023). We expect challenges in extending the
analysis to result due to the fact that, for example, the QDP operator is non-linear, and FLE operator
applications typically do not have closed forms. Nevertheless, it would be particularly interesting to
understand whether it is possible to obtain instance-dependent bounds for QDP, particularly given its
strong empirical performance. Similarly, as described in Section 5, an interesting question for future
work is whether it is possible to improve on the computational complexity of model-based DCFP for
high-probability return-direction estimation.

Other statistical questions in distributional RL. Böck and Heirzinger (2022) propose a model-
free algorithm for distributional RL, speedy categorical TD-learning, motivated by categorical TD
learning (Rowland et al., 2018) and speedy Q-learning (Azar et al., 2011), and prove a sample
complexity bound of Õ(ε−2(1− γ)−3) for high probability ε-accurate estimation in Cramér distance
(which implies a non-minimax sample complexity of Õ(ε−2(1− γ)−4) in Wasserstein-1 distance,
per Lemma 5.2). Wu et al. (2023) study the offline evaluation problem, in which state-action pairs are
sampled from the stationary distribution of the policy, via fitted likelihood estimation (FLE) and focus
on generalisation bounds, allowing for policy evaluation in environments with uncountable state
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spaces. Wang et al. (2023c) also study policy evaluation in this context, focusing on the LQR model.
Aside from studying minimax optimality, Zhang et al. (2023) also make several other contributions on
the topic of statistical efficiency of estimation for distributional RL, including analysis of asymptotic
fluctuations and limit theorems, and analysis of approximations in more general metrics, including
Wasserstein-p , Kolmogorov-Smirnov, and total variation metrics. Their sample complexity results
rely on careful analysis of the behaviour of the unprojected distributional Bellman operator T on
certain subspaces of probability/signed measures.

Sample complexity of mean-return estimation. The sample complexity of estimating mean returns,
and the related task of obtaining a near-optimal policy, has been considered by Azar et al. (2013);
Sidford et al. (2018); Pananjady and Wainwright (2020); Agarwal et al. (2020); Li et al. (2020).
Interestingly, Agarwal et al. (2020), while treating the mean-return case, make use of return-binning
as a proof technique. Li et al. (2020) also obtain bounds for mean-return sample complexity that apply
with ε > (1−γ)−1/2 for modifications of certainty-equivalent model-based algorithms; an interesting
direction for future work would be to check whether the restrictions on ε in Theorem 5.1 can be
lifted by incorporating ideas from this mean-return analysis to the distributional setting. Additionally,
Chandak et al. (2021) consider the task of estimating the variance of returns from off-policy data,
and Wang et al. (2023b) study regret minimisation properties (with respect to the expected return
criterion) of distributional RL algorithms in the online setting.

Risk-sensitive control. The theory developed in this paper has focused on estimation of return
distributions for individual policies. A natural direction for future work is to analyse identification of
near-optimal policies for risk-sensitive decision criteria. Bastani et al. (2022); Wang et al. (2023a)
study efficient algorithms for CVaR optimisation, while Fei et al. (2021a,b); Liang and Luo (2022)
study entropic risk maximisation, and Du et al. (2022); Lam et al. (2022) study iterated CVaR
optimisation, all in the online setting.

Further analysis. In this paper, we have resolved a conjecture of Zhang et al. (2023), obtaining
a near-minimax-optimal algorithm for estimation of return distributions in Wasserstein-1 distance.
Zhang et al. (2023) make contributions to several other important statistical questions regarding
distributional RL, including approximation in stronger metrics such as Kolmogorov-Smirnov and
total variation metrics, as well as studying asymptotic fluctuations of estimators; it will be interesting
to see whether the analysis presented here can be extended to these other settings as well.

B Additional CDF operator notation and contractivity results

In this section, we introduce finer-grained notation for the CDF operator TP that allows us to
straightforwardly refer to the operations that correspond to shifting/scaling/projecting, and to mixing
over transition states, separately. We also establish several additional contraction lemmas that will be
useful in the sections that follow.

B.1 Categorical hat function definition

For convenience, we provide the full mathematical definition of the hat functions hi : [0, (1−γ)−1]→
[0, 1] used in defining the categorical projection described in the main paper, as given by Rowland
et al. (2018). For i = 2, . . . ,m− 1, we have

hi(z) =


z−zi−1

zi−zi−1
for z ∈ [zi−1, zi]

zi+1−z
zi+1−zi

for z ∈ [zi, zi+1]

0 otherwise.

For the edge case h1, we have

h1(z) =

{
z2−z
z2−z1

for z ∈ [z1, z2]

0 otherwise,

and similarly for the edge case hm, we have

hm(z) =

{
z−zm−1

zm−zm−1
for z ∈ [zm−1, zm]

0 otherwise.
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B.2 Finer-grained operator expression

Recall that the CDF operator TP : RX×m → RX×m is represented by a matrix with elements given
by

TP (x, i; j, y) = P (y|x)(Hx
i,j −Hx

i,j+1) . (17)

We can therefore conceptualise the application TPF as standard matrix-vector multiplication in the
vector space RX×m. However, the expression for matrix elements in Equation (17) has additional
structure that means we can express the application of TP in a different manner, which will be
convenient in several proofs below, particularly as it separates out the influence of rewards (which
remain fixed) and transition dynamics (which are estimated via samples).

In particular, we will regard F ∈ RX×m itself as a matrix, with rows indexed by states in X , and
columns indexed by indices i = 1, . . . ,m. For each state x ∈ X , we then introduce the matrix
Bx ∈ Rm×m, with (i, j) element given by

Hx
i,j −Hx

i,j+1 .

We then have that (TPF )(x) ∈ Rm can alternatively be expressed in matrix notation as

PxFB
⊤
x ,

where Px is the row vector given by the row of P corresponding to state x ∈ X .

B.3 Additional results

Below, we provide several additional results regarding contractivity properties of TP . To do so, it is
useful to introduce the norm ∥ · ∥ℓ2 on Rm, which we define by

∥F∥ℓ2 =

[
1

m(1− γ)

m∑
i=1

Fi(x)
2

]1/2
.

The motivation for this definition is that if we have two distributions ν, ν′ ∈P({z1, . . . , zm}) with
corresponding CDF vectors F, F ′ ∈ Rm, then ℓ2(ν, ν′) = ∥F − F ′∥ℓ2 , as ν, ν′ are supported on
[0, (1− γ)−1]. Thus, under the abuse of notation ℓ2(F, F ′) introduced in the main paper, we have
ℓ2(F, F

′) = ∥F − F ′∥ℓ2 . We also introduce a supremum version of this norm on the space RX×m,
which we denote by ∥ · ∥ℓ2,∞, and define by

∥F∥ℓ2,∞ = max
x∈X
∥F (x)∥ℓ2 ,

for all F ∈ RX×m. This norm is defined so that if we have RDFs η, η′ ∈P({z1, . . . , zm})X , and
F, F ′ ∈ RX×m are the corresponding CDF values, then

ℓ2(η, η
′) = ∥F − F ′∥ℓ2,∞ .

With this norm defined, we can now state and prove our first result, which essentially translates the
contraction result in Proposition 2.2, expressed purely in terms of probability distributions and the
Cramér distance ℓ2, into a slightly more general result expressed over RX×m and the norm ∥ · ∥ℓ2 .
Proposition B.1. The operator TP : RX×m → RX×m is a contraction when restricted to the
subspace {F ∈ RX×m : Fm(x) = 0 for all x ∈ X} with respect to the norm ∥ · ∥ℓ2,∞, with
contraction factor

√
γ.

Proof. By Proposition 2.2, for any two RDF approximations η, η′ ∈ P({z1, . . . , zm})X with
corresponding CDF values F, F ′ ∈ RX , we have

ℓ2(ΠmT η,ΠmT η′) ≤
√
γℓ2(η, η

′) ,

and hence we also have

∥TPF − TPF ′∥ℓ2,∞ ≤
√
γ∥F − F ′∥ℓ2,∞ .

Hence, TP is a contraction map on the set

{F − F ′ : 0 ≤ F1(x) ≤ · · · ≤ Fm(x) = 1 , 0 ≤ F ′
1(x) ≤ · · · ≤ F ′

m(x) = 1 for all x ∈ X} .
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This set contains a basis for the subspace {F ∈ RX×m : Fm(x) = 0 for all x ∈ X}. Namely, the
one-hot vector at coordinate (x, j) (for j < m) can be exhibited as lying in this subspace since it can
be expressed as the difference between the vectors F, F ′ ∈ RX×m defined by Fj(y) = F ′

j(y) = 1
for all y ̸= x, and all j = 1, . . . ,m, and Fi(x) = 1 for i ≥ j (and 0 otherwise), and F ′

i (x) = 1 for
i ≥ j + 1 (and 0 otherwise). Since TP is linear, it therefore holds that

∥TPF∥ℓ2,∞ ≤
√
γ∥F∥ℓ2,∞ , (18)

for any F in the subspace {F ∈ RX×m : Fm(x) = 0 for all x ∈ X}, as required.

Proposition B.2. For each x ∈ X , the matrix Bx is a contraction mapping on the space {F ∈ Rm :
Fm = 0} with respect to ∥ · ∥ℓ2 , with contraction factor

√
γ.

Proof. Consider a related one-state MRP, for which the reward at the single state is r(x), and the
state transitions to itself with probability 1. The categorical Bellman operator associated with this
MRP and the support {z1, . . . , zm} is precisely Bx, and the statement of the result therefore follows
as a special case of Proposition B.1.

The next result serves as a counterpoint to Proposition B.2; it shows that if m is sufficiently large, the
map Bx does not contract by too much in ∥ · ∥ℓ2 .
Proposition B.3. For any F, F ′ ∈ F , we have

∥BxF −BxF
′∥2ℓ2 ≥ γ∥F − F

′∥2ℓ2 −
2

m(1− γ)1/2
− 1

m2(1− γ)2
.

This is proven via the following lemma.
Lemma B.4. For any ν ∈ P([0, (1 − γ)−1]) and the projection Πm : P([0, (1 − γ)−1]) →
P({z1, . . . , zm}), we have

ℓ2(ν,Πmν) ≤
1

2
√
m(1− γ)

,

Further, for any ν, ν′ ∈P([0, (1− γ)−1]), we have

ℓ2(Πmν,Πmν
′) ≥ ℓ2(ν, ν′)−

1

m(1− γ)
,

and

ℓ22(Πmν,Πmν
′) ≥ ℓ22(ν, ν′)−

2

m(1− γ)1/2
− 1

m2(1− γ)2
.

Proof. By Rowland et al. (2018, Proposition 6), we have that the CDF values FΠmν(zi) for i =
1, . . . ,m− 1 are equal to the average of the CDF values of Fν on the interval [zi, zi+1]. Therefore,
in computing the squared Cramér distance ℓ22(ν,Πmν), the worst-case contribution to the integral

ℓ22(ν,Πmν) =

∫ (1−γ)−1

0

(Fν(t)− FΠmν(t))
2 dt

from the interval [zi, zi+1], holding Fν(zi) and Fν(zi+1) constant, is

(zi+1 − zi)
(
F (zi+1)− F (zi)

2

)2

=
1

4m(1− γ)
(F (zi+1)− F (zi))2 .

Thus, the worst-case value for the entire integral is

1

4m(1− γ)

m−1∑
i=1

(F (zi)− F (zi+1))
2 .

The worst-case value for the sum is 1, by interpreting this as a sum of squared probabilities, and we
therefore deduce that

ℓ22(ν,Πmν) ≤
1

4m(1− γ)
,
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leading to

ℓ2(ν,Πmν) ≤
1

2
√
m(1− γ)

,

as required for the first stated inequality. For the second and third inequalities, we apply the triangle
inequality twice to obtain

ℓ2(ν, ν
′) ≤ ℓ2(ν,Πmν) + ℓ2(Πmν,Πmν

′) + ℓ2(Πmν
′, ν′) ≤ ℓ2(Πmν,Πmν

′) +
1

m(1− γ)
;

rearrangement then gives the second statement. Squaring both sides of the inequality above gives

ℓ22(ν, ν
′) ≤ ℓ22(Πmν,Πmν

′) +
2

m(1− γ)
ℓ2(Πmν,Πmν

′) +
1

m2(1− γ)2
.

Bounding the instance of ℓ2(Πmν,Πmν
′) in the cross-term on the right-hand side by (1− γ)1/2 and

rearranging then yields the result.

Proof of Proposition B.3. Let ν, ν′ ∈P({z1, . . . , zm}) be the distributions with CDF values F, F ′,
respectively, and let G,G′ be random variables with CDFs F, F ′ respectively, and (x,X ′) an
independent random transition in the MRP beginning at state x. Recall from the notation introduced
earlier in this section that BxF and BxF

′ are the CDF values of the distributions of r(x) + γG
and r(x) + γG′ after projection onto the support grid {z1, . . . , zm} by the projection map Πm.
Following common notation in distributional RL (Bellemare et al., 2023), we denote the distributions
of r(x) + γG and r(x) + γG′ by (br(x),γ)#ν and (br(x),γ)#ν

′, respectively. Here, br(x),γ : R→ R
is the bootstrap function br(x),γ(z) = r(x) + γz, and (br(x),γ)#ν is the push-forward distribution of
ν through br(x),γ (intuitively, the distribution obtained by transforming the support of ν according to
br(x),γ). With this notation introduced, we therefore have

∥BxF −BxF
′∥2ℓ2 = ℓ22(Πm(br(x),γ)#ν,Πm(br(x),γ)#ν

′)

(a)

≥ ℓ22((br(x),γ)#ν, (br(x),γ)#ν
′)− 2

m(1− γ)1/2
− 1

m2(1− γ)2
(b)
= γℓ22(ν, ν

′)− 2

m(1− γ)1/2
− 1

m2(1− γ)2

= γ∥F − F ′∥2ℓ2 −
2

m(1− γ)1/2
− 1

m2(1− γ)2
,

as required, where (a) follows from Lemma B.4, and (b) follows from homogeneity of Cramér
distance (see Rowland et al. (2018, Proof of Proposition 2)).

C Proofs of results in Section 4

Proposition 4.1. If η ∈P({z1, . . . , zm})X is an RDF with corresponding CDF values F ∈ RX×m,
then the corresponding CDF values F ′ ∈ RX×m for ΠmT η satisfy

F ′
i (x) =

∑
y∈X

m∑
j=1

P (y|x)(Hx
i,j −Hx

i,j+1)Fj(y) , (7)

where

Hx
i,j =

∑
l≤i hl(r(x) + γzj) (8)

for j = 1, . . . ,m, and by convention we take Hx
i,m+1 = 0.

Proof. Beginning by restating Equation (6), we have that if η ∈ P({z1, . . . , zm})X is an RDF
with corresponding probability mass values p ∈ RX×m, then the updated RDF η′ = ΠmT η has
corresponding probability mass values p′ ∈ RX×m given by

p′l(x) =
∑
y∈X

m∑
j=1

P (y|x)hxl,jpj(y) .
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First, for i ∈ {1, . . . ,m}, we sum l from 1 to i to yield

F ′
i (x) =

∑
l≤i

p′l(x) =
∑
y∈X

m∑
j=1

P (y|x)
∑
l≤i

hxl,jpj(y) =
∑
y∈X

m∑
j=1

P (y|x)Hx
i,jpj(y)

=
∑
y∈X

m∑
j=1

P (y|x)Hx
i,j(Fj(y)− Fj−1(y)) ,

where by convention we take F0(y) ≡ 0. By reorganising the terms on the right-hand side, the claim
now follows.

Proposition 4.2. The linear system in Equation (10), with the additional linear constraints Fm(x) =

1 for all x ∈ X , is equivalent to the following linear system in F̃ ∈ RX×[m−1]:

(I − T̃P )F̃ = H̃ , (11)

where the (x, i; y, j) coordinate of T̃P (for 1 ≤ i, j ≤ m− 1) is

T̃P (x, i; y, j) = P (y|x)(Hx
i,j −Hx

i,j+1) ,

and for each x ∈ X , 1 ≤ i ≤ m− 1, we have H̃(x, i) = Hx
i,m.

Proof. First, we consider a row of F = TPF that corresponds to the index (x, i), with i ̸= m.
Expanding under the definition of TP , we have

Fi(x) =
∑
y∈X

m−1∑
j=1

P (y|x)(Hx
i,j −Hx

i,j+1)Fj(y) +
∑
y∈X

P (y|x)Hx
i,mFm(y) .

Since we assume the additional constraints Fm(y) ≡ 1 for all y ∈ X , the final term on the right-hand
side can be simplified to yield

Fi(x) =
∑
y∈X

m−1∑
j=1

P (y|x)(Hx
i,j −Hx

i,j+1)Fj(y) +Hx
i,m .

This is precisely the row of F̃ = T̃P F̃ + H̃ corresponding to index (x, i).

Now, we consider a row of F = TPF that corresponds to the index (x,m). Again making the
substitution Fm(y) ≡ 1 for all y ∈ X , we have

1 ≡ Fm(x) =
∑
y

m−1∑
j=1

P (y|x)
=0︷ ︸︸ ︷

(Hx
m,j −Hx

m,j+1)Fj(y) +
∑
y

P (y|x)Hx
m,mFm(y)

=
∑
y

P (y|x)Hx
m,mFm(y) ≡ 1 ,

which shows that the equation is redundant, and hence can be removed from the system. The claim
Hx

m,j −Hx
m,j+1 = 0 follows since in fact Hx

m,j =
∑m

i=1 hi(r(x) + γzj), and the sum over the hat
functions for any input argument is 1. In the final equality, we have used the fact that Hx

m,m = 1
similarly. Thus, we have deduced the claim of the proposition.

Proposition 4.3. The linear system in Equation (11) has a unique solution, which is precisely the
CDF values ((F ∗

i (x))
m−1
i=1 : x ∈ X ) of the categorical fixed point.

Proof. By Proposition 4.2, we have that the CDF values F̃ ∗ of the categorical fixed-point solve
Equation (11). Now, let us suppose that F̃1, F̃2 are distinct solutions to Equation (11), aiming to obtain
a contradiction. Proposition 4.2 also establishes that Equation (11) is equivalent to Equation (10)
with the additional conditions that Fm(x) = 1 for all x ∈ X , so we will denote the corresponding
two solutions to Equation (10) built from F̃1, F̃2 (by setting the unspecified (x,m) coordinates to 1)
by F1, F2, respectively.
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The idea is now to use the contractivity of the projected operator ΠmT in ℓ2, as established in
Proposition 2.2, to obtain a contradiction. Notationally, it is useful to phrase things in terms of
contractivity of the CDF operator TP itself. We use the norms ∥ · ∥ℓ2 and ∥ · ∥ℓ2,∞, defined on Rm

and RX×m in Appendix B, which we recall here for convenience:

∥F∥ℓ2 =

[
1

m(1− γ)

m∑
i=1

F 2
i

]1/2
for F ∈ Rm , and ∥F∥ℓ2,∞ = max

x∈X
∥F (x)∥ℓ2 for F ∈ RX×m

We therefore have

∥TP (F1 − F2)∥ℓ2,∞ = ∥TPF1 − TPF2∥ℓ2,∞ = ∥F1 − F2∥ℓ2,∞ .

However, Proposition B.1 establishes that TP is a contraction on {F ∈ RX×m : Fm(x) =
0 for all x ∈ X} with respect to ∥ · ∥ℓ2,∞, which contradicts the statement above, as required.

D Proofs relating to the stochastic CDF Bellman equation

Before giving the proofs, we present a version of the SC-CDF Bellman equation in a purely distribu-
tional form, which will streamline the arguments. This mirrors the development of the form of the
distributional Bellman equation given purely in terms of distributions (Rowland et al., 2018), rather
than in random variable form as in Bellemare et al. (2017). We define the stochastic categorical CDF
Bellman operator TSCC : P(F )X →P(F )X for each ψ ∈P(F )X by

(TSCC ψ)(x) = D((T̂PΦ)(x)) ,

where Φ(y) ∼ ψ(y) independently of T̂P , andD extracts the distribution of the input random variable.
The purely distributional form of the SC-CDF Bellman equation is then written as a fixed point
condition on P(F )X :

ψ = TSCC ψ . (19)

We also write

w∥·∥ℓ2
(ψ,ψ′) = max

x∈X
w∥·∥ℓ2

(ψ(x), ψ(x′))

for the supremum-Wasserstein distance over P(F )X with base metric ∥ · ∥ℓ2 on F .

Proposition 5.7. The SC-CDF Bellman equation in Equation (16) has a unique solution, in the sense
that there is a unique distribution for each Φ(x) such that Equation (16) holds for each x ∈ X .

Proof. We first show that the operator TSCC is a contraction on P(F )X with respect to the metric
w∥·∥ℓ2

. Suppose ψ,ψ′ ∈P(F )X , and let (Φ(y),Φ′(y)) be an optimal coupling between ψ(y) and
ψ′(y) with respect to w∥·∥ℓ2

for each y ∈ X (existence of such couplings is guaranteed by Villani
(2009, Theorem 4.1)). Then, letting (x,X ′) be a random transition from x, independent of Φ,Φ′, we
have that (BxΦ(X

′), BxΦ
′(X ′)) is a valid coupling of (TSCC ψ)(x) and (TSCC ψ′)(x). Then we

have, using the operator notation defined in Appendix B,

w∥·∥ℓ2
((TSCC ψ)(x), (TSCC ψ

′)(x))
(a)

≤ E
[
∥BxΦ(X

′)−BxΦ
′(X ′)∥ℓ2

]
(b)

≤ √γE
[
∥Φ(X ′)− Φ′(X ′)∥ℓ2

]
=
√
γ
∑
y∈X

P (y|x)E
[
∥Φ(y)− Φ′(y)∥ℓ2

]
(c)
=
√
γ
∑
y∈X

P (y|x)w∥·∥ℓ2
(ψ(y), ψ′(y))

≤ √γw∥·∥ℓ2
(ψ,ψ′) ,
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where (a) follows since (BxΦ(X
′), BxΦ

′(X ′)) is a valid coupling of (TSCC ψ)(x) and (TSCC ψ
′)(x),

(b) follows by contractivity of Bx with respect to ∥ · ∥ℓ2 , as shown in Proposition B.2, and (c) follows
since (Φ(y),Φ′(y)) was chosen to be an optimal coupling of ψ(y) and ψ(y′). Hence we have

w∥·∥ℓ2
(TSCCψ, TSCCψ

′) ≤ √γw∥·∥ℓ2
(ψ,ψ′) ,

proving contractivity.

The metric space (P(F )X , w∥·∥ℓ2
) is complete, since the base space (F , ∥ · ∥ℓ2) is separable and

complete (Villani, 2009, Theorem 6.18). Hence, by Banach’s fixed point theorem, we obtain that there
is a unique fixed point ψ∗ ∈P(F )X of TSCC. Thus, a collection of random CDFs (Φ∗(x) : x ∈ X )
satisfy the SC-CDF Bellman equation in Equation (16) if and only if we have Φ∗(x) ∼ ψ∗(x) for all
x ∈ X .

Proposition 5.8. For all x ∈ X , we have

E[ΦQ(x)] = FQ(x) .

Proof. We take expectations on both sides of the random-variable stochastic categorical CDF Bellman
equation in Equation (16), yielding:

E[ΦQ(x)] = E[(T̂QΦQ)(x)] .

Since T̂Q is a random linear map, independent of ΦQ, we have

E[ΦQ(x)] = (E[T̂Q]E[ΦQ])(x)

= TQE[ΦQ](x) .

This states that E[ΦQ] ∈ RX×m satisfies the standard categorical Bellman equation in Equation (10),
and hence E[ΦQ] = FQ, by Proposition 2.2, as required.

Proposition 5.11. We have

ΣQ ≥ σQ + γQΣQ −
(

2

m
√
1− γ

+
1

m2(1− γ)2

)
1 ,

where 1 ∈ RX is a vector of ones, and the inequality above is interpreted component-wise.

Proof. We calculate, writing ΦQ as Φ, FQ as F , and T̂Q as T̂ to lighten notation:

ΣQ(x) = E[ℓ22(Φ(x), F (x))]
(a)
= E[ℓ22((T̂Φ)(x), F (x))]
(b)
= E[ℓ22((T̂F )(x), F (x))] + E[ℓ22((T̂Φ)(x), (T̂F )(x))] . (20)

Here, (a) follows since Φ satisfies the random-variable version of the stochastic categorical CDF
Bellman equation, (b) is a result of a Pythagorean identity for squared Cramér distance, which we
derive below:

E[ℓ22((T̂Φ)(x), F (x))] = E
[ ∫ (1−γ)−1

0

((T̂Φ)(x)(t)− F (x)(t))2 dt

]
=

∫ (1−γ)−1

0

E[((T̂Φ)(x)(t)− F (x)(t))2] dt ,

where the integral switch follows from Fubini’s theorem. Now, focusing on the integrand above, it
can be written as

E[(Y − E[Y ])2]

with Y = (T̂Φ)(x)(t), since F (x) = E[(T̂Φ)(x)] = E[Φ(x)], by Lemma 5.8. We have

E[(Y − E[Y ])2] = E[(Y − E[Y |T̂ ] + E[Y |T̂ ]− E[Y ])2]

= E[(Y − E[Y |T̂ ])2] + E[(E[Y |T̂ ]− E[Y ])2] .
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Now, E[(T̂Φ)(x)(t) | T̂ ] = (T̂E[Φ])(x)(t) = (T̂F )(x)(t), by linearity, which concludes the
validation of step (b) above. We recognise the first term in Equation (20) as the local squared-Cramér
variation, and hence have

ΣQ(x) = σQ(x) + E[ℓ22((T̂Φ)(x), (T̂F )(x))] .

We now explicitly write the evaluation of the application of T̂ at coordinate x in terms of the random
transition (x,X ′) used to construct the single-sample random transition matrix Q̂ described in
Definition 5.4, so that we obtain, with the operator notation of Appendix B,

E[ℓ22((T̂Φ)(x), (T̂F )(x))] = E[ℓ22(BxΦ(X
′), BxF (X

′))]

= E[E[ℓ22(BxΦ(X
′), BxF (X

′)) | Φ]]

= E
[∑
y∈X

Q(y|x)ℓ22(BxΦ(y), BxF (y))

]
(a)

≥
∑
y∈X

Q(y|x)E[γℓ22(Φ(y), F (y))− α]

= γ
∑
y∈X

Q(y|x)E[ℓ22(Φ(y), F (y))]− α

= γ
∑
y∈X

Q(y|x)E[ℓ22(Φ(y), F (y))]− α

= γ(QΣQ)(x)− α ,
where (a) follows from Proposition B.3, with α = 2

m(1−γ)1/2
+ 1

m2(1−γ)2 , meaning that we deduce

ΣQ(x) = σQ(x) + γ(QΣQ)(x)− α ,
as required.

Corollary 5.12. We can bound the term ∥(I − γP̂ )−1σP̂ ∥∞ appearing in Equation (14) under the
assumptions of Theorem 5.3 as follows:

∥(I − γP̂ )−1σP̂ ∥∞ ≤ ∥ΣP̂ ∥∞ +
1

1− γ
≤ 2

1− γ
.

Proof. By Proposition 5.11 applied with Q = P̂ ,

ΣP̂ ≥ σP̂ + γP̂ΣP̂ −
(

2

m(1− γ)1/2
+

1

m2(1− γ)2

)
1 ,

where 1 ∈ RX is the vector of ones. We first note that from the condition m ≥ 4ε−2(1− γ)−2 + 1
from the statement of Theorem 5.3, we have

2

m(1− γ)1/2
+

1

m2(1− γ)2
≤ 2

4ε−2(1− γ)−2(1− γ)1/2
+

1

4ε−2
≤ ε2(1− γ)3/2

2
+
ε2

4
< 1 ,

since ε ∈ (0, 1), from the statement of Theorem 5.3.

We therefore have
(I − γP̂ )ΣP̂ ≥ σP̂ − 1 .

Now, (I − γP̂ )−1 is a monotone operator (in the sense that v1 ≥ v2 coordinatewise implies
(I − γP̂ )−1v1 ≥ (I − γP̂ )−1v2; this claim follows as all elements of (I − γP̂ )−1 are non-negative,
since it can also be written

∑
k≥0 γ

kP̂ k), we can apply it to both sides of the inequality above to
obtain

ΣP̂ + (1− γ)−11 ≥ (I − γP̂ )−1σP̂ .

Finally, we note that since ΣP̂ (x) is an expected squared-Cramér distance between two CDFs
supported on an interval of length (1− γ)−1, we have

ΣP̂ (x) ≤ (1− γ)−1 ,

from which the claim follows.
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E Proof of Theorem 5.1

We begin by restating the result we seek to prove.
Theorem 5.1. Let ε ∈ (0, (1 − γ)−1/2) and δ ∈ (0, 1), and suppose the number of categories
satisfies m ≥ 4(1− γ)−2ε−2 + 1. Then the output F̂ of model-based DCFP with N = Ω(ε−2(1−
γ)−3polylog(|X |/δ)) samples satisfies, with probability at least 1− δ,

max
x∈X

w1(η
∗(x), F̂ (x)) ≤ ε .

We arrange the proof into a sequence of smaller results, in analogy with the presentation of the sketch
proof in the main paper.

E.1 Reduction to high-probability bounds in Cramér distance

Following the sketch provided in the main paper, we first restate and prove Lemma 5.2.
Lemma 5.2. For any two distributions ν, ν′ ∈P([0, (1− γ)−1]), we have

w1(ν, ν
′) ≤ (1− γ)−1/2ℓ2(ν, ν

′) .

Proof. We begin by writing

w1(ν, ν
′) =

∫ (1−γ)−1

0

|Fν(t)− Fν′(t)| dt = (1− γ)−1

[
(1− γ)

∫ (1−γ)−1

0

|Fν(t)− Fν′(t)| dt

]
,

where Fν , Fν′ are the CDFs of ν, ν′, respectively. The quantity inside the squared brackets
can be interpreted as an expectation (with t ranging over the values of a uniform variate on
ET∼Unif([0,(1−γ)−1])[|Fν(T ) − Fν′(T )|], and we can therefore apply Jensen’s inequality with the
map z 7→ z2. This then yields

w1(ν, ν
′) ≤(1− γ)−1

[
(1− γ)

∫ (1−γ)−1

0

(Fν(t)− Fν′(t))2 dt

]1/2
=(1− γ)−1/2ℓ2(ν, ν

′) ,

as required.

The first main step of the proof of Theorem 5.1 is a reduction to Theorem 5.3 via Lemma 5.2. To see
this, we first restate Theorem 5.3 here for convenience.
Theorem 5.3. Let ε ∈ (0, 1) and δ ∈ (0, 1), and suppose the number of categories satisfies
m ≥ 4(1 − γ)−2ε−2 + 1. Then the output F̂ of model-based DCFP with N = Ω(ε−2(1 −
γ)−2polylog(|X |/δ)) samples satisfies, with probability at least 1− δ,

max
x∈X

ℓ2(η
∗(x), F̂ (x)) ≤ ε . (13)

For the proof of the reduction, suppose the statement of Theorem 5.3 holds. Now, let us take
ε ∈ (0, (1− γ)−1/2), and m ≥ 4(1− γ)−2ε−2 + 1, as in the assumptions of Theorem 5.1. We then
define ε̃ = (1− γ)1/2ε; note that from the assumption on ε, we have ε̃ ∈ (0, 1). Applying the result
of Theorem 5.3, we therefore obtain that with N = Ω̃(ε̃−2(1− γ)−2polylog(|X |/δ)), we have (with
probability at least 1− δ)

max
x∈X

ℓ2(η
∗(x), F̂ (x)) ≤ ε̃ .

By Lemma 5.2, we therefore have (with probability at least 1− δ, for all x ∈ X )

w1(η
∗(x), F̂ (x)) ≤ (1− γ)−1/2ℓ2(η

∗(x), F̂ (x)) ≤ (1− γ)−1/2(1− γ)1/2ε = ε ,

which is the desired inequality in Theorem 5.1. Finally, we note that the sample complexity term
ε̃−2(1− γ)−2 can be rewritten as

ε̃−2(1− γ)−2 = ((1− γ)1/2ε)−2(1− γ)−2 = ε−2(1− γ)−3 .

Thus, we obtain the stated sample complexity in Theorem 5.1, and we have established that to prove
Theorem 5.1, it is sufficient to prove Theorem 5.3.
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E.2 Reduction to categorical fixed-point error

The first step of the proof of Theorem 5.3 is to show that with m taken sufficiently large (as described
in the statement of Theorem 5.3), the Cramér distance between the true return distributions and the
categorical fixed points is small, and it is therefore sufficient to focus solely on the sample-based
error in estimating the categorical fixed point.

By applying the triangle inequality, we have

ℓ2(η
∗, F̂ ) ≤ ℓ2(η∗, F ∗) + ℓ2(F

∗, F̂ )

(a)

≤ 1

(1− γ)
√
m− 1

+ ℓ2(F
∗, F̂ )

(b)

≤ ε

2
+ ℓ2(F

∗, F̂ ) ,

where (a) follows from the fixed-point approximation bound in Equation (5), which itself is the result
of Proposition 2 of Rowland et al. (2018), and (b) follows from substituting the assumed inequality for
m in the statement of Theorem 5.3. Thus, to establish that ℓ2(η∗, F̂ ) is bounded by ε with probability
at least 1− δ, it suffices to show that

ℓ2(F
∗, F̂ ) < ε/2 ,

with probability at least 1− δ, as claimed.

E.3 Propagation of local errors

To begin analysing ℓ2(F ∗, F̂ ), we analyse the difference of vectors F̂ − F ∗ directly. We proceed in
an analogous manner to Azar et al. (2013) in the mean-return case, rearranging as follows:

F̂ − F ∗ (a)
= TP̂ F̂ − TPF

∗

(b)
= TP̂ F̂ − TP̂F

∗ + TP̂F
∗ − TPF ∗

=⇒ (I − TP̂ )(F̂ − F
∗) = (TP̂ − TP )F

∗ . (21)

Here, (a) follows since F̂, F ∗ are fixed points of TP̂ , TP , respectively, (b) follows by adding and
subtracting TP̂F

∗, and the implication follows from straightforward rearrangement.

We would next like to rearrange Equation (21) to leave the term F̂ − F ∗ on its own. This requires
some care, in checking that the operator (I − TP̂ ) is invertible in an appropriate sense.

Lemma E.1. The operator I − TP̂ : RX×m → RX×m is invertible on the subspace {F ∈ RX×m :

Fm(x) = 0 for all x ∈ X}, with inverse
∑

k≥0 T
k
P̂

.

Proof. By Proposition B.1, TP̂ maps {F ∈ RX×m : Fm(x) = 0 for all x ∈ X} to itself, and is
a contraction on this subspace with respect to ℓ2, with contraction factor

√
γ. It therefore follows

that I − TP̂ maps this subspace to itself, and is invertible on this subspace. Since
∑

k≥0 T
k
P̂

also
maps this subspace to itself, it follows that on this subspace, we have (I − TP̂ )−1 =

∑
k≥0 T

k
P̂

, as
required.

Now, (TP̂ − TP )F ∗ ∈ {F ∈ RX×m : Fm(x) = 0 for all x ∈ X}, and hence from Equation (21)
and Lemma E.1, it follows that

F̂ − F ∗ =
∑
k≥0

T k
P̂
(TP̂ − TP )F

∗ . (22)

The result is that we have expressed the difference in CDFs in terms of local errors (TP̂ − TP )F ∗,
which are then propagated via the operator

∑
k≥0 T

k
P̂

.
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E.4 Bernstein concentration bounds

The next step in the proof is to establish a concentration bound for the local errors (TP̂ − TP )F ∗.

One potential approach is to use a concentration inequality for each individual coordinate of (TP̂ −
TP )F

∗, indexed by (x, i). Azar et al. (2013) note that in the mean-return case, using a Hoeffding-
style bound is insufficient to obtain optimal dependence of the sample complexity on (1 − γ)−1,
and Zhang et al. (2023) also note this in their (non-categorical) distributional analysis. Using
a Bernstein concentration inequality on each coordinate and then using a union bound can be
made to work, although this then incurs a log(m) factor in the sample complexity. If such a
dependence on m were tight, this would suggest that the sample complexity depends on m (albeit
only logarithmically), and hence there would be a trade-off between picking m sufficiently large so
as to obtain a low representation approximation error, as in Section E.2, and taking m low so as to not
unduly increase the sample complexity. However, such a dependence onm can be avoided by working
with concentration inequalities at the level of CDFs themselves. The Dvorestsky-Kiefer-Wolfowitz
(DKW) inequality (Dvoretzky et al., 1956; Massart, 1990) behaves analogously to Hoeffding’s bound,
and is insufficient for obtaining a sample complexity bound with optimal (1 − γ)−1 dependence.
Instead, we make use of a Hilbert space Bernstein-style inequality (Yurinsky, 2006; Chatalic et al.,
2022), by interpreting the Cramér distance ℓ2 as a maximum mean discrepancy (Gretton et al., 2012),
which measures distances between distributions via embeddings in a (reproducing kernel) Hilbert
space, allowing the Bernstein result to be applied.

First, we precisely describe the connection between Cramér distance and Hilbert space. Székely
(2003) shows that for any distributions ν, ν′ ∈P([0, (1− γ)−1]), we have

ℓ22(ν, ν
′) = EX∼ν,Y∼ν′ [|X − Y |]− 1

2
EX,X′∼ν [|X −X ′|]− 1

2
EY,Y ′∼ν′ [|Y − Y ′|] . (23)

Sejdinovic et al. (2013) show that there exists an affine embedding ϕ : P([0, (1− γ)−1])→ H of
distributions into a Hilbert spaceH, such that the right-hand side of the equation can also be written
as the squared norm ∥ϕ(ν)− ϕ(ν′)∥2H; in other words, they show that the Cramér distance is equal to
a squared maximum mean discrepancy (Gretton et al., 2012). We can then appeal to the following
Bernstein-style inequality for Hilbert-space-valued random variables, which is due to Chatalic et al.
(2022), and based largely on Yurinsky (2006, Theorem 3.3.4). We state the result here in the usual
Bernstein style of assuming almost-sure boundedness of the the random variables concerned, while
Chatalic et al. (2022) use the more general formulation of assuming particular bounds on all moments.
Lemma E.2. (Chatalic et al., 2022, Lemma E.3) LetZ1, . . . , ZN be i.i.d. mean-zero random variables
taking values in a Hilbert space (H, ∥ · ∥H) such that ∥Z1∥H ≤ M almost surely. Then for any
δ ∈ (0, 1), we have ∥∥∥∥ 1

N

N∑
i=1

Zi

∥∥∥∥
H
≤ 2M log(2/δ)

N
+

√
2E[∥Z1∥2H] log(2/δ)

N
,

with probability at least 1− δ.

To apply this result in our setting, first note that, using the notation introduced in Appendix B, we
have ∥∥∥∥[(TP̂ − TP )F ∗](x)

∥∥∥∥
ℓ2

= ℓ2((TP̂F
∗)(x), F ∗(x))

= ∥ϕ((TP̂F
∗)(x))− ϕ(F ∗(x))∥H

(a)
=

∥∥∥∥ϕ
(

1

N

N∑
i=1

F ∗(Xx
i )B

⊤
x

)
− ϕ(F ∗(x))

∥∥∥∥
H

(b)
=

∥∥∥∥ 1

N

N∑
i=1

(
ϕ
(
F ∗(Xx

i )B
⊤
x

)
− ϕ(F ∗(x))

)∥∥∥∥
H
,

where (a) follows from the expressions for TP̂ described in Appendix B, and (b) follows from the
affineness of the embedding ϕ. Here again, we make use of a slight abuse of notation by writing
ϕ(F ∗(x)) for the embedding of the distribution supported on {z1, . . . , zm}, with CDF values F ∗(x),
and similarly for embeddings of other CDF vectors.
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We can now apply the result above, noting that

∥ϕ
(
F ∗(Xx

i )B
⊤
x

)
− ϕ(F ∗(x))∥H = ℓ2(F

∗(Xx
i )B

⊤
x , F

∗(x)) ≤ (1− γ)−1/2

almost surely, and

E
[
∥ϕ
(
F ∗(Xx

i )B
⊤
x

)
− ϕ(F ∗(x))∥2H

]
= E

[
ℓ22(F

∗(Xx
i )B

⊤
x , F

∗(x))
]
= σ(x) ,

where we write σ as shorthand for the local squared-Cramér variation at P , introduced in Defini-
tion 5.5 with the notation σP . Hence, from Lemma E.2 and a union bound over the state space X , we
obtain that with probability 1− δ/2, we have for all x ∈ X that∥∥∥∥[(TP̂ − TP )F ∗](x)

∥∥∥∥
ℓ2

≤ CB1

√
σ(x)√
N

+ CB2
1

(1− γ)1/2N
, (24)

where

CB1 =
√
2 log(4|X |/δ) , and CB2 = 2 log(4|X |/δ) .

E.5 From population to empirical squared-Cramér variation

Next, we show that the population local squared-Cramér variation in Equation (24) can be replaced
with the corresponding empirical quantity; that is, the local-squared Cramér variation at P̂ , σP̂ ,
incurring some additional terms in the bound. We start by calculating as follows:

σ(x) = E
[
∥(T̂PF ∗)(x)− (TPF

∗)(x)∥2ℓ2

]
= E

[
∥F ∗(X ′)B⊤

x ∥2ℓ2

]
− ∥PxF

∗B⊤
x ∥2ℓ2

= Px∥F ∗B⊤
x ∥2ℓ2 − ∥PxF

∗B⊤
x ∥2ℓ2 ,

where above we use the notation ∥F ∗B⊤
x ∥2ℓ2 ∈ RX for the vector indexed by state, so that the element

corresponding to state y ∈ X is ∥F ∗(y)B⊤
x ∥2ℓ2 . To relate this quantity to σ̂(x), we add and subtract a

term, motivated by the derivation applied to standard return variance by Azar et al. (2013, Lemma 5),
and rearrange as follows:

σ(x)

= Px∥F ∗B⊤
x ∥2ℓ2 − ∥PxF

∗B⊤
x ∥2ℓ2

= Px∥F ∗B⊤
x ∥2ℓ2 − ∥PxF

∗B⊤
x ∥2ℓ2 −

(
P̂x∥F ∗B⊤

x ∥2ℓ2 − ∥P̂xF
∗B⊤

x ∥2ℓ2

)
+

(
P̂x∥F ∗B⊤

x ∥2ℓ2 − ∥P̂xF
∗B⊤

x ∥2ℓ2

)
= (Px − P̂x)∥F ∗B⊤

x ∥2ℓ2 +
(
∥P̂xF

∗B⊤
x ∥2ℓ2 − ∥PxF

∗B⊤
x ∥2ℓ2

)
+ E

[
∥(T̂P̂F

∗)(x)− (TP̂F
∗)(x)∥2ℓ2

∣∣∣∣P̂]
= (Px − P̂x)∥F ∗B⊤

x ∥2ℓ2 + ⟨P̂xF
∗B⊤

x − PxF
∗B⊤

x , P̂xF
∗B⊤

x + PxF
∗B⊤

x ⟩ℓ2

+ E
[
∥(T̂P̂F

∗)(x)− (TP̂F
∗)(x)∥2ℓ2

∣∣∣∣P̂]
= (Px − P̂x)∥F ∗B⊤

x ∥2ℓ2 + ⟨(P̂x − Px)F
∗B⊤

x , P̂xF
∗B⊤

x + PxF
∗B⊤

x ⟩ℓ2

+ E
[
∥(T̂P̂F

∗)(x)− (TP̂F
∗)(x)∥2ℓ2

∣∣∣∣P̂] , (25)

where ⟨ , ⟩ℓ2 is the inner product on Rm corresponding to ∥ · ∥ℓ2 , defined by

⟨F, F ′⟩ℓ2 =
1

m(1− γ)

m∑
i=1

FiF
′
i .
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Focusing on the final term on the right-hand side of Equation (25), we have

E
[
∥(T̂P̂F

∗)(x)− (TP̂F
∗)(x)∥2ℓ2

∣∣∣ P̂]
=E

[
∥(T̂P̂F

∗)(x)− (T̂P̂ F̂ )(x) + (T̂P̂ F̂ )(x)− (TP̂F
∗)(x) + (TP̂ F̂ )(x)− (TP̂ F̂ )(x)∥

2
ℓ2

∣∣∣ P̂]
=E

[
∥(T̂P̂F

∗ − T̂P̂ F̂ )(x)− (TP̂F
∗ − TP̂ F̂ )(x) + (T̂P̂ F̂ )(x)− (TP̂ F̂ )(x)∥

2
ℓ2

∣∣∣ P̂]
=E
[
∥(T̂P̂F

∗ − T̂P̂ F̂ )(x)− (TP̂F
∗ − TP̂ F̂ )(x)∥

2
ℓ2

+ 2⟨(T̂P̂F
∗ − T̂P̂ F̂ )(x)− (TP̂F

∗ − TP̂ F̂ )(x), (T̂P̂ F̂ − TP̂ F̂ )(x)⟩ℓ2
+ ∥(T̂P̂ F̂ )(x)− (TP̂ F̂ )(x)∥

2
ℓ2

∣∣∣ P̂]
(a)

≤
(
E[∥(T̂P̂F

∗ − T̂P̂ F̂ )(x)− (TP̂F
∗ − TP̂ F̂ )(x)∥

2
ℓ2 | P̂ ]

1/2

+ E[∥(T̂P̂ F̂ )(X)− (TP̂ F̂ )(x)∥
2
ℓ2 | P̂ ]

1/2

)2

=

(
E[∥(T̂P̂F

∗ − T̂P̂ F̂ )(x)− (TP̂F
∗ − TP̂ F̂ )(x)∥

2
ℓ2 | P̂ ]

1/2 +
√
σ̂(x)

)2

.

where (a) follows from the Cauchy-Schwarz inequality, and we write σ̂ as a shorthand for σP̂ . Finally,
we note that

E[∥(T̂P̂F
∗ − T̂P̂ F̂ )(x)− (TP̂F

∗ − TP̂ F̂ )(x)∥
2
ℓ2 | P̂ ] ≤ E[∥(T̂P̂F

∗ − T̂P̂ F̂ )(x)∥
2
ℓ2 | P̂ ]

(a)

≤ γEX′∼P̂x
[∥F ∗(X ′)− F̂ (X ′)∥2ℓ2 | P̂ ]

≤ γ∥F ∗ − F̂∥2ℓ2,∞ ,

with (a) following from contractivity of Bx in ∥ · ∥ℓ2 , as established in Proposition B.2. Bringing
these bounds together with Equation (25), we have

σ(x) ≤ (Px − P̂x)∥F ∗B⊤
x ∥2ℓ2 + ⟨(P̂x − Px)F

∗B⊤
x , P̂xF

∗B⊤
x + PxF

∗B⊤
x ⟩ℓ2 (26)

+

(
γ∥F ∗ − F̂∥ℓ2,∞ +

√
σ̂(x)

)2

.

We now apply concentration bounds to each of the first two terms on the right-hand side of Equa-
tion (26).

Lemma E.3. With probability at least 1− δ/2, we have for all x ∈ X ,∣∣∣∣Px∥F ∗B⊤
x ∥2ℓ2 − P̂x∥F ∗B⊤

x ∥2ℓ2

∣∣∣∣ ≤ CH
1

(1− γ)
√
N
,

where

CH =

√
log(4|X |/δ)

2
.

Proof. The expression Px∥F ∗B⊤
x ∥2ℓ2 − P̂x∥F ∗B⊤

x ∥ℓ2 is equal to the negative of the average of N
i.i.d. copies of the random variable ∥F ∗(X ′)B⊤

x ∥2ℓ2 , where X ′ ∼ Px, minus its expectation. Since
∥F ∗(X ′)B⊤

x ∥2ℓ2 is bounded in [0, (1− γ)−1], we apply Hoeffding’s inequality (for a given x ∈ X )
to obtain ∣∣∣∣Px∥F ∗B⊤

x ∥2ℓ2 − P̂x∥F ∗B⊤
x ∥2ℓ2

∣∣∣∣ ≤ 1

(1− γ)
√
N

√
log(4|X |/δ)

2
,

with probability at least 1−δ/(2|X |). Taking a union bound over x ∈ X then yields the statement.
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For the second term, we may re-use the Bernstein concentration bound derived above to deduce the
following.

Lemma E.4. Suppose Equation (24) holds. Then we have, for all x ∈ X ,∣∣∣∣⟨(P̂x − Px)F
∗B⊤

x , (P̂x + Px)F
∗B⊤

x ⟩ℓ2
∣∣∣∣ ≤ 2CB1

1

(1− γ)
√
N

+ 2CB2
1

(1− γ)N
.

Proof. First, by the Cauchy-Schwarz inequality, we have∣∣∣∣⟨(P̂x − Px)F
∗B⊤

x , (P̂x + Px)F
∗B⊤

x ⟩ℓ2
∣∣∣∣ ≤ ∥(P̂x − Px)F

∗B⊤
x ∥ℓ2∥(P̂x + Px)F

∗B⊤
x ∥ℓ2 .

The first of the two factors in the product on the right-hand side is precisely the term bounded on the
left-hand side of Equation (24). On the right-hand side, the vector inside the ℓ2-norm has components
in [0, 2], so the norm can be straightforwardly bounded by[

1

m(1− γ)

m∑
i=1

22

]1/2
=

2

(1− γ)1/2
.

Combining the inequalities for these two factors, and using the trivial bound
√
σ(x) ≤ (1− γ)−1/2,

we obtain the stated result.

Combining all these bounds together in Equation (26), and taking a union bound, we conclude that
with probability at least 1− δ/2, for all x ∈ X we have

σ(x) ≤ (2CB1 + CH)
1

(1− γ)
√
N

+ 2CB2
1

(1− γ)N
+
(
γ∥F ∗ − F̂∥ℓ2,∞ +

√
σ̂(x)

)2
,

We now take square-roots of both sides, using the inequality
√
a+ b ≤

√
a+
√
b on the right-hand

side to obtain√
σ(x) ≤

√
σ̂(x) + γ∥F ∗ − F̂∥ℓ2,∞ +

√
2CB1 + CH

1

(1− γ)1/2N1/4
+
√

2CB2
1

(1− γ)1/2N1/2
.

Substituting this into Equation (24) and taking a union bound then yields that with probability at least
1− δ, we have∥∥∥∥[(TP̂ − TP )F ∗](x)

∥∥∥∥
ℓ2

≤ CB1
1√
N

√
σ̂(x) + CB1

1√
N
∥F ∗ − F̂∥ℓ2,∞ + C ′ 1

(1− γ)1/2N3/4
,

(27)

where

C ′ = CB1(
√

2CB1 + CH +
√
2CB2) + CB2 ,

so that our concentration inequality is expressed in terms of the empirical local squared-Cramér
variation σ̂.

E.6 Converting local bounds to global bounds

To convert the local concentration results obtained above into a bound on ℓ2(F̂ (x), F ∗(x)), we first
prove the following lemma.

Lemma E.5. For U ∈ {F ∈ RX×m : Fm(x) = 0 for all x ∈ X}, and any k ≥ 1, we have

∥(T k
P̂
U)(x)∥ℓ2 ≤ γk/2

∑
x′∈X

PP̂ (Xk = x′ | X0 = x)∥U(x′)∥ℓ2 ,

where PP̂ denotes state transition probabilities for the MRP with transition matrix P̂ .
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Proof. We proceed by induction. For the base case k = 1, we have, using the operator notation
introduced in Appendix B,

∥(TP̂U)(x)∥ℓ2 =

∥∥∥∥∑
y∈X

P̂ (y|x)
m−1∑
j=1

BxU(y)

∥∥∥∥
ℓ2

(a)

≤
∑
y∈X

P̂ (y|x)
∥∥∥∥BxU(y)

∥∥∥∥
ℓ2

(b)

≤
∑
y∈X

P̂ (y|x)γ1/2
∥∥∥∥U(y)

∥∥∥∥
ℓ2

,

as required. where (a) follows from the triangle inequality, and (b) follows from contractivity of Bx

in ∥ · ∥ℓ2 , as established by Proposition B.2.

For the inductive step, we suppose that the result holds for some l ∈ N. Now, letting k = l + 1, we
have

∥(T l+1

P̂
U)(x)∥ℓ2 = ∥(TP̂T

l
P̂
U)(x)∥ℓ2

=

∥∥∥∥∑
y∈X

P̂ (y|x)Bx(T
l
P̂
U)(y)

∥∥∥∥
ℓ2

≤
∑
y∈X

P̂ (y|x)
∥∥∥∥Bx(T

l
P̂
U)(y)

∥∥∥∥
ℓ2

≤
∑
y∈X

P̂ (y|x)γ1/2
∥∥∥∥(T l

P̂
U)(y)

∥∥∥∥
ℓ2

(a)

≤
∑
y∈X

P̂ (y|x)γ1/2γl/2
∑
x′∈X

PP̂ (Xl = x′ | X0 = y)∥U(x′)∥ℓ2

= γ(l+1)/2
∑
x′∈X

[∑
y∈X

PP̂ (Xl = x′ | X0 = y)P̂ (y|x)
]
∥U(x′)∥ℓ2

= γ(l+1)/2
∑
x′∈X

PP̂ (Xl+1 = x′ | X0 = x)∥U(x′)∥ℓ2 ,

as required, where (a) follows by the inductive hypothesis.
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We therefore have, with probability at least 1− δ:

ℓ2(F̂ (x), F
∗(x)) (28)

= ∥F̂ (x)− F ∗(x)∥ℓ2
(a)
=

∥∥∥∥[∑
k≥0

T k
P̂
(TP̂ − TP )F

∗
]
(x)

∥∥∥∥
ℓ2

(b)

≤
∑
k≥0

∥∥∥∥[T k
P̂
(TP̂ − TP )F

∗
]
(x)

∥∥∥∥
ℓ2

(c)

≤
∑
k≥0

∑
x′∈X

PP̂ (Xk = x′ | X0 = x)γk/2
∥∥∥∥[(TP̂ − TP )F ∗

]
(x′)

∥∥∥∥
ℓ2

(d)

≤
∑
k≥0

∑
x′∈X

PP̂ (Xk = x′ | X0 = x)γk/2
[
CB1

1√
N

√
σ̂(x′) + CB1

1√
N
∥F ∗ − F̂∥ℓ2,∞

+ C ′ 1

(1− γ)1/2N3/4

]
(e)

≤ CB1√
N
∥(I −√γP̂ )−1

√
σ̂∥∞ +

CB1

(1−√γ)
√
N
∥F ∗ − F̂∥ℓ2,∞ +

C ′

(1−√γ)(1− γ)1/2N3/4

(f)

≤ CB1√
N
∥(I −√γP̂ )−1

√
σ̂∥∞ +

2CB1

(1− γ)
√
N
∥F ∗ − F̂∥ℓ2,∞ +

2C ′

(1− γ)3/2N3/4
. (29)

Here, (a) follows from Equation (22), (b) follows from the triangle inequality, and (c) follows from
Lemma E.5. The step (d) is the one step in the derivation that does not hold with probability 1, but
rather with probability 1 − δ, and follows from the Bernstein-style bounds in Equation (27), (e)
follows from algebraic manipulation using the identity

∑
k≥0(γ

1/2P̂ )k = (I −√γP̂ )−1, as P̂ is a
stochastic matrix, and bounding the elements of (I −√γP̂ )−1

√
σ̂ by the L∞ norm of the vector,

and (f) follows from the inequality (1−√γ)−1 ≤ 2(1− γ)−1 for γ ∈ [0, 1).

Focusing now on the coefficient ∥(I−√γP̂ )−1
√
σ̂∥∞, we note that similar to the analysis of Agarwal

et al. (2020, Lemma 4) in the mean-return case, we can write

(I −√γP̂ )−1
√
σ̂ = (1−√γ)−1(1−√γ)(I −√γP̂ )−1

√
σ̂ ,

so that each row of

(1−√γ)(I −√γP̂ )−1

forms a probability distribution, and so we may apply Jensen’s inequality with the map z 7→
√
z, to

obtain

(I −√γP̂ )−1
√
σ̂ ≤ (1−√γ)−1

√
(1−√γ)(I −√γP̂ )−1σ̂ = (1−√γ)−1/2

√
(I −√γP̂ )−1σ̂ ,

(30)

where the inequality above holds coordinate-wise. We thus obtain the inequality

∥F ∗ − F̂∥ℓ2,∞ ≤
2CB1

(1− γ)1/2
√
N

√
∥(I −√γP̂ )−1

√
σ̂∥∞ +

2CB1

(1− γ)
√
N
∥F ∗ − F̂∥ℓ2,∞ +

2C ′

(1− γ)3/2N3/4
.

Note that the term ∥F ∗ − F̂∥ℓ2,∞ appears on both sides of the inequality above. By taking N ≥
16C2

B1(1 − γ)−2, we ensure that the coefficient in front of ∥F ∗ − F̂∥ℓ2,∞ on the right-hand side
is made smaller than 1/2, similar to the approach taken in the proof of instance-dependent sample
complexity bounds for mean-return estimation by Pananjady and Wainwright (2020, Theorem 1(a)).
Under this assumption, rearrangement yields

∥F ∗ − F̂∥ℓ2,∞ ≤
4CB1

(1− γ)1/2
√
N

√
∥(I −√γP̂ )−1

√
σ̂∥∞ +

4C ′

(1− γ)3/2N3/4
(31)

as described in Section 5.
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E.7 The stochastic categorical CDF Bellman equation

We now aim to use our developments regarding the stochastic categorical CDF Bellman equation
(see Section 5.2) to bound the quantity appearing within the square root. To be able to use the bound
obtained in Corollary 5.12, we first replace the factor

√
γ inside the square-root on the right-hand

side of Equation (30) with γ, using the bound (I −√γP )−1 ≤ 2(I − γP )−1, shown by Agarwal
et al. (2020, Lemma 4). This, together with Corollary 5.12, yields√

(I −√γP̂ )−1σ̂ ≤
√
2

√
(I − γP̂ )−1σ̂ ≤

√
2

√
2

1− γ
1 =

2

(1− γ)1/2
1 .

Thus, returning to Equation (31) and substituting this bound in, we obtain (again, with probability at
least 1− δ, for all x ∈ X ):

ℓ2(F̂ (x), F
∗(x)) ≤ 8CB1

(1− γ)
√
N

+
4C ′

(1− γ)3/2N3/4
. (32)

E.8 Final steps of the proof of Theorem 5.3

We now let N ≥ c0ε−2(1− γ)−2, with c0 any positive number satisfying

c0 ≥ 210C2
B1 and c0 > 164/3(C ′)4/3 . (33)

Note that the first of these conditions implies the earlier assumption N ≥ 16C2
B1(1− γ)−2 made in

order to arrive at Equation (31). We then conclude from Equation (32) that (with probability at least
1− δ, for all x ∈ X ):

ℓ2(F̂ (x), F
∗(x)) ≤ 8CB1√

c0
ε+

4C ′

c
3/4
0

ε3/2

≤ 8CB1√
c0
ε+

4C ′

c
3/4
0

ε

≤ ε/2 ,
with the final inequality following due to the assumption on c0 making both coefficients of ε bounded
by 1/4. This concludes the proof of Theorem 5.3.

To derive a concrete sample complexity bound, including logarithmic terms, we may bound the
terms in Equation (33) as follows; we emphasise that we do not aim to be as tight as possible in the
following analysis, but merely to provide an concrete, valid bound on c0. First, we have that the

210C2
B1 = 210(

√
2 log(4|X |/δ))2

= 211 log(4|X |/δ) .
Next, we have (introducing the shorthand L = log(4|X |/δ)):

164/3(C ′)4/3 ≤ 26
(
CB1(

√
2CB1 + CH +

√
2CB2) + CB2

)4/3

= 26
(√

2L
(√

2
√
2L+

√
L/2 +

√
4L
)
+ 2L

)4/3
≤ 26

(
L
√
2
(√

2
√
2 +

√
1/2 + 2

)
+ 2L

)4/3
= 26L4/3

(√
2
(√

2
√
2 +

√
1/2 + 2

)
+ 2
)4/3

≤ 26L4/324

= 210L4/3 .

We therefore conclude, for example, that taking c0 ≥ 211 log(4|X|/δ)4/3 is sufficient.

F Extensions

Below, we describe several straightforward extensions of Theorem 5.1, that allow us to give guarantees
for related algorithms and problems concerning sample-efficient distributional reinforcement learning.
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F.1 Categorical dynamic programming

The core theoretical result, Theorem 5.1, can be used to provide guarantees for the iterative CDP
algorithm. Let us write Fk ∈ RX×[m] for the result of applying the empirical CDP operator ΠmT
a total k times to an initial estimate F0 ∈ RX×[m]. By the existing categorical theory described in
Proposition 2.2 (Rowland et al., 2018), we can bound the distance between the CDP estimate Fk and
the DCFP solution F̂ as

ℓ2(Fk, F̂ ) ≤ γk/2ℓ2(F0, F̂ ) ≤
γk/2

(1− γ)1/2
.

Thus, taking k ≥ 2 log(1/ε)+3 log(1/(1−γ))
log(1/γ) , this error is smaller than ε(1−γ)1/2. Thus, by Lemma 5.2,

we have
w1(Fk, F̂ ) ≤ ε .

By the triangle inequality, we therefore have that if w1(F̂, η
∗) ≤ ε, then w1(Fk, η

∗) ≤ 2ε under this
assumption on k, and we therefore conclude that under the assumptions of Theorem 5.1, the CDP
algorithm run with k ≥ 2 log(1/ε)+3 log(1/(1−γ))

log(1/γ) also has sample complexity Ω̃(ε−2(1− γ)−3).

F.2 Policy optimisation

Theorem 5.1 can also be straightforwardly adapted to obtain sample complexity results for the
policy optimisation problem in Markov decision processes, in which the optimal policy must also
be learnt from data, prior to estimating its return distribution. We describe one way in which this
can be made concrete. Suppose we have a finite-state, finite-action MDP with reward a function
of state, with a unique optimal policy π∗ with an action gap ε ∈ [0, (1 − γ)1/2), meaning that
at any state x, if a, b ∈ A are the optimal action and a sub-optimal action respectively, then
Qπ∗

(x, b) < Qπ∗
(x, a)− ε. Then, for example, Theorem 1 of Agarwal et al. (2020) yields that for

δ ∈ (0, 1), with N = Õ(ε̃−2(1 − γ)−3 log(1/δ)) sampled transitions per state-action pair we can
correctly identify the optimal policy π∗ with probability at least 1− δ. We may then form the MRP
corresponding to executing the policy π∗, and may resample from the transitions used in identifying
the optimal policy to compute approximate return distributions for the optimal policy; Theorem 5.1
and a union bound then guarantee ε-accurate approximations in Wasserstein distance with high
probability.

To understand the role of the unique optimal policy assumption in our discussion above, recall that
when there are multiple optimal policies, each generally has a distinct collection of return distributions,
and so there is not a single object that one should hope to approximate. This is not the case with value
functions, which are necessarily identical for all optimal policies. As described in earlier work on
policy optimisation with distributional RL (Bellemare et al., 2017, 2023), this lack of uniqueness of
optimal return distributions also leads to interesting theoretical issues when analysing algorithms such
as value iteration. However, we expect a result in which one obtains an approximation to the return
distributions of some optimal policy can also be obtained, even in the non-unique-optimal-policy
setting.

F.3 Stochastic rewards

In our main results, we have assumed that the immediate reward is a deterministic function of state.
Results in mean-return RL are also commonly given under this assumption (Azar et al., 2013), since
this simplifies notation and the extension to stochastic rewards is often straightforward to obtain
(Pananjady and Wainwright, 2020). In this section, we describe how to modify the argument presented
in the deterministic-reward case to allow for stochastic rewards.

Assumptions. We now consider working instead with a reward distribution function R : X →
P([0, 1]), so that R(x) is the distribution of immediate rewards received at state x. The N i.i.d.
transitions obtained from state x are given by (x,Rx

i , X
x
i )

N
i=1, where as before Xx

i
i.i.d.∼ P (·|x), and

independently Rx
i

i.i.d.∼ R(x), for i = 1, . . . ,m.

Algorithms. The categorical operator TP is defined in the stochastic reward case in direct analogy
with the definition presented in Section 4 in the deterministic reward case. The generalisation is that
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the quantities hxij given in Equation (6), which represent the contribution to mass allocated to zi at x
due to backing up from atom zj , are now defined as

hxij = ER∼R(x)[hi(R+ γzj)] ,

for each x ∈ X and i, j = 1, . . . ,m. The quantities Hx
i,j and TP are defined exactly as in the

deterministic case, from this generalised definition of the hxi,j . The model-based algorithms, based
on the N sampled transitions at each state described above, now also approximate the hxi,j from the
empirical reward distributions R̂(x) = N−1

∑N
i=1 δRx

i
, as well as P . In particular, we have

ĥxi,j =
1

N

N∑
i=1

hi(R
x
i + γzj) ,

from which we define the corresponding estimators Ĥx
i,j of Hx

i,j . We now write the empirical
categorical operator as TP̂,R̂, to emphasise the dependence on the empirical reward distributions
(R(x) : x ∈ X ) too, which is then defined as

TP̂,R̂(x, i; y, j) = P̂ (y|x)(Ĥx
i,j − Ĥx

i,j+1) .

Model-based DCFP in the stochastic reward setting then simply corresponds to solving the linear
system built from TP̂,R̂ appearing in Equation (11), based on this empirical categorical operator.

Sample complexity. The model-based DCFP algorithm also satisfies the sample complexity bound
given in Theorem 5.3 (and hence in Theorem 5.1 too) in the case of stochastic rewards. Only a few
additional details are required to extend the proof in the deterministic reward case to the stochastic
case, which we sketch below. As before, we write F ∗ for the CDF values of the true categorical fixed
point and F̂ for the estimated fixed point obtained by running DCFP with the operator TP̂,R̂. We also
introduce the notation TP̂,R for the categorical operator using estimated transition probabilities P̂ but
true reward distributions (R(x) : x ∈ X ), and write F́ for the corresponding categorical fixed point.

Proof modifications. First, when performing the initial reduction to categorical fixed-point error, we
invoke the triangle inequality an additional time, to obtain

ℓ2(η
∗, F̂ ) ≤ ℓ2(η∗, F ∗) + ℓ2(F

∗, F́ ) + ℓ2(F́, F̂ ) . (34)

First term. As in the proof in the deterministic case, the first term on the right-hand side is O(ε) due
to the assumption on m in the theorem statement; in particular, Proposition 2.2 as proven by Rowland
et al. (2018) holds in the case of stochastic rewards too.

Second term. The second term on the right-hand side of Equation (34) is bounded by following the
same argument as given in Appendices E.3–E.8. The only part of the argument in these sections
that specifically relies on the immediate reward being deterministic, rather than relying on the
contractivity of the operator (which also holds in the stochastic-reward case (Rowland et al., 2018)),
is Proposition B.3, which is used in establishing Proposition 5.11 and Corollary 5.12. We state and
prove a version of Proposition B.3 that holds under the weaker assumption of stochastic rewards too.

Proposition F.1. In the general case of stochastic immediate rewards described above, we have that
for any F, F ′ ∈ F ,

∥BxF −BxF
′∥2ℓ2 ≥ γ∥F − F

′∥2ℓ2 −
2

m(1− γ)1/2
− 1

m2(1− γ)2
− 4 .

Proof. Following the proof of Proposition B.3, we obtain

∥BxF −BxF
′∥2ℓ2 ≥ ℓ

2
2(R+ γG,R+ γG′)− 2

m(1− γ)1/2
− 1

m2(1− γ)2
,

where R ∼ R(X ′), and independently, G,G′ are random variables taking values in {z1, . . . , zm}
with CDF values given by F, F ′, respectively, and we write ℓ22(R+ γG,R+ γG′) as shorthand for
the Cramér distance between the two distributions of these random variables, ER∼R(x)[(bR,γ)#ν],
ER∼R(x)[(bR,γ)#ν

′], respectively. We then use the characterisation of the squared-Cramér distance
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in Equation (23) to obtain, writing R1, R2 ∼ R(x), G1, G2 ∼ ν, G′
1, G

′
2 ∼ ν′, all independent of

one another,

ℓ22(R+ γG,R+ γG′)

= E[|R1 + γG1 − (R2 + γG′
2)|]−

1

2
E[|R1 + γG1 − (R2 + γG2)|]

− 1

2
E[|R1 + γG′

1 − (R2 + γG′
2)|]

(a)

≥ E[|γG1 − γG′
2| − 2]− 1

2
E[|γG1 − γG2|+ 2]− 1

2
E[|γG′

1 − γG′
2|+ 2]

= γℓ22(ν, ν
′)− 4 = γ∥F − F ′∥2ℓ2 − 4 ,

as required, where (a) follows from boundedness of the rewards, and the triangle inequality.

With Proposition F.1, we obtain a weaker version of Corollary 5.12 in the stochastic reward case,
yielding ∥(I − γP̂ )−1σP̂ ∥∞ ≤ 6(1− γ)−1, which is sufficient to conclude the claimed bound on
the second term as described in Appendices E.7 & E.8, specifically yielding that this second term is
O(ε) with probability at least 1− δ.

Third term. Finally, the third term on the right-hand side of Equation (34) is a new term that emerges
specifically in the stochastic-reward case, corresponding to errors in the fixed-point solely due to
mis-estimated immediate reward distributions. First, by an analogous argument to that in Section E.3,
we may write

F́ − F̂ =

∞∑
k=0

(TP̂,R̂)k(TP̂,R − TP̂,R̂)F́ .

We have ∥∥∥∥ [(TP̂,R − TP̂,R̂)F́
]
(x)

∥∥∥∥
ℓ2

(a)

≤ ℓ2(R(x), R̂(x))
(b)

≤
√

log(2|X |/δ)
2N

with probability at least 1− δ. Here, (a) follows by homogeneity of the Cramér distance (Rowland
et al., 2018, Proof of Proposition 2), and (b) follows from the DKW inequality (Dvoretzky et al., 1956;
Massart, 1990) and a union bound. Then, using contractivity of TP̂,R̂ and the triangle inequality, we
obtain

∥F́ − F̂∥ℓ2,∞ ≤
∞∑
k=0

γk/2
√

log(2|X |/δ)
2N

= Õ((1− γ)−1N−1/2) ,

with probability at least 1 − δ, which is O(ε) under the choice of N in the theorem statement. In
summary, taking a union over the events corresponding to all concentration bounds used, we obtain
that ℓ2(η∗, F̂ ) is O(ε) with probability at least 1− 2δ, as required.

G Further experimental results and details

In this section, we give full details for the experiment presented in the main paper, and additionally
present extended results on several additional environments. All experiments were run using the
Python 3 language (Van Rossum and Drake, 2009), and made use of NumPy (Harris et al., 2020),
SciPy (Virtanen et al., 2020), Matplotlib (Hunter, 2007), and Seaborn (Waskom, 2021) libraries.
As all experiments are tabular, each run uses a single CPU, and timings are reported within the
experimental results.

G.1 Environments

We report results on four MRPs defined as follows:

1. Chain: 10 states arranged in a chain x1 ↔ x2 ↔ · · · ↔ x10. Each state transitions to its
neighbours with equal probability. States 1 and 10 are terminal. Only state 10 has a reward of 1,
and all other states have reward 0.
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Figure 4: Monte Carlo approximations of return distributions in each of the four environments tested.

2. Low random: There are five states, and the transition probabilities from each state to all
five states are drawn independently from a Dirichlet distribution with concentration parame-
ter (0.01, . . . , 0.01). The rewards for each state is drawn i.i.d. from the uniform distribution over
[0, 1]. We draw these transition probability and rewards using the same random seed to yield the
same MRP for all experiments.

3. High random: Same as the low random environment, but with transitions drawn from a Dirichlet
distribution with concentration parameter (10, . . . , 10).

4. Two-state: A 2-state MRP modified from Example 6.5 of Rowland et al. (2024). The transition
matrix is (

0.6 0.4
0.8 0.2

)

where the (i, j) entry is the probability of transitioning from state i to state j. State 1 has reward 0,
and state 2 has reward 1.

We chose this set of environments to include classic tabular settings such as the chain, two envi-
ronments with very different levels of stochasticity (low and high random), as well as the two-state
example from Rowland et al. (2024), which illustrates the nature of fixed-point approximation er-
ror incurred by QDP in environments with tight bootstrapping loops. We vary the discount factor
γ ∈ {0.8, 0.9, 0.95, 0.99}. For reference, we plot Monte Carlo approximations of return distributions
for each environment in Figure 4, with γ = 0.9. The return samples are computed using the first-visit
Monte Carlo algorithm. For each initial state, we run at least T transitions such that the maximum
error after T transitions γT rmax/(1− γ) < ε, where rmax = 1 and we set ε = 10−4. This is repeated
104 times for each state, giving at least 104 return samples per state.
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G.2 Algorithms

As described in the main paper, we compare DCFP, QDP, and CDP algorithms. For DCFP and CDP,
we make use of the sparse structure of the update matrix (see Equation (9)), and implement these
algorithms using SciPy’s sparse matrix-vector multiplication and linear system solution methods
(Virtanen et al., 2020). The mathematical details regarding the sparsity of the update matrix is
described in Appendix G.3. For comparison, we also run implementations of DCFP and CDP that
do not exploit this sparsity, and instead use standard dense NumPy implementations for matrix-
vector multiplication and linear system solution methods; these are denoted by d-DCFP and d-CDP,
respectively.

By default the categorical methods (all variants of DCFP and CDP) use the atom locations described
in the main paper: zi = i−1

m−1 (1 − γ)−1 for i = 1, . . . ,m. These atom locations are sufficient
to establish the theoretical results in the main paper, though we note that in practice, particularly
when true return distributions are localised within a small sub-interval of [0, (1− γ)−1], this setting
can be overly conservative. However, in many cases, there are straightforward ways in which
the choice of support can be improved, essentially by replacing the uniformly valid return range
[0, (1 − γ)−1] with an a priori known environment-specific reward range. As an example, if the
known range of immediate rewards forms a sub-interval [rmin, rmax] ⊆ [0, 1], then the return must
fall into the environment-specific reward range [rmin(1− γ)−1, rmax(1− γ)−1], and improved atom
locations zi = rmin(1− γ)−1 + i−1

m−1 (rmax − rmin)(1− γ)−1 (for i = 1, . . . ,m) can be used, whilst
maintaining the guarantee that the support for the true return distributions lie within this interval. We
thus additionally report results for versions of DCFP and CDP that use environment-specific atom
locations, to investigate what practical improvements can be gained with such additional information.
Specifically, for the high random and low random environments, we use the tighter bounds on support
given by known rmin and rmax, as described above. In the chain environment, we consider using
the advanced knowledge that only the transition into the terminal state is rewarding, yielding a
sub-interval for possible returns of [0, 1]. In the two-state case, the range of possible returns is the
full interval [0, (1− γ)−1], and so we do not investigate an environment-specific set of atoms in this
case. However, it is clear from the Monte Carlo approximations to the return distributions in this
environment in Figure 4 that these distributions do have the vast majority of their probability mass in
a much smaller interval than the worst case interval [0, (1− γ)−1].

We ran all DP methods with 30,000 iterations. For all categorical DP methods, we verify that the
Wasserstein distance between the last iterate to the Monte Carlo ground truth is almost identical to
the Wasserstein distance between the categorical fixed-point to the ground truth.

G.3 Efficient implementation of CDP and DCFP

A straightforward implementation of CDP and DCFP is to vectorise F , treating it as a vector indexed
by state-index pairs (x, i), and correspondingly treat TP̂ as a matrix whose rows and columns are
indexed similarly. Iterations of CDP can then be performed by simple matrix-vector multiplications
with this representation of TP̂ , and the solution of the linear system appearing in Equation (11) that
forms the core of DCFP can be implemented with a call to a standard linear system solver, such as
numpy.linalg.solve (Harris et al., 2020).

However, the operator TP̂ typically has some specific structure that can be exploited in implementa-
tions. In particular, we highlight here the sparse structure of TP̂ , allowing for potential speed-ups in
implementation by making use of sparse linear solvers, such as scipy.sparse.linalg.spsolve
(Virtanen et al., 2020). Recall that, viewing TP̂ as a matrix (c.f. Equation (9)), the element corre-
sponding to the (x, i) row and (y, j) column is given by

P̂ (y|x)(Hx
i,j −Hx

i,j+1) . (35)

In an MRP with sparse transition matrix P , the empirical estimate P̂ inherits this sparsity, inducing
sparsity in TP̂ . In addition, there is also sparsity induced by the atom index components of the row
and column indices, as we now describe. Recall from Equation (8) that Hx

i,j =
∑

l≤i hl(r(x)+ γzj);
see Figure 5 for an illustration the function z 7→

∑
l≤i hl(z).

Now, suppose that for some x ∈ X and 1 ≤ i, j ≤ m− 1, Hx
i,j −Hx

i,j+1 is non-zero. This says that
the function z 7→

∑
l≤i hl(z) takes on different values at r(x) + γzj and r(x) + γzj+1, and since
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Figure 5: The function z 7→
∑

l≤i hl(z) (grey), and a possible configuration for r(x) + γzj ,
r(x) + γzj+1 in the event of a non-zero Hx

i,j −Hx
i,j+1 term.

the distance between these arguments is γ times the grid width (1− γ)−1m−1, it follows that at least
one of these two arguments must lie in the interval [zi, zi+1]; see Figure 5.

From this observation, we deduce two forms of sparsity for the elements given in Equation (35).
First, since one of r(x)+ γzj and r(x)+ γzj+1 must lie in [zi, zi+1], we deduce that neither of these
points can lie in any interval [zi′ , zi′+1] with i′ < i− 1 or i′ > i+ 1, and hence Hx

i′,j −Hx
i′,j = 0

for such i′. From this reasoning, it follows that ranging over i in Equation (35), there are at most 2
non-zero elements. For large m, this means that TP̂ is very sparse.

Similarly, we can deduce row sparsity by noting that at most ⌈2/γ⌉ indices j can have the property
that r(x)+γzj or r(x)+γzj+1 can lie in [zi, zi+1], and it is only for these indices j that we can have
Hx

i,j −Hx
i,j+1 non-zero. So for γ ≈ 1, this also implies sparsity of the elements in Equation (35) as

we range over j.

G.4 Results

For each setting, we repeat the experiment 30 times with different sampled transitions. We display
trade-off plots (supremum-Wasserstein-1 error and wallclock time) for each of the four environments
described above, in Figures 6, 7, 8, and 9, for the cases of m ∈ {30, 100, 300, 1000} atoms and using
N = 106 sample transitions from each state to estimate transition matrix. These curves are obtained
by averaging across the 30 repetitions. Some central themes emerge from the results.

In the case when the categorical methods use the environment-independent, standard atom locations
zi =

i−1
m−1 (1−γ)

−1 for i = 1, . . . ,m, we find that for a given atom count m, QDP often achieves the
lowest asymptotic Wasserstein-1 error. A notable exception is the two-state environment; Rowland
et al. (2024) observed that such environments, in which there is a short, high-probability path from
a state to itself, can cause high approximation error for QDP, which we believe is the cause of the
inaccuracy observed here, particularly at high discounts. However, the categorical approaches often
deliver better performance as judged by wallclock time. This is owing to the efficient implementations
of the linear operator, and solution methods for the linear system, that are associated with these
algorithms. By contrast, the QDP operator is non-linear, and requires a call to a sorting method.
We tend to observe the greatest benefits of the sparse implementation for large atom counts, as
expected, and also observe the greatest benefits of DCFP over the iterative CDP algorithm in settings
with high discount factors. This is also to be expected, since the discount factor controls the rate
of convergence of the DP algorithms. Note additionally that the use of environment-specific atom
locations generally improves the results obtained with categorical approaches; the improvements
in the chain environment are particularly strong, since the narrow return range allows for a denser
packing of atom locations, by a factor of (1− γ)−1, for a given atom count m.

We also compare how the supremum-Wasserstein distance changes while the number of samples
used to estimate P̂ increases from 102 to 106. Since the categorical methods all converge to the
same fixed point, we only show the result of DCFP and QDP, using m ∈ {30, 100, 300, 1000} atoms.
Figure 10(a) shows that the distance decreases as the number of samples increase. One exception is
the QDP with 30 atoms applied to high random at high γ, where N = 100 produced smallest distance
on average. Figure 10(b) shows the results when the environment-specific return range is given. This
substantially reduced the supremum-Wasserstein distance, especially when using a small number of
atoms.
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Figure 6: Distance vs. run time results for the chain environment, for P̂ estimated from N = 106

sample transitions.
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Figure 7: Distance vs. run time results for the low random environment, for P̂ estimated from
N = 106 sample transitions.
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Figure 8: Distance vs. run time results for the high random environment, for P̂ estimated from
N = 106 sample transitions.
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Figure 9: Distance vs. run time results for the two-state environment, for P̂ estimated from N = 106

sample transitions. The return range of this environment coincides with the global return range.
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Figure 10: Supremum-Wasserstein distance on convergence. Error envelope indicates 95% confidence
interval by bootstrapping. The return range of the two-state environment coincides with the global
return range.
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G.5 Example implementations

We provide example implementations for the CDP and DCFP algorithms described in the main paper.
We work with updates over cumulative distribution functions, as in Equation (7), matching the form
of the operator analysed in the paper. Our intention is to provide a straightforward implementation
of these key algorithms, and in particular we have not included optimisations such as exploiting
sparsity in the linear solver, as described in Appendix G.3. As shown in our experimental results,
there are often significant performance gains that can be obtained from such optimisations, and we
encourage practitioners to make use of such optimisations when running DCFP beyond the very
smallest instances.

Listing 1 gives an implementation of the categorical Bellman operator itself, Listing 2 gives an imple-
mentation of a single CDP update, Listing 3 gives an implementation of the DCFP algorithm in terms
of CDFs, and Listing 4 provides a function for converting computed CDF values to corresponding
probability mass functions. The code snippets in this paper have the licence below.
# Copyright 2025 Google LLC. SPDX -License -Identifier: Apache -2.0

import numpy as np

def hat_functions(values: np.ndarray , support: np.ndarray) -> np.ndarray:
""" Computes the values of the categorical hat functions described in Section 2.3.

Args:
values: Values to be projected , of arbitrary shape.
support: Distribution support to project onto , of shape (n_atoms ,).

Returns:
Probabilities over support for projected values , of shape (* values.shape , n_atoms ).

"""
support_diff = support [1:] - support [:-1]
proj_left = (support [1:] - values [..., None]) / support_diff
proj_left = np.concatenate ((proj_left , np.ones_like(values )[... , None]), axis=-1)
proj_right = (values [..., None] - support [: -1]) / support_diff
proj_right = np.concatenate ((np.ones_like(values )[..., None], proj_right), axis=-1)
return np.maximum(np.minimum(proj_left , proj_right), 0.)

def construct_cdf_categorical_bellman_operator(
transition_probs: np.ndarray , rewards: np.ndarray , discount: float , support: np.ndarray

) -> np.ndarray:
""" Constructs the categorical Bellman operator.

Args:
transition_probs: Transition probabilities , of shape (n_states , n_states ).
rewards: Reward vector , of shape (n_states ,).
discount: Discount factor.
support: Vector of atom locations for categorical distributions , of shape (n_atoms ,).

Returns:
The categorical Bellman operator , as array with shape

(n_states , n_atoms , n_states , n_atoms ).
"""
# Indices: (x, j)
bootstrap_returns = rewards[:, None] + discount * support[None , :]
# Indices: (x, j, i)
h = hat_functions(bootstrap_returns , support)
# Indices: (x, i ,j)
h = np.transpose(h, (0, 2, 1))
H = np.cumsum(h, axis =1)
H_diff = -np.diff(H, append =0., axis =2)
return np.einsum(’xy,xij ->xiyj’, transition_probs , H_diff)

Listing 1: Construction of the categorical Bellman operator over CDFs.

def apply_categorical_bellman_operator(operator: np.ndarray , F: np.ndarray) -> np.ndarray:
return np.einsum(’xiyj ,yj->xi’, operator , F)

Listing 2: A single step of CDP implemented by an application of the categorical Bellman operator.
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def dcfp(
transition_probs: np.ndarray , rewards: np.ndarray , discount: float , support: np.ndarray

) -> np.ndarray:
n_states = transition_probs.shape [0]
n_atoms = support.shape [0]
operator = construct_cdf_categorical_bellman_operator(transition_probs , rewards , discount , support)
# Constructing the linear system in Equation (11)
H_tilde = np.sum(operator[:, :-1, :, -1], axis=-1)
H_tilde_flat = H_tilde.flatten ()
T_tilde = operator[:, :-1, :, :-1]
n_dim = n_states * (n_atoms - 1)
T_tilde_flat = np.reshape(T_tilde , (n_dim , n_dim))
# Solving the linear system in Equation (11)
F_tilde_flat = np.linalg.solve(np.eye(n_dim) - T_tilde_flat , H_tilde_flat)
F_tilde = np.reshape(F_tilde_flat , (n_states , n_atoms - 1))
F = np.hstack ((F_tilde , np.ones((n_states , 1))))
return F

Listing 3: An example implementation of DCFP.

def cdf_to_pmf(cdf_values: np.ndarray) -> np.ndarray:
return np.diff(cdf_values , axis=-1, prepend =0.)

Listing 4: Conversion of computed CDF values to probability masses.

It is also possible to implement the operator to take probability mass function values as input
rather than CDF values, as in Equation (6); this essentially amounts to a change of basis, and
can be achieved by using h rather than H_diff in the np.einsum call in the return line of the
construct_cdf_categorical_bellman_operator function; see Listing 5. For implementations
of CDP, this implementation of the operator may be preferable for its interpretability, more closely
aligning with implementations of categorical temporal-difference learning (Bellemare et al., 2017)
that are implemented in terms of probability mass functions, such as in the RLax library (DeepMind
et al., 2020). It is also possible to implement DCFP with the probability mass function version of
the operator. In comparison with the implementation in Listing 3, the normalisation constraints to
be added (as discussed in Section 4.1) are no longer constraints on individual variables of the form
Fm(x) = 1, but rather take on the form

∑m
i=1 pi(x) = 1.

def construct_pmf_categorical_bellman_operator(
transition_probs: np.ndarray , rewards: np.ndarray , discount: float , support: np.ndarray

) -> np.ndarray:
# Indices: (x, j)
bootstrap_returns = rewards[:, None] + discount * support[None , :]
# Indices: (x, j, i)
h = hat_functions(bootstrap_returns , support)
return np.einsum(’xy,xji ->xiyj’, transition_probs , h)

Listing 5: An implementation of the categorical Bellman operator over probability mass functions.
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considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: The paper concerns solely tabular methods.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?
Answer: [NA]
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Justification: Our experiments are solely tabular, and we cite the programming frameworks used
to implement these.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets introduced.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: No research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: No research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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