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Abstract

Recent methods are proposed to improve performance of domain adaptation by
inferring domain index under an adversarial variational bayesian framework, where
domain index is unavailable. However, existing methods typically assume that the
global domain indices are sampled from a vanilla gaussian prior, overlooking the
inherent structures among different domains. To address this challenge, we propose
a Bayesian Domain Adaptation with Gaussian Mixture Domain-Indexing(GMDI)
algorithm. GMDI employs a Gaussian Mixture Model for domain indices, with
the number of component distributions in the “domain-themes” space adaptively
determined by a Chinese Restaurant Process. By dynamically adjusting the mix-
tures at the domain indices level, GMDI significantly improves domain adaptation
performance. Our theoretical analysis demonstrates that GMDI achieves a more
stringent evidence lower bound, closer to the log-likelihood. For classification,
GMDI outperforms all approaches, and surpasses the state-of-the-art method, VDI,
by up to 3.4%, reaching 99.3%. For regression, GMDI reduces MSE by up to 21%
(from 3.160 to 2.493), achieving the lowest errors among all methods. Source code
is publicly available from https://github.com/lingyf3/GMDI.

1 Introduction

Machine learning models often suffer from performance degradation when applied to new domains
that differ from their training domains, a phenomenon known as domain shift [21, 8, 28, 15]. Domain
Adaptation (DA) [4, 44, 49, 42, 6, 1, 37, 32, 38, 13] seeks to mitigate this issue by producing domain-
invariant features, thereby enhancing generalization from source to target domains [23, 19, 12, 39, 45].

Recent research has explored the use of domain identity and domain index to improve domain-
invariant data encoding and enhance domain adaptation performance [36, 40, 41]. Domain iden-
tity [41], a one-hot discrete variable vector, differentiates between domains, whereas domain
index [41], a real-valued continuous variable vector, captures domain semantics. Due to the
limited information in the discrete domain identity vector, research has increasingly focused
on the domain index. Current approaches to incorporating domain index in domain adapta-
tion include: (1) Directly using existing additional information in the dataset as the domain in-
dex [36, 40], which is impractical for datasets lacking such indices [22, 29], and (2) Treating
the domain index as a latent variable to be inferred [26, 41]. However, these methods typically
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model the domain indices with a simple Gaussian distribution, limiting the domain indices space
and thus hindering adaptation to diverse target domains, resulting in suboptimal performance.

Figure 1: Illustration of domain indices
modeled by different distributions.

To address the aforementioned issues, we propose a
Bayesian Domain Adaptation with Gaussian Mixture
Domain-Indexing (GMDI) algorithm. The proposed ad-
versarial Bayesian algorithm assumes that domain indices
follow a mixture of Gaussian distributions, with the num-
ber of mixture components dynamically determined by
a Chinese Restaurant Process. As shown in Figure 1, a
single Gaussian distribution struggles to adequately fit the
domain indices, neglecting the inherent structures among
different domains. This observation motivates us to model
domain indices from different domains collectively as a
Gaussian mixture distribution. To the best of our knowl-
edge, we are the first to model domain indices as a mixture
of Gaussian distributions to address the aforementioned
challenges. Inspired by [3], the latent space of the mixture is defined as the “domain-themes” space.
The mixtures of distributions provide a higher level of flexibility in a larger latent space, thereby
increasing the capability to adapt to various target domains with domain shift. Our theoretical analysis
demonstrates that GMDI achieves a more rigorous evidence lower bound, and that maximizing this
bound along with adversarial loss effectively infers optimal domain indices. Extensive experimental
results validate the significant effectiveness of GMDI.

Our key contributions are summarized as: (1) Our proposed GMDI is the first one to consider the
entire distributions of domain indices in the “domain-themes” space following a mixture of Gaussian
distributions, and dynamically determining the number of components in the mixture with the Chinese
Restaurant Process. (2) Our detailed theoretical analysis demonstrates that training with GMDI’s
superior evidence lower bound together with adversarial loss can yield optimal and more interpretable
domain indices. (3) Extensive experiments on classification and regression tasks showcase the strong
domain index modeling capability of GMDI, significantly outperforming the state-of-the-art.

2 Related Work

Adversarial domain adaptation. There exists a substantial body of work on domain adapta-
tion [4, 44, 49, 42, 6, 1, 37, 32, 38]. They focus on generating domain-invariant data encoding by
aligning the distributions of source and target domains to adapt to target domains. This alignment
is achieved by directly matching the statistics of distributions [25, 24] or by employing adversarial
loss [33, 31], which encourages domain confusion through adversarial objective with a discriminator.
Adversarial domain adaptation is widely used due to its integration with deep learning, strong theo-
retical foundation [7], and superior performance. Various different types of adversarial losses have
been explored: [35] uses an inverted label GAN loss, [5] utilizes a minimax loss, and [34] employs a
cross-entropy loss against the uniform distribution. Typically, the discriminators in these models rely
on domain identity, which contains limited information, to align data encoding distributions. [20] and
[10] also pay attention to domain identity. Our work, however, focuses on domain index, providing a
more detailed representation of domains.

Domain adaptation related to domain indices. Recently, there has been growing interest in using
continuous domain index, which contain richer and more interpretable information, to enhance
domain adaptation performance. [36] use the rotation angle of images as the domain index for the
Rotating MNIST dataset and patients’ ages as the domain index for Healthcare Datasets. Their
theoretical analysis demonstrates the value of utilizing domain indices to generate domain-invariant
features. [40] employ graph node embeddings as domain indices to achieve domain adaptation in
graph-relational domains. These methods assume that domain indices are available. However, in
practice, domain indices are not always accessible [22, 29]. [26] generates features representing the
similarity between different domains but do not formally define the domain index. [41] formally
define the domain index and treat it as a latent variable to be inferred. Although [41] takes steps
towards Bayesian approximation to parameter distributions, it only assumes a single domain index
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distribution, limiting its capability to adapt to diverse target domains effectively. In contrast, we
address this issue by representing the domain index with a dynamically updated mixture model.

3 Background

3.1 Problem setup

We aim at unsupervised domain adaptation: given N domains with different domain shifts, each
domain has a domain identity w ∈ W = [N ] ≜ {1, ..., N}, and each domain contains Dw data points.
Similar to the conventional unsupervised domain adaptation setting, the N domains are divided into
source domains with labeled data DS = {(xs

i , y
s
i , w

s
i )}

ns

i=1 and target domains with unlabeled data
DT = {(xt

i, w
t
i)}

nt

i=1. A foundational element that builds up our research problem is the diverse
domain shifts [14] between different target domains and source domains. For source domains, the
complexity of each target domain varies, which motivates us to dynamically infer domain indices
in the “domain-themes” space and model them with dynamic Gaussian Mixture Model. We aim
to (1) predict the label {yti}

nt

i=1 of target domain data, and (2) infer local domain index uw ∈ RBu

and global domain index θw ∈ RBθ in the dynamic “domain-themes” space. The summary of the
notations is presented in Appendix J.

3.2 Preliminary

Domain index. The domain index, distinct from domain identity w, represents domain semantics, thus
empowering it to significantly enhance domain adaptation performance. As per its definition [36, 41],
the domain index satisfies the following : (1) To acquire domain-invariant data encoding z, the
global domain index θ must remain independent of data encoding z , i.e., θ ⊥⊥ z or equivalently
p(z | θ) = p(z). (2) Effectively representing data point x while averting the occurrence of collapsing.
(3) Ensuring optimal performance of downstream tasks utilizing the data encoding z learned by the
encoder under the aforementioned constraints, and necessitating the maintenance of sensitivity to
labels.

Variational domain index. In circumstances where the domain index may not be readily accessible,
the Variational Domain Index (VDI) [41] is a Bayesian approach to infer the domain index θ and u
as latent variables. VDI factorizes the generative model p(x, y,u,θ, z | ε) as:

p(x, y,u,θ, z | ε) = p(θ | ε)p(u | θ)p(x | u)p(z | x,u,θ)p(y | z) , (1)

where ε denotes the parameters for the prior probability distribution of the domain index θ. As
shown in Equation 1, VDI stands capable of significantly enhancing domain adaptation proficiency
by leveraging the inferred domain index for generating data encoding z. Note that the independence
between the domain index θ and data encoding z, i.e., p(z | θ) = p(z), does not contradict
p(z | x,u,θ), given the existence of multiple pathways between the domain index θ and data
encoding z. Compared to VDI, which treats the distribution of domain index as a single Gaussian,
we focus on a dynamic mixture of Gaussian distributions.

Chinese Restaurant Process(CRP). The Dirichlet Process (DP) is a classical method used for clus-
tering. However, DP is difficult to construct directly, we apply the Chinese Restaurant Process(CRP)
[16, 17, 18, 46] to implement it. Since similar domains have similar domain indices, the clusters
formed by the domain indices correspond one-to-one with the components in mixture of Gaussian
distributions. CRP can be employed to determine which cluster a domain belongs to (i.e., which
component distribution domain index corresponds to). Specially, CRP is able to dynamically and
adaptively determine the number of mixture components. CRP operates as follows:

P (v = k) =


nk

N − 1 + α
if the cluster k exists ,

α

N − 1 + α
if cluster k is a new cluster ,

(2)

where nk is the number of domain contained in cluster k, and parameter α is the concentration
parameter of the CRP. A larger α implies a tendency to generate more domain clusters.
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Figure 2: The schematic diagram of domain index distributions. It shows the inference of variational Gaussian-
shaped distributions for the global domain index, representing domain semantics. The process involves ranking
candidate distributions in the “domain-themes” space, selecting the highest probability one, and deriving the
local domain index from it.

4 Bayesian Domain Adaptation with Gaussian Mixture Domain-Indexing

4.1 Overview of GMDI

We propose GMDI in order to infer more interpretable domain indices and thereby improve domain
adaptation performance. Our model is constructed in three steps: First, in generate process, we
model global domain indices as a dynamic Gaussian mixture model, with local indices generated
from global domain index. Second, in inference process, we build structured variational inference
to approximate the posterior of the latent variables. Finally, we train the model using an evidence
lower bound with robust theoretical guarantees and an adversarial loss. Under this framework, GMDI
has several significant advantages: (1) With global domain indices following a dynamic mixture of
Gaussian distributions adaptively determined by CRP, it provides a higher level of flexibility in a
larger latent space. (2) The evidence lower bound of our GMDI is more stringent, leading to more
interpretable and optimal domain indices. The overview of GMDI is presented in Algorithm 1.

4.2 Mixture of domain index distributions

Similar to VDI, GMDI (Figure 3 (right)) also considers the intermediate latent variable of local
domain index u. The local domain index u contains instance-level information, meaning that each
data point has a unique local domain index. In contrast, the global domain index θ contains domain-
level information, indicating that all data points within the same domain share the same global domain
index. In VDI, with the local domain index u derived from the global domain index θ, the data
distribution p(y,x | ε) is expressed as:

p(y,x | ε) =
∫

p(θ | ε)p(u | θ)p(x | u)p(z | x,u,θ)p(y | z) dzdudθ , (3)

where ε denotes the parameters for the prior probability distribution of the global domain index θ.

With the setting of unsupervised domain adaptation, domains are not i.i.d, existing domain shift
between domains. It implies that there may be substantial differences in distribution between
domains. This leads to a problem that disparate target domains require a more significant degree
of adaptation. Although we compute a distribution for domain index θ to enhance the capability of
domain adaptation, it may not be effective enough to aid in adapting to a diversity of different target
domains. Therefore, if local domain index u are adapted from a simple Gaussian distribution of
global domain index θ, it may play a small role in improving the performance of domain adaptation.

To better model global domain index and thus enhance the effectiveness of domain adaptation, we
propose to maintain a mixture of dynamically updated global domain index θ distributions in the
“domain-themes” space. Intuitively, similar domains have similar global domain indices, implying
that the mixture of global domain index distributions is associated with a cluster of similar domains.
The process of adapting local domain indices from global domain indices is illustrated in Figure 2.
Specifically, we consider a Gaussian Mixture Model (GMM) as the mixture of global domain index
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Figure 3: The probabilistic graphical model of VDI (left) and GMDI (right). Edge type "- - -" denotes the
independence between global domain index θ and data encoding z.

distributions. For each distinct domain, we first rank the candidate global domain index distributions
in “domain-themes” space and select the distribution with the highest probability. We then derive
the local domain index u from the global domain index θ. Therefore, the global domain index is
designed to be dynamical GMM.

Let v denote the latent categorical variable indicating the assignment of a domain to a cluster, which
is equivalent to selecting components in a mixture distribution. Based on the definition of v, we
derive the updated representation of the distribution p(y,x | ε):

p(y,x | ε) =
∫

p(v)p(θv | ε)p(u | θv)p(x | u)p(z | x,u,θv)p(y | z) dzdudθdv . (4)

The component distribution θv is selected from the mixture distribution of θ, and afterward, the
local domain index u is obtained from global domain index θv for generating domain-invariant data
encoding z. Equation 3 and Equation 4 both represent the factorization of the distribution p(y,x | ε).
θ in Equation 3 is the global domain index. While GMDI models the global domain index θ as a
mixture of Gaussian distributions, θv in Equation 4 indicates the v-th component of the mixture
distribution of θ with the prior p(v). Compared to the single distribution, the mixture of global
domain index distributions adequately model the domain index of different domains, enhancing
the effectiveness of domain adaptation in the face of varying degrees or even significant domain
shifts. However, a remaining challenge is determining the number of components in the mixture
distributions, especially when there are numerous domains, or even possibly infinite ones.

4.3 Generative process of GMDI

In extreme cases, there may be infinite domains. Due to CRP’s flexibility in dynamically determining
the number of domain indices mixture components, we employ CRP to determine which cluster a
domain belongs to (i.e., which component distribution domain index corresponds to). Specifically,
we define the prior for domain indices cluster as a CRP, where the generation of new domain indices
clusters is controlled by parameter α. Thus, the probability of a domain belonging to cluster k is
calculated by Equation 2. Since CRP is an infinite mixture model, it is able to easily adapted to an
infinite number of domains.

Mixture of domain indices need a stick-breaking representation of CRP to obtain component weights.
Stick-breaking representation indicating an infinite construction, considering the Dirichlet prior with
parameter α, each element in the probability vector π = [π1, π2, ...] is non-negative and the sum of
the elements is 1:

βk | α ∼ Beta(1, α) for k=1, ...,∞ , (5)

πk = βk

k−1∏
l=1

(1− βl) for k=1, ...,∞ . (6)

Equation 6 is equivalent to the weights implied by CRP. Based on Equation 6 and Equation 4, the
generative process of GMDI is as follows:

v | π ∼ Categorical∞(π) , (7)

θv=k ∼ N (µk,σ
2
k) , (8)

u | θv=k ∼ p(u | θv=k) , (9)
x | u ∼ p(x | u) , (10)

z | x,u,θv ∼ p(z | x,u,θv) , (11)
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where µk and σ2
k are mean vector and semi-positive covariance matrix of the k-th component in

dynamic Gaussian mixture of domain indices, respectively. Figure 3 illustrates the generative process
of VDI with a single distribution and GMDI with a mixture of distributions for domain indices.
Since CRP is computationally intensive. To improve computational efficiency, we consider the stick-
breaking construction to transform the infinite Gaussian mixture of domain indices into a finite one. It
can be achieved by directly specifying an upper bound K for the number of components in Gaussian
mixture of domain indices. Selecting an appropriate K allows to effectively reduce computational
overhead. The finite version of the generative process of GMDI is available in Appendix A.

Accordingly, the generative model can be factorized as follows:

p(x, y,u,θ, z, v,β | α) = p(β | α)p(v | β)p(θv)p(u | θv)p(x | u)p(z | x,u,θv)p(y | z) . (12)

The predictor p(y | z) is a categorical distribution for classification tasks and a Gaussian distribution
for regression tasks.

4.4 Evidence Lower Bound

The exact posterior of all latent variables, i.e., p(u,θ, z, v,β | x) is intractable, variational inference
is used to approximate the posterior. Compared to the Monte Carlo sampling, variational inference
allows both uncertainty quantification and computational efficiency. We employ structured variational
inference to approximate the exact posterior, factorizing the approximate posterior q(u,θ, z, v,β |
x):

q(u,θ, z, v,β | x) = q(β;γ)q(v;η)q(u | x;ψu)q(θ
v | u;ψθ)q(z | x,u,θ

v;ψz) , (13)

where γ,η,ψu,ψθ and ψz respectively represent the parameters of the variational distributions
q(β), q(v), q(u | x), q(θv | u) and q(z | x,u,θv).
We train GMDI by maximizing the evidence lower bound(ELBO) to obtain the optimal variational
distributions which best approximate exact posterior distributions. Section 5 demonstrates that our
proposed GMDI has a more stringent evidence lower bound. Based on generative and inference
process of GMDI, we caluculate the ELBO as follows:

LELBO = Eq(u,θv,z|x;ϕ)q(v;η)[log p(y|z)] + Eq(u|x;ψu)
[log p(x|u)]

+ Eq(v;η)q(β;γ)q(u|x;ψu)q(θ
v|u;ψθ)

[log p(u|θv)]−KL[q(β;γ)||p(β)]
− Eq(β;γ)[KL[q(v;η)||p(v|β;ψv)]]− Eq(u|x;ψu)q(v;η)

[KL[q(θv|u;ψθ)||p(θ
v)]]

− Eq(v;η)q(u,θv|x;ξ)[KL[q(z|x,u,θv;ψz)||p(z|x,u,θ
v)]]

− Eq(u|x;ψu)
[log q(u|x;ψu)] , (14)

where ϕ and ξ represent the parameters of the variational distributions q(u,θv, z|x) and q(u,θv|x),
respectively, and KL [·||·] is the Kullback–Leibler divergence.

4.5 Adversarial loss with a discriminator

To ensure the independence between global domain index θ and data encoding z as defined, we
follow VDI [41] by training an additional discriminator D with an adversarial loss. As we prove in
Section 5 that the independence between global domain index θ and data encoding z relies on the
independence between domain identity w and data encoding z, the adversarial loss is simplified to
discriminate the domain identity w:

LD = Ep(w,x)Eq(z|x;ψz)
[logD(w|z)] . (15)

4.6 Objective function

Combining Equation 14 and Equation 15, the final objective of GMDI is:

LGMDI = maxmin
D
LELBO − λ ∗ LD , (16)

where λ denotes the hyper-parameter that balances two terms. Since the exact posterior of all latent
variables is intractable, we propose to use a structured variational inference method to approximate
the exact posterior. More details can be viewed in the appendix B.
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Variational distribution of β. To derive the optimal variational distribution of β, we only consider
the terms related to β in LELBO, then we can get the posterior q(βk;γk) = Beta(βk; γk,1, γk,2)

with parameters γk,1 = 1 + ηk and γk,2 = α+
∑K

i=k+1 ηi.

Variational distribution of v. Similarly, the variational posterior of v can be calculated as a
Categorical distribution q(v;η) = CategoricalK(v;η), where the pareameters can be updated as:
log ηk ∝Eq(β;γ)[π] + Eq(u|x;ψu)q(θ

v|u;ψθ)
[log p(u|θv)]− Eq(u|x;ψu)

[KL[q(θv|u;ψθ)||p(θ
v)]]

− Eq(u,θv|x;ξ)[KL[q(z|u,θ,x;ψz)||p(z|u,θ,x)]] ,
(17)

where
∑K

k=1 ηk = 1 and q(β;γ) =
∏K−1

k=1 q(βk;γk).

Variational distribution of θ,u and z. With assuming that the latent parameters are sampled from
Gaussian, we have the following forms:

q(θv|u;ψθ) = N (µθ,σ
2
θ) , (18)

q(u|x;ψu) = N (µu,σ
2
u) , (19)

q(z|x,u,θv;ψz) = N (µz,σ
2
z) , (20)

where µ and σ2 are mean vector and semi-positive covariance matrix of Gaussian distribution. The
parameters are updated by gradient descend. Specifically, we follow VDI [41] by using Earth Mover’s
Distance (EMD)[30] and Multi-Dimensional Scaling (MDS)[2] to infer θv from u.

5 Theory

In this section, we provide significant theoretical guarantees for our GMDI method. First, we give
the upper bound for ELBO and adversial loss respectively. Second, we prove the upper bound of
the whole loss with mutual information and entropy only. Moreover, we show that the upper bound
can be achieved when the conditions are satisfied. Finally, we proove the significant result that our
ELBO is better than the VDI, which means that a mixture of Gaussian prior can get better results.
See Appendix C for detailed proof.

Lemma 1 The ELBO of p(x, y) is bounded by the following formula with the Mutual Information,
the Entropy and the KL-divergence:

Ep(x,y)[LELBO(p(x, y))] ≤I(y; z) + I(x;u,θ, z, v)− (H(x) +H(y))

− Eq(x,u,θ,z,v)[KL[q(x|u,θ, v,z)||p(x|u,θ, v,z)]]
−KL[q(u,θ, v,z|x)||p(u,θ, v,z)] .

The main difference between and Lemma 1 in GMDI and Lemma 4.1 in VDI [41] is the last two KL
terms and the inclusion of v.

Lemma 2 (Information Decomposition of the Adversarial Loss [41])We can decompose the global
maximum of adversial loss as follows:

max
D

Ep(w,x)Eq(z|x)[logD(w|z)] = I(z;θ) + I(z;w|θ)−H(w) .

The global minimum of the function is achieved if and only if I(z;θ) = 0 and I(z;w|θ) = 0.

Theorem 1 The upper bound of the objective function can be decomposed as follows:
LGMDI ≤ I(y; z) + I(x;u,θ, z, v)− I(z;θ)− I(z;w|θ)− (H(x) +H(y)−H(w)) .

The main difference between Theorem 1 in GMDI and Theorem 4.1 in VDI [41] is the inclusion of v.

Theorem 2 The global optimum is achieved if and only if: (1)I(z;θ) = I(z;w|θ) = 0,
(2)I(y; z) and I(x;u,θ, z, v) are maximized, (3)KL[q(u,θ, v,z|x)||p(u,θ, v,z)] = 0 and
KL[q(x|u,θ, v,z)||p(x|u,θ, v,z)] = 0.

The main difference between Theorem 2 in GMDI and Theorem 4.2 in VDI [41] is that
I(x;u,θ, z, v), which includes v, needs to be maximized, and the two KL divergences should
equal zero.
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Figure 4: MSE of domain indices on TPT-48 dataset. Left:N (24) → S (24), ground-truth domain indices are
latitude. Right: W (6) → E (42), ground-truth domain indices are longitude.

Table 1: Accuracy on binary classification tasks (Circle, DG-15, and DG-60) and 4-way classification task
(CompCars).

Method

Dataset Source-only DANN ADDA CDANN MDD SENTRY D2V VDI GMDI (Ours)

Circle 55.5 53.4 56.2 54.9 53.4 59.5 60.1 94.3 96.9
DG-15 39.7 43.3 33.5 38.8 37.2 42.6 79.9 94.7 96.5
DG-60 55.0 66.3 60.8 65.3 54.6 51.3 82.1 95.9 99.3
CompCars 39.1 38.9 42.8 41.8 41.4 41.8 40.7 42.52 44.4

Theorem 3 Assuming the ELBO and objective of VDI are LVDI−ELBO and LVDI respectively, where
domain indices are sampled from a simple Gaussian prior, we can prove that our objective achieves a
more stringent evidence lower bound which is closer to the log-likelihood, and also a tighter upper
bound of the objective: LVDI−ELBO ≤ LELBO ≤ log p(x, y) and LVDI ≤ LGMDI.

6 Experimental Study

We verify the effectiveness of GMDI via experimental comparison and analysis. In particular, we
answer three research questions: (RQ1) Can the performance of GMDI for domain adaptation
outperform baselines? (RQ2) How effective is the global domain indices inferred by GMDI? (RQ3)
How does the number of mixture components K affect results? Additional experimental results are
available in Appendix K.

6.1 Experimental setup

Datasets. We compare GMDI with existing DA methods on the following datasets (see Appendix H
and Appendix I for more details): Circle [36] is used for binary classification task. DG-15 and DG-
60 [40] are synthetic datasets used for binary classification task. TPT-48 [40] dataset is a real-world
dataset used for regression task. W (6) → E (42): Adapting models from the 6 states in the west to
the 42 states in the east. N (24) → S (24): Adapting models from the 24 states in the north to the 24
states in the south. level-1 target domains: one hop away from the closest source domain. level-2
target domains: two hops away from the closest source domain. level-3 target domains: more than
two hops away from the closest source domain. CompCars [43] dataset is a real-world dataset for
4-way classification task.

Baselines. To evaluate our proposed GMDI, we compare it against eight state-of-the-art domain
adaptation methods: Domain Adversarial Neural Networks (DANN) [4], Adversarial Discriminative
Domain Adaptation (ADDA) [5], Conditional Domain Adaptation Neural Networks (CDANN) [48],
Margin Disparity Discrepancy (MDD) [47], SENTRY [27], Domain to Vector (D2V) [26], and
Variational Domain Index (VDI) [41]. Additionally, we include the results for models trained and
tested only on the source domain (Source-only). Note that D2V is not applicable to regression tasks,
so its results are not reported on the TPT-48 dataset. Moreover, since our proposed GMDI focuses on
inferring domain indices when they are unavailable, whereas [36] and [40] assume domain indices

2Reproduced result from VDI.
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Table 2: MSE for various DA methods in both tasks W (6) → E (42) and N (24) → S (24) on TPT-48. We report
the average MSE of all domains as well as more detailed average MSE of level-1, level-2, level-3 target domains,
respectively. Note that there is only one single DA model per column. We mark the best result with bold face.

Task Domain Source-only DANN ADDA CDANN MDD SENTRY VDI GMDI(Ours)

W (6) → E (42)

Average of 4 level-1 domains 1.184 1.984 5.448 6.168 5.544 2.515 2.160 1.346
Average of 6 level-2 domains 3.128 5.112 7.624 7.016 7.912 5.136 3.000 2.393

Average of 32 level-3 domains 5.272 5.880 7.256 6.986 8.008 5.872 2.448 2.122

Average of all 42 domains 4.576 5.400 7.136 6.896 7.76 5.456 2.496 2.087

N (24) → S (24)

Average of 10 level-1 domains 1.648 1.832 5.872 1.832 2.736 3.976 1.536 1.479
Average of 6 level-2 domains 3.128 3.296 6.888 2.856 6.144 3.760 2.584 2.119
Average of 8 level-3 domains 9.280 6.744 7.088 7.688 10.608 3.672 5.624 3.942

Average of all 24 domains 4.560 3.840 6.528 4.040 6.216 3.816 3.160 2.493

are available, they are not applicable to our setting. Detailed explanations of these algorithms can be
found in the respective references.

6.2 Results and discussion

RQ1: Performance on classification and regression tasks. (1) Circle, DG-15 and DG-60. The
results in Table 1 show that, on all three datasets, the performance of baselines other than D2V and
VDI is only marginally better or worse than random guess (accuracy of 50% ). This is likely due to
the complex relationships between domains within the datasets, making it difficult to adapt to target
domains. Additionally, Source-only performs poorly due to overfitting. Compared to VDI, our GMDI
improves accuracy by up to 3.4%, achieving very high accuracy (over 96.5%). This improvement
is attributed to proposal of modeling the global domain index as the mixture distributions (e.g.,
Figure 8). (2) TPT-48. In Table 2, we report the mean square error (MSE) of the evaluated methods
on TPT-48. In both E (6) → W (42) and N (24) → S (24) regression tasks, all methods except DANN,
SENTRY, and VDI performed worse than Source-only, indicating the occurrence of negative transfer.
In contrast, GMDI significantly reduced the MSE compared to VDI, with average MSE decreases of
16% and 21%, respectively. (3) CompCars. The results in Table 1 show that our method achieves the
best classification accuracy. All domain adaptation methods improved to varying degrees compared
to Source-only, but our method achieved the highest increase in accuracy, with an improvement of
up to 5%. In Figure 7(left), the data encoding generated by VDI are clustered together, indicating
a mixture of points from different class labels. In contrast, in Figure 7(right), the data encoding of
GMDI are separated by class label, demonstrating that GMDI can better distinguish points by class
label. Across all datasets, GMDI significantly outperforms baselines, with minimum accuracy
of 96.5 % on synthetic datasets , while MSE is reduced by at least 16 % on TPT-48 dataset.

RQ2: Effectiveness of inferred domain indices. Note that our proposed GMDI have no access to
ground-truth domain indices θ during traning. To evaluate the effectiveness of GMDI in inferring
domain indices, we compare the inferred domain indices with the ground-truth domain indices and
calculate MSE between them. As shown in Figure 5, for nearly all 30 domains on Circle dataset,
the MSE of the domain indices inferred by GMDI is significantly lower than that inferred by VDI.
On TPT-48 dataset, the domain indices for E (6) → W (42) and N (24) → S (24) regression tasks
correspond to longitude and latitude of 48 states. Therefore, we use longitude and latitude as the
ground-truth domain indices and calculate the corresponding MSE. In Figure 4, it is evident that
the MSE of the domain indices inferred by GMDI is still substantially lower than that of VDI.
Although the CompCars lacks ground-truth domain indices, the data encoding visualization of VDI
and GMDI(Figure 7) show that data encoding generated by GMDI form more distinct clusters
compared to VDI. It indirectly indicates the effectiveness of the domain indices inferred by GMDI,
demonstrating the considerable impact of modeling the global domain indices as Gaussian Mixture
Model. On all datasets, the domain indices inferred by GMDI outperform those by VDI, owing
to the dynamic mixture of domain indices distributions.

RQ3: Number of mixture components. We utilize the stick-breaking representation of the CRP
to improve computational efficiency, setting an upper bound K on the number of components in
GMM. To study the impact of the number of components on domain adaptation performance, we
report classification accuracy on CompCars, more complex dataset for different values of K. For
other 4 datasets, the best results are achieved with K = 2, while for CompCars, the best performance
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Figure 5: MSE of domain indices on
Circle dataset.

Figure 6: Accuracy (%) on CompCars
with different K.

Figure 7: t-SNE visualization of data encoding on CompCars dataset. Colors indicating different
domains{2, 3, 4}. Left: data encoding generated by VDI. Right: data encoding generated by GMDI.

is obtained with K = 3. The results in Figure 6 show that accuracy is the lowest when K = 1,
suggesting that maintaining a single domain index distribution is insufficient for diverse target
domains. The choice of K is related to the concentration parameter of CRP and the dataset; the larger
the concentration parameter and the more complex the dataset, the larger the value of K should be.

7 Conclusion and Limitations

In this work, we propose GMDI, a novel Gaussian Mixture Domain-Indexing algorithm, to address
the challenge of inferring domain indices when they are unavailable. Unlike existing methods that
assume global domain indices are sampled from a single static Gaussian, GMDI is the first one to
utilize a mixture of dynamic Gaussians. The number of mixture components is determined adaptively
by the Chinese Restaurant Process, enhancing the flexibility and effectiveness of domain adaptation.
Our theoretical analysis confirms that GMDI achieves a more stringent evidence lower bound, closer
to the log-likelihood. Extensive experiments validate the effectiveness of GMDI in inferring domain
indices and highlight its potential practical applications. Specifically, for classification tasks, GMDI
outperforms all approaches, and surpasses the state-of-the-art method, VDI, by up to 3.4%, reaching
99.3%. For regression tasks, GMDI reduces MSE by at least 16% (from 2.496 to 2.087) and by 21%
(from 3.160 to 2.493), achieving the lowest errors among all methods. Despite these advantages,
GMDI still relies on the availability of domain identities and cannot infer them as latent variables.
Future work will focus on developing algorithms capable of inferring domain indices together with
domain identities to further enhance the robustness and applicability of our approach.
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A Finite Stick-Breaking Construction of CRP

The infinite Chinese Restaurant Process (CRP) requires substantial computational overhead. To
leverage CRP with lower computational cost, we use the stick-breaking construction to construct it.
We set an upper bound on the number of Gaussian mixture components, eliminating the need for a
varying number of mixture components. The finite stick-breaking construction of CRP is given as
follows:

βk | α ∼ Beta(1, α) for k=1, ..., K − 1 ,

πk = βk

k−1∏
l=1

(1− βl) for k=1, ..., K − 1 ,

πK =

K−1∏
l=1

(1− βl) ,

(21)

where π = stickbreak(θ) is the prior parameters of the K-dimensional category variable v. Con-
sidering the finite stick-breaking construction of CRP mentioned above, we rewrite the generative
process of GMDI:

v | π ∼ CategoricalK(π) ,

θv=k ∼ N (µk,σ
2
k) ,

u | θv=k ∼ p(u | θv=k) ,

x | u ∼ p(x | u) ,
z | x,u,θv ∼ p(z | x,u,θv) ,

(22)

where µk and σ2
k are mean vector and semi-positive covariance matrix of the k-th component in

GMM, respectively.

B Derivation for Variational Posterior

Firstly, we factorize the generative model as follows:
p(x, y,u,θ, z, v,β | α) = p(β | α)p(v | β)p(θv)p(u | θv)p(x | u)p(z | x,u,θv)p(y | z) . (23)

During the inference process, we need to infer the latent variables. Since the target posterior
distributions are intractable, we employ the technique of approximate variational inference. In this
framework, we design variational distributions for these latent variables, aiming to approximate their
true underlying posterior distributions:

q(u,θ, z, v,β | x) = q(β;γ)q(v;η)q(u | x;ψu)q(θ
v | u;ψθ)q(z | x,u,θ

v;ψz) . (24)
Thus we calculate the ELBO as follows:

log p(x, y | α) = log

∫
p(x, y,u,θ, z, v,β | α)dzdudθdvdβ

= log

∫
q(u,θ, z, v,β | x) ∗ p(x, y,u,θ, z, v,β | α)

q(u,θ, z, v,β | x)
dzdudθdv

= logEq

[
p(x, y,u,θ, z, v,β | α)

q(u,θ, z, v,β | x)

]
≥ Eq

[
log

p(x, y,u,θ, z, v,β | α)
q(u,θ, z, v,β | x)

]
= Eq

[
log

p(β | α)p(v | β)p(u | θv)p(x | u)p(z | x,u,θv)p(y | z)
q(β;γ)q(v;η)q(u | x;ψu)q(θ

v | u;ψθ)q(z | x,u,θ
v;ψz)

]
= Eq(u,θv,z|x;ϕ)q(v;η)[log p(y | z)] + Eq(u|x;ψu)

[log p(x | u)]
+ Eq(v;η)q(β;γ)q(u|x;ψu)q(θ

v|u;ψθ)
[log p(u | θv)]

−KL[q(β;γ)||p(β)]− Eq(β;γ)[KL[q(v;η)||p(v | β)]]
− Eq(u|x;ψu)q(v;η)

[KL[q(θv | u;ψθ)||p(θ
v)]]

− Eq(v;η)q(u,θv|x;ξ)[KL[q(z | x,u,θv;ψz)||p(z | x,u,θ
v)]]

− Eq(u|x;ψu)
[log(q(u | x;ψu))] ≜ LELBO ,

(25)
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where the inequality is given by applying Jensen’s inequality. Besides, we apply the adversarial loss
to ensure the independence between global domain index and data encoding. The adversarial loss
with a discriminator D is designed as follows:

LD = Ep(w,x)Eq(z|x;ψz)
[logD(w | z)] . (26)

Our final objective is derived as:
LGMDI = maxmin

D
LELBO − λ ∗ LD . (27)

By optimizing the objective function, we can calculate all the optimal variational distributions of
latent variables as follows:

Variational distribution of β. To obtain the variational posterior of the latent variable β, We only
need to consider the related terms in LGMDI. Note that the adversarial loss LD is independent of the
target latent variable, with all terms pertaining to β encompassed within the ELBO loss, which can
be formulated as follows:

F (q(βk;γk)) = Eq(v;η)Eq(βk;γk)
[log p(βk) + log p(v)]− Eq(βk;γk)

[log p(βk)] . (28)
Subsequently, by differentiating the function and setting the derivative equal to zero:

∂

∂q(βk;γk)
F (q(βk;γk))

=

∫
q(v;η)q(βk;γ\k)

[
∂

∂q(βk;γk)

∫
q(βk;γk)[log p(βk) + log p(v | β)− log q(βk;γk)]dβk

]
dβ\kdv

=

∫
q(v;η)q(βk;γ\k)[log p(βk) + log p(v | β)− log q(βk;γk)]dβ\kdv ,

(29)
where q(βk;γ\k) is the variational posterior of β without βk, we derive the final variational distribu-
tion of βk as follows:

log q(βk;γk) ∝ Eq(v;η)Eq(β\k;γ\k)
[log p(βk) + log p(v | β)]

= log p(βk) + Eq(v;η)

[
Eq(β\k;γ\k)

[K−1∑
k=1

(
vk logβk +

k−1∑
l=1

vk log(1− βl)

)

+

K∑
j=1

vK log(1− βj)

]]

∝ log p(βk) + Eq(v;η)

[
vk logβk +

K−1∑
j=k+1

vj log(1− βk) + vK log(1− βk)

]

= log p(βk) + ηk logβk +

K∑
j=k+1

ηj log(1− βk) .

(30)
Since we assume that p(βk) ∼ Beta(·; 1, α), we have:

log p(βk) ∝ (α− 1) log(1− βk) . (31)
Thus we can derive the optimal variational posterior of βk as:

log q(βk;γk) ∝ ηk logβk + (α− 1 +

K∑
j=k+1

ηj) log(1− βk) , (32)

which is also a Beta distribution Beta(βk;γk,1,γk,2) with parameters:

γk,1 = 1 + ηk , γk,2 = α+

K∑
j=k+1

ηj . (33)

Variational distribution of v. Since v is a category variable, we assume its variational posterior to
be a categorical distribution parameterized by η as:

q(v;η) = CategoricalK(v;η) . (34)
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Similarly, we only consider the terms related to v in LGMDI to derive the optimal varational posterior,
which is calculated as:

F (q(v;η)) =− Eq(β;γ)[KL[q(v;η)||p(v|β)]]− Eq(u|x;ψu)q(v;η)
[KL[q(θv|u;ψθ)||p(θ

v)]]

+ Eq(v;η)q(u|x;ψu)q(θ
v|u;ψθ)

[log p(u|θv)]
− Eq(u,θ,v|x;ξ)[KL[q(z|x,u,β, v;ψz)||p(z|x,u,θ, v)]]

=

K∑
k=1

{
ηkEq(β;γ)[log p(v|β)]− ηk log ηk − ηkEq(u|x;ψu)

[KL[q(θv|u;ψθ)||p(θ
v)]]

+ ηkEq(u|x;ψu)q(θ
v|u;ψθ)

[log p(u|θv)]
− ηkEq(u,θv|x;ξ)[KL[q(z|x,u,θv;ψθ)||p(z|x,u,θ

v)]]
}
.

(35)
By taking the derivative function of F (q(v;η)) with respective to zero:

∂

∂ηk

F (q(v;η)) =Eq(β;γ)[log p(v|β)]− log ηk − 1− Eq(u|x;ψu)
[KL[q(θv|u;ψθ)||p(θ

v)]]

+ Eq(u|x;ψu)q(θ
v|u;ψθ)

[log p(u|θv)]
− Eq(u,θv|x;ξ)[KL[q(z|x,u,θv;ψz)||p(z|x,u,θ

v)]] ,

(36)

we can finally have:

log ηk ∝Eq(β;γ)[π] + Eq(u|x;ψu)q(θ
v|u;ψθ)

[log p(u|θv)]
− Eq(u|x;ψu)

[KL[q(θv|u;ψθ)||p(θ
v)]]

− Eq(u,θv|x;ξ)[KL[q(z|u,θ,x;ψz)||p(z|u,θ,x)]] ,
(37)

where
∑K

k=1 ηk = 1 and q(β;γ) =
∏K−1

k=1 q(βk;γk).

Variational distribution of θ,u and z. The distribution of θ is assumed to include a mixture of
components. The distribution of the latent variable θ is assumed to be a mixture of a series of
distributions, while the latent variables u and z can be regarded as following conditional Gaussian
distributions. Since it is highly intractable to precisely compute the posterior distributions of these
latent variables, we employ variational Gaussian distributions to approximate the posterior distribution
for each component of θ, as well as the conditional posterior distributions for u and z:

q(θv=k|u;ψθ) = N (µk
θ ,Λ

k
θ) , (38)

q(u|x;ψu) = N (µu,Λu) , (39)
q(z|x,u,θv;ψz) = N (µz,Λz) , (40)

where µ and Λ are mean vector and semi-positive covariance matrix of Gaussian distribution. All
these variational distributions can be updated by maximizing LGMDI with back propagation.

C Theory Analysis

The proof process of the lemmas and theorems are partially based on VDI [41].

Lemma C.1 The ELBO of p(x, y) is bounded by the following formula with the Mutual Information,
the Entropy and the KL-divergence:

Ep(x,y)[LELBO(p(x, y))] ≤I(y; z) + I(x;u,θ, z, v)− (H(x) +H(y))

− Eq(x,u,θ,z,v)[KL[q(x|u,θ, v,z)||p(x|u,θ, v,z)]]
−KL[q(u,θ, v,z|x)||p(u,θ, z, v)] .

The main difference between and Lemma C.1 in GMDI and Lemma B.1 in VDI [41] is the last two
KL terms and the inclusion of v.
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Proof. In order to give an upper bound of p(x, y), we first calculate the ELBO as follows:

log p(x, y) = log

∫
p(x,u,θ, v,β, z, y)dzdudθvdvdβ

= log

∫
p(x,u,θ, v,β, z, y) ∗ q(u,θ, v,β, z|x)

q(u,θ, v,β, z|x)
dzdudθvdvdβ

= logEq

[
p(x,u,θ, v,β, z, y)

q(u,θ, v,β, z|x)

]
≥ Eq

[
log

p(x,u,θ, v,β, z, y)

q(u,θ, v,β, z|x)

]
= Eq

[
log

p(y|z)p(x|u,θ, v,β, z)p(u,θ, v,β, z)
q(u,θ, v,β, z|x)

]
= Eq[log p(y|z)] + Eq[log p(x|u,θ, v,β, z)]−KL[p(u,θ, v,β, z)||q(u,θ, v,β, z|x)] .

Accordingly, we have the following ELBO objective:
LELBO(p(x, y)) = Eq[log p(y|z)]+Eq[log p(x|u,θ, v,β, z)]−KL[p(u,θ, v,β, z)||q(u,θ, v,β, z|x)] .

(41)
Here we aim at giving a formula only including Mutual Information, Entropy and KL-divergence
to bound the objective. To achieve this, we first calculate the upper bound of Eq log p(y|z), with
denoting r(x, y,z) = p(x, y)q(z|x):

Ep(x,y)Eq[log p(y|z)] = Ep(x,y)q(z|x)[log p(y|z)] (42)

= Er(x,y,z)[log p(y|z)] (43)

= Er(y,z)[log p(y|z)] (44)

≤ Er(y,z)[log r(y|z)] (45)

= Er(y,z)[log
r(y|z)
p(y)

] + Er(y,z)[log p(y)] (46)

= I(y|z)−H(y) . (47)

When p(y|z) = r(y|z) , the maximum of Eq[log p(y|z)] is achieved and then we have
maxEq[log p(y|z)] = I(y; z)−H(y).

Secondly, we need to give an upper bound of Eq[log p(x|u,θ, v,β, z)]. For convenient, we denote
the joint distribution s(x,u,θ, v,β, z) = p(x)q(u,θ, v,β, z), then we can calculate as follows:
Ep(x,y)Eq[log p(x|u,θ, v,β, z)] = Ep(x)Eq[log p(x|u,θ, v,β, z)]

= Ep(x)Eq[log
q(x|u,θ, v,β, z)

p(x)

p(x)p(x|u,θ, v,β, z)
q(x|u,θ, v,β, z)

]

= Ep(x)Eq[log
q(x|u,θ, v,β, z)

p(x)
] + Ep(x)Eq[log p(x)] + Ep(x)Eq[log

p(x|u,θ, v,β, z)
q(x|u,θ, v,β, z)

]

= Is(x;u,θ, v,β, z) +H(x)−KL[q(x|u,θ, v,β, z)||p(x|u,θ, v,β, z)] .

Finally, we apply these two bounds on the Eq. 41 and then we can proove the Lemma C.1:
Ep(x,y)[LELBO(p(x, y))] ≤I(y; z) + I(x;u,θ, z, v)− (H(x) +H(y))

− Eq(x,u,θ,z,v)[KL[q(x|u,θ, v,z)||p(x|u,θ, v,z)]]
−KL[q(u,θ, v,z|x)||p(u,θ, z, v)] .

Lemma C.2 (Information Decomposition of the Adversarial Loss [41]) We can decompose the global
maximum of adversial loss as follows:

max
D

Ep(w,x)Eq(z|x)[logD(w|z)] = I(z;θ, v) + I(z, w|θ, v)−H(w) .

The global minimum of the function is achieved if and only if I(z;θ) = 0 and I(z, w|θ) = 0

Proof. With denoting t(w,x,θ, z) = p(w,x)q(z|x)q(θ, v|w), we have:
Ep(w,x)Eq(z|x)[logD(w|z)] = Et(w,z)[logD(w|z)] ≤ Et(w,z)[log t(w|z)] , (48)

17



and Ep(w,x)Eq(z|x)[logD(w|z)] achieves the maximum when t(w,x,θ, z) = D(w|z). To futher
analyze the joint distribution t(w,θ, z) := q(z|θ, v, w)q(θ, v|w)p(w), we assume that there is a
function v(w) mapping w to a group of domain-related weights v, then we can have:

p(z|θ, v, w) = p(z|θ, v(w), w) = p(z|θv(w)) = p(z|w) . (49)

Accordingly, we can factorize the joint distribution t(w,θ, v,z) = q(z|w)q(θv|w)p(w). Therefore,
we can factorize I(z;θ, v, w) into two different styles with the chain rule for mutual information:

I(z;θ, v) + I(z, w|θ, v) = I(z;θ, v, w) = I(z;w) + Iq(z,θ, v|w) , (50)
where Iq(z,θ, v|w) = 0 due to the chain rule. That means:

I(z;w) = I(z;θ, v) + I(z, w|θ, v) . (51)

And we also have:

Et(w,z)[log t(w|z)] = Et(w,z)[log
t(w|z)
q(w)

] + Et(w,z)[log q(w)] (52)

= I(w; z)−H(w) . (53)

Thus we have:
max
D

Ep(w,x)Eq(z|x)[logD(w|z)] = I(w; z)−H(w) = I(z;θ, v) + I(z, w|θ, v)−H(w) . (54)

Accordingly, minmaxD Ep(w,x)Eq(z|x)[logD(w|z)] = 0 if and only if I(z;θ, v) = I(z, w|θ, v) =
0 due to the fact that I(·) ≥ 0.

Theorem C.1 The upper bound of the objective function can be decomposed as follows:
LGMDI ≤ I(y; z) + I(x;u,θ, z, v)− I(z;θ)− I(z;w|θ)− (H(x) +H(y)−H(w)) .

The main difference between Theorem C.1 in GMDI and Theorem B.1 in VDI [41] is the inclusion
of v.

Proof. To proove the theorem, we apply the Lemma C.1 and C.2 to directly get the final upper bound:
LGMDI = Ep(x,y)[LELBO(p(x, y))]−max

D
Ep(w,x)Eq(z|x)[logD(w|z)]

≤ I(y; z) + I(x;u,θ, z, v)− I(z;θ)− I(z;w|θ)− (H(x) +H(y)−H(w))

− Eq(x,u,θ,z,v)[KL[q(x|u,θ, v,z)||p(x|u,θ, v,z)]]−KL[q(u,θ, v,z|x)||p(u,θ, z, v)]
≤ I(y; z) + I(x;u,θ, z, v)− I(z;θ)− I(z;w|θ)− (H(x) +H(y)−H(w)) ,

where the second equality holds when all the terms of KL-divergence are equal to zero.

Theorem C.2 The global optimum is achieved if and only if: (1)I(z;θ) = I(z;w|θ) =
0, (2)I(y; z) and I(x;u,θ, z, v) are maximized,(3)KL[q(u,θ, v,z|x)||p(u,θ, v,z)] = 0 and
KL[q(x|u,θ, v,z)||p(x|u,θ, v,z)] = 0.

The main difference between Theorem C.2 in GMDI and Theorem B.2 in VDI [41] is that
I(x;u,θ, z, v), which includes v, needs to be maximized, and the two KL divergences should
equal zero.

Proof. The theorem can be prooved by observing the conditions from Lemma C.1, C.2 and Theorem
C.1.

Theorem C.3 Assuming the ELBO and objective of VDI are LVDI−ELBO and LVDI respectively,
where domain indices are sampled from a simple Gaussian prior, we can prove that our objective
achieves a more stringent evidence lower bound which is closer to the log-likelihood, and also a
tighter upper bound of the objective: LVDI−ELBO ≤ LELBO ≤ log p(x, y) and LVDI ≤ LGMDI.

Proof. To compare our objective loss with the VDI’s, we first list the ELBO loss of VDI here and
provide an upper bound:
LVDI−ELBO(p(x, y)) =Eq[log p(y|z)] + Eq[log p(x|u, θ̂, z)]−KL[p(u, θ̂, z)||q(u, θ̂, z|x)]

≤ I(y; z) + I(x;u, θ̂, z, v)− (H(x) +H(y))

− Eq(x,u,θ̂,z)[KL[q(x|u, θ̂, z)||p(x|u, θ̂, z)]]

−KL[q(u, θ̂, z|x)||p(u, θ̂, z)] .
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We can observe that the most significant difference is the prior distribution, which mainly affects the
term of KL-divergence. To further analyze, it is obvious that when θv=k = θ̂, VDI is a special case
of our proposed method GMDI. Hence we have:

maxLVDI−ELBO(p(x, y)) ≤ maxLGMDI−ELBO(p(x, y)) . (55)

Further more, we can notice that the adversarial loss is independent of the prior distribution of global
indices and we can have:

LVDI =maxmin
D
LVDI−ELBO(p(x, y))− λ ∗ LD

≤maxmin
D
LGMDI−ELBO(p(x, y))− λ ∗ LD

=LGMDI .

(56)

D Visualization of Inferred Domain Indices for Circle

Figure 8 shows the inferred domain indices for Circle dataset. GMDI’s inferred indices have a
correlation of 0.99 with true indices, even though GMDI does not have access to true indices during
training.
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Figure 8: Inferred domain indices (reduced to 1 dimension by PCA) with true domain indices for dataset Circle.
GMDI’s inferred indices have a correlation of 0.99 with true indices, even though GMDI does not have access to
true indices during training.

E Architecture and Implementation Details

E.1 Architecture

The latent variables are estimated by neural networks. Specifically, for the local domain index u, we
employ ResNet-18 [9] to approximate its posterior on CompCars dataset, while using multi-layer
perceptrons for the other datasets. Additionally, all neural networks are implemented as multi-layer
perceptrons. We use the features obtained from the ResNet-18 as inputs to our model. Furthermore,
all inputs are uniformly normalized.

We implement our model based on the code of VDI[41]. We appreciate the authors for making their
code publicly available. We run experiments on a single machine using 1 NVIDIA GeForce RTX
2080Ti with 11GB memory, 56 Intel Xeon CPUs (E5-2680 v4 @ 2.40GHz). It takes about 30 minutes
to train GMDI with K=2 on synthetic datasets , 4 hours on TPT-48, and 6 hours on CompCars with
K=3.
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E.2 Hyperparameters

We set the maximum number of mixture components K from 2,3, and the concentration parameter α
to 1 throughout the experiments. Except for DG-15 and DG-60 datasets, which have a batch size
of 32, all other datasets use a batch size of 16. Our model is trained with 20 to 100 warmup steps,
learning rates ranging from 1× 10−5 to 1× 10−3, and λ ranging from 0.1 to 1.

F Broader Impacts

Our model has the potential to be applied to various domain shift problems, which also implies
the possibility of unintended negative consequences. However, we have not identified any specific
societal harms associated with our model. If used maliciously, it could lead to negative impacts.

G Pseudo Codes

The procedure of our proposed model GMDI is summarized by the pesuedo codes in Algorithm 1.
Let φ represent the parameters of the distribution p(·) in the generative process.

Algorithm 1 Bayesian Domain Adaptation with Gaussian Mixture Domain-Indexing

Input: Dataset DS and DT , maximum number of mixture components K, concentration parameter
α, learning rate ζ.

1: Initialize parameters: φ,ψ = {ψu,ψθ,ψz} ;ηk,∀k = 1, ...,K;
2: repeat
3: Update γk with γk,1 = 1 + ηk and γk,2 = α+

∑K
i=k+1 ηi, ∀k = 1, ...,K;

4: Update η with Equation 37;
5: Sample u from Equation39;
6: Sample θ based on Equation38;
7: Sample z according to Equation 40;
8: Update φ← φ+ ζ∇φLGMDI,ψ ← ψ + ζ∇ψLGMDI .
9: until converge

H Dataset Summary

Table 3 [41] summarizes the statistics for all the datasets used in our experiments.

Table 3: Summary of statistics and settings in different datasets.

Dataset Numbers of samples Input dim Synthetic/Real Task

Circle 3,000 2 Synthetic 2-Way classification
DG-15 1,500 2 Synthetic 2-Way classification
DG-60 6,000 2 Synthetic 2-Way classification
TPT-48 6,912 6 Real Regression

CompCars 18,735 224 × 224 Real 4-Way classification

I Dataset

I.1 Circle

Figure 9 [41] visualizes the detailed information of Circle dataset. It contains 30 domains and is
used for binary classification task. The data points in the Circle are arranged in a semicircular shape,
with each domain occupying a different section of the semicircle. There is a decision boundary that
separates the different labels. We use the first six domains as the source domains and the remaining
24 domains as the target domains.
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Figure 9: The Circle dataset with 30 domains. Left: Different colors indicate ground-truth domain indices. The
first 6 domains (in the green box) are source domains. Right: Ground-truth labels for Circle, with red dots and
blue crosses as positive and negative data points, respectively.

I.2 DG-15 and DG-60

DG-15 and DG-60 datasets containing 15 and 60 domains, respectively. Both used for binary
classification task. Adjacent domains in the datasets have similar decision boundaries. For these two
datasets, we select 6 connected domains as the source domains, while the remaining domains serve
as the target domains.

I.3 TPT-48

Figure 10 [40] visualizes the detailed information of TPT-48 dataset. It contains the monthly average
temperatures of 48 contiguous states in the United States from 2008 to 2019. Our regression task
is to predict the average temperatures for the next 6 months using the average temperatures of the
first 6 months. We divide this task into two finer-grained regression tasks with different adaptation
directions:

• W (6) → E (42): Adapting models from the 6 states in the west to the 42 states in the east.

• N (24) → S (24): Adapting models from the 24 states in the north to the 24 states in the
south.

To better verify performance, the target domains in the above two regression tasks are divided into
three groups based on their distance from the closest source domains. level-1 target domains: one
hop away from the closest source domain. level-2 target domains: two hops away from the closest
source domain. level-3 target domains: more than two hops away from the closest source domain.

Figure 10: Domain graphs for the two adaptation tasks on TPT-48, with black nodes indicating source domains
and white nodes indicating target domains. Left: Adaptation from the 24 states in the east to the 24 states in the
west. Right: Adaptation from the 24 states in the north to the 24 states in the south.
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I.4 CompCars

CompCars dataset includes three attributes: car types, viewpoints, and years of manufacture (YOMs).
We select a subset of CompCars with 4 types (MPV, SUV, sedan and hatchback), 5 viewpoints
(front(F), rear (R), side (S), front-side (FS), and rear-side (RS)), and 6 YOMs(2009, 2010, 2011, 2012,
2013, 2014) for our experiments. This subset is divided into 30 domains(5 viewpoints × 6 YOMs)
based on viewpoints and YOMs. The car types are used as labels for prediction. The first domain,
which has the front view and YOM 2009, is treated as the source domain, while the remaining 29
domains are target domains.

J Notation

Table 4 provides a summary of the notations used in this paper.

Table 4: Summary of notations.

Symbol Definition
x Input data
y Label of data
w Domain identity
θ Global domain index
u Local domain index
z Data encoding
v Latent categorical variable
ε Parameter for prior probability distribution of domain index
α Concentration parameter of the CRP
β independent random variable with a Beta distribution in the stick-breaking representation
π Probability vector in the stick-breaking
γ Parameter of q(β)
η Parameter of q(v)
ψu Parameter of q(u | x)
ψθ Parameter of q(θ | u)
ψz Parameter of q(z | x,u,θv)
ϕ Parameter of q(u,θv, z|x)
ξ Parameter of q(u,θv|x)
λ Hyper-parameter that balances two terms in objective function

K Additional Experimental Results

To evaluate the impact and computational cost of the CRP, we conduct ablation and computational
cost experiments.We implement GMDI w/o CRP using Gumbel-Softmax [11]. The number of
components for GMDI w/o CRP is set to the upper bound K of GMDI, and the hyperparameter
temperature τ for Gumbel-Softmax ranges from 0.1 to 50 (with the best performance reported).
"Total time" refers to the total training duration, which concludes when the loss converges.

Table 5: The results of the ablation and computational cost experiments on TPT-48.

Task Method MSE Total time Epochs Time per epoch

W → E
VDI 2.496 1h 24m 18s 400 13s

GMDI w/o CRP 2.471 2h 14m 54s 500 16s
GMDI 2.087 1h 31m 13s 300 18s

N → S
VDI 3.160 1h 51m 43s 500 13s

GMDI w/o CRP 3.050 2h 22m 58s 500 17s
GMDI 2.493 2h 2m 35s 400 18s
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Table 6: The results of the ablation and computational cost experiments on CompCars.

Method Accuracy(%) Total time Epochs Time per epoch

VDI 42.5 3h 13m 15s 600 19s
GMDI w/o CRP 43.0 4h 3m 48s 700 21s

GMDI 44.4 4h 16m 14s 600 26s

The experimental results are shown in Table 5 and Table 6. We find that although the proposed GMDI
has a longer "Time per epoch" compared to GMDI w/o CRP, it converges faster due to the flexible
number of components adaptively controlled by CRP. Therefore, the "Total time" is roughly the same
as GMDI w/o CRP. On the TPT-48(W->E) dataset, due to faster convergence, the "Total time" of
GMDI is less than that of GMDI w/o CRP and is even comparable to VDI. In all three datasets, the
performance of GMDI w/o CRP is worse than that of GMDI. On the two TPT-48 datasets, compared
to the baseline VDI, GMDI w/o CRP reduces MSE by 1% and 3%, whereas GMDI reduces MSE by
16% and 21%, surpassing GMDI w/o CRP. On the CompCars dataset, GMDI’s accuracy is higher
than that of GMDI w/o CRP. These results indicate that although using a fixed-component GMM is
simpler, the computational costs are roughly equivalent to using CRP, but the performance is inferior
to CRP, demonstrating the significance of CRP in GMDI.

Additionally, compared to VDI, which models the domain index as a single Gaussian distribution,
GMDI’s computational costs are only slightly higher, yet its performance is superior. For large-scale
datasets with numerous domains, modeling the domain index as a simple single Gaussian distribution
may result in poor performance due to the dataset’s complexity. The experimental results indicate
that GMDI has broad applicability.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Abstract and Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 7.
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implications would be.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

24



Justification: See Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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