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Abstract

Gaussian processes (GPs) are non-parametric probabilistic regression models that
are popular due to their flexibility, data efficiency, and well-calibrated uncertainty
estimates. However, standard GP models assume homoskedastic Gaussian noise,
while many real-world applications are subject to non-Gaussian corruptions. Vari-
ants of GPs that are more robust to alternative noise models have been proposed,
and entail significant trade-offs between accuracy and robustness, and between
computational requirements and theoretical guarantees. In this work, we propose
and study a GP model that achieves robustness against sparse outliers by inferring
data-point-specific noise levels with a sequential selection procedure maximizing
the log marginal likelihood that we refer to as relevance pursuit. We show, surpris-
ingly, that the model can be parameterized such that the associated log marginal
likelihood is strongly concave in the data-point-specific noise variances, a property
rarely found in either robust regression objectives or GP marginal likelihoods.
This in turn implies the weak submodularity of the corresponding subset selection
problem, and thereby proves approximation guarantees for the proposed algorithm.
We compare the model’s performance relative to other approaches on diverse re-
gression and Bayesian optimization tasks, including the challenging but common
setting of sparse corruptions of the labels within or close to the function range.

1 Introduction

Probabilistic models have long been a central part of machine learning, and Gaussian process (GP)
models are a key workhorse for many important tasks [54], especially in the small-data regime. GPs
are flexible, non-parametric predictive models known for their high data efficiency and well-calibrated
uncertainty estimates, making them a popular choice for regression, uncertainty quantification, and
downstream applications such as Bayesian optimization (BO) [8, 24, 26] and active learning [6, 55].

GPs flexibly model a distribution over functions, but assume a particular observation model. The
standard formulation assumes i.i.d Gaussian observation noise, i.e., y(x) = f(x) + ϵ, where f(x) is
the true (latent) function value at a point x and ϵ ∼ N (0, σ2), implying a homoskedastic Gaussian
likelihood. While mathematically convenient, this assumption can be a limitation in practice, since
noise distributions are often heavy-tailed or observations may be corrupted due to issues such as
sensor failures, data processing errors, or software bugs. Using a standard GP model in such settings
can result in poor predictive performance.

A number of robust GP modeling approaches have been proposed to remedy this shortcoming, most
of which fall into the following broad categories: data pre-processing (e.g., Winsorizing), modified
likelihood functions (e.g., Student-t), and model-based data selection and down-weighting procedures.
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These approaches offer different trade-offs between model accuracy, degree of robustness, broad
applicability, computational requirements, and theoretical guarantees.

In this paper, we propose a simple yet effective implicit data-weighting approach that endows GPs
with a high degree of robustness to challenging label corruptions. Our approach is flexible and can be
used with arbitrary kernels, is efficient to compute, and yields provable approximation guarantees.
Our main contributions are as follows:

1. We propose a modification to the standard GP model that introduces learnable data-point-specific
noise variances.

2. We introduce a novel greedy sequential selection procedure for maximizing the model’s marginal
log-likelihood (MLL) that we refer to as relevance pursuit.

3. We prove that, under a particular parameterization, the MLL is strongly concave in the data-
point-specific noise variances, and derive approximation guarantees for our algorithm.

4. We demonstrate that our approach, Robust Gaussian Processes via Relevance Pursuit (RRP),
performs favorably compared to alternative methods across various benchmarks, including
challenging settings of sparse label corruptions within the function’s range, see e.g. Figure 1.

2 Preliminaries
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Figure 1: Comparison of RRP to a standard GP
and a variational GP with a Student-t likelihood
on a regression example. While the other models
are led astray by the corrupted observations, RRP
successfully identifies the corruptions (red) and
thus achieves a much better fit to the ground truth.

We aim to model a function f : X → R over
some domain X ⊂ Rd. With a standard Gaus-
sian noise model, for xi ∈ X we obtain observa-
tions yi = f(xi) + ϵi, where ϵi ∼ N (0, σ2) are
i.i.d. draws from a Gaussian random variable.
∥·∥ denotes the Euclidean norm unless indicated
otherwise.

2.1 Gaussian Processes

A GP f ∼ GP (µ(·), kθ(·, ·)) is fully defined by
its mean function µ : X → R and covariance
or kernel function kθ : X × X → R, which is
parameterized by θ. Without loss of general-
ity, we will assume that µ ≡ 0. Suppose we
have collected data D = {(xi, yi)}ni=1 where
X := {xi}ni=1, y := {yi}ni=1. Let Σθ ∈ Sn++
denote the covariance matrix of the data set, i.e.,
[Σθ]ij = kθ(xi,xj) + δijσ

2, where δij is the
Kronecker delta. The negative marginal log-
likelihood (NMLL) L is given by

−2L(θ) := −2 log p(y|X,θ) = y⊤Σ−1
θ y + log detΣθ + n log 2π. (1)

In the following, we will suppress the explicit dependence of the kernel matrix on θ for brevity of
notation. For a comprehensive background on GPs, we refer to Rasmussen et al. [54].

2.2 Noise Models

Additive, heavy-tailed noise Instead of assuming the noise term ϵi in the observation model to be
Gaussian, other noise models consider zero-mean perturbations drawn from distributions with heavier
tails, such as the Student-t [32], Laplace [39], or α-Stable [5] distributions. These types of errors
are common in applications such as finance, geophysics, and epidemiology [18]. Robust regression
models utilizing Student-t errors are commonly used to combat heavy-tailed noise and outliers.

Sparse corruptions In practice, often a small number of labels are corrupted. We will refer to
these as “outliers," though emphasize that the corrupted values may fall within the range of normal
outputs. Sparse corruptions are captured by a model of the form yi = Zif(xi) + (1− Zi)Wi, where
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Zi ∈ {0, 1} and Wi ∈ R is a random variable. Note that Wi need not have (and rarely has) f(xi) as
its mean. For instance, consider a faulty sensor that with some probability p reports a random value
within the sensor range [yl, yh]. In this case Zi ∼ Ber(p) and Wi ∼ U[yl, yh]. Software bugs, such
as those found in ML training procedures, or errors in logging data can result in sparse corruptions.

3 Related Work

Data pre-processing Data pre-processing can be an effective technique for handling simple forms
of data corruption, such as values that fall outside a valid range of outputs. With such pre-processing,
outliers are handled upstream of the regression model. Common techniques include the power
transformations [15], trimming, and winsorization. These methods can add substantial bias if not
used carefully, and generally do not handle data corruptions that occur within the normal range of the
process to be modeled. See [17] for a review on data cleaning.

Heavy-tailed likelihoods One class of robust methods uses additive heavy-tailed noise likelihoods
for GPs, particularly Student-t [32], Laplace [53], and Huber [1], and could be extended with α-Stable
distributions, which follow a generalized central limit theorem [5]. These models are less sensitive to
outliers, but they lose efficiency when the outliers are a sparse subset of the observations, as opposed
to global heavy-tailed noise. Furthermore, model inference is no longer analytic, necessitating the use
of approximate inference approaches such as MCMC [49], Laplace approximation [64], expectation
propagation (EP) [32], Expectation Maximization [53], or variational inference [61]. Shah et al. [56]
take a related approach using a Student-t process prior in the place of the GP prior. Unfortunately, the
Student-t process is not closed under addition and lacks the tractability that makes GPs so versatile.
Alternative noise specifications include a hierarchical mixture of Gaussians [19] and a “twinned” GP
model [48] that uses a two-component noise model to allow outlier behavior to depend on the inputs.
This method is suited for settings where outliers are not totally stochastic, but generally is not able to
differentiate “inliers” from outliers when they can occur with similar inputs.

Outlier classification Awasthi et al. [11] introduces the Trimmed MLE approach, which identifies
the subset of data points (of pre-specified size) under which the marginal likelihood is maximized.
Andrade and Takeda [10] fit GPs using the trimmed MLE by applying a projected gradient method to
an approximation of the marginal likelihood. The associated theory only guarantees convergence to a
stationary point, with no guarantee on quality. When no outliers are present, this method can be worse
than a standard GP. Li et al. [40] propose a heuristic iterative procedure of removing those data points
with the largest residuals after fitting a standard GP, with subsequent reweighting. The method shows
favorable empirical performance but has no theoretical guarantees, and fails if the largest residual is
not associated with an outlier. Park et al. [52] consider a model of the form yi = δi + f(xi) + ϵi,
where outliers are regarded as data with a large bias δi. Their random bias model is related to our
model in that it also introduces learnable, data-point-specific variances. However, inference is done
in one step by optimizing the NMLL with an inverse-gamma prior on the δi’s, which – in contrast to
the method proposed herein – generally does not lead to exactly sparse δi’s .

Sample re-weighting Altamirano et al. [2] propose robust and conjugate GPs (RCGP) based on a
modification to the Gaussian likelihood function that is equivalent to standard GP inference, where
the covariance of the noise σ2I is replaced by σ2 diag(w−2) and the prior mean m is replaced by
mw = m+ σ2∇y log(w

2). The authors advocate for the use of the inverse multi-quadratic weight
function w(x, y) = β(1 + (y −m(x))2/c2)−1/2, which introduces two additional hyper-parameters:
the soft threshold c, and the “learning rate” β. Importantly, the weights w are defined a-priori as a
function of the prior mean m(x) and the targets y, thereby necessitating the weights to identify the
correct outliers without access to a model. This is generally only realistic if the outlier data points are
clearly separated in the input or output spaces rather than randomly interspersed.

4 Robust Gaussian Process Regression via Relevance Pursuit

Our method adaptively identifies a sparse set of outlying data points that are corrupted by a mechanism
that is not captured by the other components of the model. This is in contrast to many other approaches
to robust regression that non-adaptively apply a heavy-tailed likelihood to all observations, which
can be suboptimal if many observations are of high quality.
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Figure 2: Left: Evolution of model posterior during Relevance Pursuit, as the number of data-point-
specific variances |S| increases (from light colors to dark). Red points indicate corruptions that were
generated by uniformly sampling from the function’s range. Right: Comparison of posterior marginal
likelihoods as a function of a model’s |S|. The maximizer – boxed in black – is the preferred model.

4.1 The Extended Likelihood Model

We extend the standard GP observation noise variance σ2 with data-point-specific noise variances
ρ = {ρi}ni=1, so that the i-th data point is distributed as

yi
∣∣ xi ∼ N

(
f(xi), σ

2 + ρi
)
. (2)

This is similar to Sparse Bayesian Learning [60] in which weight-specific prior variances control a
feature’s degree of influence on a model’s predictions. The marginal likelihood optimization of ρi
in (2) gives rise to an automatic mechanism for the detection and weighting of outliers. The effect
of yi on the estimate of f vanishes as ρi → ∞, similar to the effect of the latent varibales h in
Bodin et al. [14]’s extended GP model f(x,h), though h requires MCMC for inference. While many
heteroskedastic GP likelihoods model noise as an input-dependent process [28, 35], our formulation
does not require such assumptions, and is thus suitable for corruptions that are not spatially correlated.

An elegant consequence of our modeling assumption is that we can compute individual marginal-
likelihood maximizing ρi’s in closed form when keeping all ρj for j ̸= i fixed. In particular,
Lemma 1. [Optimal Robust Variances] Let D\i = {(xj , yj) : j ̸= i}, ρ = ρ\i + ρiei, where
ρ,ρ\i ∈ Rn

+, [ρ\i]i = 0, and ei is the ith canonical basis vector. Then keeping ρ\i fixed,

ρ∗i = argmax
ρi

L
(
ρ\i + ρiei

)
=

[
(yi − E[y(xi)|D\i])

2 − V[y(xi)|D\i]
]
+
, (3)

where y(xi) = f(xi)+ϵi. These quantities can be expressed as functions of Σ−1 = (K+Dσ2+ρ)
−1:

E[y(xi)|D\i]
2 = yi −

[
Σ−1y

]
i

/ [
Σ−1

]
ii
, and V[y(xi)|D\i] = 1

/ [
Σ−1

]
ii
,

where Dσ2+ρ is a diagonal matrix whose entries are σ2 + ρ.

The first component E[f(xi)+ ϵi|D\i]
2 of (3) is the empirical error to yi of the model trained without

the i-th data point, i.e., the leave-one-out (LOO) cross-validation error [54]. The second component
V[f(xi) + ϵi|D\i] is the LOO predictive variance. The optimal solution to ρi is only non-zero for
those observations whose squared LOO error is larger than the LOO predictive variance at that point.

4.2 Optimization with a Maximum Number of Outliers

Without additional structure, inference of the noise variances ρi does not yield desirable models, as
the marginal likelihood can be improved by increasing the prior variance ρi of any data point where
Eq. (3) is greater than zero, even if that is due to regular (non-outlier) measurement noise. To avoid
this, we constrain the number of non-zero ρi, that is, ∥ρ∥∞ = |{0 < ρi}| ≤ k < n. While this
sparsity constraint mitigates over-flexibility, it gives rise to a formidably challenging optimization
problem, as there are a combinatorial number of sparse outlier sets to consider. Even if the number of
outliers no were known, exhaustive search would still require considering n-choose-no possibilities.
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For tractability, we iteratively add data points to a set of potential “outliers” by setting their associated
ρi to be nonzero, using the closed-form expression for the optimal individual ρi variances in Lemma 1.
As the algorithm seeks to identify the most “relevant” data points (as measured byL) upon completion,
we refer to it as Relevance Pursuit. This is Algorithm 1 with useBayesianModelSelection as false.
Specifically, this is the “forward” variant; Algorithm 2 in the Appendix presents an alternative
“backward” variant that we found to work well if the number of corrupted data points is large.

Crucial to the performance of the optimizer, it never removes data from consideration completely; a
data point is only down-weighted if it is apparently an outlier. This allows the down-weighting to be
reversed if a data point appears “inlying” after having down-weighted other data points, improving
the method’s robustness and performance. This is in contrast to Andrade and Takeda [10]’s greedy
algorithm, in which the exclusion of a data point can both increase or decrease the associated
marginal likelihood. This means that their objective is not monotonic, a necessary condition to
provide constant-factor submodular approximation guarantees for greedy algorithms, see Section 5.

Algorithm 1 Relevance Pursuit (Forward Algorithm)
Require: X, y, schedule K = (k1, k2, . . . , kK), useBayesianModelSelection (boolean)

Initialize S0 ⊆ {1, . . . , n} (typically S0 = ∅)
for i in (1, . . . , |K|) do

Optimize MLL: ρSi
← argmaxρSi

L
(
ρSi

)
, where ρSi

= {ρ : ρj = 0, ∀ j ̸∈ Si}.
Expand Support:

Compute ∆i(j)← maxρj
L(ρSi

+ ρjej)− L(ρSi
) for all j ̸∈ Si via Lemma 1 .

Ai ← {j1, . . . , jki
} such that ∆i(j) ≥ ∆i(j

′) for all j ∈ Ai and j′ ̸∈ (Ai ∪ Si).
Si+1 ← Si ∪ Ai

if useBayesianModelSelection then
Compute the marginal likelihood p(D|Si) ≈ p(D|Si,ρSi

)
S∗ ← argmaxSi

p(D|Si)p(Si).
else
S∗ = SK.

Return S∗, ρS∗ .

4.3 Automatic Outlier Detection via Bayesian Model Selection

In practice, it is often impossible to set a hard threshold on the number of outliers for a particular
data set. For example, a sensor might have a known failure rate, but how many outliers it produces
will depend on the specific application of the sensor. Thus, is often more natural to specify a prior
distribution p(S) over the number of outliers, rather than fix the number a priori. We leverage the
Bayesian model selection framework [66, 45] to determine the most probable number of outliers in a
data- and model-dependent way, aiming to maximize p(S|D). This gives rise to Algorithm 1, with
useBayesianModelSelction as true.

Computationally, we start by iteratively adding outliers up to the maximal support of the prior, similar
to the procedure described in Section 4.2. We store a trace of models generated at each iteration, then
approximate the model posterior p(Si|D) ∝ p(D|Si)p(Si) at each point in the trace. As the exact
posterior is intractable, we approximate it with p(D|Si) =

∫
p(D|Si,ρSi

)dρSi
≈ p(D|Si,ρ∗

Si
).

Finally, we select the model from the model trace {Si}i that attains the highest model posterior
likelihood. Imposing a prior on the number of outliers differs notably from most sparsity-inducing
priors, which are instead defined on the parameter values, like l1-norm regularization. In practice, p(S)
can be informed by empirical distributions of outliers. For our experiments, we use an exponential
prior on |S| to encourage the selection of models that fit as much of the data as tightly as possible.

Regarding the schedule K in Algorithm 1, the most natural choice is simply to add one data point at a
time, i.e. K = (1, 1, ...), but this can be slow for large n. In practice, we recommend schedules that
test a fixed set of outlier fractions, e.g. K = (0.05n, 0.05n, . . . ).

5 Theoretical Analysis

We now provide a theoretical analysis of our approach. We first propose a re-parameterization of
the ρi that maps the optimization problem to a compact domain. Surprisingly, the re-parameterized

5



problem exhibits strong convexity and smoothness when the base covariance matrix (excluding
the ρi) is well-conditioned. We connect the convexity and smoothness with existing results that yield
approximation guarantees for sequential greedy algorithms, implying a constant-factor approximation
guarantee to the optimal achievable NMLL value for generalized orthogonal matching pursuit (OMP),
a greedy algorithm that is closely related to Algorithm 1.

5.1 Preliminaries for Sparse Optimization

The optimization of linear models with respect to least-squares objectives in the presence of sparsity
constraints has been richly studied in statistics [59], compressed sensing [3, 62], and machine
learning [9, 67]. Of central importance to the theoretical study of this problem class are the eigenvalues
of sub-matrices of the feature matrix, corresponding to sparse feature selections and so often referred
to as sparse eigenvalues. The restricted isometry property (RIP) formalizes this.
Definition 2 (Restricted Isometry Property). An (n×m)-matrix A satisfies the r-restricted isometry
property (RIP) with constant δr ∈ (0, 1) if for every submatrix AS with |S| = r ≤ m columns,

(1− δr)∥x∥ ≤ ∥ASxS∥ ≤ (1 + δr)∥x∥,
where xS ∈ Rr. This is equivalent to (1− δr)I ⪯ (A∗

SAS) ⪯ (1− δr)I.

The RIP has been proven to lead to exact recovery guarantees [16], as well as approximation
guarantees [20]. Elenberg et al. [23] generalized the RIP to non-linear models and other data
likelihoods, using the notion of restricted strong convexity (RSC) and restricted smoothness.
Definition 3 (Restricted Strong Convexity and Smoothness). A function f : Rd → R is mr-restricted
strong convex and Mr-restricted smooth if for all (x,x′) in the domain Dr ⊂ (Rd × Rd),

mr∥x′ − x∥2/2 ≤ f(x′)− f(x)−∇[f ](x)⊤(x′ − x) ≤ Mr∥x′ − x∥2/2.
In the context of sparse optimization, we let Dr be the set of tuples of r-sparse vectors whose
difference is also at most r-sparse. In particular, Dr = {(x,x′) s.t. ∥x∥0, ∥x′∥0, ∥x′ − x∥0 ≤ r}.

Generalized orthogonal matching pursuit (OMP) [4, 43, 44] is a greedy algorithm that keeps track of
a support set S of non-zero coefficients, and expands the support based on the largest gradient magni-
tudes, applied to the marginal liklihood optimization problem, Si+1 = Si ∪ argmaxj ̸∈S |∇ρL(ρ)|j .
Algorithm 1 generalizes OMP [62] by allowing more general support expansion schedules K, and
specializes the support expansion criterion using the special problem structure exposed by Lemma 1.

5.2 The Convex Parameterization

The NMLL L of a GP (1) is the sum of a convex function (·)−1 and a concave function log det(·)
of K, and is therefore not generally convex as a function of the hyper-parameters θ, including the
robust variances ρ. Here, we propose a re-parameterization that allows us to prove strong convexity
guarantees of the associated NMLL. In particular, we let ρ(s) = diag(K0)⊙ ((1− s)−1− 1), where
K0 := k(X,X) + σ2I and the inverse is element-wise. Note that ρ(s) is a diffeomorphism that
maps s from the compact domain s ∈ [0, 1]n to the entire range of ρ ∈ [0,∞]n.

Henceforth, we refer to the original ρ as the canonical or ρ-parameterization and the newly proposed
ρ(s) as the convex or s-parameterization. Lemma 4 shows the Hessian of the s-parameterization.

Lemma 4. [Reparameterized Hessian] Let Ks = k(X,X) + σ2I + Dρ(s), K̂s =

diag(Ks)
−1/2Ks diag(Ks)

−1/2, and α̂ = K̂−1
s diag(Ks)

−1/2y. Then

Hs[−2L(ρ(s)] = D−1
1−s

[
2
(
α̂α̂⊤ ⊙ (K̂−1 − I)

)
+ 2diag(K̂−1)− (K̂−1 ⊙ K̂−1)

]
D−1

1−s.

Based on this representation, we now derive conditions on the eigenvalues of K̂ that imply the
m-strong convexity and M -smoothness of the NMLL.

Lemma 5. [Strong Convexity via Eigenvalue Condition] Let K̂s as in Lemma 4. Then Hs ≻ m if

λminλ̂
2
min

(2λ̂−1
max − λ̂−2

min −m)

2(1− λmin/λmax)
> ∥y∥22, (4)

where λmin,max (resp. λ̂min,max) are the smallest and largest eigenvalues of Ks, respectively K̂s.
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Figure 3: Top: The behavior of the − logL(ρ) with respect to the canonical parameterization of ρ.
Bottom: The behavior of − logL(ρ(s)), highlighting the convexity property. Left: The value, and
first two derivatives of − logL for a 1d example. Center: The second derivatives of a 1d − logL as a
function of |y|. The s-parameterization is everwhere convex for all considered |y|, while the canonical
ρ-parameterization is only convex around the origin and only for |y| > 0.5. Right: The heatmaps
highlight that the original parameterization is non-convex (red) for larger values of ρ, and quickly
becomes ill-conditioned, whereas the parameterization ρ(s) is convex and much better conditioned.

The behavior Lemma 5 predicts is surprising and validated in Fig. 3. Notably, the denominator
“blows up” as K becomes close to unitary, making the inequality more likely to be satisfied, an
indication that the convexity property of the NMLL is intimately linked to the RIP (Def. 2). Note that
Lemma 5 is a condition for non-support-restricted convexity, which is stronger than is necessary for
the approximation guarantees that rely on restricted convexity (Def. 3). However, sparse eigenvalues
are generally difficult to compute exactly. Fortunately, covariance matrices of GPs naturally tend to
exhibit a property that facilitates a different sufficient condition for convexity for all s ∈ [0, 1]n.
Definition 6 (Diagonal Dominance). A matrix A is said to be δ-diagonally dominant if the elements
aij satisfy

∑
i ̸=j |aij | < δ|aii| for all i.

Intuitively, the ρi(s) that are selected to be non-zero by the greedy algorithm take on large values,
further encouraging the diagonal dominance of the sub-matrix of K associated with the support of ρ.
For this reason, the following condition on K0 is sufficient to guarantee convexity for all s ∈ [0, 1]n.
Lemma 7. [Strong Convexity via Diagonal Dominance] Let m > 0 and K0 be δ-diagonally dominant
with δ <

(
(5−m)−

√
25− 9m+ 17

)
/4 ≤ (5−

√
17)/4 ≈ 0.44 and

λmin(K0)(1− δ)2
2(1 + δ)−1 − (1− δ)−2 −m

2(1− (1− δ)/(1 + δ))
≥ ∥y∥22.

Then the NMLL is m-strongly convex for all s ∈ [0, 1]n, i.e. ρ(s) ∈ [0,∞]n.

We attain similar results for M -smoothness, see Lemma 13 and Lemma 14 in the Appendix. Having
proven m-convexity and M -smoothness conditions, we appeal to the results of Elenberg et al. [23].
Theorem 8. [Approximation Guarantee] Let K0 = k(X,X) + σ2I be δ-diagonally dominant,
smax > 0 be an upper bound on ∥s∥∞, and suppose ∥y∥, δ satisfy the bounds of Lemmas 7 and 14,
guaranteeing m-convexity and M -smoothness of the NMLL for some m > 0, M > 1/(1− smax)

2.
Let sOMP(r) be the r-sparse vector attained by OMP on the NMLL objective for r steps, and let
sOPT(r) = argmax∥s∥0=r,∥s∥∞≤smax

L(ρ(s)) be the optimal r-sparse vector. Then for any 2r ≤ n,

L̃ (ρ(sOMP(r))) ≥
(
1− e−m/M

)
L̃ (ρ(sOPT(r))) ,

where L̃(·) = L(·)− L(0) is normalized so that maxsS L̃(sS) ≥ 0 for any support S.
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A limitation of the theory is that it assumes the other hyper-parameters of the GP model to be constant,
as doing otherwise would introduce the non-convexity that is common to most marginal likelihood
optimization problems. In practice, we typically optimize ρ jointly with the other hyper-parameters
of the model in each iteration of RRP, as this yields improved performance, see App. D.5 for details.

6 Empirical Results

We evaluate the empirical performance of RRP against various baselines on a number of regression
and Bayesian Optimization problems. Specifically, we compare against a standard GP with a Matern-
5/2 kernel (“Standard GP”), data pre-processing through Ax’s adaptive winsorization procedure
(“Adapt. Wins.”) [12], and a power transformation (“Power Transf.”) [15]. Further, we also consider
a Student-t likelihood model from Jylänki et al. [32] (“Student-t”), the trimmed marginal likelihood
model from Andrade and Takeda [10] (“Trimmed MLL”), and the RCGP model from Altamirano
et al. [2]. Unless stated otherwise, all models are implemented in GPyTorch [25] and all experiments
in this section use 32 replications. See Appendix D for additional details.

6.1 Regression Problems

Synthetic We first consider the popular Friedman10 and Hartmann6 [21] test functions from the
literature. We use two data generating processes: uniform noise, extreme outliers at some fixed value,
and heavy-tailed (Student-t) noise at true function values. In these experiments, we compare the
performance predictive log-likelihood. The results are shown in Fig. 4.
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Figure 4: Left: Distribution of predictive test-set log likelihood for various methods. Methods
ommitted are those that performed substantially worse. Right: Predictive log likelihood as a function
of the corruption probability for Student-t-distributed corruptions with two degrees of freedom. The
GP model with the Student-t likelihood only starts outperforming RRP as the corruption probability
increases beyond 40%, and exhibits a large variance in outcomes, which shrinks as the proportion of
corruptions increases. All methods not shown were inferior to either RRP or Student-t.

Twitter Flash Crash In Fig. 5, we report a comparison to Altamirano et al. [2]’s RCGP on data from
the Dow Jones Industrial Average (DJIA) index on April 22-23 2013, which includes a sharp drop at
13:10 on the 23rd. The top panels shows that RCGP exhibits higher robustness than the standard GP,
but is still affected by the outliers, when trained on data from the 23rd. RRP is virtually unaffected.
Notably, RCGP relies on an a-priori weighting of data points based on the target values’ proximity
to their median, which can be counter-productive when the outliers are not a-priori separated in the
range. To highlight this, we included the previous trading day into the training data for the bottom
panels, leading RCGP to assign the highest weight to the outlying data points due to their proximity
to the target values’ median, thereby leading RCGP to “trust” the outliers more than any inlier,
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resulting in it being less robust than a standard GP in this scenario. See Appendix D.6 for additional
comparisons to RCGP, on data sets from the UCI machine learning repository [34].

(a) (b)

(d)(c)

Figure 5: Results on the intra-day data from the Dow Jones Industrial Average (DJIA) index on
April 22-23 2013, which includes a sharp drop at 13:10 on the 23rd, see (b) for a detailed view.
The accompanying panels labeled wimq show the function that Altamirano et al. [2]’s RCGP uses to
down-weight data points. Top: RCGP, exhibits higher robustness than the standard GP, but is still
affected by the outliers. The RRP model is virtually unaffected. Bottom: Including the previous
trading day into the training data in (c), leads RCGP to assign the highest weight wimq to the outlying
data points due to their proximity to the target values’ median, thereby leading RCGP to be even
more affected than a standard GP, see (d) for a detailed view of the results on the data of April 23.

6.2 Robust Bayesian Optimization

GPs are commonly used for Bayesian optimization (BO), which is a popular approach to sample-
efficient black-box optimization [24]. However, many of the GP models used for BO are sensitive
to outliers and may not perform well in settings where such outliers occur. While Martinez-Cantin
et al. [46] consider the use of a Student-t likelihood for BO with outliers, the use of other robust GP
models has not been thoroughly studied in the literature.

Experimental setup We use Ament et al. [7]’s qLogNoisyExpectedImprovement (qLogNEI), a
variant of the LogEI family of acquisition functions, 32 replications, and initialize all methods with
the same quasi-random Sobol batch for each replication. We follow Hvarfner et al. [31] and plot
the true value of the best in-sample point according to the GP model posterior at each iteration. We
also include Sobol and an “Oracle”, which is a Standard GP that always observes the uncorrupted
value, and consider the backward canonical version of relevance pursuit, denoted by RRP, for these
experiments. The plots show the mean performance with a bootstrapped 90% confidence interval.

Synthetic problems We consider the popular 6-dimensional Hartmann test function with three
different corruption settings: (1) a constant value of 100, (2) a U [−3, 3] distributed value, (3) the ob-
jective value for a randomly chosen point in the domain. The results for a 10% corruption probability
are shown in Fig. 6. We also include results for a 20% corruption probability in Appendix D.3.
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Figure 6: BO results for Hartmann6: Left: Relevance pursuit performs well in the case of constant
outliers of value 100, almost as well as the oracle. Middle: Relevance pursuit performs the best
followed by the Student-t likelihood in the case of U [−3, 3]. Right: Similar to the middle plot, this
setting hides the corruptions within the range of the function, making it a challenging task.

Real-world problems We include three real-world problems: A 3D SVM problem, a 5D CNN
problem, and a 20D rover trajectory planning problem, see the App. D.2 for details. For SVM and
CNN, we simulate random corruptions corresponding to an I/O error, which causes the corresponding
ML model to be trained using only a small subset of the training data. For the rover planning problem
we follow the setup in [47] with the main difference that we consider a 20D trajectory, and the
corruptions are generated randomly, causing the rover to break down at an arbitrary point along its
trajectory. In most cases, this results in a smaller reward than the reward of the full trajectory.
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Figure 7: BO results for three real-world problems: Left: RRP is competitive with the oracle on
the 3D SVM problem. Middle: The power transform performs best on the 5D CNN problem,
outperforming RRP as well as the Oracle. Right: RRP performs well on the 20D Rover problem.

7 Conclusion and Future Work

Contributions Robust Gaussian Processes via Relevance Pursuit (RRP) provides a novel and prin-
cipled way to perform robust GP regression. It permits efficient and robust inference, performs well
across a variety of label corruption settings, retains good performance in the absence of corruptions,
and is flexible, e.g., can be used with any mean or kernel function. Our method can be readily applied
to both robust regression problems as well as applications such as Bayesian optimization and is
available through BoTorch [13]. Importantly, it also provides theoretical approximation guarantees.

Limitations As our approach does not explicitly consider the locations of the data points in the out-
lier identification, it may be outperformed by other methods if the underlying noise is heteroskedastic
and location-dependent. On the other hand, those methods generally do not perform well in the
presence of sparse, location-independent data corruptions.

Extensions Promising extensions of this work include performing Bayesian model averaging, i.e.,
average the predictions of the different possible sparsity models according to their likelihoods instead
of using a MAP estimate, applying RRP to specialized models such as Lin et al. [41]’s scalable
learning-curve model for AutoML applications, and Ament et al. [8]’s model for sustainable concrete.
On a higher level, the approach of combining greedy optimization algorithms with Bayesian model
selection and leveraging a convex parameterization to achieve approximation guarantees might apply
to other parameters that are optimized using the MLL objective: length-scales of stationary kernels,
coefficients of additive kernels, inducing inputs, and even related model classes like Tipping [60]’s
Sparse Bayesian Learning (SBL), which seeks to identify sparse linear models and is intimately
linked to greedy matching pursuits [9]. Overall, the approach has the potential to lead to theoretical
guarantees, new insights, and performance improvements to widely-adopted Bayesian models.
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A Additional Details on the Model

Algorithm 2 below is the “backward” variant of Algorithm 1 from Sec 4. As its name suggests, the
main difference compared to the “forward” variant is that rather than building up a set of “outliers”, it
starts from a (typically large) set of “outliers” and iteratively removes those data points from the set
that have the smallest inferred data-point-dependent noise variance ρi.

While we have not derived theoretical guarantees for this “backward” version, we have found it to
generally behave similarly to the “forward” version in terms of performance and robustness. One
empirical observation from our studies is that while the “forward” version tends to perform slightly
better than the “backward” version if there are only few outliers, the opposite is true if the outlier
frequency is very high. This behavior is rather intuitive and illustrates that relevance pursuit is
particularly well-suited to identify sparse, low-cardinality subsets (note that in the “backward” variant
under large corruptions, the uncorrupted data points can be viewed as the sparse subset that needs to
be identified).

Algorithm 2 Relevance Pursuit (Backward Algorithm)
Require: X, y, schedule K = (k1, k2, . . . )

Initialize Sc0 ⊆ {1, . . . , n} (typically Sc0 = {1, . . . , n})
for ki in K do

Optimize ML: ρ∗
Sc
i
← argmaxρSc

i
L(ρSc

i
), where ρSc

i
= {ρ : ρj = 0, ∀ j /∈ Sci }

Compute the setRi containing the ki elements of Sci with smallest inferred variance:
Ri ← {j1i , . . . , j

ki
i } where jli ∈ Sci such that ρ∗Sc

i
(jli) ≤ ρ∗Sc

i
(jl

′

i ) for l < l′

Sci+1 ← Sci \ Ri

Si ← {1, . . . , n} \ Sci for each ki
Compute the marginal likelihood p(Si|X,y) ≈ p(Si,ρ∗

Si
, |X,y)

S∗ ← argmaxSi p(Si|X,y)p(Si).
Return S∗, ρ∗

S∗ .

B Additional Background on the Theory

B.1 Submodular Functions

Krause and Golovin [36] provides a survey on the maximization of general submodular functions.
Here, we focus on applications of submodularity to sparse regression and Gaussian process models.

Sparse Regression Das and Kempe [20] showed that the subset selection problem of regression
features with an R2 objective satisfies a weak submodularity property, which can be invoked to
prove approximation guarantees for the greedy maximization of the objective. Elenberg et al. [23]
generalized this work by proving that any log likelihood function exhibiting restricted strong concavity
gives rise to the weak submodularity of the associated subset selection problem, which can be invoked
to prove approximation guarantees for the greedy algorithm. Karaca et al. [33] contains a guarantee
for the backward algorithm applied to the maximization of submodular set functions.

Gaussian Processes Submodularity has also found application to Gaussian process models. For
a sensor placement problem, Krause et al. [38] proved that the mutual information (MI) criterion,
capturing the reduction in uncertainty in the entire search space, can be a submodular function. In
this case, MI is not monotonic everywhere, but monotonic for small sets (2k) of sensors, which is
sufficient to apply Nemhauser’s guarantee for sparse sets of sensors up to size k [50]. Relatedly, the
“myopic” joint entropy of a set of observables is unconditionally submodular as a consequence of the
“information never hurts” principle [37], but generally leads to lower-quality sensor placements than
the MI criterion. Srinivas et al. [57] used the submodularity of the joint entropy in order to prove
regret bounds for the convergence of a GP-based BO algorithm using the upper-confidence bound
acquisition function.

Elenberg et al. [23] proved that any log likelihood function exhibiting restricted strong concavity and
smoothness implies the weak submodularity of the associated subset selection problem.
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Definition 9 (Submodularity Ratios [23]). Let A,B ⊂ [n] be two disjoint sets, and f : 2[n] → R.
The submodularity ratio of B with respect to A is defined by

γB,A =
∑
i∈A

(f(B ∪ {i})− f(B))
/
(f(B ∪ A)− f(B))

The submodularity ratio of a set C with respect to an integer k is defined by

γC,k = min
B,A

γB,A such that A ∩ B = ∅, B ⊆ C, and |A| ≤ k.

Then given γ > 0, a function is γ-weakly submodular at a set C with respect to k if γC,k ≥ γ.
Theorem 10 (Weak Submodularity via RSC [23]). The submodularity ratio γS,k can be bound below
using the restricted convexity and smoothness parameters m|S|+k and M|S|+k,

γS,k ≥ m|S|+k

/
M|S|+k.

Theorem 11 (OMP Approximation Guarantee [23]). Let xOMP(r) be the r-sparse vector selected
by OMP, and xOPT(r) = argmin∥x∥0=r f(x) be the optimal r-sparse vector. Then

f (xOMP(r)) ≥
(
1− e−m2r/M2r

)
f (xOPT(r)) ,

where m2r,M2r are the restricted strong convexity and smoothness parameters of f , respectively.

C Theoretical Results and Proofs

Lemma 1. [Optimal Robust Variances] Let D\i = {(xj , yj) : j ̸= i}, ρ = ρ\i + ρiei, where
ρ,ρ\i ∈ Rn

+, [ρ\i]i = 0, and ei is the ith canonical basis vector. Then keeping ρ\i fixed,

ρ∗i = argmax
ρi

L
(
ρ\i + ρiei

)
=

[
(yi − E[y(xi)|D\i])

2 − V[y(xi)|D\i]
]
+
, (3)

where y(xi) = f(xi)+ϵi. These quantities can be expressed as functions of Σ−1 = (K+Dσ2+ρ)
−1:

E[y(xi)|D\i]
2 = yi −

[
Σ−1y

]
i

/ [
Σ−1

]
ii
, and V[y(xi)|D\i] = 1

/ [
Σ−1

]
ii
,

where Dσ2+ρ is a diagonal matrix whose entries are σ2 + ρ.

Proof. First, we partition the covariance matrix K+ σ2I+Dρ to separate the effect of ρi and use
the block matrix inverse

Σ−1 = (K+Dρ+σ2)−1 =

[
Σ−1

\i + uβiu
⊤ −uβi

−u⊤βi βi

]
, (5)

where
Σ\i = k(X\i,X\i) +Dρ\i+σ2 ,

u = Σ−1
\i k(X\i,xi), and

βi =
(
[k(xi,xi) + σ2 + ρi]− k(xi,X\i)Σ

−1
\i k(X\i,xi)

)−1

.

(6)

Quadratic Term With the expression for the inverse of Σ above, we can write the quadratic term
of the log likelihood as

y⊤(K+Dρ+σ2)−1y = y⊤
\i(Σ

−1
\i + uβiu

⊤)y\i − 2y⊤
\iuβiyi + y2i βi

= y⊤
\iΣ

−1
\i y\i + βi(y

⊤
\iu− yi)

2.
(7)

Determinant Term The determinant of a block matrix is given by∣∣∣∣[A B
C D

]∣∣∣∣ = |A||D−CA−1B|. (8)

Applying this identity to Σ = (K+Dρ+σ2), we get

|K+Dρ+σ2 | = |Σ\i|β−1
i . (9)
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Log Marginal Likelihood
2(L(ρ)− L(ρ\i)) = −βi(y

⊤
\iu− yi)

2 − log(β−1
i ). (10)

Noting that ∂ρi
βi = −β2

i , the derivative of the difference in log marginal likelihood w.r.t. ρi, is

∂ρi2(L(ρ)− L(ρ\i)) = (y⊤
\iu− yi)

2β2
i − βi. (11)

While βi = 0 is a root of the derivative, we ignore this solution since βi is never zero when σ2 > 0.
Therefore, the remaining stationary point is β−1

i = (y⊤
\iu − yi)

2. Since we constrain ρ ≥ 0, this
point might not always be attainable. However, because there is only a single stationary point with
respect to βi when σ2 > 0, and βi is a strictly decreasing function of ρi, it follows that the marginal
likelihood is monotonic as a function of ρi to both the left and the right of the stationary point.
Therefore, the optimal constraint ρi is simply the optimal unconstrained value, projected into the
feasible space. In particular, solving β−1

i = (y⊤
\iu− yi)

2 for ρi and projecting to the non-negative
half-line, we get

ρi =

[(
y⊤
\iu− yi

)2

−
(
k(xi,xi) + σ2 − k(xi,X\i)Σ

−1
\i k(X\i,xi)

)]
+

. (12)

Lastly, note
y⊤
\iu− yi = y⊤

\i(k(X\i,X\i) +Dσ2+ρ\i
)−1k(X\i,xi)− yi = E[y(xi)|D\i]− yi,

k(xi,xi)− k(xi,X\i)Σ
−1
\i k(X\i,xi) + σ2 = V[y(xi)|D\i].

(13)

As stated by Rasmussen et al. [54] (P. 117, Eq. 5.12), originally shown by Sundararajan and Keerthi
[58], these quantities can be expressed as simple functions of Σ−1:

E[y(xi)|D\i]
2 = yi −

[
Σ−1y

]
i

/ [
Σ−1

]
ii

V[y(xi)|D\i] = 1
/ [

Σ−1
]
ii
.

(14)

Therefore, all LOO predictive values can be computed inO(n3) or faster, if an inducing point method
is used for K.

The following is a preliminary result for our analysis of the log marginal likelihood w.r.t. ρ.
Lemma 12. The gradient and Hessian of the log marginal likelihood L with respect to ρ are given by

−2∇ρ[L] = diag(K−1 −αα⊤), and − 2Hρ[L] = (2αα⊤ −K−1)⊙K−1,

where K = K0 +Dρ for some base covariance matrix K0 and α = K−1y.

Proof. Let α = K−1y. Regarding the gradient, note that ∂ρi
K = eie

⊤
i , where ei is the canonical

basis vector with a one as the ith element, and based on Equation 5.9 of Rasmussen et al. [54],
−2∂ρi

[L] = tr
((
K−1 −αα⊤) ∂ρi

K
)

= tr(
(
K−1 −αα⊤) eie⊤i )

= e⊤i
(
K−1 −αα⊤) ei

=
(
K−1 −αα⊤)

ii
.

Regarding the second derivatives, according to Dong et al. [22],
∂θi∂θj [log |K|] = tr(K−1[∂θi∂θjK]−K−1[∂θiK]K−1[∂θjK])

∂θi∂θj [y
⊤K−1y] = 2αT [∂θiK]K−1[∂θjK]α−α⊤[∂θi∂θjK]α.

Therefore,
−2∂ρi

∂ρj
L = tr

(
(K−1 −ααT )[∂ρi

∂ρj
K]− (K−1 − 2αα⊤)([∂ρi

K]K−1[∂ρj
K])

)
= tr

(
(2αα⊤ −K−1)([K−1]ijeie

⊤
j )

)
= tr

(
e⊤j (2αα⊤ −K−1)ei

)
[K−1]ij

= [2αα⊤ −K−1]ij [K
−1]ij

=
[
(2αα⊤ −K−1)⊙K−1

]
ij
,

since [∂ρi
∂ρj

K] = 0. The third equality is due to the invariance of the trace to circular shifts of its
argument. The forth equality is due to the symmetry of the matrix in brackets.
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C.1 Strong Convexity and Smoothness of the Reparameterized Robust Marginal Likelihood

Here, we re-parameterize ρ(s) = diag(K0)⊙ ((1− s)−1 − 1), and attain strong convexity for all
inputs s, if conditions on the eigenvalues of the covariance matrix and the norm of the data vector ∥y∥
are met. The convexity result is surprising in two ways: the negative log marginal likelihood of GPs
is generally a non-convex function, and in addition, the negative log likelihoods of many alternative
robust regression methods like the Student-t likelihood or α-stable likelihoods are non-convex, and
even Huber’s proposal is non-strongly-convex.

Lemma 4. [Reparameterized Hessian] Let Ks = k(X,X) + σ2I + Dρ(s), K̂s =

diag(Ks)
−1/2Ks diag(Ks)

−1/2, and α̂ = K̂−1
s diag(Ks)

−1/2y. Then

Hs[−2L(ρ(s)] = D−1
1−s

[
2
(
α̂α̂⊤ ⊙ (K̂−1 − I)

)
+ 2diag(K̂−1)− (K̂−1 ⊙ K̂−1)

]
D−1

1−s.

Proof. Using the chain-rule, the Hessian Hs[L] can be expressed as a function of the Jacobian
Js[ρ(s)] = D∂ρ(s), which is diagonal since ρ(s) is an element-wise function, and the second
derivatives ∂2

sρ(si). Then

−2Hs[L] = −Js[ρ]
⊤Hρ[2 logL]Js[ρ] +D∇ρ[−2L]D∂2

sρ

= Dρ′(s)[(2αα⊤ −K−1)⊙K−1]Dρ′(s) + diag(K−1)Dρ′′ −Dρ′(K−1 ◦K−1)Dρ′ ,

where we substituted the relevant expressions from Lemma 12. Further substituting ρ(s)i =
[K0]ii[(1 − si)

−1 − 1], ρ′(s)i = [K0]ii(1 − si)
−2, and ρ′′(s)i = 2[K0]ii(1 − si)

−3, noting
that K = K0 +diag(K0)[(1− s)−1− 1] = (K0−diag(K0))+diag(K0)(1− s)−1, and algebraic
manipulation finish the proof.

Lemma 5. [Strong Convexity via Eigenvalue Condition] Let K̂s as in Lemma 4. Then Hs ≻ m if

λminλ̂
2
min

(2λ̂−1
max − λ̂−2

min −m)

2(1− λmin/λmax)
> ∥y∥22, (4)

where λmin,max (resp. λ̂min,max) are the smallest and largest eigenvalues of Ks, respectively K̂s.

Proof. We seek to lower-bound the smallest eigenvalue of the Hessian matrix, which—for twice-
continuously-differentiable problems—is equivalent to lower and upper bounds of the problem’s
Hessian matrix. Starting with the result of Lemma 4,

Hs[−2L(ρ(s)] = D−1
1−s

[
2
(
α̂α̂⊤ ⊙ (K̂−1 − I)

)
+ 2diag(K̂−1)− (K̂−1 ⊙ K̂−1)

]
D−1

1−s

⪰ 2
(
α̂α̂⊤ ⊙ (K̂−1 − I)

)
+ 2diag(K̂−1)− (K̂−1 ⊙ K̂−1).

Now, we bound each of the three additive terms independently from below.

Term 1:
2 diag(K̂−1) ⪰ 2λmin(K̂

−1)I = 2λmax(K̂)−1I.

The first inequality comes from K being positive definite, and the absolute value of the diagonal of a
matrix, which is already positive for positive definite matrices, being lower bounded by the minimum
eigenvalue of the matrix. The last steps is a basic consequence of the eigenvalues of inverses matrices.
Note that the eigenvalues of K̂ can be further bound by the eigenvalues of the original matrix K:

λmin(K̂) = λmin(diag(K)−1/2K diag(K)−1/2)

≥ λmin(diag(K)−1/2)2λmin(K)

= λmin(diag(K)−1)λmin(K)

≥ λmin(K
−1)λmin(K)

= λmin(K)/λmax(K).

In a similar way, we can show that λmax(K̂) ≤ λmax(K)/λmin(K), which implies λmax(K̂)−1 ≥
λmin(K)/λmax(K).
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Term 2: Next, we have

−(K̂−1 ⊙ K̂−1) ⪰ −λmax(K̂
−1)2I = −λmin(K̂)−2I,

which is due to the Hadamard product being a sub-matrix of the Kronecker product of the same
matrices, the largest eigenvalue of the former are bounded by the largest eigenvalue of the latter,
which is the product of the largest eigenvalues of the constituent matrices.

Term 3: Lastly, note that

2
(
α̂α̂⊤ ⊙ (K̂−1 − I)

)
= 2Dα̂(K̂

−1 − I)Dα̂

⪰ 2Dα̂(λmin(K̂
−1)I− I)Dα̂

= 2(λmin(K̂
−1)− 1)D2

α̂

= 2(λmax(K̂)−1 − 1)D2
α̂

⪰ 2(λmin(K)/λmax(K)− 1)D2
α̂

⪰ 2(λmin(K)/λmax(K)− 1)∥α̂∥2∞I,

where the last inequality comes from the second to last lower bound of Term 3 being non-positive,
and therefore, being able to lower bound it with the largest magnitude entry of α̂.

Term 1 + 2 + 3: Putting together the inequalities for all terms, we get

λmin(Hs) ≥ 2λmax(K̂)−1 − λmin(K̂)−2 + 2(λmin(K)/λmax(K)− 1)∥α̂∥2∞,

where in slight abuse of notation, we let Hs = Hs[−2L] be the Hessian of the negative log likelihood.

Using the bound ∥α̂∥∞ ≤ ∥α̂∥2 ≤ λmin(K̂)−1∥ŷ∥, where ŷ = diag(K)−1/2y. Therefore,
∥α̂∥∞ ≤ λmin(K̂)−1λmin(K)−1/2∥y∥2 ≤ λmax(K)λmin(K)−3/2∥y∥2.

Finally, lower bounding the current lower bound by m > 0 yields a sufficient condition for the
convexity at s.

2λmax(K̂)−1 − λmin(K̂)−2 + 2(λmin(K)/λmax(K)− 1)λmin(K̂)−2λmin(K)−1∥y∥22 > m.

Re-arranging, we attain

λminλ̂
2
min

(2λ̂−1
max − λ̂−2

min −m)

2(1− λmin/λmax)
> ∥y∥22, (15)

which is a non-trivial guarantee when 2λ̂−1
max − λ̂−2

min −m > 0.

Lemma 13. [Smoothness via Eigenvalue Condition] Let K̂ as in Lemma 4. Suppose that ∥s∥∞ ≤
smax and

λminλ̂
2
min

(M(1− smax)
2 + λ̂−2

min − 2λ̂−1
max)

2(λmax/λmin − 1)
> ∥y∥22, (16)

where λmin,max (resp. λ̂min,max) are the smallest and largest eigenvalues of K (resp. K̂) respectively.
Then Hs ≺M . This is a non-trivial guarantee when M(1− smax)

2 + λ̂−2
min − 2λ̂−1

max > 0.

Proof. We now derive an equivalent upper bound for the largest eigenvalue of the Hessian. Starting
with the result of Lemma 4,

Hs[−2L(ρ(s)] = D−1
1−s

[
2
(
α̂α̂⊤ ⊙ (K̂−1 − I)

)
+ 2diag(K̂−1)− (K̂−1 ⊙ K̂−1)

]
D−1

1−s

⪯ ∥(1− s)−1∥2∞
[
2
(
α̂α̂⊤ ⊙ (K̂−1 − I)

)
+ 2diag(K̂−1)− (K̂−1 ⊙ K̂−1)

]
.

Therefore, it becomes immediately apparent that we will need to introduce an upper bound on
∥(1− s)−1∥2∞, which is a restriction on the domain that ρ can take. Proceeding in a similar way as
above, we bound the three terms in square brackets, now from above.
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Term 1:
2 diag(K̂−1) ⪯ 2λmax(K̂

−1)I = 2λmin(K̂)−1I.

Term 2:
−(K̂−1 ⊙ K̂−1) ⪯ −λmin(K̂

−1)2I = −λmax(K̂)−2I.

Term 3:
2
(
α̂α̂⊤ ⊙ (K̂−1 − I)

)
= 2Dα̂(K̂

−1 − I)Dα̂

⪯ 2Dα̂(λmax(K̂
−1)I− I)Dα̂

= 2(λmax(K̂
−1)− 1)D2

α̂

= 2(λmin(K̂)−1 − 1)D2
α̂

⪯ 2(λmax(K)/λmin(K)− 1)D2
α̂

⪯ 2(λmax(K)/λmin(K)− 1)∥α̂∥2∞I,

where now the last inequality follows because the second to last expression is always non-negative.
Term 1 + 2 + 3: Putting together the inequalities for all terms, we get

λmax(Hs) ≤ 2λmin(K̂)−1 − λmax(K̂)−2 + 2(λmax(K)/λmin(K)− 1)∥α̂∥2∞,

Finally, upper bounding the current upper bound by M/∥(1 − s)−1∥2∞ > 0 yields a sufficient
condition for the M -smoothness at s. Using the same bound for ∥α̂∥∞ derived for the convexity
result,

2λmin(K̂)−1 − λmax(K̂)−2 + 2((λmax(K)/λmin(K)− 1)λmin(K̂)−2λmin(K)−1∥y∥22 < M.

Re-arranging, we attain

λminλ̂
2
min

(M(1− smax)
2 + λ̂−2

min − 2λ̂−1
max)

2(λmax/λmin − 1)
> ∥y∥22, (17)

which is a non-trivial guarantee when M(1− smax)
2 + λ̂−2

min − 2λ̂−1
max > 0.

Lemma 7. [Strong Convexity via Diagonal Dominance] Let m > 0 and K0 be δ-diagonally
dominant with δ <

(
(5−m)−

√
25− 9m+ 17

)
/4 ≤ (5−

√
17)/4 ≈ 0.44 and

λmin(K0)(1− δ)2
2(1 + δ)−1 − (1− δ)−2 −m

2(1− (1− δ)/(1 + δ))
≥ ∥y∥22.

Then the NMLL is m-strongly convex for all s ∈ [0, 1]n, i.e. ρ(s) ∈ [0,∞]n.

Proof. Fist, Gershgorin’s Disk Theorem implies that the eigenvalues of diag(A)−1/2Adiag(A)−1/2

lie in (1− δ, 1 + δ) for a δ-diagonally dominant matrix A. Further, the condition number of A is
bounded above by κ(A) = λmax(A)/λmin(A) ≤ (1 + δ)/(1− δ). See Horn and Johnson [30] for
more background on matrix analysis. Plugging these bounds into the results of Lemma 5 yields

λmin(K)λ̂2
min

(2λ̂−1
max − λ̂−2

min −m)

2(1− λmin/λmax)
≥ λmin(K)(1− δ)2

(2(1 + δ)−1 − (1− δ)−2 −m)

2(1− (1− δ)/(1 + δ))
.

Lower bounding the last expression by ∥y∥22 implies m-strong convexity. This gives rise to a
non-trivial guarantee whenever the numerator is larger than zero. In particular,

2(1 + δ)−1 − (1− δ)−2 −m > 0.

Expanding, noting that 0 < δ < 1 implies δ3 < δ2 in order to reduce a power in the resulting
expression, and collecting terms with like powers, we attain the following sufficient condition

2δ2 + (m− 5)δ + (1−m) > 0.

Note that for this condition to hold if δ = 0, we need to have m < 1. Fortunately, this is a quadratic
in δ whose smallest positive root is

δ− =
1

4

(
(5−m)−

√
(5−m)2 − 8(1−m)

)
.
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In particular, for m = 0, this reduces to

δ− =
1

4

(
5−
√
17
)
≈ 0.4384471871911697.

Lastly, note that if K0 is δ-diagonally dominant, then so is Ks = K0 + Dρ(s), since the robust
variances add to the diagonal, making it more dominant. Therefore, the convexity guarantee holds for
all ρ(s), if it holds for the base covariance matrix K0. Note that λmin(K) ≥ σ2.

Similarly, we can prove a similar statement relating diagonal dominance with M -smoothness.

Lemma 14. [Smoothness via Diagonal Dominance] Suppose K0 is a δ-diagonally dominant covari-
ance matrix and suppose we constrain ∥s∥∞ ≤ smax ≤ 1−

√
1/M . Then

λmin(K0)(1− δ)2
M(1− smax)

2 − 1

2((1 + δ)/(1− δ)− 1)
≥ ∥y∥22,

implies that the NLML is m-strongly convex for all s ∈ [0, 1]n, i.e. ρ(s) ∈ [0,∞]n.

Proof. We proceed in a similar way as for Lemma 7, but with Lemma 13 as the starting point.

λmin(K)(λ̂min)
2 (M(1− smax)

2 + λ̂−2
min − 2λ̂−1

max)

2(λmax/λmin − 1)
≥ λmin(K)(1− δ)2

M(1− smax)
2 − 1

2((1 + δ)/(1− δ)− 1)
,

where we used (λ̂−2
min − 2λ̂−1

max) ≥ −1, which is tight when K̂ is unitary. Lower bounding the last
expression by ∥y∥22 implies M -smoothness. This gives rise to a non-trivial guarantee whenever the
numerator is larger than zero. In particular, M(1−smax)

2−1 > 0, which implies smax ≤ 1−
√
1/M

or equivalently, M > 1/(1 − smax)
2. Lastly, note that if K0 is δ-diagonally dominant, then so is

Ks = K0 +Dρ(s), since the robust variances only add to the diagonal. Therefore, if the inequality
holds for the base covariance matrix K0, the smoothness guarantee holds for all ρ(s) such that
s ≤ smax ≤ 1−

√
1/M . Note also that λmin(K) ≥ σ2.

Theorem 8. [Approximation Guarantee] Let K0 = k(X,X) + σ2I be δ-diagonally dominant,
smax > 0 be an upper bound on ∥s∥∞, and suppose ∥y∥, δ satisfy the bounds of Lemmas 7 and 14,
guaranteeing m-convexity and M -smoothness of the NMLL for some m > 0, M > 1/(1− smax)

2.
Let sOMP(r) be the r-sparse vector attained by OMP on the NMLL objective for r steps, and let
sOPT(r) = argmax∥s∥0=r,∥s∥∞≤smax

L(ρ(s)) be the optimal r-sparse vector. Then for any 2r ≤ n,

L̃ (ρ(sOMP(r))) ≥
(
1− e−m/M

)
L̃ (ρ(sOPT(r))) ,

where L̃(·) = L(·)− L(0) is normalized so that maxsS L̃(sS) ≥ 0 for any support S.

Proof. The result is a direct consequence of meeting the m-convexity and M -smoothness conditions
of Lemmas 7, 14 above, and the OMP approximation guarantee of Theorem 11 due to Elenberg et al.
[23]. Note that the condition on 2r ≤ n comes from the RSC condition in Theorem 11 being required
for subsets of size 2r. As we proved bounds for the m-convexity of the full Hessian of size n, r has
to be smaller than n/2 for the assumptions of the theorem to hold. Regarding the upper bound smax

on s, we note that the constraint is convex and therefore doesn’t change the convexity property of the
optimization problem.

Further, note that maxρS L(ρS) ≤ maxρS∪i
L(ρS∪i), since the additional non-zero element could

stay at 0, if the marginal likelihood does not improve with ρi increasing. That is, the subset selection
problem is monotonic. As a consequence, we can normalize the MLL by L̃(·) = L(·)−L(0), which
then only takes positive values for any s∗S = argmaxs\S=0 L(ρ(sS)), i.e. maxsS L̃(sS) ≥ 0. This
normalization is required for the constant factor approximation guarantee to apply, similar to the
original work of Nemhauser.

This theoretical approach could lead to approximation guarantees for Tipping [60]’s Sparse Bayesian
Learning (SBL) model, for which Ament and Gomes [9] show that greedily optimizing the associated
NMLL is equivalent to stepwise regression in the limit of σ → 0, proving exact recovery guarantees.
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D Additional Detail on the Experiments

Our benchmark uses a modified version of the code from Andrade and Takeda [10], available
at https://github.com/andrade-stats/TrimmedMarginalLikelihoodGP under the GNU
GPLv2 license.

D.1 Synthetic Regression Problems

Model fitting runtimes Fig. 8 summarizes the fitting times for the different models on the different
scenarios from Section 6.1. We observe that the outlier type and the fraction of outliers both have
relatively limited effect on the fitting times for all of the models. Fig. 9 therefore provides a more
compact view of the same data (aggregated across outlier types and outlier fractions), giving a better
sense of the distribution of the fitting times. Unsurprisingly, the baselines that simply fit a single GP
model (“vanilla”, “winsorize”, “power_transform”) are substantially faster than any of the robust
approaches. While all of the robust models show similar fitting times on the Hartmann problem, fitting
our RRP is significantly faster (note the logarithmic scale of the y-axis) than fitting the Student-t and
trimmed MLE models on the 5-dim and 10-dim Friedman problems. The trimmed MLE model in
particular ends up being quite slow, especially on the 5d Friedman function.

D.2 BO experiments, additional details

For Hartmann6, we consider the standard domain of [0, 1]6.

SVM The SVM problem, the goal is to optimize the test RMSE of an SVM regression model
trained on 100 features from the CT slice UCI dataset. We tune the following three parameters: C ∈
[1e-2, 1e2], ϵ ∈ [1e-2, 1], and γ ∈ [1e-3, 1e-1]. All parameters are tuned in log-scale. Corruptions
simulate I/O failures in which case we only train on U [100, 1000] training points out of the available
50, 000 training observations.

CNN For the 5D CNN problem the goal is to optimize the test accuracy of a CNN classifier trained
on the MNIST dataset. We tune the following 5 parameters: learning rate in the interval [1e-4, 1e-1],
momentum in the interval [0, 1], weight decay in the interval [0, 1], step size in the interval [1, 100],
and γ ∈ [0, 1]. Similarly to the SVM problem, we only train on U [100, 1000] of the available training
batches when an I/O failure occurs.

Rover The rover trajectory planning problem was originally proposed in Wang et al. [65]. The
goal is to tune the trajectory of a rover in order to maximize the reward of its final trajectory. We
use the same obstacle locations and trajectory parameterization as in Maus et al. [47], with the
main difference being that we parameterize the trajectory using 10 points, resulting in 20 tunable
parameters. When a corruption occurs, the rover will stop at a uniformly random point along its
trajectory, generally resulting in lower reward than the original trajectory.

D.3 Additional Synthetic BO Results

In addition to the results in Fig. 6, we also include results when the corruption probability is 20%
in Fig. 10. We observe that the results are similar as with 10% corruption probability, but that the
performance of several baselines regresses significantly.

D.4 Computational Setup and Requirements

Robust GP regression is very data-efficient, focuses on the small-data regime, and runs fast (faster
than competing baselines studied in this paper). Therefore, each individual run required very limited
compute resources (this includes the baseline methods). To produce statistically meaningful results,
however, we ran a large number of replications for both our regression and Bayesian optimization
benchmarks on a proprietary cluster. We estimate the amount of compute spent on these experiments
to be around 2 CPU years in total, using standard (Intel Xeon) CPU hardware. The amount of
compute spent on exploratory investigations as part of this work was negligible (this was ad-hoc
exploratory and development work on a single CPU machine).

22

https://github.com/andrade-stats/TrimmedMarginalLikelihoodGP


100

101

102

103

fit
 ti

m
e 

(s
)

friedman10, constant friedman10, student-t friedman10, uniform

100

101

102

103

fit
 ti

m
e 

(s
)

friedman5, constant friedman5, student-t friedman5, uniform

0.05 0.10 0.15 0.20 0.25
Outlier Fraction

100

101

102

103

fit
 ti

m
e 

(s
)

hartmann6, constant

0.05 0.10 0.15 0.20 0.25
Outlier Fraction

hartmann6, student-t

0.05 0.10 0.15 0.20 0.25
Outlier Fraction

hartmann6, uniform

RRP
RRP (bkwd)

RRP (can)
RRP (bkwd, can)

Student-t
Power Transf.

Standard GP
Adapt. Wins.

Trimmed MLL

Figure 8: Fitting times of the different robust GP modeling approaches. The plots show means and
one standard deviation. Here “bkwd” indicates the backward variant of RRP (Algorithm 2), and “can”
indicates the canonical (non-convex) parameterization.

D.5 Impact of Convex Parameterization on Joint Optimization of Hyper-Parameters

A limitation of Lemma 4 is that it only guarantees convexity for the sub-problem of optimizing the
ρi’s. In practice, we jointly optimize all GP hyper-parameters, including length scales. In this case,
the theory guarantees the positive-definiteness of the submatrix of the Hessian corresponding to ρ(s),
and we expect this to improve the quality of the results of the numerical optimization routines.

Indeed, positive-definiteness is beneficial for quasi-Newton optimization algorithms like L-BFGS [42],
which restarts its approximation to the Hessian whenever it encounters non-convex regions, because
the associated updates to the Hessian approximation are not positive-definite. This leads the algorithm
to momentarily revert back to gradient descent, with an associated slower convergence rate.

To quantify the impact of this, we ran convergence analyses using the data from Fig. 1, allowing
all ρ to be optimized jointly with other hyper-parameters (length scale, kernel variance and noise

23



100

101

102

103

fit
 ti

m
e 

(s
)

friedman5

100

101

102

103

fit
 ti

m
e 

(s
)

friedman10

100

101

102

103

fit
 ti

m
e 

(s
)

hartmann6

RRP
RRP (bkwd)
RRP (can)

RRP (bkwd, can)
Student-t
Power Transf.

Standard GP
Adapt. Wins.
Trimmed MLL

Figure 9: Fitting times of the different robust GP modeling approaches on the regression tasks from
Section 6.1. Results are aggregated across outlier types and outlier fractions as those do not affect
fitting times much (see Fig. 8).
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Figure 10: BO results for Hartmann6: Left: We see that Relevance pursuit performs well in the case
of constant outliers of value 100 and almost performs just as well as the oracle. Middle: Relevance
pursuit performs the best followed by the Student-t likelihood from [46] in the case of U [−3, 3]. No
method performs as well as the oracle when the outlier probability is 20%. Right: Similarly to the
middle column, this setting hides the outliers within the range of the outliers making it difficult to
match the performance of the oracle.

variance), recording the achieved negative log marginal likelihood (NLML) as a function of the
tolerance parameter ftol of the L-BFGS optimizer. The results are reported in Table D.5, and indicate
that the optimizer terminates with a much better NLML using the convex parameterization with the
same convergence tolerance.

There are also settings in which we do not actually jointly optimize the hyper-parameters, particularly
when we have access to data from the same data generating process that has been manually labeled
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ftol Canonical ρ Convex ρ(s)

1e−3 −4.37 −14.18
1e−4 −4.37 −93.00
1e−5 −4.37 −93.01
1e−6 −4.37 −135.05
1e−7 −98.62 −518.68
1e−8 −97.52 −1139.29

Table 1: Comparison of the negative log
marginal likelihood achieved after numeri-
cal optimization of the canonical and con-
vex parameterization of ρ with L-BFGS. No-
tably, the convex parameterization leads to
improved marginal likelihood values for for a
given convergence tolerance ftol.

by domain experts as outlier-free. Then we can estimate the model hyper-parameters on that data,
and fix them for the RRP on new data sets that we do not know to be outlier-free.

D.6 Comparison to Robust and Conjugate Gaussian Processes (RCGP)

We report extended empirical comparisons with Altamirano et al. [2]’s RCGP method, using their
experimental setup and method implementation in GPFLow. Including GPFlow in our own bench-
marking setup and compute resources proved difficult. To circumvent this, we wrote wrappers for
both BoTorch’s standard GP and RRP, which also accounts for any orthogonal implementation
differences between the two frameworks, and ran the benchmarks locally on an M-series MacBook.

See Tables 2 and 3 for the mean absolute error and negative log predictive density, respectively. The
tables include the empirical mean and standard deviation over 20 replications on corrupted version of
the following base data sets: 1) Synthetic, which is generated as a draw of a GP with a exponentiated
quadratic kernel, and four data sets available on the UCI machine learning repository[34], in particular,
2) Boston [29], 3) Concrete [68], 4) Energy [63], and 5) Yacht [27]. The benchmark considers no
corruptions (“No Outliers”), “Asymmetric Outliers”, which are uniform in x are shifted negatively
in y, “Uniform Outliers”, which shift y in both directions (positively and negatively), and “Focused
Outliers”, which form concentrated clusters in both x and y. Any bold entry in the table signifies a
results that is within one standard-error of the best result’s one standard-error confidence bound.

Table 2: Mean absolute error (MAE) using Altamirano et al. [2]’s experimental setup in GPFlow.
RRP is always competitive with the other methods, and outperforms them significantly for uniform
and asymmetric outliers.

Standard GP (GPFlow) Student-t GP (GPFLow) RCGP (GPFlow) Standard GP (BoTorch) RRP (BoTorch)

No Outliers
Synthetic 8.82e-2 (2.12e-3) 8.81e-2 (2.09e-3) 8.77e-2 (2.08e-3) 8.90e-2 (2.19e-3) 8.90e-2 (2.19e-3)
Boston 2.24e-1 (7.11e-3) 2.24e-1 (6.50e-3) 2.24e-1 (7.29e-3) 2.08e-1 (5.53e-3) 2.08e-1 (5.75e-3)
Concrete 2.00e-1 (3.72e-3) 1.99e-1 (3.73e-3) 1.93e-1 (4.05e-3) 1.92e-1 (3.80e-3) 1.93e-1 (3.66e-3)
Energy 3.01e-2 (8.65e-4) 3.44e-2 (1.46e-3) 2.42e-2 (1.01e-3) 3.09e-2 (9.41e-4) 3.03e-2 (8.88e-4)
Yacht 1.69e-2 (2.09e-3) 2.02e-2 (1.29e-3) 2.19e-2 (4.63e-3) 1.49e-2 (1.95e-3) 1.42e-2 (1.58e-3)

Uniform Outliers
Synthetic 3.45e-1 (1.48e-2) 2.93e-1 (1.23e-2) 2.15e-1 (9.30e-3) 3.48e-1 (1.62e-2) 8.99e-2 (2.37e-3)
Boston 4.97e-1 (2.80e-2) 3.86e-1 (1.52e-2) 4.94e-1 (1.81e-2) 6.81e-1 (2.25e-2) 2.83e-1 (3.16e-2)
Concrete 3.80e-1 (8.36e-3) 3.54e-1 (5.98e-3) 4.43e-1 (7.97e-3) 3.80e-1 (7.77e-3) 2.03e-1 (3.98e-3)
Energy 2.67e-1 (8.93e-3) 2.73e-1 (2.40e-2) 3.05e-1 (3.55e-2) 5.60e-1 (1.47e-2) 3.06e-2 (8.35e-4)
Yacht 3.23e-1 (1.68e-2) 2.29e-1 (1.54e-2) 4.18e-1 (3.48e-2) 6.81e-1 (3.21e-2) 1.20e-2 (1.04e-3)

Asymmetric Outliers
Synthetic 1.11e+0 (2.24e-2) 1.02e+0 (2.34e-2) 7.72e-1 (3.31e-2) 1.17e+0 (2.55e-2) 2.71e-1 (9.96e-2)
Boston 6.92e-1 (1.40e-2) 5.80e-1 (1.24e-2) 5.31e-1 (2.33e-2) 8.55e-1 (3.04e-2) 3.35e-1 (4.33e-2)
Concrete 6.60e-1 (1.21e-2) 5.55e-1 (1.08e-2) 4.91e-1 (1.11e-2) 6.60e-1 (1.25e-2) 2.03e-1 (4.45e-3)
Energy 6.03e-1 (1.12e-2) 4.74e-1 (9.99e-3) 4.08e-1 (3.34e-2) 7.05e-1 (1.78e-2) 3.07e-2 (8.33e-4)
Yacht 5.90e-1 (1.60e-2) 4.58e-1 (9.31e-3) 4.32e-1 (3.30e-2) 8.36e-1 (3.76e-2) 2.70e-2 (1.35e-2)

Focused Outliers
Synthetic 1.89e-1 (1.50e-2) 1.92e-1 (1.56e-2) 1.64e-1 (1.29e-2) 1.80e-1 (1.46e-2) 2.00e-1 (1.62e-2)
Boston 2.44e-1 (8.48e-3) 2.60e-1 (1.30e-2) 2.49e-1 (1.04e-2) 2.49e-1 (8.37e-3) 2.48e-1 (8.38e-3)
Concrete 2.40e-1 (5.54e-3) 2.35e-1 (5.63e-3) 2.38e-1 (1.10e-2) 2.24e-1 (6.20e-3) 2.25e-1 (5.86e-3)
Energy 8.83e-2 (5.46e-2) 3.24e-2 (1.36e-3) 2.92e-2 (8.95e-4) 3.03e-2 (8.95e-4) 3.03e-2 (8.95e-4)
Yacht 2.42e-1 (6.89e-2) 1.10e-1 (2.07e-2) 1.93e-2 (1.88e-3) 1.78e-2 (2.96e-3) 1.59e-2 (2.20e-3)

D.7 Comparison to Robust Gaussian Process with Huber Likelihood

In the following, we compare our method with additional variational GP baselines with Laplace and
Huber likelihoods, and translated the Matlab code of the "projection statistics" of Algikar and Mili
[1] to PyTorch. We then combined the projection-statistics-based weighting of the Huber loss with
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Table 3: Negative log predictive density (NLPD) using Altamirano et al. [2]’s experimental setup in
GPFlow. RRP is generally competitive, and outperforms other methods significantly for uniform and
asymmetric outliers.

Standard GP (GPFlow) Student-t GP (GPFLow) RCGP (GPFlow) Standard GP (BoTorch) RRP (BoTorch)

No Outliers
Synthetic -8.21e-1 (2.16e-2) -8.20e-1 (2.16e-2) -8.23e-1 (2.21e-2) -8.05e-1 (2.25e-2) -8.05e-1 (2.24e-2)
Boston 2.08e-1 (4.26e-2) 1.99e-1 (3.76e-2) 1.95e-1 (4.69e-2) 9.24e-2 (2.82e-2) 9.43e-2 (2.82e-2)
Concrete 1.48e-1 (2.33e-2) 1.29e-1 (2.31e-2) 1.09e-1 (3.19e-2) 1.11e-1 (2.73e-2) 1.16e-1 (2.68e-2)
Energy -1.72e+0 (3.83e-2) -1.62e+0 (3.46e-2) -1.96e+0 (4.37e-2) -1.67e+0 (3.08e-2) -1.69e+0 (4.02e-2)
Yacht -1.79e+0 (3.23e-1) -2.05e+0 (6.61e-2) -2.00e+0 (3.27e-1) -2.47e+0 (1.06e-1) -2.23e+0 (1.84e-1)

Uniform Outliers
Synthetic 1.60e+0 (1.41e-2) 1.47e+0 (1.55e-2) 1.57e+0 (1.39e-2) 1.58e+0 (1.40e-2) -7.99e-1 (2.26e-2)
Boston 1.67e+0 (7.55e-3) 1.54e+0 (8.98e-3) 1.64e+0 (1.12e-2) 1.81e+0 (5.95e-2) 4.52e-1 (1.34e-1)
Concrete 1.64e+0 (6.83e-3) 1.51e+0 (6.56e-3) 1.63e+0 (7.57e-3) 1.63e+0 (6.72e-3) 1.47e-1 (2.51e-2)
Energy 1.61e+0 (7.75e-3) 1.50e+0 (1.76e-2) 1.61e+0 (9.74e-3) 1.70e+0 (8.58e-3) -1.67e+0 (3.72e-2)
Yacht 1.61e+0 (9.50e-3) 1.46e+0 (1.19e-2) 1.62e+0 (1.87e-2) 1.78e+0 (4.67e-2) -2.32e+0 (1.97e-1)

Asymmetric Outliers
Synthetic 1.94e+0 (9.39e-3) 1.90e+0 (9.98e-3) 1.89e+0 (1.13e-2) 1.93e+0 (1.06e-2) -3.70e-1 (2.30e-1)
Boston 1.68e+0 (1.01e-2) 1.56e+0 (1.09e-2) 1.64e+0 (9.51e-3) 2.52e+0 (7.26e-1) 6.14e-1 (1.19e-1)
Concrete 1.66e+0 (7.43e-3) 1.54e+0 (7.45e-3) 1.62e+0 (6.63e-3) 1.65e+0 (7.55e-3) 1.55e-1 (2.86e-2)
Energy 1.62e+0 (8.85e-3) 1.49e+0 (9.70e-3) 1.62e+0 (1.82e-2) 1.71e+0 (9.79e-3) -1.66e+0 (3.55e-2)
Yacht 1.59e+0 (9.35e-3) 1.45e+0 (1.01e-2) 1.56e+0 (8.15e-3) 1.75e+0 (1.41e-2) -2.17e-1 (1.82e+0)

Focused Outliers
Synthetic 6.78e-1 (6.59e-2) 6.11e-1 (8.68e-2) 5.69e-1 (4.07e-2) 6.66e-1 (6.60e-2) 9.67e+0 (2.24e+0)
Boston 2.57e-1 (4.23e-2) 3.21e-1 (6.40e-2) 2.74e-1 (6.13e-2) 1.98e-1 (3.04e-2) 1.97e-1 (3.06e-2)
Concrete 2.77e-1 (2.58e-2) 2.72e-1 (2.81e-2) 2.43e-1 (4.26e-2) 2.22e-1 (2.87e-2) 2.28e-1 (2.72e-2)
Energy 2.81e+4 (2.81e+4) -1.67e+0 (4.13e-2) -1.74e+0 (4.98e-2) -1.70e+0 (4.59e-2) -1.70e+0 (4.59e-2)
Yacht 9.38e+4 (5.09e+4) -4.60e-1 (2.91e-1) -2.47e+0 (8.09e-2) -2.63e+0 (5.55e-2) -2.61e+0 (5.66e-2)

a variational (referred to as Huber-Projection) to get as close as possible to a direct comparison to
Algikar and Mili [1] without access to a Matlab license.

Tables 4 and 5 shows the root mean square error and negative log predictive density on the Neal,
Friedman 5 and Friedman 10 test functions, as well as the Yacht Hydrodynamics [27] and California
Housing [51] datasets from the UCI database [34], where 15% of the training data sets of the models
were corrupted. Tables 6 and 7 below were generated in a similar way, but 100% of the data were
subject to heavier-tailed noise, either Student-t or Laplace.

In summary, the Relevance Pursuit model generally outperforms the variational GPs with heavy-tailed
likelihoods when the corruptions are a sparse subset of all observations. Unsurprisingly, the GPs with
heavy-tailed likelihoods perform best when all observations are subject to heavy-tailed noise. While
such uniformly heavy-tailed noise does exist in practice, we stress that this is a distinct setting to
the common setting where datasets contain a subset of a-priori unknown outliers, while a dominant
fraction of the data can be considered inliers that, once they are identified, can be used to train a
model without additional treatment.
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Table 4: Comparison with Huber GP: Root mean square error with 15% Corruptions

Data Standard Relevance Pursuit Student-t Laplace Huber Huber + Projection

Neal
Uniform 3.87e-1 (2.40e-2) 3.79e-2 (1.10e-2) 4.18e-1 (8.65e-3) 4.18e-1 (4.72e-3) 4.18e-1 (4.76e-3) 4.18e-1 (4.76e-3)
Constant 1.91e+0 (1.18e-1) 4.37e-2 (1.87e-2) 7.26e-1 (1.38e-1) 4.73e-1 (1.28e-2) 4.89e-1 (1.62e-2) 4.89e-1 (1.62e-2)
Student-t 7.74e-1 (2.70e-1) 6.71e-2 (2.29e-2) 3.90e-1 (3.59e-3) 4.07e-1 (4.79e-3) 4.09e-1 (5.02e-3) 4.09e-1 (5.02e-3)
Laplace 7.19e-1 (6.17e-2) 6.27e-2 (1.52e-2) 4.01e-1 (4.42e-3) 4.20e-1 (4.34e-3) 4.20e-1 (4.00e-3) 4.20e-1 (4.00e-3)

Friedman 5
Uniform 2.05e+0 (8.83e-2) 9.40e-2 (1.23e-2) 7.01e-1 (1.37e-1) 7.30e-1 (7.33e-2) 6.78e-1 (6.67e-2) 7.12e-1 (7.50e-2)
Constant 1.48e+1 (5.16e-1) 7.29e-2 (5.40e-3) 8.98e-1 (1.40e-1) 2.37e+0 (5.19e-2) 2.50e+0 (7.18e-2) 2.50e+0 (7.18e-2)
Student-t 7.91e+0 (8.80e-1) 1.17e-1 (2.24e-2) 5.26e-1 (1.26e-1) 1.27e+0 (9.49e-2) 1.36e+0 (9.34e-2) 1.31e+0 (9.73e-2)
Laplace 7.59e+0 (4.98e-1) 9.63e-2 (1.15e-2) 6.62e-1 (1.34e-1) 1.51e+0 (7.78e-2) 1.63e+0 (6.89e-2) 1.63e+0 (6.89e-2)

Friedman 10
Uniform 1.67e+0 (4.94e-2) 4.84e-2 (6.21e-3) 5.92e-1 (1.36e-1) 6.82e-1 (1.03e-1) 6.74e-1 (1.04e-1) 5.93e-1 (9.43e-2)
Constant 1.34e+1 (2.97e-1) 5.12e-2 (2.69e-3) 8.63e-1 (1.39e-1) 2.10e+0 (2.39e-2) 2.18e+0 (3.01e-2) 2.18e+0 (3.01e-2)
Student-t 7.93e+0 (1.75e+0) 8.45e-2 (2.42e-2) 5.30e-1 (1.30e-1) 1.40e+0 (9.10e-2) 1.40e+0 (9.12e-2) 1.40e+0 (9.04e-2)
Laplace 6.42e+0 (3.42e-1) 5.70e-2 (8.16e-3) 7.23e-1 (1.39e-1) 1.64e+0 (4.98e-2) 1.72e+0 (1.06e-2) 1.72e+0 (1.06e-2)

Yacht
Uniform 6.72e+0 (5.08e-1) 8.56e-1 (4.99e-2) 1.62e+1 (1.81e-1) 1.62e+1 (2.08e-1) 1.61e+1 (2.04e-1) 1.61e+1 (1.94e-1)
Constant 3.50e+1 (1.61e+0) 8.27e-1 (5.78e-2) 1.60e+1 (2.11e-1) 1.59e+1 (2.02e-1) 1.55e+1 (1.73e-1) 1.58e+1 (1.95e-1)
Student-t 2.11e+1 (3.51e+0) 1.12e+0 (2.03e-1) 1.64e+1 (2.17e-1) 1.67e+1 (2.15e-1) 1.64e+1 (2.08e-1) 1.66e+1 (2.02e-1)
Laplace 1.61e+1 (1.97e+0) 1.15e+0 (1.84e-1) 1.63e+1 (2.10e-1) 1.64e+1 (4.06e-1) 1.63e+1 (2.05e-1) 1.66e+1 (1.99e-1)

CA Housing
Uniform 7.10e-1 (7.58e-3) 7.39e-1 (1.75e-2) 1.16e+0 (1.79e-3) 1.17e+0 (3.04e-3) 1.17e+0 (2.93e-3) 1.18e+0 (6.17e-3)
Constant 2.28e+0 (5.12e-2) 6.35e-1 (4.38e-3) 1.17e+0 (2.39e-3) 1.16e+0 (1.87e-3) 1.16e+0 (1.88e-3) 1.17e+0 (5.51e-3)
Student-t 1.34e+0 (1.68e-1) 6.56e-1 (5.46e-3) 1.18e+0 (3.56e-3) 1.19e+0 (4.13e-3) 1.18e+0 (3.83e-3) 1.19e+0 (6.74e-3)
Laplace 1.00e+0 (5.04e-2) 6.51e-1 (4.71e-3) 1.18e+0 (3.41e-3) 1.18e+0 (3.91e-3) 1.18e+0 (3.67e-3) 1.18e+0 (6.30e-3)

Table 5: Comparison with Huber GP: Negative log predictive density with 15% Corruptions

Data Standard Relevance Pursuit Student-t Laplace Huber Huber + Projection

Neal
Uniform 6.87e+0 (4.15e+0) 3.80e+0 (4.01e+0) 1.85e+0 (9.93e-2) 1.64e+0 (1.20e-1) 1.70e+0 (1.23e-1) 1.70e+0 (1.23e-1)
Constant 1.32e+2 (1.29e+2) -2.50e+0 (2.99e-1) 2.03e+0 (1.84e-1) 8.67e-1 (4.32e-2) 8.84e-1 (3.87e-2) 8.84e-1 (3.87e-2)
Student-t 1.98e+0 (9.67e-1) 1.99e-1 (2.29e+0) 1.67e+0 (1.17e-1) 1.25e+0 (8.32e-2) 1.28e+0 (8.03e-2) 1.28e+0 (8.03e-2)
Laplace 3.07e+2 (2.15e+2) 2.02e+0 (2.83e+0) 1.73e+0 (1.10e-1) 1.20e+0 (8.89e-2) 1.21e+0 (8.99e-2) 1.21e+0 (8.99e-2)

Friedman 5
Uniform 2.07e+0 (4.88e-2) -1.35e+0 (7.22e-2) 4.67e-1 (3.00e-1) 8.88e-1 (1.01e-1) 8.29e-1 (9.14e-2) 8.88e-1 (1.08e-1)
Constant 4.28e+0 (2.25e-2) -1.13e+0 (1.82e-2) 8.24e-1 (3.17e-1) 2.28e+0 (2.63e-2) 2.34e+0 (3.13e-2) 2.34e+0 (3.13e-2)
Student-t 3.42e+0 (1.34e-1) -1.11e+0 (1.04e-1) 1.78e-2 (2.86e-1) 1.55e+0 (1.14e-1) 1.66e+0 (1.11e-1) 1.59e+0 (1.10e-1)
Laplace 3.55e+0 (7.84e-2) -1.22e+0 (5.89e-2) 3.47e-1 (3.13e-1) 1.75e+0 (8.46e-2) 1.90e+0 (7.36e-2) 1.90e+0 (7.36e-2)

Friedman 10
Uniform 1.86e+0 (3.04e-2) -1.82e+0 (3.97e-2) 6.78e-2 (3.85e-1) 9.20e-1 (1.99e-1) 9.39e-1 (2.01e-1) 7.65e-1 (1.80e-1)
Constant 4.21e+0 (1.39e-2) -1.27e+0 (1.10e-2) 8.85e-1 (3.79e-1) 2.20e+0 (1.45e-2) 2.23e+0 (1.54e-2) 2.23e+0 (1.54e-2)
Student-t 3.34e+0 (1.24e-1) -1.40e+0 (1.17e-1) -6.80e-2 (3.65e-1) 1.96e+0 (1.25e-1) 1.95e+0 (1.23e-1) 1.96e+0 (1.22e-1)
Laplace 3.46e+0 (6.68e-2) -1.44e+0 (5.91e-2) 4.89e-1 (3.94e-1) 2.13e+0 (6.35e-2) 2.21e+0 (2.01e-2) 2.21e+0 (2.01e-2)

Yacht
Uniform 3.45e+0 (1.42e-1) 2.37e+0 (2.79e-1) 1.18e+2 (1.06e+1) 7.07e+1 (5.17e+0) 7.46e+1 (5.38e+0) 1.89e+2 (1.64e+1)
Constant 5.29e+0 (1.70e-1) 1.79e+0 (2.43e-1) 7.16e+1 (7.68e+0) 2.32e+1 (1.59e+0) 1.95e+1 (1.12e+0) 3.89e+1 (3.46e+0)
Student-t 4.46e+0 (3.08e-1) 2.42e+0 (3.38e-1) 1.32e+2 (1.05e+1) 8.20e+1 (5.07e+0) 8.13e+1 (5.17e+0) 1.55e+2 (1.38e+1)
Laplace 4.35e+0 (2.88e-1) 2.27e+0 (3.71e-1) 1.14e+2 (9.86e+0) 6.85e+1 (4.72e+0) 6.12e+1 (3.87e+0) 1.17e+2 (8.89e+0)

CA Housing
Uniform 3.14e+0 (1.44e-1) 2.92e+0 (2.06e-1) 5.85e+1 (9.59e-1) 6.77e+1 (2.41e+0) 6.69e+1 (1.94e+0) 8.94e+1 (2.45e+1)
Constant 3.57e+0 (2.26e-1) 4.51e+0 (2.11e-1) 4.02e+1 (1.59e+0) 1.83e+1 (6.58e-1) 1.75e+1 (7.03e-1) 2.18e+1 (4.19e+0)
Student-t 1.77e+0 (6.65e-2) 3.15e+0 (1.67e-1) 5.95e+1 (1.44e+0) 5.20e+1 (2.19e+0) 4.95e+1 (1.75e+0) 6.90e+1 (2.02e+1)
Laplace 1.61e+0 (4.21e-2) 3.51e+0 (1.93e-1) 5.60e+1 (1.58e+0) 4.23e+1 (1.72e+0) 4.06e+1 (1.47e+0) 5.62e+1 (1.66e+1)

Table 6: Comparison with Huber GP: Root mean squared error for 100% Laplace noise

Data Standard Relevance Pursuit Student-t Laplace Huber Huber + Projection

Neal
Student-t 1.96e+0 (3.64e-1) 1.56e+0 (2.48e-1) 7.39e-1 (4.08e-2) 7.54e-1 (3.17e-2) 7.48e-1 (3.00e-2) 7.48e-1 (3.01e-2)
Laplace 1.51e+0 (1.06e-1) 2.40e+0 (2.72e-1) 1.16e+0 (9.18e-2) 1.12e+0 (9.90e-2) 1.12e+0 (9.80e-2) 1.12e+0 (9.80e-2)

Friedman 5
Student-t 1.67e+1 (1.83e+0) 9.30e+0 (3.05e-1) 5.26e+0 (1.30e-1) 4.57e+0 (1.60e-1) 4.61e+0 (1.55e-1) 4.61e+0 (1.55e-1)
Laplace 1.39e+1 (5.95e-1) 1.37e+1 (6.36e-1) 8.33e+0 (3.69e-1) 7.34e+0 (3.50e-1) 7.40e+0 (3.45e-1) 7.40e+0 (3.45e-1)

Friedman 10
Student-t 2.10e+1 (3.42e+0) 7.80e+0 (2.03e-1) 4.72e+0 (1.14e-1) 4.02e+0 (9.57e-2) 4.05e+0 (9.34e-2) 4.05e+0 (9.34e-2)
Laplace 1.30e+1 (3.77e-1) 1.27e+1 (3.99e-1) 7.24e+0 (1.99e-1) 6.07e+0 (1.91e-1) 6.26e+0 (1.71e-1) 6.26e+0 (1.71e-1)

Yacht
Student-t 5.89e+1 (1.37e+1) 2.44e+1 (1.77e+0) 1.57e+1 (1.36e-1) 1.57e+1 (1.51e-1) 1.57e+1 (1.51e-1) 1.60e+1 (3.16e-1)
Laplace 2.57e+1 (1.17e+0) 4.75e+1 (3.51e+0) 1.64e+1 (3.18e-1) 1.61e+1 (2.52e-1) 1.62e+1 (2.60e-1) 1.67e+1 (3.55e-1)

CA Housing
Student-t 2.92e+0 (5.80e-1) 1.24e+0 (6.17e-2) 1.17e+0 (3.65e-3) 1.18e+0 (4.42e-3) 1.17e+0 (4.14e-3) 1.21e+0 (3.05e-2)
Laplace 1.57e+0 (8.25e-2) 2.06e+0 (1.44e-1) 1.21e+0 (1.08e-2) 1.20e+0 (9.39e-3) 1.20e+0 (9.69e-3) 1.23e+0 (2.05e-2)
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Table 7: Comparison with Huber GP: Negative log predictive density with 100% Laplace noise

Data Standard Relevance Pursuit Student-t Laplace Huber Huber + Projection

Neal
Student-t 1.95e+0 (1.22e-1) 8.78e+1 (2.80e+1) 1.17e+0 (6.08e-2) 1.22e+0 (5.71e-2) 1.20e+0 (5.17e-2) 1.21e+0 (5.15e-2)
Laplace 1.89e+0 (1.14e-1) 1.38e+2 (3.98e+1) 1.57e+0 (9.22e-2) 1.55e+0 (9.20e-2) 1.55e+0 (9.12e-2) 1.55e+0 (9.12e-2)

Friedman 5
Student-t 4.43e+0 (8.19e-2) 3.93e+0 (2.19e-2) 3.11e+0 (2.69e-2) 2.96e+0 (3.49e-2) 2.97e+0 (3.27e-2) 2.97e+0 (3.27e-2)
Laplace 4.55e+0 (2.81e-2) 4.56e+0 (1.88e-2) 3.64e+0 (4.03e-2) 3.46e+0 (4.45e-2) 3.48e+0 (4.31e-2) 3.48e+0 (4.31e-2)

Friedman 10
Student-t 4.60e+0 (8.54e-2) 3.89e+0 (1.36e-2) 3.04e+0 (2.45e-2) 2.83e+0 (2.30e-2) 2.84e+0 (2.22e-2) 2.84e+0 (2.22e-2)
Laplace 4.58e+0 (1.25e-2) 4.57e+0 (1.27e-2) 3.60e+0 (2.53e-2) 3.32e+0 (3.01e-2) 3.37e+0 (2.61e-2) 3.37e+0 (2.61e-2)

Yacht
Student-t 5.14e+0 (1.85e-1) 4.60e+0 (8.15e-2) 7.30e+0 (1.40e-1) 6.79e+0 (1.52e-1) 6.70e+0 (1.32e-1) 1.28e+1 (7.75e-1)
Laplace 4.74e+0 (4.45e-2) 5.30e+0 (8.31e-2) 4.91e+0 (8.87e-2) 5.19e+0 (1.17e-1) 5.12e+0 (1.04e-1) 9.90e+0 (6.44e-1)

CA Housing
Student-t 2.08e+0 (1.01e-1) 1.79e+0 (6.40e-2) 7.41e+0 (2.39e-1) 6.52e+0 (2.54e-1) 6.41e+0 (2.07e-1) 6.83e+0 (3.28e-1)
Laplace 1.88e+0 (5.25e-2) 2.24e+0 (9.41e-2) 2.92e+0 (6.01e-2) 3.33e+0 (7.47e-2) 3.27e+0 (5.84e-2) 6.64e+0 (3.28e+0)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Everything that is claimed in the abstract and introduction is discussed in detail
in the rest of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of the work are mentioned throughout the paper as well as summa-
rized in the conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All theoretical results clearly state the required assumptions; proofs are
provided in Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Code for our method as well as for the benchmarking setup is provided in
the supplementary material, and core models and algorithms will be open-sourced upon
publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code for reproducing the results in the paper is included in the supplementary
material. All data sets are publicly available and referenced in the work and the code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details on the experiments are provided in the experimental section as well as
the Appendix. Exact implementation details are contained in the included code submission.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Variance in the results is provided throughout in the form of confidence
intervals and/or violin plots.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Total compute resources spent are described in Section D.4 and are estimated
at around 2 CPU years in total.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research fully conforms to the NeurIPS Code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper makes foundational methodological contributions to robust prob-
abilistic regression, and we do not see any direct societal impacts of the work that would
require specific discussion.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All creators or original owners of the code and data sets that were used in this
paper are properly cited and credited. Licenses for these assets are mentioned in Sec. D and
our use complies with those licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The only new asset introduced in this paper is the code for method and
benchmarks; it does not introduce any other assets (data sets or models). The code is
provided as an anonymized zip file for the reviewers. Upon publication, the code released as
open source and documented according to community standards.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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