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1 Hardware Setup

We use a specially designed camera rig (Fig. 1, (a)) to capture the synchronized multi-modal image
sequences in a free hand manner. RGB and polarization images are acquired with a Phoenix 5.0 MP
Polarization camera (PHX050S1-QC, LUCID Vision Labs, Canada) equipped with a Sony Polarsens
sensor (IMX264MYR CMOS, Sony, Japan). For the depth images, we use two depth modality,
active stereo depth and indirect time-of-flight depth. Intel RealSense D435 (Intel, USA) is used for
the active stereo depth and Lucid Helios (HLS003S-001, LUCID Vision Labs, Canada) is used for
indirect time-of-flight depth. For synchronization, a Raspberry Pi generates a trigger signal that is
connected to all cameras to trigger the image acquisition.

Two different types of scanners are used for the scanning. For the small household objects, such
as cups or water bottles, we use the table-top scanner (EinScan-SP, SHINING 3D Tech. Co., Ltd.,
Hangzhou, China, Fig. 1, (b)) to capture the meshes with fine details. For the larger objects that do
not fit to the table-top scanner, such as furniture or medium size objects or room, we use hand held
scanner (Artec-Leo, Artec 3D, Luxembourg, Fig. 1, (c)) that runs SLAM internally for tracking the
scanning. To scan large texture-less areas, such as walls or big tables, we use small stripes of masking
tape on the surface to provide additional texture (Fig. 2, (a)) during the scanning. Later, the textures
from the masking tapes are removed via the texture healing function in Artec Studio 17 ((Fig. 2, (b)).

2 Dataset Examples

Indoor Reconstruction and SLAM Dataset. We provide 11 scenes that comprise 7114 frames,
94 object & furniture meshes and 7 indoor room meshes for the indoor reconstruction and SLAM
dataset. Note that all furniture and objects in the scenes are scanned prior to ensure the meshes are
high resolution and water-tight, in order to serve as digital twin assets so that the rendered depth does
not miss any parts of the scene. The visualization of each scene mesh is shown in Fig. 3.
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Figure 1: Hardware Setup.

Figure 2: Example of Wall Scanning. To help tracking the hand-held scanner on the plain white
wall, we attach patches of masking tape on the wall to provide additional texture (a). Later, the texture
of the tape can be removed in a post-processing step (b).

Object Removal & Scene Editing Dataset. We capture multiple additional video sequences for
each of the 8 selected scenes from the indoor reconstruction and SLAM dataset each with a reduced
number of objects or furniture to obtain multiple examples for object removal and scene editing tasks.
This set is comprised of additional 9323 frames. A visualization of each reduced scene is shown in
Fig. 4- 11. Note that for each reduced scene, we capture the real image sequence with the camera rig.

Human Reconstruction Dataset. For the semi-dynamic human sequences with the mannequin, we
do scanning, registration, rendering and mapping for all individual frames. We showcase 2 scenes
captured with this setup. We show the scene with a single human mesh from the first frame (Fig 12,
left) to show the scene setup as well as all human meshes from the entire video sequence (Fig 12,
right) to show the motion range of the mannequin. Note that around 4 real images are captured per
time frame for the mapping step.

6D Pose Estimation Dataset. We showcase two pose dataset scenes in Fig 13. By nature of
our dataset annotation pipeline, we can obtain object poses w.r.t. the world coordinate system
Tobj−>world and camera poses w.r.t. the world coordinate system Tcam−>world. By concatenating
both pose in the right order (e.g. T−1

obj−>world · Tobj−>world), the object pose w.r.t. the camera center
Tobj−>cam, the so called 6D object pose, can be obtained. Having registered the object poses using
our framework, the free-hand camera rig can be used to quickly and easily capture a pose dataset
with extensive camera coverage.
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Figure 3: Example of Indoor Reconstruction and SLAM Scenes.

Figure 4: Example of Reduced Scenes For Scene01.
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Figure 5: Example of Reduced Scenes For Scene02.

Figure 6: Example of Reduced Scenes For Scene04.
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Figure 7: Example of Reduced Scenes For Scene05.

Figure 8: Example of Reduced Scenes For Scene06.
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Figure 9: Example of Reduced Scenes For Scene07.

Figure 10: Example of Reduced Scenes For Scene08.

6



Figure 11: Example of Reduced Scenes For Scene09.
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Figure 12: Example of Human Dataset Scenes.

Figure 13: Example of Pose Dataset Scenes.
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3 Dataset Comparison

In this section, we show more in-depth comparisons between the existing indoor datasets and our
dataset using meshes of the scanned scenes. We choose the ScanNet++ [1] and Replica dataset [2]
for comparison.

The ScanNet++ dataset is an improved version of ScanNet [3]. Instead of using a commercial depth
sensor like its predecessor, ScanNet++ uses a LiDAR sensor that rotates and captures a more accurate
360° pointcloud of the scene. To be less dependent on the sensor’s line-of-sight ScanNet++ captures
the scene from multiple locations in the scene in order to improve the quality and completeness of
the mesh. However, no post-processing is applied, such as hole filling, so that the final mesh still
has many missing parts, limiting the use of the scene meshes as ground truth for rendering complete
views. This is because for the areas with missing geometry the background is visible in the rendering
instead of the foreground such that a metric using the incomplete mesh as ground truth will penalize a
method that models the foreground object correctly. We show in Fig. 14 that our dataset provides the
full details on the office furniture such as the chairs, the trash bin, the monitor etc while ScanNet++
suffers from incomplete and missing parts in the mesh.

Figure 14: ScanNet++ Dataset VS Ours.

9



Unlike ScanNet++, the Replica dataset scans the scene with a specially designed camera rig that
contains multiple sensors to obtain the mesh in more detail. Also, after the scanning, a manual
hole-filling process is used to complete the mesh if the missing area is part of a flat surface. For this
reason, the meshes of the Replica dataset are much more complete compared to ScanNet++. However,
we find that meshes in the Replica dataset in general are overly smoothed and lack details. Also there
are parts missing on non-flat surfaces, such as the legs of a chair or the tab of the sink. In Fig. 15 we
provide a comparison between the Replica dataset and our dataset. We show a kitchen scene from
each dataset to demonstrate that compared with Replica our dataset contains all small details of the
scene, such as the small handles of the kitchen cabinet (zoom in for more details). We also show that
the legs of the chairs and table are missing in a living room scene from the Replica dataset, while our
dataset contains these parts in a high quality. We also attach in detailed comparison of the datasets in
our supplementary video file.

Figure 15: Replica Dataset VS Ours.
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4 Dataset Documentation

Our dataset includes scene folders with 3 different conventions. Folders with the "sceneXX"
convention contain data for the Indoor Reconstruction and SLAM Dataset and Object
Removal and Scene Editing Dataset, folders with labelled "human_sceneXX" contain the
Human Reconstruction Dataset and folders named "pose_sceneXX" contain the 6D Pose
Estimation Dataset. In this section, we explain the file structure of the dataset and describe
the naming conventions for individual files in the folders. To access the dataset’s download link as
well as python code for data loading and visualization, please visit https://github.com/Junggy/
SCRREAM.

4.1 Indoor Reconstruction and SLAM Dataset and Object Removal and Scene Editing
Dataset.

Both the Indoor Reconstruction and SLAM Dataset and the Object Removal and Scene
Editing Dataset follow the same format. The "sceneXX" folders contain 3 sub-folders:
"meshes", "sceneXX_full_XX" and "sceneXX_reduced_XX".

The "meshes" folder contains independent meshes of the full scene that are aligned w.r.t.
world coordinate system as "*.obj" files. Therefore loading all meshes together shows the
full scene in the world coordinate system. Each mesh file follows a naming convention of
"{class_name}-{instance_name}.obj". For example, a monitor object with of the old_tall
instance is named "monitor-old_tall.obj". This naming convention allows easy identification
of both class and instance of the objects in the scene.

The "sceneXX_full_XX" and "sceneXX_reduced_XX" folders contain the data regarding
the image sequences, such as "camera_pose", "depth_d435", "depth_gt", "depth_tof",
"instance", "pol", "rgb", "sparse", "intrinsics.txt", "meta.txt" and "video.avi".
The detailed folder layout is shown in Fig. 16. Both full scene and reduced scene have the same file
structure. Metadata from "meta.txt" can be used to identify the removed objects in the reduced
scenes.

Figure 16: File Structure of the Indoor Reconstruction and SLAM Dataset and Object Removal
and Scene Editing Dataset.
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The "camera_pose" folder contains the camera pose for each image frame in the 4x4 matrix format
saved as numpy matrix in a text file. The camera pose’s definition is Tcam−>world, meaning that
each frame’s translation element refers to the camera center in the scene. The matrix can be loaded
with the "np.loadtxt" function.

The "depth_d435", "depth_gt", "depth_tof" folders contain the depth images for each im-
age frame. Each depth image is saved as a 16bit image in mm units meaning that pixel value
1000 represents 1 meter. The depth images can be loaded in meter units by using opencv-python’s
"cv2.imread" function, "cv2.imread("XXXXXX.png",-1).astype(np.uint16)/1000". Im-
ages from both the "depth_d435" and "depth_tof" folders are obtained from the real depth
sensors and warped or aligned to the RGB image in a forward manner (e.g. forward-warping) using
their own depth values, the extrinsic calibration matrix and RGB sensor’s intrinsic matrix. Note that
due to sensor noise, the warped depth are often not well aligned to the corresponding RGB image.
Images in the "depth_gt" folder are the ground truth depth maps that are rendered from the object
meshes and camera poses and serve as absolute ground truth for the depth evaluation benchmark.

The "instance" folder contains the corresponding instance segmentation images for the given RGB
frames. The segmentation is obtained by rendering the individual objects with a unique value using
the camera pose and intrinsic matrix. The mapping between the pixel values and object instances is
provided in the "meta.txt" file. We keep the same mapping between the full and reduced scenes
for convenience.

The "meta.txt" file contains the metadata that is mapping between the instance pixel values and
the object meshes in the scene. Each line of metadata follows the convention of "{class_name}
{mesh_name} {pixel_value}". For example if the pixel value of "keyboard-grey_old" is
165 in the instance image, its written as "keyboard keyboard-grey_old 165". With this,
one can convert the instance segmentation image into a class segmentation image. Note that
this metadata shares the same mapping value per scene, for example "room room-office
240" is in the metadata from both "scene01_full_00" and "scene01_reduced_00", while as
"keyboard-grey_old" is not present in "scene01_reduced_00", the metadata does not contain
"keyboard keyboard-grey_old 165" (Fig. 17).

Figure 17: Example of Instance Segmentation and Metadata Mapping for a Full and Reduced
Scene.

The "pol" folder contains polarimetric images obtained from the Lucid Phoenix polarization camera.
Polarimetric images are stored as 4 RGB images with 4 different polarization angles (0,45,90,135
degree) arranged in a clockwise manner starting from the left top side. All 4 images are un-distorted
so that no distortion coefficient is needed and intrinsic matrix is saved in "intrinsics.txt".

The "rgb" folder contains the RGB image sequence. The RGB images are obtained by averaging the
4 polarization images and share the same intrinsics as "intrinsics.txt".

The "sparse" folder contains the COLMAP [4, 5] output that is obtained by running COLMAP with
the ground truth camera pose. We fix the camera poses to keep the scale unchanged. We specifically
provide this folder to make our dataset compatible with 3D Gaussian Splatting [6] variants.

The "video.avi" is an example video that serves as qualitative evaluation of the camera trajectory
as well as annotation quality. The video contains the visualization of depth maps and depth error and
the instance image overlaid on the RGB image as shown in Fig. 18.
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Figure 18: Example of the video.avi layout.

4.2 Human Reconstruction Dataset

The Human Reconstruction Dataset shares a similar file structure as the Indoor
Reconstruction and SLAM Dataset and the Object Removal and Scene Editing
Dataset. There a are few differences in the folder arrangement as well as file naming convention as
4 images are captured per human posture. See Fig. 19 for an overview.

Figure 19: File Structure of the Human Reconstruction Dataset.

13



The "meshes" folder contains the meshes of the scene as in the previous dataset setup. However,
the folder contains all human meshes from different postures as well. We capture 45 postures for
"human_scene_01" and 37 postures for "human_scene_02". Each human posture is scanned with
the hand-held scanner in a high resolution and water-tight manner like the other objects meshes and
we save the mesh with the naming convention "human-{posture}.obj".

The "human_annotation" folder contains SMPL [7] parameter annotations for each human pos-
ture. The *.pkl" files contain SMPL annotations as a python pickle file and the *.ply" files
are the SMPL vertices / mesh generated from the pickle file. Both files follow the convention of
"human-{posture}_smpl" with extension of *.pkl" and *.ply". The *.pkl"’s SMPL annota-
tion follows the same convention as in [8, 9] that contains a 72 channel vector for the "pose" (first
3 channels are for "global_orient", the remaining 69 channels are for the "body_pose"), a 300
channel vector for the shape "betas" and a 3 channel vector for the translation "trans".

The "camera_pose" folder contains the camera pose for each image frame in the 4x4 matrix format
as in the reconstruction and SLAM dataset. However, as the human dataset captures 4 multi-view
images on single human posture, it contains 4 poses per posture. Camera poses files are saved with
the convention "{posture}-{view}.txt".

All image files including depths, RGBs, instances are saved the same way as in the Reconstruc-
tion and SLAM dataset but saved with the same convention as for the camera poses due to the
4 multi-view images captured per human posture. All images follow the same convention of
"{posture}-{view}.png".

While "meta.txt" has the same mapping information as in the previous dataset setup, plus the
humans with the convention of "human 00 {pixel_value}". For the humans no mesh name is
provided in the middle as there are multiple human meshes per scene but all share the same pixel
value in the instance images throughout the same scene.

4.3 6D Pose Estimation Dataset

The contents in the "6D Pose Estimation Dataset" share the same principle as in the Indoor
Reconstruction and SLAM Dataset and Object Removal and Scene Editing Dataset
for the image folders ("depth_d435", "depth_gt", "depth_tof", "depth_instance", "pol",
"rgb"), "intrinsics.txt" and "meta.txt" files, while it contains additional folders, such as
"pose_meshes_canonical" and "labels" for the 6D pose annotation. An overview of the file
structure is shown in Fig. 20.

The "pose_meshes_canonical" folder contains the meshes of the target objects for the pose
estimation in canonical orientation in contrast to the meshes in "meshes" in the other dataset format
that are defined in world coordinates. The canonical meshes are self-centered (object center is in the
center of it’s bounding box) and follow specific orientation convention per class or category (Fig. 21,
(a)), while the meshes from the previous dataset are centered and oriented according to their layout
in the scene (Fig. 21, (b)). Although they have differences in their orientation, we follow the same
naming convention as "{class_name}-{instance_name}.obj".

The "labels" folder contains the 6D pose annotation information as a pickle file with the
convention of "{frame}_label.pkl". We provide the pickle file in a similar format as the
NOCS [10] dataset’s labels. Each pickle file contains a python dictionary of the following keys :
"model_list", "instance_ids", "class_ids", "scales", "rotations", "translations",
"bboxes", "gt_scales".

1. "model_list" is a python list containing a tuple of each object’s name and pixel value in the
instance image, such as [({obj_1_name}, {instance_value_1}),({obj_2_name},
{instance_value_2}) ... ].

2. "instance_ids" is a python list containing the instance value per object in the same order
as "model_list", such as [{instance_value_1}, {instance_value_2} ... ].

3. "class_ids" is a python list containing the mapping between the class name and a prede-
fined class id in the same order, such as [{class_id_1}, {class_id_2} ... ].

4. "scales" is a python list containing the diagonal length of each object in the same order,
such as [{diag_length_1}, {diag_length_2} ... ].
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Figure 20: File Structure of the 6D Pose Estimation Dataset.

Figure 21: Example of Meshes and "pose_video.avi". The object in the canonical orientation is
self centered and oriented according to a specific convention (i.e. standing with y-axis), while the
object in the scene orientation is oriented according to the scene’s layout. The meshes are visualized
in Meshlab [11].

5. "rotation" is a numpy array of shape (n_objects, 3, 3) that is an array of rotation matrices
for each object stacked along the first dimension in the same order.

6. "translation" is a numpy array of shape (n_objects, 3) that is an array of translation
vectors for each object stacked along the first dimension in the same order.

7. "bboxes" is a numpy array of shape (n_objects, 4) that
is an array of 2D bounding box annotations in the format
[{top_left_y},{top_left_x},{bottom_right_y},{bottom_right_x}] stacked
along the first dimension in the same order.

8. "gt_scales" is a numpy array of shape (n_objects, 3) that is an array with the mesh size
in the format [{size_x},{size_y},{size_z}] stacked along the first dimension in the
same order.

The "pose_video.avi" file contains the visualization of the pose annotation as 3D bounding boxes
and rendered object masks on the RGB video for a qualitative evaluation of the pose annotation
accuracy as well as camera trajectory coverage (Fig. 21).
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5 Full Benchmarks

In this section, we show the benchmark results of NVS and SLAM for each scene separately.

5.1 Novel View Synthesis

In this study, the poor performance of NeRFacto [12] in both RGB and depth quality demonstrates
the limitations in the model’s ability to learn fine details and accurate geometry. In contrast, Gaussian-
Splatting [6], Mip-Splatting [13], and Zip-NeRF [14] demonstrate superior performance in RGB
image reconstruction. These methods prioritize visual fidelity, resulting in high-quality image outputs.
However, the lack of geometric constraints in these models means that while they excel in producing
visually appealing images, they fall short in accurately capturing and reconstructing depth information.
Focusing on depth estimation, Depth-Facto [12] (AS) and Depth-Facto [12] (ToF) stand out for their
exemplary performance in depth estimation metrics. These methods leverage the integration of
multi-modal sensor data, which acts as an additional constraint, enhancing their ability to accurately
predict depth. The utilization of both AS and ToF sensor data demonstrates the significant advantage
of incorporating diverse and complementary data sources, leading to improved depth estimation
performance.

Table 1: NVS Benchmark for scene01
Evaluation RGB Depth
Method PSNR↑ SSIM↑ LPIPS↓ RSME↓ Abs Rel↓ Sqr Rel↓ <1.251 ↑ <1.252 ↑ <1.253 ↑
NeRFacto [12] 22.346 0.801 0.258 0.814 0.414 0.529 0.564 0.728 0.807
Depth-Facto [12] (AS) 25.313 0.828 0.244 0.224 0.086 0.068 0.939 0.956 0.964
Depth-Facto [12] (ToF) 25.267 0.827 0.242 0.300 0.090 0.099 0.908 0.928 0.941
Zip-NeRF [14] 29.548 0.832 0.142 0.322 0.177 0.075 0.647 0.955 0.972
Gaussian-Splatting [6] 28.282 0.848 0.279 0.322 0.133 0.068 0.777 0.904 0.952
Mip-Splatting [13] 28.384 0.848 0.278 0.309 0.122 0.061 0.803 0.925 0.956

Table 2: NVS Benchmark for scene02
Evaluation RGB Depth
Method PSNR↑ SSIM↑ LPIPS↓ RSME↓ Abs Rel↓ Sqr Rel↓ <1.251 ↑ <1.252 ↑ <1.253 ↑
NeRFacto [12] 24.011 0.808 0.300 1.243 0.528 0.951 0.493 0.635 0.763
Depth-Facto [12] (AS) 26.062 0.835 0.283 0.228 0.092 0.027 0.981 0.995 0.999
Depth-Facto [12] (ToF) 26.251 0.838 0.275 0.739 0.192 0.372 0.855 0.870 0.898
Zip-NeRF [14] 32.278 0.812 0.190 0.374 0.173 0.074 0.640 0.941 0.994
Gaussian-Splatting [6] 29.616 0.842 0.322 0.483 0.195 0.144 0.683 0.852 0.899
Mip-Splatting [13] 29.230 0.842 0.323 0.531 0.218 0.164 0.610 0.824 0.884

Table 3: NVS Benchmark for scene03
Evaluation RGB Depth
Method PSNR↑ SSIM↑ LPIPS↓ RSME↓ Abs Rel↓ Sqr Rel↓ <1.251 ↑ <1.252 ↑ <1.253 ↑
NeRFacto [12] 20.823 0.808 0.277 2.093 1.482 3.664 0.129 0.224 0.312
Depth-Facto [12] (AS) 24.227 0.869 0.207 0.500 0.199 0.341 0.915 0.939 0.956
Depth-Facto [12] (ToF) 24.524 0.875 0.236 0.960 0.366 0.816 0.777 0.805 0.827
Zip-NeRF [14] 33.581 0.905 0.117 0.368 0.187 0.086 0.616 0.910 0.969
Gaussian-Splatting [6] 28.928 0.920 0.274 0.531 0.253 0.173 0.452 0.788 0.902
Mip-Splatting [13] 29.304 0.920 0.273 0.527 0.257 0.170 0.444 0.760 0.903
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Table 4: NVS Benchmark for scene04, sequence00

Evaluation RGB Depth
Method PSNR↑ SSIM↑ LPIPS↓ RSME↓ Abs Rel↓ Sqr Rel↓ <1.251 ↑ <1.252 ↑ <1.253 ↑
NeRFacto [12] 21.880 0.775 0.284 1.102 0.485 0.740 0.431 0.655 0.815
Depth-Facto [12] (AS) 22.803 0.791 0.247 0.262 0.088 0.036 0.950 0.979 0.993
Depth-Facto [12] (ToF) 23.060 0.800 0.246 0.306 0.062 0.055 0.932 0.958 0.977
Zip-NeRF [14] 24.267 0.783 0.232 0.602 0.244 0.208 0.510 0.825 0.914
Gaussian-Splatting [6] 20.037 0.758 0.379 1.002 0.393 0.494 0.321 0.519 0.653
Mip-Splatting [13] 20.605 0.766 0.370 1.032 0.412 0.508 0.271 0.485 0.615

Table 5: NVS Benchmark for scene04, sequence01

Evaluation RGB Depth
Method PSNR↑ SSIM↑ LPIPS↓ RSME↓ Abs Rel↓ Sqr Rel↓ <1.251 ↑ <1.252 ↑ <1.253 ↑
NeRFacto [12] 23.323 0.771 0.324 1.216 0.723 1.089 0.269 0.428 0.662
Depth-Facto [12] (AS) 25.453 0.803 0.292 0.268 0.084 0.062 0.951 0.962 0.982
Depth-Facto [12] (ToF) 25.370 0.804 0.288 0.284 0.067 0.069 0.933 0.949 0.967
Zip-NeRF [14] 25.046 0.765 0.344 0.781 0.441 0.498 0.352 0.546 0.610
Gaussian-Splatting [6] 23.207 0.784 0.374 0.691 0.340 0.303 0.374 0.589 0.714
Mip-Splatting [13] 23.008 0.782 0.378 0.711 0.359 0.327 0.356 0.559 0.676

Table 6: NVS Benchmark for scene05
Evaluation RGB Depth
Method PSNR↑ SSIM↑ LPIPS↓ RSME↓ Abs Rel↓ Sqr Rel↓ <1.251 ↑ <1.252 ↑ <1.253 ↑
NeRFacto [12] 20.897 0.755 0.371 1.175 0.672 1.025 0.340 0.500 0.688
Depth-Facto [12] (AS) 23.172 0.786 0.360 0.141 0.059 0.016 0.975 0.984 0.993
Depth-Facto [12] (ToF) 23.038 0.785 0.357 0.202 0.058 0.057 0.941 0.960 0.971
Zip-NeRF [14] 24.206 0.770 0.364 0.633 0.348 0.325 0.410 0.654 0.735
Gaussian-Splatting [6] 25.627 0.817 0.345 0.482 0.224 0.160 0.590 0.791 0.879
Mip-Splatting [13] 25.177 0.814 0.345 0.472 0.222 0.158 0.604 0.801 0.880

Table 7: NVS Benchmark for scene06
Evaluation RGB Depth
Method PSNR↑ SSIM↑ LPIPS↓ RSME↓ Abs Rel↓ Sqr Rel↓ <1.251 ↑ <1.252 ↑ <1.253 ↑
NeRFacto [12] 23.050 0.809 0.262 0.921 0.420 0.663 0.599 0.789 0.864
Depth-Facto [12] (AS) 24.118 0.813 0.269 0.126 0.035 0.008 0.988 0.997 0.999
Depth-Facto [12] (ToF) 24.106 0.812 0.267 0.098 0.019 0.008 0.988 0.994 0.997
Zip-NeRF [14] 26.724 0.818 0.224 0.403 0.203 0.116 0.623 0.890 0.937
Gaussian-Splatting [6] 26.992 0.833 0.269 0.386 0.141 0.081 0.793 0.948 0.979
Mip-Splatting [13] 26.992 0.833 0.269 0.386 0.141 0.081 0.793 0.948 0.979

Table 8: NVS Benchmark for scene07
Evaluation RGB Depth
Method PSNR↑ SSIM↑ LPIPS↓ RSME↓ Abs Rel↓ Sqr Rel↓ <1.251 ↑ <1.252 ↑ <1.253 ↑
NeRFacto [12] 22.820 0.672 0.528 0.954 0.401 0.584 0.567 0.745 0.855
Depth-Facto [12] (AS) 23.560 0.677 0.514 0.149 0.055 0.014 0.991 0.995 0.997
Depth-Facto [12] (ToF) 23.530 0.679 0.517 0.166 0.028 0.025 0.979 0.987 0.992
Zip-NeRF [14] 23.559 0.646 0.459 0.737 0.376 0.379 0.273 0.626 0.748
Gaussian-Splatting [6] 24.457 0.693 0.417 0.521 0.210 0.148 0.588 0.834 0.916
Mip-Splatting [13] 24.258 0.693 0.416 0.530 0.212 0.153 0.592 0.829 0.912
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Table 9: NVS Benchmark for scene08
Evaluation RGB Depth
Method PSNR↑ SSIM↑ LPIPS↓ RSME↓ Abs Rel↓ Sqr Rel↓ <1.251 ↑ <1.252 ↑ <1.253 ↑
NeRFacto [12] 23.803 0.619 0.535 0.908 0.430 0.567 0.505 0.710 0.855
Depth-Facto [12] (AS) 24.849 0.629 0.517 0.121 0.048 0.009 0.988 0.995 0.999
Depth-Facto [12] (ToF) 24.913 0.632 0.513 0.097 0.023 0.008 0.983 0.992 0.998
Zip-NeRF [14] 26.584 0.629 0.367 0.304 0.153 0.060 0.735 0.971 0.983
Gaussian-Splatting [6] 25.140 0.639 0.416 0.389 0.153 0.084 0.720 0.908 0.961
Mip-Splatting [13] 25.214 0.640 0.415 0.385 0.149 0.082 0.732 0.907 0.960

Table 10: NVS Benchmark for scene09
Evaluation RGB Depth
Method PSNR↑ SSIM↑ LPIPS↓ RSME↓ Abs Rel↓ Sqr Rel↓ <1.251 ↑ <1.252 ↑ <1.253 ↑
NeRFacto [12] 22.594 0.601 0.583 1.067 0.616 0.923 0.425 0.596 0.715
Depth-Facto [12] (AS) 23.273 0.610 0.571 0.097 0.037 0.006 0.990 0.996 0.999
Depth-Facto [12] (ToF) 23.029 0.607 0.572 0.128 0.030 0.021 0.974 0.983 0.986
Zip-NeRF [14] 23.734 0.603 0.433 0.484 0.270 0.175 0.406 0.766 0.884
Gaussian-Splatting [6] 24.038 0.626 0.427 0.364 0.160 0.084 0.709 0.898 0.958
Mip-Splatting [13] 24.091 0.627 0.428 0.364 0.160 0.086 0.704 0.891 0.954

Table 11: NVS Benchmark for scene10
Evaluation RGB Depth
Method PSNR↑ SSIM↑ LPIPS↓ RSME↓ Abs Rel↓ Sqr Rel↓ <1.251 ↑ <1.252 ↑ <1.253 ↑
NeRFacto [12] 23.024 0.903 0.191 1.727 0.620 1.839 0.542 0.704 0.771
Depth-Facto [12] (AS) 23.685 0.908 0.203 0.190 0.067 0.017 0.991 0.999 1.000
Depth-Facto [12] (ToF) 23.705 0.909 0.194 0.163 0.030 0.016 0.980 0.993 0.998
Zip-NeRF [14] 36.385 0.942 0.119 0.343 0.137 0.052 0.769 0.993 1.000
Gaussian-Splatting [6] 26.637 0.928 0.231 0.450 0.143 0.099 0.770 0.923 0.963
Mip-Splatting [13] 26.648 0.929 0.229 0.431 0.138 0.091 0.774 0.928 0.968

Table 12: NVS Benchmark for scene11
Evaluation RGB Depth
Method PSNR↑ SSIM↑ LPIPS↓ RSME↓ Abs Rel↓ Sqr Rel↓ <1.251 ↑ <1.252 ↑ <1.253 ↑
NeRFacto [12] 23.166 0.829 0.212 1.716 0.950 2.207 0.287 0.450 0.601
Depth-Facto [12] (AS) 27.510 0.889 0.178 0.330 0.122 0.102 0.958 0.977 0.983
Depth-Facto [12] (ToF) 27.695 0.886 0.174 0.589 0.151 0.246 0.858 0.894 0.928
Zip-NeRF [14] 33.866 0.894 0.121 0.563 0.242 0.217 0.574 0.821 0.895
Gaussian-Splatting [6] 28.360 0.928 0.199 0.691 0.273 0.249 0.474 0.715 0.828
Mip-Splatting [13] 28.299 0.929 0.200 0.715 0.289 0.266 0.439 0.669 0.804
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5.2 SLAM

This benchmark compares several SLAM methods: NICE-SLAM [15], CO-SLAM [16], and
Gaussian-SLAM [17], evaluated using Ground Truth (GT) data, AS (Active Stereo) sensor data, and
TOF (Time of Flight) sensor data, highlighting the significant impact of sensor quality on SLAM
performance.

NICE-SLAM achieves high-quality scene reconstruction by optimizing a hierarchical representation
using pre-trained geometric priors [18]. However, it struggles with hole-filling. CO-SLAM further
improves map completion by integrating smoothness and coherence priors into coordinate encod-
ings [19]. On the other hand, Gaussian-SLAM efficiently seeds new Gaussians for newly explored
areas and optimizes them online by organizing the scene into independently optimized sub-maps.

When using ground truth data, Gaussian-SLAM excels in both tracking and mapping performance,
indicating a strong algorithm highly dependent on input quality. With the AS sensor, all SLAM
methods exhibit some performance degradation due to the constant random noise in the depth sensor.
Gaussian-SLAM shows substantial deterioration in both tracking and reconstruction performance,
especially in scenes with motion blur, resulting in a higher ATE and reduced map completeness.
However, CO-SLAM and NICE-SLAM demonstrate better resilience to the noisy depth input from
the AS sensor, maintaining relatively higher map accuracy and completeness.

The TOF sensor data further challenges the SLAM methods since the depth quality is influenced
by rapid motion. Gaussian-SLAM struggles significantly, even failing in scene07 due to unreliable
photometric and geometric consistency. Its performance drops dramatically across all metrics.
Conversely, leveraging hybrid scene representations, NICE-SLAM and CO-SLAM show better
robustness towards the noisy depth input, with CO-SLAM maintaining higher map completion rates.

Table 13: SLAM Benchmarks for scene01.
Evaluation Tracking Mapping

Methods Depth ATE↓ [cm] Acc↓ [cm] Comp↓ [cm] Comp Ratio↑ [%]

NICE-SLAM [15]
GT 1.22 1.47 2.51 88.97
AS 7.39 10.18 4.69 66.18
ToF 7.39 17.01 7.03 65.34

CO-SLAM [16]
GT 3.22 1.48 1.46 96.06
AS 9.18 6.29 3.40 78.19
ToF 7.61 9.54 4.54 77.12

Gaussian-SLAM [17]
GT 0.86 0.65 0.76 99.64
AS 9.18 21.53 3.73 74.62
ToF 4.96 21.92 3.73 74.42

Table 14: SLAM Benchmarks for scene02.
Evaluation Tracking Mapping

Methods Depth ATE↓ [cm] Acc↓ [cm] Comp↓ [cm] Comp Ratio↑ [%]

NICE-SLAM [15]
GT 7.33 2.93 4.25 78.41
AS 18.14 15.31 7.91 43.72
ToF 5.15 18.20 6.84 69.02

CO-SLAM [16]
GT 3.50 1.49 1.54 97.04
AS 13.27 27.33 13.95 36.21
ToF 5.62 37.77 4.30 80.71

Gaussian-SLAM [17]
GT 1.83 1.15 1.16 99.06
AS 17.50 25.75 10.50 33.48
ToF 29.81 43.69 7.01 56.81
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Table 15: SLAM Benchmarks for scene03.
Evaluation Tracking Mapping

Methods Depth ATE↓ [cm] Acc↓ [cm] Comp↓ [cm] Comp Ratio↑ [%]

NICE-SLAM [15]
GT 1.64 2.58 6.11 84.44
AS 21.79 60.90 18.71 34.50
ToF 8.19 31.26 12.70 61.87

CO-SLAM [16]
GT 5.55 2.53 1.21 98.07
AS 18.32 55.16 13.43 39.49
ToF 18.73 76.67 6.81 64.79

Gaussian-SLAM [17]
GT 5.35 4.64 1.35 96.98
AS 13.02 120.85 7.66 49.35
ToF 13.25 59.84 4.87 68.95

Table 16: SLAM Benchmarks for scene04, sequence00.

Evaluation Tracking Mapping
Methods Depth ATE↓ [cm] Acc↓ [cm] Comp↓ [cm] Comp Ratio↑ [%]

NICE-SLAM [15]
GT 9.89 3.77 9.83 62.29
AS 45.89 22.20 17.31 26.03
ToF 45.70 20.25 35.38 23.51

CO-SLAM [16]
GT 4.48 2.01 1.66 98.27
AS 14.97 30.16 14.08 28.24
ToF 13.94 97.31 12.54 31.56

Gaussian-SLAM [17]
GT 2.44 1.41 1.26 99.17
AS 10.43 22.32 12.12 30.15
ToF 60.36 33.70 16.93 29.58

Table 17: SLAM Benchmarks for scene04, sequence01.

Evaluation Tracking Mapping
Methods Depth ATE↓ [cm] Acc↓ [cm] Comp↓ [cm] Comp Ratio↑ [%]

NICE-SLAM [15]
GT 11.24 2.29 5.88 78.57
AS 14.29 27.84 12.68 38.01
ToF 14.13 20.95 10.18 48.43

CO-SLAM [16]
GT 8.02 2.21 2.13 94.37
AS 13.74 67.72 15.30 26.15
ToF 13.86 56.85 6.50 55.97

Gaussian-SLAM [17]
GT 2.53 1.51 1.28 99.68
AS 35.27 24.03 9.92 37.61
ToF 60.36 33.70 16.93 29.58

Table 18: SLAM Benchmarks for scene05.
Evaluation Tracking Mapping

Methods Depth ATE↓ [cm] Acc↓ [cm] Comp↓ [cm] Comp Ratio↑ [%]

NICE-SLAM [15]
GT 15.24 9.34 11.66 50.29
AS 19.65 11.01 8.28 51.53
ToF 22.48 24.04 15.53 33.80

CO-SLAM [16]
GT 5.64 2.93 2.78 87.64
AS 16.37 19.19 8.26 49.41
ToF 25.66 58.58 12.83 51.28

Gaussian-SLAM [17]
GT 17.90 2.92 2.78 87.63
AS 15.02 19.25 8.27 49.43
ToF 18.39 58.71 12.77 51.30
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Table 19: SLAM Benchmarks for scene06.
Evaluation Tracking Mapping

Methods Depth ATE↓ [cm] Acc↓ [cm] Comp↓ [cm] Comp Ratio↑ [%]

NICE-SLAM [15]
GT 1.52 0.91 6.64 81.58
AS 76.70 14.34 9.07 53.28
ToF 114.70 27.12 13.33 40.22

CO-SLAM [16]
GT 3.23 1.10 1.10 99.16
AS 8.05 12.59 4.21 71.79
ToF 5.76 106.43 6.92 69.69

Gaussian-SLAM [17]
GT 1.26 0.77 0.79 99.92
AS 6.24 19.84 4.44 66.16
ToF 6.26 65.86 7.34 63.17

Table 20: SLAM Benchmarks for scene07.
Evaluation Tracking Mapping

Methods Depth ATE↓ [cm] Acc↓ [cm] Comp↓ [cm] Comp Ratio↑ [%]

NICE-SLAM [15]
GT 5.01 3.26 7.39 58.74
AS 24.81 19.59 18.14 28.77
ToF 5.96 15.60 8.67 54.41

CO-SLAM [16]
GT 5.22 1.74 1.76 97.57
AS 14.07 21.75 14.83 33.20
ToF 11.00 46.05 6.86 51.02

Gaussian-SLAM [17]
GT 1.50 1.30 1.29 99.55
AS 151.90 28.53 14.04 34.61
ToF fail fail fail fail

Table 21: SLAM Benchmarks for scene08.
Evaluation Tracking Mapping

Methods Depth ATE↓ [cm] Acc↓ [cm] Comp↓ [cm] Comp Ratio↑ [%]

NICE-SLAM [15]
GT 2.39 2.08 6.56 81.59
AS 80.66 14.95 12.94 35.21
ToF 11.41 11.51 9.99 57.69

CO-SLAM [16]
GT 3.64 1.61 1.68 96.88
AS 17.86 23.03 12.87 34.23
ToF 7.25 32.36 5.71 67.28

Gaussian-SLAM [17]
GT 2.25 1.31 1.35 99.22
AS 19.46 21.68 10.73 36.49
ToF 82.26 29.92 6.86 59.76

Table 22: SLAM Benchmarks for scene09.
Evaluation Tracking Mapping

Methods Depth ATE↓ [cm] Acc↓ [cm] Comp↓ [cm] Comp Ratio↑ [%]

NICE-SLAM [15]
GT 3.93 2.44 4.07 80.08
AS 30.05 18.92 14.53 35.47
ToF 22.15 24.98 31.79 20.78

CO-SLAM [16]
GT 2.29 1.66 1.69 97.64
AS 19.39 17.50 10.74 45.87
ToF 17.84 38.55 11.45 38.38

Gaussian-SLAM [17]
GT 0.75 1.07 1.12 99.53
AS 4.28 14.46 6.61 53.73
ToF 10.41 23.96 4.09 78.55
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Table 23: SLAM Benchmarks for scene10.
Evaluation Tracking Mapping

Methods Depth ATE↓ [cm] Acc↓ [cm] Comp↓ [cm] Comp Ratio↑ [%]

NICE-SLAM [15]
GT 5.13 1.94 2.63 91.72
AS 50.65 34.19 20.48 20.74
ToF 18.95 25.41 12.89 36.88

CO-SLAM [16]
GT 2.28 1.67 1.59 97.65
AS 242.38 75.08 21.55 22.98
ToF 381.76 67.49 8.11 63.62

Gaussian-SLAM [17]
GT 16.06 6.66 4.40 72.90
AS 56.91 77.00 19.55 16.58
ToF 108.39 54.44 12.57 31.69

Table 24: SLAM Benchmarks for scene11.
Evaluation Tracking Mapping

Methods Depth ATE↓ [cm] Acc↓ [cm] Comp↓ [cm] Comp Ratio↑ [%]

NICE-SLAM [15]
GT 1.07 1.93 3.37 88.64
AS 79.10 34.19 29.38 16.50
ToF 11.86 16.00 8.72 52.62

CO-SLAM [16]
GT 3.06 1.96 1.70 97.92
AS 51.78 40.79 19.51 17.23
ToF 42.3 71.10 9.68 40.71

Gaussian-SLAM [17]
GT 7.21 3.66 2.80 85.46
AS 119.20 60.03 33.32 14.11
ToF 69.43 46.15 11.18 36.03
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6 Licenses of Codes Used in Benchmarks

In this section, we show licenses of codes that are used in the benchmark for NVS (Tab. 25) and
SLAM (Tab. 26). Note that our dataset uses the MIT License.

Table 25: License Information of the NVS code Used in the Benchmark.
Methods NeRF(Depth)-Facto [12] Zip-NeRF [14] Gaussian-Spatting [6] Mip-Splatting [13]
License Apache-2.0 Apache-2.0 Inria and MPII Inria and MPII

Table 26: License Information of the SLAM code Used in the Benchmark.
Methods NICE-SLAM [15] CO-SLAM [16] Gaussian-SLAM [17]
License Apache-2.0 Apache-2.0 MIT
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