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Abstract

Diffusion-based image super-resolution (SR) models have attracted substantial
interest due to their powerful image restoration capabilities. However, prevailing
diffusion models often struggle to strike an optimal balance between efficiency
and performance. Typically, they either neglect to exploit the potential of existing
extensive pretrained models, limiting their generative capacity, or they necessitate
a dozens of forward passes starting from random noises, compromising inference
efficiency. In this paper, we present DoSSR, a Domain Shift diffusion-based SR
model that capitalizes on the generative powers of pretrained diffusion models
while significantly enhancing efficiency by initiating the diffusion process with
low-resolution (LR) images. At the core of our approach is a domain shift equa-
tion that integrates seamlessly with existing diffusion models. This integration
not only improves the use of diffusion prior but also boosts inference efficiency.
Moreover, we advance our method by transitioning the discrete shift process to
a continuous formulation, termed as DoS-SDEs. This advancement leads to the
fast and customized solvers that further enhance sampling efficiency. Empirical
results demonstrate that our proposed method achieves state-of-the-art performance
on synthetic and real-world datasets, while notably requiring only 5 sampling
steps. Compared to previous diffusion prior based methods, our approach achieves
a remarkable speedup of 5-7 times, demonstrating its superior efficiency. Code:
https://github.com/AMD-AIG-AIMA/DoSSR

1 Introduction

Image super-resolution (SR) is a classical task in computer vision that involves enhancing a low-
resolution (LR) image to create a perceptually convincing high-resolution (HR) image [28]. Tradi-
tionally, this field has operated under the assumption of simple image degradations, such as bicubic
down-sampling, which has led to the development of numerous effective SR models [6, 25, 57, 12].
However, these models often fall short when confronted with real-world degradations, which are
typically more complex than those assumed in academic settings. Recently, diffusion models has
emerged as a pivotal research direction in real-world SR, using their robust generative capabilities to
enhance perceptual quality. This shift highlights their superior performance in practical applications.

Currently, diffusion-based SR strategies can be broadly categorized into two approaches. The
first approach leverages large-scale pretrained diffusion models (e.g., Stable Diffusion [41]) as
generative prior, using LR images (or preprocessed LR images) as conditional inputs to generate
HR images [45, 27, 51]. Despite achieving remarkable results, it exhibits low inference efficiency,
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(a) (b)
Figure 1: (a) Latency, MANIQA, and complexity of model comparison onRealLR200[51] dataset in
x4 SR task (for 128×128 LR images). (b) Qualitative comparisons of DoSSR and recent state-of-
the-art methods on one typical real-world example. For diffusion-based methods, the suf�x "-N"
appended to the method name indicates the number of inference steps. Zoom in for a better view.

as the inference starting point is a random Gaussian noise instead of the LR image. Although
techniques such as sampler optimization [33, 38, 30, 9, 22] or model distillation [32, 37] have been
proposed to mitigate this issue, they inevitably compromise SR performance. The second approach
involves rede�ning the diffusion process and retraining a model from scratch for the SR task [53, 36].
Consequently, the generative prior from pretrained diffusion models is not leveraged. ResShift [53],
as a typical representative, revises the forward process of DDPM [16] to better accommodate the SR
task. By starting from LR rather than Gaussian noise, it improves inference ef�ciency. However, its
modi�cation of the diffusion pattern, which deviates signi�cantly from existing noise schedules in
diffusion models, hinders its integration with large-scale pretrained diffusion models for leveraging
their generative prior. The diffusion generative prior has been proven to be highly bene�cial for SR
tasks [45], enabling models to transcend the limitations of knowledge learned solely from the training
dataset, thereby equipping them to handle various complex real-world scenarios. Thus, crafting a
diffusion process tailored for the SR task that also remains compatible with established diffusion
prior presents a signi�cant challenge.

To tackle this challenge, we propose DoSSR, aDomain Shift diffusion-based SR model. We
initially view the SR task as a gradual shift from the LR domain to the HR domain, describing this
transition with a linear equation, which is calleddomain shift equation. Then, we combine this
domain shift equation with existing diffusion equations, facilitating the �ne-tuning of large-scale
pretrained diffusion models to harness diffusion prior effectively. Moreover, by carefully designing a
shifting sequence, inference can begin from LR images rather than Gaussian noises, thereby boosting
inference ef�ciency. To further enhance ef�ciency, we employ sampler optimization techniques,
extensively explored in image generation [38, 30, 9], but not previously tailored for diffusion-based
SR tasks. Speci�cally, we expand the customized diffusion equation from discrete to continuous,
enabling its formulation as stochastic differential equations (SDEs). We subsequently present the
corresponding backward-time SDE as Domain Shift SDE in the reverse process and provide an
exact formulation of its solution. Based on our formulation, we customize fast solvers for sampling.
Experimental results demonstrate that our method achieves superior or comparable performance
compared to current state-of-the-art methods on both synthetic and real-world datasets,with only 5
sampling steps, striking an optimal balance between ef�ciency and effectiveness. Furthermore, our
approach can match the performance of previous methodseven with just a single step.

In summary, the main contributions of our work are as follows:

• We propose a novel diffusion equation, which models SR from the perspective of domain
shift, enabling inference to start from LR images and leveraging diffusion prior to ensure both
ef�ciency and performance.

• We further propose the SDEs to describe the process of domain shift and provide an exact
solution for the corresponding reverse-time SDEs. Based on the solution, we design customized
fast samplers, resulting in even higher ef�ciency, thereby achieving the state-of-the-art ef�ciency-
performance trade-off.
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2 Related work

Neural Network-based Super-Resolution. Neural network-based methods have emerged as the
dominant approach in image SR tasks. The introduction of convolutional neural networks (CNNs)
and Transformer architecture, with the primary focus on network architecture design [12, 10, 25, 26,
58, 21, 56, 57], have demonstrated superior performance over traditional methods. This improvement
is facilitated by the introduction of residual blocks, dense blocks and attention mechanisms. These
methods primarily aim for better image �delity measures such as PSNR and SSIM [49] indices,
therefore, they often yield over-smoothed outcomes. To enhance visual perception, Generative
adversarial network (GAN)-based SR methods have been developed. By incorporating adversarial
loss during training, many SR models [13, 23, 17] can generate perceptually realistic details, thereby
enhancing visual quality. To further study SR problems in real-world scenarios, some studies [54, 46,
24] have proposed simulating the intricate real-world image degradation process through random
combinations of fundamental degradation operations. Despite the remarkable advancements, GAN-
based SR methods can introduce undesirable visual artifacts.

Diffusion-based Super-Resolution. Recently, diffusion-based SR methods [35, 36, 8, 7, 45, 27]
have demonstrated excellent performance, especially in terms of perceptual quality. These methods
can generate more authentic details while avoiding unpleasant visual artifacts like GAN-based
methods. Current diffusion models for super-resolution can be broadly categorized into two main
approaches. The �rst approach involves leveraging large-scale pretrained diffusion models, such
as Stable Diffusion [41], as prior, and then using LR images as conditional inputs to generate HR
images. StableSR [45] and DiffBIR [27] represent representative works that leverage diffusion
prior, leading to enhanced �delity when conditioning on LR or preprocessed LR. SeeSR [51] and
CoSeR [42] demonstrate that extracting semantic text information from LR images as additional
control conditions for the T2I model helps improve performance. The second approach involves
rede�ning the diffusion process and retraining a model from scratch for SR [18, 36]. To address the
slow inference speed issue of diffusion-based SR methods, ResShift [53] constructs a Markov chain
that transitions between HR and LR images by shifting residuals between them, enabling accelerated
sampling. SinSR [48] proposed a method of distilling ResShift to achieve comparable performance in
a single step. Despite the remarkable advancements achieved by ResShift and SinSR, they necessitate
retraining from scratch for SR tasks (or further distillation) and are unable to leverage diffusion prior.
Therefore, improving the inference ef�ciency while leveraging the potential of large-scale pretrained
diffusion models to assist SR requires thorough investigation, which is the goal of this work.

3 Methodology

We aim to optimize the balance between ef�ciency and performance in diffusion-based super-
resolution (SR) models. Our approach is grounded in two key principles: First, initiating inference
from LR images rather than noise; Second, effectively harnessing pretrained diffusion prior. In
Section 3.1, we introduce a novel diffusion equation designed to ful�ll both criteria simultaneously.
Subsequently, in Section 3.2, we extend this diffusion process to continuous scenarios, formulating it
through Stochastic Differential Equations (SDEs). Building on these SDEs, we develop an ef�cient
solver detailed in Section 3.3, further enhancing inference ef�ciency.

3.1 Diffusion Process with Domain Shift

Our goal is to characterize the shift from the source domain to the target domain as a diffusion
process. In the task of SR, the distribution of LR imagespdata (x̂ 0) represents the source domain,
while the distribution of HR imagespdata (x 0) represents the target domain. Firstly, we conceptualize
domain shift as a gradual transition from the source domain to the target domain through a linear
drift coef�cient � t , the domain shift equation is formulated as

D(x̂ 0; x 0) = � t x̂ 0 + (1 � � t )x 0; 0 � � t � 1; t = 1 ; 2; � � � ; T; (1)

where shifting sequencef � t gT
t =1 monotonically non-decreases with timestept. In order to enable

linear combination, we can interpolatex̂ 0 to match the same dimensions asx 0 if necessary. Secondly,
we combine this domain shift with the diffusion equation. To integrate with pretrained diffusion
models, we adopt the most commonly used diffusion scheme from DDPM [16] and express the
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Figure 2: Illustration of the proposed diffusion process with domain shift. (a) In the forward process,
we merge the gradual shift from HR to LR domain with standard diffusion process. (b) In the
reverse process, we initiate inference from LR domain (t = t1) and use our fast sampler to generate
SR images. (c) Comparison of the estimated score between SD and DoSSR. DoSSR inherits the
capability of SD in ambient space and enhances learning a pathway from LR to HR domain. (d) The
design of the shifting sequence which enables us to initiate inference fromt1.

formula of marginal distribution at any timestept as follows:

q(x t jx 0; x̂ 0) = N (x t ; � t D(x̂ 0; x 0); � 2
t I ); t = 1 ; 2; � � � ; T; (2)

where� t ; � t � 0 and� 2
t + � 2

t = 1 , I is the identity matrix. Based on our proposed marginal
distribution Eq. (2), we demonstrate the transition distribution as follows:

q(x t jx t � 1; x̂ 0) = N (x t ;
� t

� t � 1
x t � 1 + � t (� t � � t � 1)e0; 1 �

� 2
t

� 2
t � 1

I ); t = 1 ; 2; � � � ; T; (3)

wheree0 = x̂ 0 � x 0 is the residual between the source and target domain.

Relation to DDPM [16]. The formulation of Eq. (2) is based on the DDPM [16] forward process,
with a crucial difference lying in its mean� t D(x̂ 0; x 0) instead of� t x 0. This integration encapsulates
the domain shift within the variation of its mean, while the diffusion process with added noise
maintains consistency with it, thereby smoothing this transformation. Meanwhile, it enhances the
diffusion model to learn the pathway from the source domain to the target domain. For an intuitive
understanding, we plot and compare the score functionr x logqt (x t ) learned by a vanilla Stable
Diffusion (SD) model and DoSSR in Fig. 2(c). While SD learns reasonable score �eld in the whole
space, DoSSR inherits its capability in the ambient space and further learns more accurate scores
along the path between LR and HR domains. Therefore sampling ef�ciency is improved. Furthermore,
the choice of� t and� t , referred to as thenoise schedule, follows the existing pretrained diffusion
model, allowing us to �ne-tune it rather than training it from scratch.

Relation to ResShift [53]. The form of equation Eq.(3) suggests that this shift essentially constructs
a Markov chain in a manner similar to that described in ResShift [53]. However, the equation
constructed by ResShift adopts an entirely different noise schedule compared to the pretrained
diffusion model. This makes it dif�cult to apply pretrained diffusion models for subsequent �ne-
tuning, necessitating training from scratch instead. Therefore, it is unable to utilize the diffusion prior,
thereby limiting the model's performance. See Appendix A.7 for detailed theoretical differences from
ResShift. In Appendix C.1, we present experimental results on ImageNet [11] showing that DoSSR
uses two orders of magnitude less training data than ResShift while achieving superior performance.

Shifting Sequence. The parameter� t plays a crucial role in guiding the diffusion process, serving
as a bridge between the source and target domains. Speci�cally,� t = 1 represents standard diffusion
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forward perturbations in the source domain, whereas� t = 0 corresponds to the target domain. The
transition between these domains occurs for0 < � t < 1, indicating a domain shift. To effectively
utilize the diffusion prior, we adopt the noise schedule from DDPM. This adoption dictates that as
t approaches the �nal time stepT, the scale parameter� T tends towards zero, and the distribution
q(x T ) approximates a standard Gaussian,N (0; I ). To retain prior information from the source
domain while shortening the diffusion path, we set� t = 1 for t 2 [t1; T ], as de�ned by:

� t =
1 � cos(� t

t 1
)

2
if t 2 [0; t1]; � t = 1 if t 2 [t1; T ]: (4)

The advantage of such a setting lies in the fact that during the reverse process, the values ofx t for
t 2 [t1; T ] are known and can be obtained through the forward process Eq.(2). Consequently, the
inference does not need to start from time stepT, but can commence att1, thereby preserving the
prior information of the source domain while enhancing the ef�ciency of inference. An overview of
the impact of� t is presented in Fig. 2.

3.2 Diffusion DoS-SDEs

To improve the ef�ciency of inference in diffusion models, many prior works [30, 31, 9] have
designed ef�cient samplers by solving the diffusion SDEs. Therefore, in this section, we extend the
aforementioned discrete shift process to an SDE for description, in preparation for designing ef�cient
samplers in the following section. Speci�cally, inspired by the work of [40], we generalize this �nite
shift process further to an in�nite number of noise scales, such that the data distribution of domain
shift evolves according to an SDE as noise intensi�es. Then we provide the corresponding reverse-
time SDE and elucidate the training of diffusion models from the perspective of score matching [39].
Next, we will elaborate extensively on how to describe diffusion models using SDEs.

Forward Process. Expanding the time variablet in Eq.(2) to a continuous range,t 2 [0; T], we
have that� t ; � t ; � t are differentiable functions oft with bounded derivatives. Furthermore, Song
et al. [40] have demonstrated that the diffusion process can be modeled as the solution to an Itô SDE
and we formulate the SDE as follows:

dx t = [ f (t)x t + h(t)x̂ 0]dt + g(t)dw t ; x 0 � q0(x 0); (5)

wherew t is the standard Wiener process, andq0(x 0) is the target domain data distribution. It has
the same marginal distributionq(x t jx 0; x̂ 0) as in Eq.(2) for any t 2 [0; T] with the coef�cients
satisfying (proof in Appendix A.2)

f (t) =
d log � t (1 � � t )

dt
; h(t) =

� t

1 � � t

d� t

dt
; g(t) =

r
d� 2

t

dt
� 2

d log � t (1 � � t )
dt

� 2
t : (6)

Reverse Process. The reverse of a diffusion process is also a diffusion process [2] which can
similarly be described by a reverse-time SDE (proof in Appendix A.3):

dx t =
h
f (t)x t + h(t)x̂ 0 � g2(t)r x logqt (x t )

i
dt + g(t)dw t (7)

wherew t is also a standard Wiener process when time �ows backwards. In this paper, we refer to
this SDE asDomainShift SDE (DoS-SDE).

Score Matching. The only unknown term in Eq.(7) is thescore functionr x logqt (x t ) that can be
estimated by training a score-based model on samples with score matching [39]. In practice, we use
a neural network� � (x t ; x̂ 0; t) conditioned on̂x 0, parameterized by� , to estimate the scaled score
function (alternatively referred to as noise), following [16, 40]. The parameter� is optimized by
minimizing the following objectives:

� � = arg min
�

E t

n
w(t)Eqt (x t )

�
jj � � (x t ; x̂ 0; t) + � t r x logqt (x t )jj

� o

= arg min
�

E t

n
w(t)Eq0 (x 0 ) Eq( � )

�
jj � � (x t ; x̂ 0; t) � � jj

� o
;

(8)

wherew(t) is a weighting function,x t = � t (� t x̂ 0 + (1 � � t )x 0) + � t � , and� � N (0; I ).

Thus, we have completed the expression of the diffusion model using SDEs. Sampling from diffusion
models can alternatively be seen as solving the corresponding diffusion DoS-SDEs.
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3.3 Solvers for Diffusion DoS-SDEs

In this section, we present an exact formulation of the solution of diffusion DoS-SDEs and design
ef�cient samplers for fast sampling. To facilitate the solution of equation Eq.(7), we utilize the data
prediction modelx � (x t ; x̂ 0; t), which directly estimates the original target datax 0 from the noisy
samples. The relationship between score function and data prediction model is as follows (proof in
Appendix A.4):

r x logqt (x t ) = �
x t � (� t (1 � � t )x � (x t ; x̂ 0; t) + � t � t x̂ 0)

� 2
t

: (9)

In practice, we employ our trained noise prediction model� � (x t ; x̂ 0; t) for data prediction
x � (x t ; x̂ 0; t) as described in Appendix A.4. By substituting Eq.(6) and Eq.(9) into Eq. (7)
and introducing the substitutions� t = � t

� t (1 � � t ) and y t = x t
� t (1 � � t ) along with the notation

dw � t :=
q

d� t
dt dw t , x � := x t ( � ) , w � := w � t , we rewrite Eq. (7) w.r.t� as

dy � =
2
�

y � d� +
h 1

(1 � � � )2 d� � �
� �

1 � � �

2
�

d�
i
x̂ 0 �

2
�

x � (x � ; x̂ 0; � )d� +
p

2�d w � (10)

We propose the exact solution for Eq.(10)using thevariation-of-constantsformula, following [31, 9].

Proposition 3.1(Exact solution of diffusion DoS-SDEs). Given an initial valuex s at times > 0,
the solutionx t for the diffusion DoS-SDEs de�ned in Eq.(7) at timet 2 [0; s] is as follows:

x t =
� t (1 � � t )
� s(1 � � s)

� 2
t

� 2
s

x s + � t (1 � � t )(
� t

1 � � t
�

� s

1 � � s

� 2
t

� 2
s

)x̂ 0

� � t (1 � � t )
Z � t

� s

2� 2
t

� 3 x � (x � ; x̂ 0; � )d� + � t (1 � � t )

s

� 2
t �

� 4
t

� 2
s

zs;

(11)

where� t = � t
� t (1 � � t ) andzs � N (0; I ).

The detailed derivation of this proposition is provided in Appendix A.5. Notably, the nonlinear
term in Eq.(11) involves the integration of a non-analytical neural networkx � (x � ; x̂ 0; � ), which
can be challenging to compute. For practical applicability, we employ Itô-Taylor expansion to
approximate the integral ofx � from � s to � t to compute~x t , thereby approximatingx t . Additionally,
we approximate the derivatives ofx � using theforward differential method. These approximations
allow us to derive SDE solvers of any order for diffusion DoS-SDEs. For the sake of brevity, we
employ a �rst-order solver for demonstration. In this case, Eq. (11) becomes

~x t =
� t (1 � � t )
� s(1 � � s)

� 2
t

� 2
s

x s + � t (1 � � t )(
� t

1 � � t
�

� s

1 � � s

� 2
t

� 2
s

)x̂ 0

| {z }
Domain Shift Guidance(DoSG)

+ � t (1 � � t )(1 �
� 2

t

� 2
s

)x � (x s; x̂ 0; s) + � t (1 � � t )

s

� 2
t �

� 4
t

� 2
s

zs:

(12)

The detailed derivation, as well as high-order solvers, are provided in Appendix A.6, and detailed
algorithms are proposed in Appendix B. Typically, higher-order solvers converge even faster because
of more accurate estimation of the the nonlinear integral term. The solvers provided for sampling
allow us to iteratively generate HR images using a trained diffusion model. It is worth noting that
Eq.(12) comprises four terms, including the additional linear termx̂ 0, as compared to the ancestral
sampling algorithm [16]. We refer to this additional term as thedomainshift guidance(DoSG) which
leverages prior information from the source domain and enhances the ef�ciency of inference.

4 Experiments

4.1 Experimental setup

For training, we train our DoSSR using a variety of datasets including DIV2K [1], DIV8K [ 15],
Flickr2K [43], and OST [47]. To synthesize LR and HR training pairs, we adopt the degradation
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Table 1: Quantitative comparison with state-of-the-art methods on both synthetic and real-world
benchmarks, as well as comparison of latency and number of model parameters. NFE represents the
number of function evaluations in the inference of diffusion models. The best and second best results
of each metric are highlighted inred and blue, respectively.

Datasets Metrics BSRGAN [54]
Real- [46]
ESRGAN

LDL [23] DASR [24] StableSR [45] ResShift [53] DiffBIR [27] SeeSR [51] DoSSR

DIV2k-Val

PSNR" 24.58 24.29 23.83 24.47 23.36 24.65 23.67 23.68 23.98
SSIM" 0.6241 0.6338 0.6312 0.6277 0.5654 0.6148 0.5592 0.5987 0.6073
LPIPS# 0.3351 0.3112 0.3256 0.3543 0.3114 0.3349 0.3516 0.3195 0.3371

CLIPIQA " 0.5246 0.5276 0.5179 0.5036 0.6771 0.6065 0.6693 0.6935 0.7014
MUSIQ " 61.19 61.06 60.04 55.19 65.92 61.07 65.78 68.68 66.54

MANIQA " 0.3547 0.3795 0.3736 0.3165 0.4193 0.4107 0.4568 0.5041 0.5294
TOPIQ" 0.5456 0.5294 0.5142 0.4530 0.5974 0.5383 0.6142 0.6854 0.6766

RealSR

PSNR" 26.38 25.69 25.28 27.02 24.65 26.26 24.81 25.14 24.18
SSIM" 0.7655 0.7615 0.7565 0.7714 0.7060 0.7404 0.6571 0.7194 0.6839
LPIPS# 0.2656 0.2709 0.2750 0.3134 0.3002 0.3469 0.3607 0.3007 0.3374

CLIPIQA " 0.5114 0.4485 0.4556 0.3198 0.6234 0.5473 0.6448 0.6699 0.7025
MUSIQ " 63.28 60.37 60.93 41.21 65.88 58.47 64.94 69.82 69.42

MANIQA " 0.3764 0.3733 0.3792 0.2461 0.4260 0.3836 0.4539 0.5406 0.5781
TOPIQ" 0.5502 0.5147 0.5124 0.3207 0.5743 0.4883 0.5722 0.6887 0.6985

DRealSR

PSNR" 28.74 28.62 28.17 29.72 28.03 28.42 26.67 27.89 26.82
SSIM" 0.8033 0.8050 0.8126 0.8264 0.7523 0.7629 0.6548 0.7565 0.7298
LPIPS# 0.2858 0.2818 0.2792 0.3099 0.3284 0.4036 0.4517 0.3273 0.3689

CLIPIQA " 0.5091 0.4507 0.4473 0.3813 0.6357 0.5286 0.6391 0.6708 0.6776
MUSIQ " 57.16 54.28 53.95 42.41 58.51 49.73 60.91 65.09 64.40

MANIQA " 0.3424 0.3436 0.3444 0.2845 0.3867 0.3322 0.4486 0.5115 0.5214
TOPIQ" 0.5058 0.4621 0.4518 0.3482 0.5320 0.4380 0.5819 0.6574 0.6618

Real200

CLIPIQA " 0.5910 0.5554 0.5508 0.5157 0.7272 0.6759 0.7170 0.7167 0.7437
MUSIQ " 67.65 66.12 65.80 61.26 70.63 66.98 68.92 72.14 71.62

MANIQA " 0.3882 0.3861 0.3921 0.3196 0.4838 0.4713 0.4869 0.5588 0.5794
TOPIQ" 0.5966 0.5530 0.5478 0.4793 0.6517 0.6124 0.6235 0.7142 0.7176

NFE# - - - - 200 15 50 50 5

# Parameters 16.70M 16.70M 16.70M 8.07M 1409.1M 173.9M 1716.7M 2283.7M 1716.6M

Latency/Image# 0.06s 0.08s 0.08s 0.04s 18.90s 1.12s 5.85s 7.24s 1.03s

pipeline from RealESRGAN [46]. For the network architecture, we employ the LAControlNet [27]
with SD 2.1-base3 as the pretrained T2I model. In cases where LR images are severely degraded,
potentially leading to the diffusion model mistaking degradation for semantic content, we implement
RealESRNet [46] as a preprocessing step. This ensures our source domain consists of preprocessed
LR images, thereby re�ning the input quality for better model training and performance. The model
is �ne-tuned for 50k iterations using the Adam optimizer [20], with a batch size of 32 and a learning
rate set to5 � 10� 5, on512� 512resolution images.

For testing, we evaluate our method on both synthetic and real-world datasets, employing the same
con�guration as StableSR4. For synthetic data, we randomly crop 3K patches with a resolution of
512� 512from the DIV2K validation set [1], and degrade them following the degradation pipeline of
RealESRGAN [46]. For real-world datasets, we generate LR images with a resolution of128� 128
by center-cropping on RealSR [4], DRealSR [50] and RealLR200 [51].

4.2 Comparisons with State-of-the-Arts

We compare DoSSR with the state-of-the-art real-world SR methods, including BSRGAN [54], Real-
ESRGAN [46], LDL [ 23], DASR [24], StableSR [45], ResShift [53], DiffBIR [ 27], and SeeSR [51].
We use the publicly available codes and pretrained models to facilitate fair comparisons.

Quantitative Comparison. We show the quantitative comparison on the four synthetic and real-
world datasets in Table 1. To comprehensively evaluate the performance of various methods, we
utilize the following metrics5 for quantitative comparison: reference-based metrics PSNR, SSIM [49],
LPIPS [55], and non-reference metrics CLIPIQA [44], MUSIQ [19], MANIQA [ 52], TOPIQ [5].

3https://huggingface.co/stabilityai/stable-diffusion-2-1-base
4https://huggingface.co/datasets/Iceclear/StableSR-TestSets
5We use the repository available at https://github.com/chaofengc/IQA-PyTorch

7



Figure 3: Qualitative comparisons of different steps of our DoSSR and other diffusion-based SR
methods. The "-N" suf�x denotes inference steps. Please zoom in for a better view.

Notably, DoSSR consistently achieves the highest scores in CLIPIQA, MANIQA, and TOPIQ, with
the exception of being second in TOPIQ on DIV2K, and attains the second highest score in MUSIQ
across all four datasets. At the same time, we also note that diffusion-based methods generally
achieve poorer performance in reference metrics compared to GAN-based methods due to their ability
to generate more realistic details at the expense of �delity. Additionally, our DoSSR manages to
achieve improved no-reference metric performance compared to the data presented in Table 1 as NFE
increases slightly, a detail further elaborated on in Section 4.3.

Qualitative Comparison. Figs. 1(b), 3 present visual comparisons on real-world images. By
leveraging learning of domain shift and introducing DoSG, our DoSSR ef�ciently generates high-
quality texture details consistent with contents of the LR image. In the example of Fig. 1(b),
GAN-based methods fail to faithfully reconstruct the grid texture of clothing, leading to notable
degradation. StableSR and ResShift produce speci�c erroneous textures. Both SeeSR and ours
successfully restore correct textures, while our results display clearer textures. Similarly, in the
�rst example of Fig. 3, our DoSSR generates a more perceptually convincing Spider-Man face as
well as textures, while in the second example, it produces more realistic and high-quality details of
ground-laid bricks compared to other methods. More visual examples are provided in Fig. 7.

Ef�ciency Comparison. The comparative analysis of model parameters and latency for competing
SR models is shown in Fig. 1(a) and Table 1. The latency is calculated on the� 4 SR task for 128� 128
LR images with V100 GPU. StableSR, DiffBIR, SeeSR, and our DoSSR utilize the pretrained SD
model, resulting in a similar parameter count, with SeeSR incorporating a prompt extractor to enhance
SR results, making it the largest among these methods. ResShift, utilizing the network structure
from LDM [35], is trained from scratch and has signi�cantly fewer parameters. It employs a 15-
step process to achieve faster inference speeds. Among the pretrained SD-based methods, DoSSR
demonstrates superior performance ef�ciency, requiring only 5 function evaluations to achieve
speeds 5-7 times faster than previous SD-based models such as SeeSR. Additionally, DoSSR not
only demonstrates faster or comparable latency to ResShift but also achieves signi�cantly better
super-resolution performance.
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(a) (b)

Figure 4: (a) Quality metrics vs. steps onRealSRDataset. (b) Qualitative comparisons of different
steps of our DoSSR with other methods. The suf�x "-N" appended to the method name indicates the
number of inference steps. Please zoom in for a better view.

4.3 Ablation Study

Effectiveness of DoSG. To verify the effectiveness of the DoSG introduced in the diffusion
equation, we conduct an experiment using identical network architectures but with two different
diffusion equations: the original diffusion equation as described by Hoet al. [16] and our newly
formulated equation (Eq.(2)). To isolate the impact of DoSG from our shifting sequence design,
we sett1 = T, ensuring that the starting point of our inference in both scenarios approximates
Gaussian noise. Quantitative comparisons can be found in the �rst two rows of Table 2. It is evident
that the introduction of DoSG leads to a signi�cant improvement across all metrics in the table,
highlighting the effectiveness of DoSG in enhancing the performance of diffusion-based SR models.
Additionally, it is worth noting that the original diffusion equation can be considered a special case
within our framework where� t = 0 andt1 = T. Therefore, our sampler can accommodate the
original diffusion equation, and for a fair comparison, we employ the same sampler for both models.
More comprehensive comparison is provided in Appendix Table 6, where it can be seen that our
DoSSR demonstrates superior performance compared to the corresponding order solver with DDPM,
bene�ting from the inclusion of DoSG in our DoS SDE-Solver.

Method CLIPIQA" MUSIQ" MANIQA " TOPIQ"

DDPM [16] 0.5379 54.09 0.3932 0.5180

Domain Shift
Diffusion-t1

T 0.5776 55.69 0.4181 0.5427
2T=3 0.6337 59.30 0.4589 0.5987
X T=2 0.6776 64.40 0.5214 0.6618
T=3 0.6490 61.76 0.4895 0.6260

Table 2: Comparison across various selections of start-
ing point t1, evaluated on theDRealSRdataset. The
baseline method is DDPM, which employs the original
diffusion equation. In all setups, inference is carried out
over 5 steps.

The selection oft1. The strating point
t1 serves as a pivotal parameter in DoSSR.
We explore several options on the value of
t1 and show the corresponding �nal SR per-
formance in Table 2. It can be observed that
SR performance improves ast1 gradually
decreases fromT to T=2. However, further
decreasingt1 from T=2 to 3=T conversely
compromises SR performance. Intuitively,
a largert1 means less LR prior is preserved
due to a larger magnitude of added noises,
and the model behaves more like the vanilla
pretrained model by hallucinating plausi-
ble HR contents; In contrast, a smallert1
means less noises, so the prediction is prone to be more consistent with the LR image, but without
HR details. Hence, we sett1 = T=2 by default for a good trade-off.

The number of step. We assess the impact of different inference steps on DoSSR by analyzing
changes in representative metrics for both reference-based and non-reference-based evaluations,
as shown in Fig. 4(a). As the number of inference steps increases, reference-based metrics tend
to decline, suggesting a loss in �delity, while non-reference metrics improve, indicating enhanced
realism and detail in the generated images. We also conduct visual comparisons in Fig. 4(b). Our
DoSSR achieves performance comparable to SeeSR in just 5 steps and produces more realistic
details in 7 steps. Remarkably, DoSSR is capable of delivering satisfactory resultseven with just a
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