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Abstract

Increasing the throughput of the Transformer architecture, a foundational com-
ponent used in numerous state-of-the-art models for vision and language tasks
(e.g., GPT, LLaVa), is an important problem in machine learning. One recent and
effective strategy is to merge token representations within Transformer models,
aiming to reduce computational and memory requirements while maintaining ac-
curacy. Prior works have proposed algorithms based on Bipartite Soft Matching
(BSM), which divides tokens into distinct sets and merges the top k similar tokens.
However, these methods have significant drawbacks, such as sensitivity to token-
splitting strategies and damage to informative tokens in later layers. This paper
presents a novel paradigm called PITOME, which prioritizes the preservation of
informative tokens using an additional metric termed the energy score. This score
identifies large clusters of similar tokens as high-energy, indicating potential candi-
dates for merging, while smaller (unique and isolated) clusters are considered as
low-energy and preserved. Experimental findings demonstrate that PITOME saved
from 40-60% FLOPs of the base models while exhibiting superior off-the-shelf per-
formance on image classification (0.5% average performance drop of ViIT-MAEH
compared to 2.6% as baselines), image-text retrieval (0.3% average performance
drop of CLIP on Flickr30k compared to 4.5% as others), and analogously in visual
questions answering with LLaVa-7B. Furthermore, PITOME is theoretically shown
to preserve intrinsic spectral properties to the original token space under mild
conditions. Our implementation is available at this link.

1 Introduction

Vision Transformers (ViTs) [[1] have been integral to recent advancements in computer vision,
leading to state-of-the-art deep learning architectures for representing images and videos [2H5].
However, these transformer-based architectures incur substantial memory costs and have a quadratic
time complexity in the number of tokens due to the self-attention layers. This challenge becomes
particularly severe as model sizes increase, as observed in Large Language Models (LLMs) [6].

To address such limitations, several efforts focus on designing a more efficient attention mechanism
by making it linearly scale with input tokens [7, 8], integrating vision or language domain-specific
modules [9} [10], or pruning the head numbers in ViT [11}[12]. Others propose dynamically pruning
less important tokens w.r¢. pre-defined metrics using learnable masks [13}|14]]. However, a primary
downside of these novel methodologies lies in the necessity to retrain the model from scratch,
therefore hindering the leveraging of well-trained models such as LLMs. Moreover, most pruning-
based techniques may not accelerate the training process, which arises from the dynamic removal
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Figure 1: A comparison of token merging methods. Patches of the same color are merged. Green
arrows highlight incorrect merges, avoided by PITOME. Position of tokens with high attention scores
(cyan borders, zoom for clarity) in PITOME are maintained proportionality akin to ViT-base 384.

of tokens in each sample, resulting in a mismatch of dimensions and consequently preventing the
batching of samples with consistent dimensions.

Recent research has introduced a novel token merging technique. Instead of pruning, this method
combines tokens with high semantic similarity, removing background tokens and merging less
informative foreground ones. Its versatility extends to training and non-training scenarios, drastically
reducing compute and memory usage. A notable example is ToMe [13], which introduced the
Bipartite Soft Matching (BSM) algorithm, prominent for its simplicity and effectiveness in merging
highly similar tokens. Since ToMe, several works, including ToFu [16], Pumer [17], LTPM [18]], and
DiffRate [19]], have built upon BSM with various adaptations in vision and language domains. In
BSM, tokens representing image patches are separated into sets A and B, and their pairwise cosine
similarity is computed. The top k similar pairs of tokens between the sets A and B are merged.
However, the performance of this algorithm is sensitive to the token-splitting strategy. For instance,
ToMe’s approach, which first splits tokens based on index parity, can lead to incorrect merging since
tokens in A can subsequently only be merged with those in B (Figure[I). Moreover, while BSM
excels in initial layers with many redundant tokens, deeper layers risk merging informative tokens due
to latent object correlations. Though current enhancements [19] mitigated this by considering token
attention scores in BSM [20], their adaptability to different ViT architectures, each with potentially
distinct attention score distributions [21]], remains a challenge.

In this work, we propose PITOME (Protect Informative Tokens before Merging), a method designed
to safeguard crucial information-bearing tokens prior to the merging step. Our method prioritizes
preserving informative tokens by utilizing an additional metric termed the energy score inspired
by connections to graph energy in spectral graph theory [22, (Theorem [I)). Specifically, our
energy score assesses large clusters of similar tokens as possessing high energy (like background
and repeated textures), thereby marking them as suitable candidates for merging, while smaller,
distinct regions (foreground) are deemed low-energy and thus treated as protected informative tokens.
The proposed energy term operates on the graph built for input tokens, taking into account their
relationships and aggregating information from nearby neighbors when their similarities exceed
certain thresholds. This approach facilitates a deeper contextual comprehension compared to previous
works that rely solely on attention scores or feature embedding per token. Subsequently,
we only select the highest-scoring tokens and pass them on for merging in the next steps, ensuring
the preservation of important tokens, particularly in the latter stages when only a few remaining ones.
During the merging process, we continue leveraging sorted energy vectors from earlier stages by
distributing tokens with similar energy into two sets, A and B, resulting in candidates in A having
a high probability of finding compatible matches in B. Matched tokens are then merged using a
weighted average feature embedding to create a new token representation.

The empirical results demonstrate that despite the increased computational cost associated with
energy score calculations, PITTOME exhibits comparable speed to other BSM-based approaches since
the matching is performed on a smaller, high-energy token set. At the same time, it consistently
shows superior accuracy across various experimental scenarios. Additionally, we present theoretical
insights into PITOME, showing that, under moderate assumptions — such as the discriminative
nature of feature embeddings generated by ViT for node pairs within and across distinct objects —
our algorithm efficiently preserves the spectral properties of the initial input tokens, maintaining
the eigenvalues derived from normalized Laplacian matrices of the original tokens [24-26]. To
summarize, our contributions encompass:
* A new token merging procedure for accelerating ViT architectures is designed to protect
crucial yet small-region tokens while identifying redundant ones for merging based on
contextual token correlations captured by our energy score functions.



e Our PITOME runs as fast as other BSM-based approaches while achieving SOTA per-
formance on diverse tasks, ranging from image-text retrieval (Sgc. 4.1), visual question
answering with LLMs (Sec. 4.2), image classi cation (Sec. 4.3), and text classi cation
(Sec. 4.4). In several casd3,TOME is shown to reduce up #0 60% FLOPs of base
models while only dropping performance arouit8  0:5% (CLIP model on Flick30k).

» We also present theoretical ndings indicating that, given reasonable assumtidnd/
can effectively approximate the spectral distance between the initial token spaces and the
merged token set. This sheds light on wyf OME tends to outperform baselines in
practical applications and contributes to a better understanding of the potential limitations
inherent in BSM-based methods, such as those in [15, 16, 19, 17, 27].

2 Related Work

Ef cient Attention Mechanisms. Various efforts have sought to enhance the ef ciency of trans-
formers in both NLP and Vision domains. Some concentrate on accelerating attention computation
[28, 29, 8] through approximation techniques involving hashiBg][ low-rank [31], or sparse approx-
imations B2]. Others explore strategies such as head or feature pruhingJ] or the integration

of domain-speci ¢ modulesd, 5, 34, 10]. However, many of them necessitate joint training with

the backbone model from scratch. For instance, Dynamic8b] funs approximately 150 hours

of ne-tuning on an NVIDIA A100 GPU to prune the DeiT-S mod&q. In contrast, we focus

on accelerating existing ViT models by token merging, which applies to training and non-training
scenarios.

Dynamic Token Pruning. Several studies have explored token pruning in transformer models
across NLP 37-39] and vision domains40-42, 27]. However, like ef cient transformers, these
methods typically require training. Additionally, most pruning techniques are dynamic, meaning the
number of tokens varies across different inputs, which improves accuracy but complicates batching
for practical deployment. To address this, numerous pruning methods employ masks during the
training phase rather than directly eliminating tokens; however, it yields to cancel out the speed
advantages associated with pruning.

Token Merging. Leading technigues such as ToMé[ and its improvementslf7, 43, 18, 19, 16, 44],

build upon lightweight Bipartite Soft Matching (BSM). These methods exhibit speeds comparable

to pruning while achieving superior performance. They have demonstrated the ability to double the
throughput of state-of-the-art Vision Transformers (ViT) on both images and videos with minimal
accuracy degradation in various scenarios. However, BSM-based approaches are sensitive to the
selection of sets in the matching process, potentially resulting in the loss of informative tokens due
to heuristic merging procedures. To address these issues, methods like Difff}ated Crossget

[44] leverage attention scores in ViT or cross-modal guidance to identify important tokens during the
matching process, though they remain sensitive to the distribution of the token space, especially with
imbalanced clusters. Another direction involves adapting more intricate algorithms, such as k-means
[49], spectral clustering46], graph pooling 47], or graph coarsening?f, 48], to merge similar

tokens. While these strategies offer some guarantees and well-controlled outputs, their iteration
schemes are highly complex and may not align with the goal of reducing model complexity in ViT
layers. OurPITOME, on the other hand, enables the advantages of both approaches. It maintains
ef ciency comparable to BSM, remains robust to token partitioning strategies, and offers a reasonable
trade-off between speed and accuracy. Mored@rpME is theoretically proved to approximate the
spectral spectrum of the original token space under reasonable assumptions, resembling the behavior
of other spectral clustering methods.

3 Methodology

3.1 Token Merging Formulation
We apply token merging to each transformer block of the ViT architecture (Figure 2-a). Given the
input token of the-th blockX' 2 RN " whereN andh are the token length and token hidden
embeddings, a forward step in one Transformer block can be formulated as follows:

K= X'+ AttentionX'W o; X'W ¢ ; X'Wy); X'* = X"+ MLP(R") 1)
whereAttentionandMLP are the self-attention and multiple layer perceptron components. We then
apply merge operations dt' and compute the output of the reduced MLP block as:

x* = R+ MLP(RL); whereR!, = Frer (R X'W i ;1): 2)
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Figure 2:a) PITOME can be inserted inside transformer blobkEnergy scores are computed to
identify mergeable and protective token¥Our algorithm gradually merges tokens in each block.

Here F mer (0) is the merging operation that receiv&$ as input for compressing§'W ¢ (key
matrices) as the token features$f following prior work [15, 43, 18, 19], andr is the fraction
of remaining tokens. The outp®!, 2 RN " serves as input for the MLP layer to produce
X!*1 2 RN " We present the FOME F e (2) function in the next section.

3.2 Energy-based Merging

We propose to use a hew term calktergy scorgo evaluate the redundancy of each token, which is

then used to protect informative or isolated tokens (low energy scores) while considering tokens that
are in the large cluster as high energy scores and characterizing them as merging candidates. Figure
2-b illustrates the main steps inRFOME.

Token Graph Construction: Given a set ol token inputs ink ', we build a weighted graph
G(V; E; W) with V a set ofN = jVj nodesE a set ofM = jE]j edges de ned by connecting one
token to the remaining ones @ W 2 RN N be a weighted adjacency matrix. We opt for using the
keyvectorsk = X'W g 2 RN M as node features ®f, i.e.,v; 2 V hash feature dimensions. The
weightW [i;j ] assigned to an edgg 2 E connectss; andy; is computed by cosine distance:
WTi;j]=1 cosfi;vj); wherecosi;v;) = lq\//.lkilg\/;,k 8vi 2V;v; 2V: 3)

Token Energy Scores In this step, theenergy scoredenoted a& = ( E;)i2nj, iS computed for

each node (Figure 2-a, Step 2). The term is inspired by the concgpayifi energyn spectral graph
theory [22, 23], de ned as the sum of the absolute eigenvalues of the adjacency Wiatihe also
leverage such structures\df to nd correlations among tokens and to estimate token redundancy.
Instead of using independent token values such as attention st6fesur energy leads to better
performance (Figure 6, Appendix) and provides theoretical connections to the spectral properties of
the original token graphs (Theorem 1).

Leti be the index of the current node aNd(i) represent the set of neighbor nodes. The energy score
E; Ei(vi; Wi :]) of nodev; is calculated using the following equation:

. o 1 X N B X if x m
Ei(vi;WI[i; ) = ﬁj2N (i)fm(cos(V.,vJ)),fm(X)— (exp(x m) 1) otherwise

(4)

Rather than accumulating abs(; ; v; ) values, the functiofiy, (:) in Eq(4) mimics the exponential

linear unit activation function49], focusing on similar tokens even if they are far apart, while
ignoring dissimilar ones. Herej is a dynamic margin value varying at each layer in the ViT model.
Nodes within this margin, i.e.x(> m ) with high cosine similariticos{; ; v; ) are considered true
neighbors, potentially representing tokens belonging to the same object. Nodes outside this margin
havecos(;; v; ) replaced by a constant, providing a lower bound for minimal edge weights. The

4



termexp(x m) 1< 0smooths the functioh(x) for neighboring nodes near the margm In
experiments, we set=1:0andm =0:9 0:9 |;=l, wherel; is the current layer index ands

the total number of encoder layers, indicating an increasing margin as tokens move to deeper layers.
The ablation studies for the andm values are presented in Section 4.5.

Intuitively, Eq(4) re ects the number of tokens potentially representing the same object. Tokens
belonging to large objects (e.g., background) will have high energy scores, indicating potential
candidates for merging, while smaller ones (e.qg., foreground) will have low energy scores and are
considered to be protected. This guides us to sort the energy véciardescending order and
choose only the togk nodes with the highest scores as mergeable candidates and the remaining ones
as protective tokens, i.e,= argsort( E), merge s[: 2k]; protect s[2k :];k =N Nr.

Ordered Energy-based Bipartite Soft Matching Having identi ed mergeable tokens in timeerge

set, we continue exploit the sorted ordetiro form two setsA andB in BSM, each containing

nodes. Speci cally, tokens with odd and even indicemiergeare selected foA andB, resp.given

the fact that those in the same object should have similar energy scores, resulting in likely distributing
in consecutive positions iargsort(E). In other words, our choosing has a high probability that
one token inA always nds its best match in the same objecBinThis sets us apart with random
partitions based on spatial indices in images like [15, 16].

Tracking Token Sizes All nodes in setA are then merged with their nearest neighbors in
setB through thefast BSM algorithm. Following prior works 15, 16], we also add propor-
tional attention to balance the effect of the merged token on the output of the softmax function:

A =Softmax X'Wgq (X'W)T= h+logm wherem is a row vector containing the size of

each token, i.e., the number of data patches the token represents. The pseudo-code for our method is
provided in Algorithm 1 (Appendix) with complexity analysis.

3.3 Connection to Graph Coarsening with Spectral Preservation

In this section, we employ tools from spectral graph theory to show a spectral distance preservation
of PITOME. We note that similar properties can be obtained by using more complicated clustering
algorithms such as K-mea#d4] or spectral clusteringde, 47, 24]; however, these methods are
typically loop-based algorithms, which are computationally expensive and not suitable for batch-type
data. OurPITOME, in contrast, is as fast as BSM methods but theoretically preserves spectral
properties of input token graphs.

We begin by introducing De nitions 1 and 2 of graph coarsening and liftregp, to justify the
spectral distance constructed in equation (5), measuring the similarity between the original and coarse
graphs. For more thorough coverage of the mathematics of graph coarsening and graph lifting, we
refer the reader tob-53]. In short,we treat the result of token merging as a graph coarsening
procesgFigure 8, Appendix). We then create tlifeed graphas a reconstruction from this coarsened
version to assess the spectral distance to the original token graph.

De nition 1 (Graph Coarsening)Given a weighted grap®(V; E; W ), we denotd® = Vg, )
whereV = [i,11Vi, be a partition of its node intm disjoint sets. The coarsened graph®f

w.r.t. P is the weighted grapk, where each partition i is aggregated into a single node, denoted

f iGi2[n), by averaging trﬁe eIemIgnts within each partition. The elements of the adjacency matrix

are given byW [i;j] = | 5y, v 2V, W [i;j I=(ViijVjj). We denote the combinatorial and
normalized Laplacians dbbyL = D WandL = Iy D =2WD 172, resp, whereD is the
diagonal degree matrix witB [i;i] = d; = jN:l W [i;j ]. Similarly, the de nition of the coarsened

Laplacian matrices follows directhil.c = D¢ WcandLc = In D¢ " 2W D¢ 2. Finally, the
eigenvalues and eigenvectorslofresp.L ) are denoted as andu (resp. ¢ anduy).

De nition 2 (Graph Lifting) We callG(V,; §; W) the lifted graph ofG if the adjacency matrix
Slements are given by ([i;j] = W¢[i;j]. We denote the node degreewpf 2 V| by d; =
J.Nzl W [i;j ]. The combinatorial and normalized Laplaciang®fsthende nedas, = D, W,
andL, = Iy D, l:2W|D| %2 resp, whereD is the diagonal degree matrix wid [i;i] = dj .
Then, we denoteesp, the eigenvalues and eigenvectord.pby | andu,.



Lemma 1 (Eigenvalue Preservation, se., [50, 51, 54, 55]). The normalized Laplacian eigenvalues
of the lifted graph | contain all the eigenvalues of the coarse graphand additional eigenvalueks
with (N n) multiplicity.

Through Lemma 1, we can use the lifted grdplas a proxy for the coarse grafh, and de ne:
X

SD(G &) = k kg = i i j as a spectral distance. (5)
i=1
Next, we present our main theoretical result demonstrating how spectral distance characterizes the
superiority of our novePI TOME paradigm over the state-of-the-art approaches as TAS|€ §].
The Theorem 1 quanti es how similar the origirnalis to its coarsened counterp&, and is proved
in Appendix E.

Theorem 1(Spectrum Consistent of Token Mergingjuppose the graph%s), (ls%oME, and (zf\,le
are coarsened from the original grafihby iteratively merging pairs of nodeg_ andvy,, w.r.t.the

true partitionP{Y = V{7V g, g, the PIToME-partition P$) . = V&) 0iGio (), de ned by
PITOME in Algorithm 1, and the ToMe-partitiori, 16], P1('§l)\/le = f\/%)vle- Oi2psp fors= N;:ii;n+
1. We assume some standard mild assumptions: EfcDsWa_; Vb, )] ! 1, 8va, 2 Véf) ; 8V, 2
V((,is);i 2 [s]; (A2) there exists a margim s.t., cOSa, ; Vi, ) m > cosWa,;Ve,); 8Va, 2
V8w, 2 vIP:8v,, 2 Véjs);Si 6 j 2 [s]; and (A3) there is an order of cardinality in the
true partition, without loss of generality, we assum&  N{¥ 0 N{, whereN® =
iv§j; 8i 2 [s]. Then it holds that:

1. The spectral distance between the origial G(()N) and thePIToME-coarse (?T)OmE

graphs converges t0, i.e., SI(G, G;(D?T)oME I o,

2. The spectral distance between the origifehnd the ToMe—coarsé(rg,z,,egraphs converges
to a non-negative constaf, with a high probability thatC > 0.

Intuitively, Theorem 1 states that, given assumptions (i) tokens are closely embedded within classes
and distinct between classgsl, A9, and (ii) the number of tokens per class follows certain orders
(A3), the spectral distance betweBriToME and the original tokens in E@) will converge to0. In
contrast, with ToMe partitions, a non-eliminable constant likely remains.

4 Experiments

We focus on two settingsOfi-the-Shel Peiformance, where we evaluate the models' performance
immediately after compression without training, aRetrained, where we treat the compression
algorithms as pooling functions and retrain the models on downstream tasks. The experiments cover
four tasks: (i)image & text retrieval(ii) visual question answering (VQAJii) image classi cation

and (iv) text classi cation We use the number of oating-point operations (FLOPS) needed for
inference on one sample as the main metric to benchmark memory footprint and speed. Higher
FLOPS indicate greater memory requirements and longer training and inference times.

4.1 Image & Text Retrieval

We evaluaté®l TOM E on the image-text retrieval task using three different backbone models CLIP
[56], ALBEF [57], and BLIP [58] on two frequently used Flickr305B] and MSCOCO §0] datasets.

Our experiment is benchmarked usirgall@k[61], where a higherecall@kindicates the model's
effectiveness in retrieval. In Figure 3, we benchmarRefoM E against other SOTAnergingor
pruning-based methods such as ToM&], ToFu [16], DiffRate [19], and DCT B2] on off-the-shelf
setting when varying amount of merged tokens at each layer. Given the same FLOPS, it is clear
thatPITOME consistently outperforms previous compression algorithms across all backbones. The
performance gap increases as we decrease the percerdéigkens retained in each layer. The same
behavior remains consistent in Table 2, where we se0 :925andretrain pre-trained checkpoints

of BLIP and CLIP. For more details about the training method, please refer to Li et al. [58].

In Table 1, we compar@ TOME using compression ratios of 2 f 0:95;0:9753 on BLIP and
BLIP-2 against other advanced architectures such as \BBJ, LightningDOT [64], UNITER [65],



METER [66], CLIP-L [67], and ALBEF [68]. The results show thd& TOME consistently surpasses
those architectures by a signi cant margin. Moreover, the performance drop on the base BLIP/BLIP-2
is minimal while achieving substantial reductions in memory footprint i@nank times—nearly
halving for BLIP andtripling for BLIP-2. Additionally, the speedup can further improve with
increased batch and model sizes.

4.2 Visual Question Answering (VQA) with Large Vision-Language Models

This experiment focuses on assessing the off-the-shelf performance of large vision-language models
like LLaVa [2]. We extensively conduct experiments across six VQA datasets: VQA2 [

GQA [7Q] (academic questions), VizWiZ L] (visually impaired individuals), ScienceQA?Y] (zero-

shot scienti ¢ question answering), TextVQAJ] (text-rich VQA tasks), and MME-Perceptioii4]

(visual perception with yes/no question). More details on the number of samples in each dataset are
in the Appendix. All experiments are conducted udih@\VA-1.5 7BandLLAVA-1.5 13Bwith the
Imms_eval library [75] provided by the LMMs-Lab team.

Figure 3: Off-the-shell Image-Text Retrieval comparisonbetweerPI TOME v.s. merging/pruning
methods on different backbones on tasks when varying the number of merged tokens. Here, Recall
sum Rt@1+Rt@5+Rt@10 +Ri @1 +Ri @5 +Ri @10is close to 600, indicating recall scores at

top 1,5, and 10 for retrieving image and text reached close to 180¥&@ME curves, in most cases,

are above other baselines.

Table 1:Image-Text Retrieval comparison.PITOME with- -Fr{aekt)rliivél ciatraalrr;segn\:vrﬂgg?;gi(;-

out training are ir blue, and with training ir gray. PITOME inq from scratgh on CLIP and BLIP
achieves SOTA while saving6% 56%in FLOPS and Speedbagckbonest = RK@1+Rk@5 +
ingupby 1:4to 1:6 compared to the base models. RK@10k 2ftig,

" +|ZS Retrieval Reranked| ViT Total |ZSRetrieval Total -
Datasets ‘Methods ‘Rt @1l" Ri@1 ‘ Rsum " Rsum " ‘FLOPS#FLOPS# Time#  Time # Models ‘Algo. ‘ Rt" Ri" GFLOPS" SEvalr.j. ;raln&
VLT 8350 64.40| 490.60  525.70| - 55.90 - peed Spee
LightingDOT 83.90 69.90| 532.26 - - - - = Baseline
UNITER 92.87 83.73| 521.90 542.80 - 949.9 - - ToMe |287.30 270.52 x2.10  x1.39x1.79
METER 94.30 82.22| 560.54 570.72 - - - - CLIPHic BOCFTU %gg-% %gg-gi xg-ig Xi.gg Xi.;g
CLIP-L 9290 81.34| 568.23 - 80.85 - 25s - . - x2. x1.30  x1.
Flickr30k |ALBEF 9491 85.32| 564.58 575.00| 55.14 6554 16s 58s g'f;R?\;e 22251-35% 22;506»;‘? ;21-30 1%939 1><71£-;78
PITOMEELR o 9572 86.32  567.58  577.81 | 38.55 47.65 13s 565 (LIELAE 2 2 Les ) il
PITOMEPY .o 9661 87.18 569.98  579.35 | 3855  47.65 13s 56s Baseline

‘ ‘ ‘ ToMe 294.80 280.64  x1.57 x1.66 x1.60

PITOMERUPZ. 0683 6784 56625 58077 | 29693 30077 455  im2ls  BllPmu|fore [200:45 2001 xLAT X165 XSS,

PITOMEE2,s 97.556 89.04 57281  583.72 | 434.50 564.78 im5s  1m54s DiffRate | 292.77 279.46 x1.57  x1.65 x1.59
PITOME|296.00 282.36 x1.57  x1.66 x1.59

VILT 6150 42.70| 42020  439.20| - 55.90 - - Baseline

CLIP-L 70.78 53.79| 478.18 . 80.85 . 2m10s - ToMe 24864 21503 x2.10  x1.38 x1.79

METER 7616 57.08 N 495.95 , . , A CLiPye, |TOFU  |248.99 21656  x210 X139 X179

ALBEF 76.94 60.24| 47839  500.44| 5514 6554 43s  5m29s DCT =~ 124004 211.28  x2.10  x1.34 x1.37
MS-COocC! BLIP DiffRate |248.87 21545 x2.10  x1.39 x1.79

PITOMEELR s 79.46 62.50 48599  506.65 | 38.85 47.65 51s  4m30s e o L T

PITOMEP o5 8044 6391  493.33 51266 | 38.85 47.65 51s  4m30s - : : : : .

‘ ‘ ‘ aseline

PITOMEPLPZ 8220 6554  494.92 51844 | 20693 390.77 3m33s  6m3ds B o A e Wy

1
PITOMEP &5 84.12 67.37  504.95  527.06 | 434.50 564.78  5mil3s 9m24s BLIPcoco |poT 26438 23019 157  x1.86 xL78
| | | | DiffRate |265.45 235.11 x157  x1.84 x1.85
PITOME| 268.42 236.25 x1.57 x1.88 x1.85




LetL denote the number of layers in the CLIP encoderldnithe number of visually encoded tokens.

In our experiment, we applI TOME to the ViT vision encoder of LLAVA, retaining only percent

of tokens in each layer. This resultsrihN tokens being fed into the LLM, signi cantly enhancing
inference speed. We used LLaVA-1.5-7B and LLaVA-1.5-13B checkpoints to run off-the-shelf
settings. Tables 3 and 4, along with Figure 4, illustrate thatifeoME algorithm consistently
achieves superior performance compared to other merging and pruning methods, as well as existing
SOTA models such as BLIP-Z§), InstructBLIP [77], IDEFICS-9B/80B [/ 8], with inference time

nearly halved Remarkably, in some datasets like VisWiz and ScienceQA, the compressed model
even surpasses the baseline model. We contend that this improvement stems from the merging of less
signi cant tokens in PTOME, potentially enhancing the robustness of the language model (LLM).

4.3 Image Classi cation on Imagenet-1k

In this task, we employed ve ViT backbones of varying sizes—tiny (ViT-T), small (ViT-S), base
(ViT-B), large (ViT-L), and huge (ViT-H) - which are pre-trained using either MAB)][or DEIT

[80] styles. These backbones were utilized to assess both off-the-shelf and retrained performance.
All experiments were conducted on the ImageNet-1k dataset, which is a subset of Ima&@f@Net [
containing labeled images spanning 1000 categories.

Table 3: Off-the-shelf LLaVA-1.5 7B (r=0.9) andLLaVA-
1.5 13B(r=0.925)performance vsPITOME and other token
pruning/merging methods on six VQA datasets: VQA-82|[
GQAT[70Q], VisWiz [7]], TextVQA [73], MME [ 74] ScienceQA
image (ScienceQA[72].

Model [LLM [VQAY?" GQA " VisWiz" ScienceQA" TextVQA " MME "
BLIP-2 Vicuna-13B| 410 410 196 61.0 425 12038
InstructBLIP  |Vicuna-7B - 49.2 345 60.5 50.1 -
InstructBLIP  |Vicuna-138| - 495  33.4 631 507 12128
IDEFICS-9B |LLaMA-7B | 509 384 355 - 25.9 -
IDEFICS-80B |LLaMA-65B| 60.0 452  36.0 - 30.9
LLaVA-1.5-78
ToMe 752 595 559 68.7 411 14124
ToFu , 751 594 558 68.5 412 14053
DCT Vicuna-7B | 578 5g2 557 65.8 263 11939
DiffRate 720 579 554 66.4 306 13410
PITOME 754 599 559 69.0 430 14481
LLaVA-1.5-13B
ToMe 760 599 559 738 431 14703
ToFu . 761 601 561 74.0 430 14710
DCT Vicuna-13B| 707 573 561 70.3 239 13558
DiffRate 734 585 546 706 328 13954
PITOME 768 602 56.1 74.0 456 14901

Table 4:Inference time of LLaVA-1.5-7B and LLaVA-1.5-
13B models when running ome V100-GPUsand ve A100-

GPUs
Model VQAV?# GQA# VisWiz# ScienceQA# TextVQA# MME#
LLava-1.5-7B  09h:05m 10m:25s 04m:36s 01m:50s 10m:12s 02m:32s
ToMe 05h:38m 06m:34s 03m:26s  01m:07s 07m:37s 01m:24s
ToFu 05h:35m  06m:32s 03m:29s  01m:06s 07m:40s 01m:24s
DCT 05h:59m  06m:41ls 03m:28s  01m:08s 08m:16s 01m:27s
DiffRate 05h:39m  06m:39s 03m:26s  01m:06s 07m:36s 01m:21s
PITOME 05h:44m  06m:37s 03m:26s  01m:07s 07m:37s 01m:23s
LLava-1.5-13B  13h:11m 13m:05s 07m:36s  04m:54s 15m:04s 02m:59s
ToMe 09%h:28m 09m:35s 05m:58s  03m:31s 11m:48s 02m:16s |
ToFu 09h:26m  09m32s 05m:58s  03m:26s 11m4ss  o2m:15s Figure 4: Off-the-shelf per-
DCT 10h:02m  10m:53s 06m:46s  03m:45s 12m:57s 02m:34s
DiffRate 09h:33m  09:m44s 06m:0ls  03m:37s 1ms2s  ozmi1ss fOrmance of PITOME on

PITOME 09h:32m  09m:39s 06m:03s  03m:35s 12m:08s 02m:17s LLaVA-1.5-7B Wlth different
compressing ratio.

Table 5 and Figure 5 present our experimental results, compBrihgM E with recent works, includ-

ing SOTA ef cient transformers such as Swin-B82, CSWin-B [82], MViT-B/L [ 83], MAE [79],

and other token merging/pruning metho@g,[85, 41]. We observe thaPiTOME maintains high
accuracy with an average performance drop of dhBfb after reducing up t@4% of FLOPS
(MAE-H), showcasing superior performance with comparable throughput. It is important to note that
dynamic pruning-based methosisch as A-VIiT B5], Dynamic ViT [84], and SP-VIT [L3] do not
accelerate training speed due to using additional masks for padding tokens into a same dimension. On
the retraining settings, we note that models compress&ibyME also surpass merging/pruning
methods by a large margin and approach the performance of the original models.
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4.4 Text Classi cation

While previous studies have focused on benchmarking BSM-based algorithms within the vision
or vision-language domain, we also extend experiments to the text domain, where input sequence
lengths vary by sample. Speci cally, we apply compression algorithms to the rst three layers of the
BERT model B6], reducing the number of tokens B@%in each layer. Our experiments utilize the
SST-2 dataset8[7] with an average sequence length of 23.2 tokens and the IMDb da@&ewith

an average sequence length of 292.2 tokens.

As demonstrated in Table 6 and Figure 11 (Appendix), our ndings indicateRiffadtM e performs

better than other BSM-based baselines. Additionally, after retraining, the compressed BERT models
achieve competitive records while signi cantly accelerating training speed compared to previous
pruning methods such as PowER-BERSB]| Fisher P(Q], and LTP P1], as well as BERT-based ef -

cient models like DistiiBERT92] and ALBERT [93]. Notably, we observe only @4% performance

drop on the IMDb dataset and even surpass the original BERT modeBbyon the SST-2 dataset.

For detailed empirical results on this task, please refer to Appendix D.

o Table 6:Text Classi cation: PITOME vs other BERT-style
Table 5: Image Classi cation: Per- compressed models and token pruning ones.

formance ofPI TOME on Imagenet-1Kk, Eval  Train
Dataset Type Model Acc Flops” Speed"
both off-the-shelf (OTS acc) and after ps"  Sp
P . . compressed ALBERT 91.3 x1.0 x1.1
retrairing (Trained acc), across ViT models  DistledBERT | 911  x20  x17
backbones. We benchmark with differ-
. . . . POWER-BERT| 91.1  x2.5 x1.0
ent architectures and merging/pruning PN Fisher 913 x16  x10
SST-2 LTP 913  x2.9 x1.0
methods. T PIToMEe 91.0 x1.9 x1.4
OTS Trained Train ToMe 912 x1.9 x1.4
Type  Model Acc. Acc. Flops# speed up merging ToFu 89.8 x1.9 x1.4
Swin-B nla 840 154 bcr 907 x1.9 x1.4
Other CSWin-B na 842 150 DiffRate 89.7  x19 x1.4
models MViTv2-B nla 844  10.2 PITOME 91.7 x1.9 x1.4
MVviTv2-L na 853 421 compressed ALBERT 89.2  x1.0 x1.2
ToMePETT 68.9 70.0 0.79 X models DistiledBERT | 93.0 x2.0 x1.9
ToFPE'TT 69.6 705 0.79 X
merge pCTPETT 67.6 687 079 X pruning PowER-BERT| 925  x2.7 x1.0
DiffRatePE™T 69.9 707 079 X +mask TR-BERT 936 x2.3 x1.0
PITOMEPE™ 708 716 079 X IMDb — PIToMEe 932 x1.9  x1.8
merging ToMe 933 x1.9 x1.8
AT OETS T 29 ToFu 926 x1.9 x1.8
s - . DCT 92.4  x1.9 x1.8
prune DynamlcE;ygD na 793 29 DiffRate 924 x19 x1.8
SP-ViToH™ na 793 _ 26 PITOME 936 x1.9 x1.8
E-VITPETS - 795 29
ToMePE'™S 777 794 29 X
ToFPETS 778 796 29 X
merge
9 DCTPE™S 748 78.6 2.9 X
DiffRatePE"™S 768 795 2.9 X
PITOMEPE™  |791 798 2.9 X
ToMeMAEL 829 850 310 X
ToFU/AEL 838 851 310 X
merge pCTMAEL 828 844 310 X
DiffRate" Et 832 853 310 X
PITOMEME:  |846 853 310 X
ToMe™EH 856 864 928 X
ToFUVAEH 858 864 928 X
merge pCTMAEH 843 860 928 X
DiffRate" EH 859 86.6 928 X . .
PITOMEMSH  |gea 867 928 X Figure 5: Off-the-shelf results on Imagenet-1k. Zoom in

for better view.

4.5 P ToME Ablation Studies

Contributions of energy scores and related factorsTo assess the performance of the components
used inPITOME, we conduct the following settings: (9 ToOME without protecting important tokens

by our energy in Step 2, i.e., using odd and even indices in sorted energy score array as two sets in
BSM; (ii) PITOME where the merging process in Step 3 conducted on two randomlj s&ss
baselines15, 16] instead of leveraging ordered in sorted energy vedidr3; (iii) PIToME without

using our proposed energy score as iffddput utilizing other indicators like attention scores from
the[CLS] (PITOME w cls attn) token]9] or mean of attention scores; (¥ TOME using a xed of

k removed token at each layer as ToMe [15] rather than a reducing ratiaobur con guration.

We run experiments on image-text retrieval and text classi cation tasks, reporting the results in Table 7
for (i) and (ii), and in Figure 6 for (iii) and (iv). The results demonstrate that all factors contribute to
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