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Abstract
Increasing the throughput of the Transformer architecture, a foundational com-
ponent used in numerous state-of-the-art models for vision and language tasks
(e.g., GPT, LLaVa), is an important problem in machine learning. One recent and
effective strategy is to merge token representations within Transformer models,
aiming to reduce computational and memory requirements while maintaining ac-
curacy. Prior works have proposed algorithms based on Bipartite Soft Matching
(BSM), which divides tokens into distinct sets and merges the top k similar tokens.
However, these methods have significant drawbacks, such as sensitivity to token-
splitting strategies and damage to informative tokens in later layers. This paper
presents a novel paradigm called PITOME, which prioritizes the preservation of
informative tokens using an additional metric termed the energy score. This score
identifies large clusters of similar tokens as high-energy, indicating potential candi-
dates for merging, while smaller (unique and isolated) clusters are considered as
low-energy and preserved. Experimental findings demonstrate that PITOME saved
from 40-60% FLOPs of the base models while exhibiting superior off-the-shelf per-
formance on image classification (0.5% average performance drop of ViT-MAEH
compared to 2.6% as baselines), image-text retrieval (0.3% average performance
drop of CLIP on Flickr30k compared to 4.5% as others), and analogously in visual
questions answering with LLaVa-7B. Furthermore, PITOME is theoretically shown
to preserve intrinsic spectral properties to the original token space under mild
conditions. Our implementation is available at this link.

1 Introduction
Vision Transformers (ViTs) [1] have been integral to recent advancements in computer vision,
leading to state-of-the-art deep learning architectures for representing images and videos [2–5].
However, these transformer-based architectures incur substantial memory costs and have a quadratic
time complexity in the number of tokens due to the self-attention layers. This challenge becomes
particularly severe as model sizes increase, as observed in Large Language Models (LLMs) [6].

To address such limitations, several efforts focus on designing a more efficient attention mechanism
by making it linearly scale with input tokens [7, 8], integrating vision or language domain-specific
modules [9, 10], or pruning the head numbers in ViT [11, 12]. Others propose dynamically pruning
less important tokens w.r.t. pre-defined metrics using learnable masks [13, 14]. However, a primary
downside of these novel methodologies lies in the necessity to retrain the model from scratch,
therefore hindering the leveraging of well-trained models such as LLMs. Moreover, most pruning-
based techniques may not accelerate the training process, which arises from the dynamic removal
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Figure 1: A comparison of token merging methods. Patches of the same color are merged. Green
arrows highlight incorrect merges, avoided by PITOME. Position of tokens with high attention scores
(cyan borders, zoom for clarity) in PITOME are maintained proportionality akin to ViT-base 384.

of tokens in each sample, resulting in a mismatch of dimensions and consequently preventing the
batching of samples with consistent dimensions.

Recent research has introduced a novel token merging technique. Instead of pruning, this method
combines tokens with high semantic similarity, removing background tokens and merging less
informative foreground ones. Its versatility extends to training and non-training scenarios, drastically
reducing compute and memory usage. A notable example is ToMe [15], which introduced the
Bipartite Soft Matching (BSM) algorithm, prominent for its simplicity and effectiveness in merging
highly similar tokens. Since ToMe, several works, including ToFu [16], Pumer [17], LTPM [18], and
DiffRate [19], have built upon BSM with various adaptations in vision and language domains. In
BSM, tokens representing image patches are separated into sets A and B, and their pairwise cosine
similarity is computed. The top k similar pairs of tokens between the sets A and B are merged.
However, the performance of this algorithm is sensitive to the token-splitting strategy. For instance,
ToMe’s approach, which first splits tokens based on index parity, can lead to incorrect merging since
tokens in A can subsequently only be merged with those in B (Figure 1). Moreover, while BSM
excels in initial layers with many redundant tokens, deeper layers risk merging informative tokens due
to latent object correlations. Though current enhancements [19] mitigated this by considering token
attention scores in BSM [20], their adaptability to different ViT architectures, each with potentially
distinct attention score distributions [21], remains a challenge.

In this work, we propose PITOME (Protect Informative Tokens before Merging), a method designed
to safeguard crucial information-bearing tokens prior to the merging step. Our method prioritizes
preserving informative tokens by utilizing an additional metric termed the energy score inspired
by connections to graph energy in spectral graph theory [22, 23] (Theorem 1). Specifically, our
energy score assesses large clusters of similar tokens as possessing high energy (like background
and repeated textures), thereby marking them as suitable candidates for merging, while smaller,
distinct regions (foreground) are deemed low-energy and thus treated as protected informative tokens.
The proposed energy term operates on the graph built for input tokens, taking into account their
relationships and aggregating information from nearby neighbors when their similarities exceed
certain thresholds. This approach facilitates a deeper contextual comprehension compared to previous
works [15–17, 19] that rely solely on attention scores or feature embedding per token. Subsequently,
we only select the highest-scoring tokens and pass them on for merging in the next steps, ensuring
the preservation of important tokens, particularly in the latter stages when only a few remaining ones.
During the merging process, we continue leveraging sorted energy vectors from earlier stages by
distributing tokens with similar energy into two sets, A and B, resulting in candidates in A having
a high probability of finding compatible matches in B. Matched tokens are then merged using a
weighted average feature embedding to create a new token representation.

The empirical results demonstrate that despite the increased computational cost associated with
energy score calculations, PITOME exhibits comparable speed to other BSM-based approaches since
the matching is performed on a smaller, high-energy token set. At the same time, it consistently
shows superior accuracy across various experimental scenarios. Additionally, we present theoretical
insights into PITOME, showing that, under moderate assumptions — such as the discriminative
nature of feature embeddings generated by ViT for node pairs within and across distinct objects —
our algorithm efficiently preserves the spectral properties of the initial input tokens, maintaining
the eigenvalues derived from normalized Laplacian matrices of the original tokens [24–26]. To
summarize, our contributions encompass:

• A new token merging procedure for accelerating ViT architectures is designed to protect
crucial yet small-region tokens while identifying redundant ones for merging based on
contextual token correlations captured by our energy score functions.
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• Our PITOME runs as fast as other BSM-based approaches while achieving SOTA per-
formance on diverse tasks, ranging from image-text retrieval (Sec. 4.1), visual question
answering with LLMs (Sec. 4.2), image classi�cation (Sec. 4.3), and text classi�cation
(Sec. 4.4). In several cases,PITOME is shown to reduce up to40 � 60%FLOPs of base
models while only dropping performance around0:3 � 0:5%(CLIP model on Flick30k).

• We also present theoretical �ndings indicating that, given reasonable assumptions,PITOME
can effectively approximate the spectral distance between the initial token spaces and the
merged token set. This sheds light on whyPITOME tends to outperform baselines in
practical applications and contributes to a better understanding of the potential limitations
inherent in BSM-based methods, such as those in [15, 16, 19, 17, 27].

2 Related Work
Ef�cient Attention Mechanisms. Various efforts have sought to enhance the ef�ciency of trans-
formers in both NLP and Vision domains. Some concentrate on accelerating attention computation
[28, 29, 8] through approximation techniques involving hashing [30], low-rank [31], or sparse approx-
imations [32]. Others explore strategies such as head or feature pruning [11, 33] or the integration
of domain-speci�c modules [9, 5, 34, 10]. However, many of them necessitate joint training with
the backbone model from scratch. For instance, DynamicViT [35] runs approximately 150 hours
of �ne-tuning on an NVIDIA A100 GPU to prune the DeiT-S model [36]. In contrast, we focus
on accelerating existing ViT models by token merging, which applies to training and non-training
scenarios.

Dynamic Token Pruning. Several studies have explored token pruning in transformer models
across NLP [37–39] and vision domains [40–42, 27]. However, like ef�cient transformers, these
methods typically require training. Additionally, most pruning techniques are dynamic, meaning the
number of tokens varies across different inputs, which improves accuracy but complicates batching
for practical deployment. To address this, numerous pruning methods employ masks during the
training phase rather than directly eliminating tokens; however, it yields to cancel out the speed
advantages associated with pruning.

Token Merging. Leading techniques such as ToMe [15] and its improvements [17, 43, 18, 19, 16, 44],
build upon lightweight Bipartite Soft Matching (BSM). These methods exhibit speeds comparable
to pruning while achieving superior performance. They have demonstrated the ability to double the
throughput of state-of-the-art Vision Transformers (ViT) on both images and videos with minimal
accuracy degradation in various scenarios. However, BSM-based approaches are sensitive to the
selection of sets in the matching process, potentially resulting in the loss of informative tokens due
to heuristic merging procedures. To address these issues, methods like DiffRate [19] and Crossget
[44] leverage attention scores in ViT or cross-modal guidance to identify important tokens during the
matching process, though they remain sensitive to the distribution of the token space, especially with
imbalanced clusters. Another direction involves adapting more intricate algorithms, such as k-means
[45], spectral clustering [46], graph pooling [47], or graph coarsening [24, 48], to merge similar
tokens. While these strategies offer some guarantees and well-controlled outputs, their iteration
schemes are highly complex and may not align with the goal of reducing model complexity in ViT
layers. OurPITOME, on the other hand, enables the advantages of both approaches. It maintains
ef�ciency comparable to BSM, remains robust to token partitioning strategies, and offers a reasonable
trade-off between speed and accuracy. Moreover,PITOME is theoretically proved to approximate the
spectral spectrum of the original token space under reasonable assumptions, resembling the behavior
of other spectral clustering methods.

3 Methodology
3.1 Token Merging Formulation
We apply token merging to each transformer block of the ViT architecture (Figure 2-a). Given the
input token of thel-th blockX l 2 RN � h whereN andh are the token length and token hidden
embeddings, a forward step in one Transformer block can be formulated as follows:

X̂ l = X l + Attention(X l W Q ; X l W K ; X l W V ); X l +1 = X̂ l + MLP(X̂ l ) (1)
whereAttentionandMLP are the self-attention and multiple layer perceptron components. We then
apply merge operations on̂X l and compute the output of the reduced MLP block as:

X l +1 = X̂ l
m + MLP(X̂ l

m ); whereX̂ l
m = Fmer (X̂ l ; X l W K ; r ): (2)
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Figure 2:a) PITOME can be inserted inside transformer block;b) Energy scores are computed to
identify mergeable and protective tokens;c) Our algorithm gradually merges tokens in each block.

HereFmer (:) is the merging operation that receivesX̂ l as input for compressing,X l W K (key
matrices) as the token features ofX̂ l following prior work [15, 43, 18, 19], andr is the fraction
of remaining tokens. The output̂X l

m 2 RrN � h serves as input for the MLP layer to produce
X l +1 2 RrN � h . We present the PITOME Fmer (:) function in the next section.

3.2 Energy-based Merging
We propose to use a new term calledenergy scoreto evaluate the redundancy of each token, which is
then used to protect informative or isolated tokens (low energy scores) while considering tokens that
are in the large cluster as high energy scores and characterizing them as merging candidates. Figure
2-b illustrates the main steps in PITOME.

Token Graph Construction: Given a set ofN token inputs inX̂ l , we build a weighted graph
G(V; E; W ) with V a set ofN = jVj nodes,E a set ofM = jEj edges de�ned by connecting one
token to the remaining ones inG, W 2 RN � N be a weighted adjacency matrix. We opt for using the
keyvectorsK = X l W K 2 RN � h as node features ofV, i.e.,vi 2 V hash feature dimensions. The
weightW [i; j ] assigned to an edgeeij 2 E connectsvi andvj is computed by cosine distance:

W [i; j ] = 1 � cos(vi ; vj ); wherecos(vi ; vj ) =
vi � vj

kvi kkvj k
; 8vi 2 V ; vj 2 V : (3)

For simplicity,W [i; :] andW [:; i ] denote the i-th row and column,resp.; [N ] stands forf 1; : : : ; N g.

Token Energy Scores: In this step, theenergy score, denoted asE = ( E i ) i 2 [N ], is computed for
each node (Figure 2-a, Step 2). The term is inspired by the concept ofgraph energyin spectral graph
theory [22, 23], de�ned as the sum of the absolute eigenvalues of the adjacency matrixW . We also
leverage such structures ofW to �nd correlations among tokens and to estimate token redundancy.
Instead of using independent token values such as attention scores [19], our energy leads to better
performance (Figure 6, Appendix) and provides theoretical connections to the spectral properties of
the original token graphs (Theorem 1).

Let i be the index of the current node andN (i ) represent the set of neighbor nodes. The energy score
E i � E i (vi ; W [i; :]) of nodevi is calculated using the following equation:

E i (vi ; W [i; :]) =
1
N

X

j 2N ( i )

f m (cos(vi ; vj )) ; f m (x) =
�

x if x � m
� (exp(x � m) � 1) otherwise

: (4)

Rather than accumulating allcos(vi ; vj ) values, the functionf m (:) in Eq.(4) mimics the exponential
linear unit activation function [49], focusing on similar tokens even if they are far apart, while
ignoring dissimilar ones. Here,m is a dynamic margin value varying at each layer in the ViT model.
Nodes within this margin, i.e., (x > m ) with high cosine similaritycos(vi ; vj ) are considered true
neighbors, potentially representing tokens belonging to the same object. Nodes outside this margin
havecos(vi ; vj ) replaced by a constant� , providing a lower bound for minimal edge weights. The
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termexp(x � m) � 1 < 0 smooths the functionf (x) for neighboring nodes near the marginm. In
experiments, we set� = 1 :0 andm = 0 :9 � 0:9 � l i =l, wherel i is the current layer index andl is
the total number of encoder layers, indicating an increasing margin as tokens move to deeper layers.
The ablation studies for the� andm values are presented in Section 4.5.

Intuitively, Eq.(4) re�ects the number of tokens potentially representing the same object. Tokens
belonging to large objects (e.g., background) will have high energy scores, indicating potential
candidates for merging, while smaller ones (e.g., foreground) will have low energy scores and are
considered to be protected. This guides us to sort the energy vectorsE in descending order and
choose only the top2k nodes with the highest scores as mergeable candidates and the remaining ones
as protective tokens, i.e,s = argsort( E), merge s[: 2k]; protect s[2k :]; k = N � Nr .

Ordered Energy-based Bipartite Soft Matching: Having identi�ed mergeable tokens in themerge
set, we continue exploit the sorted order inE to form two setsA andB in BSM, each containingk
nodes. Speci�cally, tokens with odd and even indices inmergeare selected forA andB, resp.given
the fact that those in the same object should have similar energy scores, resulting in likely distributing
in consecutive positions inargsort(E). In other words, our choosing has a high probability that
one token inA always �nds its best match in the same object inB. This sets us apart with random
partitions based on spatial indices in images like [15, 16].

Tracking Token Sizes All nodes in setA are then merged with their nearest neighbors in
set B through thefast BSM algorithm. Following prior works [15, 16], we also add propor-
tional attention to balance the effect of the merged token on the output of the softmax function:

A = Softmax
�

X l W Q � (X l W K )T =
p

h + log m
�

wherem is a row vector containing the size of
each token, i.e., the number of data patches the token represents. The pseudo-code for our method is
provided in Algorithm 1 (Appendix) with complexity analysis.

3.3 Connection to Graph Coarsening with Spectral Preservation

In this section, we employ tools from spectral graph theory to show a spectral distance preservation
of PITOME. We note that similar properties can be obtained by using more complicated clustering
algorithms such as K-mean [45] or spectral clustering [46, 47, 24]; however, these methods are
typically loop-based algorithms, which are computationally expensive and not suitable for batch-type
data. OurPITOME, in contrast, is as fast as BSM methods but theoretically preserves spectral
properties of input token graphs.

We begin by introducing De�nitions 1 and 2 of graph coarsening and lifting,resp., to justify the
spectral distance constructed in equation (5), measuring the similarity between the original and coarse
graphs. For more thorough coverage of the mathematics of graph coarsening and graph lifting, we
refer the reader to [50–53]. In short,we treat the result of token merging as a graph coarsening
process(Figure 8, Appendix). We then create thelifted graphas a reconstruction from this coarsened
version to assess the spectral distance to the original token graph.

De�nition 1 (Graph Coarsening). Given a weighted graphG(V; E; W ), we denoteP = fV i gi 2 [n ]
whereV = [ i 2 [n ]Vi , be a partition of its node inton disjoint sets. The coarsened graph ofG
w.r.t. P is the weighted graphGc, where each partition inP is aggregated into a single node, denoted
f � i gi 2 [n ], by averaging the elements within each partition. The elements of the adjacency matrix
are given byW c[i; j ] =

P
v i 2V i

P
v j 2V j

W [i; j ]=(jVi jjV j j). We denote the combinatorial and

normalized Laplacians ofGby L = D � W andL = I N � D � 1=2WD � 1=2, resp., whereD is the
diagonal degree matrix withD [i; i ] = di :=

P N
j =1 W [i; j ]. Similarly, the de�nition of the coarsened

Laplacian matrices follows directly:L c = D c � W c andL c = I n � D � 1=2
c W cD � 1=2

c . Finally, the
eigenvalues and eigenvectors ofL (resp.L c) are denoted as� andu (resp.� c anduc).

De�nition 2 (Graph Lifting). We callGl (Vl ; El ; W l ) the lifted graph ofG if the adjacency matrix
elements are given byW l [i; j ] = W c[i; j ]. We denote the node degree ofvli 2 V l by dli =
P N

j =1 W l [i; j ]. The combinatorial and normalized Laplacians ofGl is then de�ned asL l = D l � W l

andL l = I N � D � 1=2
l W l D

� 1=2
l , resp., whereD l is the diagonal degree matrix withD [i; i ] = dli .

Then, we denote,resp., the eigenvalues and eigenvectors ofL l by � l andu l .
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Lemma 1(Eigenvalue Preservation, seee.g., [50, 51, 54, 55]). The normalized Laplacian eigenvalues
of the lifted graph� l contain all the eigenvalues of the coarse graph� c and additional eigenvalues1
with (N � n) multiplicity.

Through Lemma 1, we can use the lifted graphGl as a proxy for the coarse graphGc, and de�ne:

SD(G; Gc) = k� � � l k1 =
NX

i =1

j� i � � li j as a spectral distance. (5)

Next, we present our main theoretical result demonstrating how spectral distance characterizes the
superiority of our novelPITOME paradigm over the state-of-the-art approaches as ToMe [15, 16].
The Theorem 1 quanti�es how similar the originalG is to its coarsened counterpartGc, and is proved
in Appendix E.

Theorem 1(Spectrum Consistent of Token Merging). Suppose the graphsG(s)
0 , G(s)

PITOME, andG(s)
ToMe

are coarsened from the original graphGby iteratively merging pairs of nodesvas andvbs w.r.t. the
true partition P (s)

0 = fV (s)
0i gi 2 [s], thePITOME-partition P (s)

PITOME = fV (s)
PITOMEi gi 2 [s], de�ned by

PITOME in Algorithm 1, and the ToMe-partition [15, 16], P (s)
ToMe = fV (s)

ToMei gi 2 [s] , for s = N; : : : ; n +

1. We assume some standard mild assumptions: (A1)E[cos(vas ; vbs )] ! 1; 8vas 2 V (s)
0i ; 8vbs 2

V(s)
0i ; i 2 [s]; (A2) there exists a marginm s.t., cos(vas ; vbs ) � m > cos(vas ; vcs ); 8vas 2

V(s)
0i ; 8vbs 2 V (s)

0i ; 8vcs 2 V (s)
0j ; 8i 6= j 2 [s]; and (A3) there is an order of cardinality in the

true partition, without loss of generality, we assumeN (s)
1 � N (s)

2 � : : : � N (s)
s , whereN (s)

i =
jV (s)

0i j; 8i 2 [s]. Then it holds that:

1. The spectral distance between the originalG � G (N )
0 and thePITOME-coarseG(n )

PITOME

graphs converges to0, i.e.,SD(G; G(n )
PITOME) ! 0,

2. The spectral distance between the originalGand the ToMe-coarseG(n )
ToMe graphs converges

to a non-negative constantC, with a high probability thatC > 0.

Intuitively, Theorem 1 states that, given assumptions (i) tokens are closely embedded within classes
and distinct between classes(A1, A2), and (ii) the number of tokens per class follows certain orders
(A3), the spectral distance betweenPITOME and the original tokens in Eq.(5) will converge to0. In
contrast, with ToMe partitions, a non-eliminable constant likely remains.

4 Experiments
We focus on two settings:Off-the-ShelfPerformance, where we evaluate the models' performance
immediately after compression without training, andRetrained, where we treat the compression
algorithms as pooling functions and retrain the models on downstream tasks. The experiments cover
four tasks: (i)image & text retrieval, (ii) visual question answering (VQA), (iii) image classi�cation,
and (iv) text classi�cation. We use the number of �oating-point operations (FLOPS) needed for
inference on one sample as the main metric to benchmark memory footprint and speed. Higher
FLOPS indicate greater memory requirements and longer training and inference times.

4.1 Image & Text Retrieval
We evaluatePITOME on the image-text retrieval task using three different backbone models CLIP
[56], ALBEF [57], and BLIP [58] on two frequently used Flickr30k [59] and MSCOCO [60] datasets.
Our experiment is benchmarked usingrecall@k[61], where a higherrecall@kindicates the model's
effectiveness in retrieval. In Figure 3, we benchmarkedPITOME against other SOTAmergingor
pruning-based methods such as ToMe [15], ToFu [16], DiffRate [19], and DCT [62] on off-the-shelf
setting when varying amount of merged tokens at each layer. Given the same FLOPS, it is clear
thatPITOME consistently outperforms previous compression algorithms across all backbones. The
performance gap increases as we decrease the percentager of tokens retained in each layer. The same
behavior remains consistent in Table 2, where we setr = 0 :925andretrain pre-trained checkpoints
of BLIP and CLIP. For more details about the training method, please refer to Li et al. [58].

In Table 1, we comparePITOME using compression ratios ofr 2 f 0:95; 0:975g on BLIP and
BLIP-2 against other advanced architectures such as ViLT [63], LightningDOT [64], UNITER [65],
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METER [66], CLIP-L [67], and ALBEF [68]. The results show thatPITOME consistently surpasses
those architectures by a signi�cant margin. Moreover, the performance drop on the base BLIP/BLIP-2
is minimal while achieving substantial reductions in memory footprint andrerank times—nearly
halving for BLIPand tripling for BLIP-2. Additionally, the speedup can further improve with
increased batch and model sizes.

4.2 Visual Question Answering (VQA) with Large Vision-Language Models
This experiment focuses on assessing the off-the-shelf performance of large vision-language models
like LLaVa [2]. We extensively conduct experiments across six VQA datasets: VQA-v2 [69],
GQA [70] (academic questions), VizWiz [71] (visually impaired individuals), ScienceQA [72] (zero-
shot scienti�c question answering), TextVQA [73] (text-rich VQA tasks), and MME-Perception [74]
(visual perception with yes/no question). More details on the number of samples in each dataset are
in the Appendix. All experiments are conducted usingLLAVA-1.5 7BandLLAVA-1.5 13Bwith the
lmms_eval library [75] provided by the LMMs-Lab team.

Figure 3: Off-the-shell Image-Text Retrieval comparisonbetweenPITOME v.s. merging/pruning
methods on different backbones on tasks when varying the number of merged tokens. Here, Recall
sum =Rt@1 +Rt@5 +Rt@10 +Ri @1 +Ri @5 +Ri @10is close to 600, indicating recall scores at
top 1,5, and 10 for retrieving image and text reached close to 100%.PITOME curves, in most cases,
are above other baselines.

Table 1:Image-Text Retrieval comparison.PITOME with-
out training are inblue, and with training ingray. PITOME

achieves SOTA while saving36%� 56%in FLOPS and speed-
ing up by� 1:4 to � 1:6 compared to the base models.

Datasets Methods Rt @1" Ri @1" ZS Retrieval
Rsum "

Reranked
Rsum "

ViT
FLOPS #

Total
FLOPS #

ZSRetrieval
Time #

Total
Time #

Flickr30k

ViLT 83.50 64.40 490.60 525.70 - 55.90 - -
LightingDOT 83.90 69.90 532.26 - - - - -
UNITER 92.87 83.73 521.90 542.80 - 949.9 - -
METER 94.30 82.22 560.54 570.72 - - - -
CLIP-L 92.90 81.34 568.23 - 80.85 - 25s -
ALBEF 94.91 85.32 564.58 575.00 55.14 65.54 16s 58s
PI TOM EBLIP

r =0 :95 95.72 86.32 567.58 577.81 38.55 47.65 13s 56s
PI TOM EBLIP

r =0 :95 96.61 87.18 569.98 579.35 38.55 47.65 13s 56s
BLIP 96.86 87.48 572.24 580.76 55.14 65.54 16s 1m17s

PI TOM EBLIP2
r =0 :95 96.83 87.84 566.25 580.77 296.93 390.77 45s 1m21s

PI TOM EBLIP2
r =0 :975 97.55 89.04 572.81 583.72 434.50 564.78 1m5s 1m54s

BLIP2 97.61 89.79 572.72 584.76 678.45 900.77 1m37s 3m15s

MS-COCO

ViLT 61.50 42.70 420.20 439.20 - 55.90 - -
CLIP-L 70.78 53.79 478.18 - 80.85 - 2m10s -
METER 76.16 57.08 - 495.95 - - - -
ALBEF 76.94 60.24 478.39 500.44 55.14 65.54 43s 5m29s
PI TOM EBLIP

r =0 :95 79.46 62.50 485.99 506.65 38.85 47.65 51s 4m30s
PI TOM EBLIP

r =0 :95 80.44 63.91 493.33 512.66 38.85 47.65 51s 4m30s
BLIP 81.82 64.36 494.34 516.03 55.14 65.54 1m3s 7m10s

PI TOM EBLIP-2
r =0 :95 82.29 65.54 494.92 518.44 296.93 390.77 3m33s 6m34s

PI TOM EBLIP-2
r =0 :975 84.12 67.37 504.95 527.06 434.50 564.78 5m13s 9m24s

BLIP-2 85.32 68.26 507.46 528.63 678.45 900.77 7m52s 16m12s

Table 2: Retrained Image-Text
Retrieval comparisonwhen retrain-
ing from scratch on CLIP and BLIP
backbones.Rk = Rk@1+Rk@5+
Rk@10; k 2 f t; i g,

Models Algo. Rt " Ri " GFLOPS "
Eval

Speed"
Train
Speed"

CLIPFlickr

Baseline 291.80 275.52 x1.00 x1.00 x1.00
ToMe 287.30 270.52 x2.10 x1.39 x1.79
ToFu 288.32 269.68 x2.10 x1.39 x1.76
DCT 279.70 258.24 x2.10 x1.30 x1.37
DiffRate 289.33 266.45 x2.10 x1.39 x1.78
PI TOM E 291.50 270.94 x2.10 x1.39 x1.78

BLIPFLickr

Baseline 296.70 284.06 x1.00 x1.00 x1.00
ToMe 294.80 280.64 x1.57 x1.66 x1.60
ToFu 296.46 281.04 x1.57 x1.65 x1.59
DCT 291.79 275.22 x1.57 x1.61 x1.45
DiffRate 292.77 279.46 x1.57 x1.65 x1.59
PI TOM E 296.00 282.36 x1.57 x1.66 x1.59

CLIPcoco

Baseline 256.30 222.21 x1.00 x1.00 x1.00
ToMe 248.64 215.03 x2.10 x1.38 x1.79
ToFu 248.99 216.56 x2.10 x1.39 x1.79
DCT 240.04 211.28 x2.10 x1.34 x1.37
DiffRate 248.87 215.45 x2.10 x1.39 x1.79
PI TOM E 250.70 217.01 x2.10 x1.39 x1.79

BLIPcoco

Baseline 273.72 241.30 x1.00 x1.00 x1.00
ToMe 266.86 234.67 x1.57 x1.90 x1.85
ToFu 266.18 233.87 x1.57 x1.90 x1.85
DCT 264.38 230.19 x1.57 x1.86 x1.78
DiffRate 265.45 235.11 x1.57 x1.84 x1.85
PI TOM E 268.42 236.25 x1.57 x1.88 x1.85
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Let L denote the number of layers in the CLIP encoder andN the number of visually encoded tokens.
In our experiment, we applyPITOME to the ViT vision encoder of LLAVA, retaining onlyr percent
of tokens in each layer. This results inr L N tokens being fed into the LLM, signi�cantly enhancing
inference speed. We used LLaVA-1.5-7B and LLaVA-1.5-13B checkpoints to run off-the-shelf
settings. Tables 3 and 4, along with Figure 4, illustrate that thePITOME algorithm consistently
achieves superior performance compared to other merging and pruning methods, as well as existing
SOTA models such as BLIP-2 [76], InstructBLIP [77], IDEFICS-9B/80B [78], with inference time
nearly halved. Remarkably, in some datasets like VisWiz and ScienceQA, the compressed model
even surpasses the baseline model. We contend that this improvement stems from the merging of less
signi�cant tokens in PITOME, potentially enhancing the robustness of the language model (LLM).

4.3 Image Classi�cation on Imagenet-1k

In this task, we employed �ve ViT backbones of varying sizes—tiny (ViT-T), small (ViT-S), base
(ViT-B), large (ViT-L), and huge (ViT-H) - which are pre-trained using either MAE [79] or DEIT
[80] styles. These backbones were utilized to assess both off-the-shelf and retrained performance.
All experiments were conducted on the ImageNet-1k dataset, which is a subset of ImageNet [81]
containing labeled images spanning 1000 categories.

Table 3: Off-the-shelf LLaVA-1.5 7B(r =0.9) andLLaVA-
1.5 13B(r =0.925)performance vs.PITOME and other token
pruning/merging methods on six VQA datasets: VQA-v2 [69],
GQA [70], VisWiz [71], TextVQA [73], MME [74] ScienceQA
image (ScienceQAI) [72].

Model LLM VQA v2" GQA " VisWiz" ScienceQAI " TextVQA " MME "

BLIP-2 Vicuna-13B 41.0 41.0 19.6 61.0 42.5 1293.8
InstructBLIP Vicuna-7B - 49.2 34.5 60.5 50.1 -
InstructBLIP Vicuna-13B - 49.5 33.4 63.1 50.7 1212.8
IDEFICS-9B LLaMA-7B 50.9 38.4 35.5 - 25.9 -
IDEFICS-80B LLaMA-65B 60.0 45.2 36.0 - 30.9 -

LLaVA-1.5-7B

Vicuna-7B

76.6 62.0 54.4 70.4 46.0 1514.7
ToMe 75.2 59.5 55.9 68.7 41.1 1412.4
ToFu 75.1 59.4 55.8 68.5 41.2 1405.3
DCT 67.8 56.2 55.7 65.8 26.3 1193.9
DiffRate 72.0 57.9 55.4 66.4 30.6 1341.0
PI TOM E 75.4 59.9 55.9 69.0 43.0 1448.1

LLaVA-1.5-13B

Vicuna-13B

78.3 63.2 56.7 72.8 48.7 1522.6
ToMe 76.0 59.9 55.9 73.8 43.1 1470.3
ToFu 76.1 60.1 56.1 74.0 43.0 1471.0
DCT 70.8 57.3 56.1 70.3 23.9 1355.8
DiffRate 73.4 58.5 54.6 70.6 32.8 1395.4
PI TOM E 76.8 60.2 56.1 74.0 45.6 1490.1

Table 4: Inference time of LLaVA-1.5-7B and LLaVA-1.5-
13B models when running on�ve V100-GPUsand�ve A100-
GPUs.

Model VQA v2 # GQA # VisWiz # ScienceQAI # TextVQA# MME #

LLava-1.5-7B 09h:05m 10m:25s 04m:36s 01m:50s 10m:12s 02m:32s
ToMe 05h:38m 06m:34s 03m:26s 01m:07s 07m:37s 01m:24s
ToFu 05h:35m 06m:32s 03m:29s 01m:06s 07m:40s 01m:24s
DCT 05h:59m 06m:41s 03m:28s 01m:08s 08m:16s 01m:27s
DiffRate 05h:39m 06m:39s 03m:26s 01m:06s 07m:36s 01m:21s
PI TOM E 05h:44m 06m:37s 03m:26s 01m:07s 07m:37s 01m:23s

LLava-1.5-13B 13h:11m 13m:05s 07m:36s 04m:54s 15m:04s 02m:59s
ToMe 09h:28m 09m:35s 05m:58s 03m:31s 11m:48s 02m:16s
ToFu 09h:26m 09m32s 05m:58s 03m:26s 11m:45s 02m:15s
DCT 10h:02m 10m:53s 06m:46s 03m:45s 12m:57s 02m:34s
DiffRate 09h:33m 09:m44s 06m:01s 03m:37s 11m:52s 02m:18s
PI TOM E 09h:32m 09m:39s 06m:03s 03m:35s 12m:08s 02m:17s

Figure 4: Off-the-shelf per-
formance of PITOME on
LLaVA-1.5-7B with different
compressing ratior .

Table 5 and Figure 5 present our experimental results, comparingPITOME with recent works, includ-
ing SOTA ef�cient transformers such as Swin-B [82], CSWin-B [82], MViT-B/L [ 83], MAE [79],
and other token merging/pruning methods [84, 85, 41]. We observe thatPITOME maintains high
accuracy with an average performance drop of only0:5% after reducing up to44% of FLOPS
(MAE-H), showcasing superior performance with comparable throughput. It is important to note that
dynamic pruning-based methodssuch as A-ViT [85], Dynamic ViT [84], and SP-ViT [13] do not
accelerate training speed due to using additional masks for padding tokens into a same dimension. On
the retraining settings, we note that models compressed byPITOME also surpass merging/pruning
methods by a large margin and approach the performance of the original models.
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4.4 Text Classi�cation
While previous studies have focused on benchmarking BSM-based algorithms within the vision
or vision-language domain, we also extend experiments to the text domain, where input sequence
lengths vary by sample. Speci�cally, we apply compression algorithms to the �rst three layers of the
BERT model [86], reducing the number of tokens by20%in each layer. Our experiments utilize the
SST-2 dataset [87] with an average sequence length of 23.2 tokens and the IMDb dataset [88] with
an average sequence length of 292.2 tokens.

As demonstrated in Table 6 and Figure 11 (Appendix), our �ndings indicate thatPITOME performs
better than other BSM-based baselines. Additionally, after retraining, the compressed BERT models
achieve competitive records while signi�cantly accelerating training speed compared to previous
pruning methods such as PowER-BERT [89], Fisher [90], and LTP [91], as well as BERT-based ef�-
cient models like DistilBERT [92] and ALBERT [93]. Notably, we observe only a0:4%performance
drop on the IMDb dataset and even surpass the original BERT model by0:3%on the SST-2 dataset.
For detailed empirical results on this task, please refer to Appendix D.

Table 5: Image Classi�cation: Per-
formance ofPITOME on Imagenet-1k,
both off-the-shelf (OTS acc) and after
retraining (Trained acc), across ViT
backbones. We benchmark with differ-
ent architectures and merging/pruning
methods.

Type Model
OTS
Acc.

Trained
Acc. Flops# Train

speed up

Other
models

Swin-B n/a 84.0 15.4 �
CSWin-B n/a 84.2 15.0 �
MViTv2-B n/a 84.4 10.2 �
MViTv2-L n/a 85.3 42.1 �

merge

ToMeDEIT-T 68.9 70.0 0.79 X
ToFuDEIT-T 69.6 70.5 0.79 X
DCTDEIT-T 67.6 68.7 0.79 X
DiffRateDEIT-T 69.9 70.7 0.79 X
PI TOM EDEIT-T 70.8 71.6 0.79 X
ViTDEIT-T 72.3 72.3 1.2 �

prune
A-ViT DEIT-S n/a 78.6 2.9 �
Dynamic-ViTDEIT-S n/a 79.3 2.9 �
SP-ViTDEIT-S n/a 79.3 2.6 �

merge

E-ViTDEIT-S - 79.5 2.9 �
ToMeDEIT-S 77.7 79.4 2.9 X
ToFuDEIT-S 77.8 79.6 2.9 X
DCTDEIT-S 74.8 78.6 2.9 X
DiffRateDEIT-S 76.8 79.5 2.9 X
PI TOM EDEIT-S 79.1 79.8 2.9 X
ViTDEIT-S 79.8 79.8 4.6 �

merge

ToMeMAE-L 82.9 85.0 31.0 X
ToFuMAE-L 83.8 85.1 31.0 X
DCTMAE-L 82.8 84.4 31.0 X
DiffRateMAE-L 83.2 85.3 31.0 X
PI TOM EMAE-L 84.6 85.3 31.0 X
ViTMAE-L 85.7 85.7 61.6 �

merge

ToMeMAE-H 85.6 86.4 92.8 X
ToFuMAE-H 85.8 86.4 92.8 X
DCTMAE-H 84.3 86.0 92.8 X
DiffRateMAE-H 85.9 86.6 92.8 X
PI TOM EMAE-H 86.4 86.7 92.8 X
ViTMAE-H 86.9 86.9 167.4 �

Table 6:Text Classi�cation: PITOME vs other BERT-style
compressed models and token pruning ones.

Dataset Type Model Acc
Eval

Flops "
Train

Speed"

SST-2

compressed
models

ALBERT 91.3 x1.0 x1.1
DistiledBERT 91.1 x2.0 x1.7
BERT 91.4 x1.0 x1.0

pruning
+mask

PowER-BERT 91.1 x2.5 x1.0
Fisher 91.3 x1.6 x1.0
LTP 91.3 x2.9 x1.0

merging

PITOME 91.0 x1.9 x1.4
ToMe 91.2 x1.9 x1.4
ToFu 89.8 x1.9 x1.4
DCT 90.7 x1.9 x1.4
DiffRate 89.7 x1.9 x1.4
PITOME 91.7 x1.9 x1.4

IMDb

compressed
models

ALBERT 89.2 x1.0 x1.2
DistiledBERT 93.0 x2.0 x1.9
BERT 94.0 x1.0 x1.0

pruning
+mask

PowER-BERT 92.5 x2.7 x1.0
TR-BERT 93.6 x2.3 x1.0

merging
PITOME 93.2 x1.9 x1.8
ToMe 93.3 x1.9 x1.8
ToFu 92.6 x1.9 x1.8
DCT 92.4 x1.9 x1.8
DiffRate 92.4 x1.9 x1.8
PITOME 93.6 x1.9 x1.8

Figure 5: Off-the-shelf results on Imagenet-1k. Zoom in
for better view.

4.5 PI TOM E Ablation Studies
Contributions of energy scores and related factors.To assess the performance of the components
used inPITOME, we conduct the following settings: (i)PITOME without protecting important tokens
by our energy in Step 2, i.e., using odd and even indices in sorted energy score array as two sets in
BSM; (ii) PITOME where the merging process in Step 3 conducted on two randomly setsA ; B as
baselines [15, 16] instead of leveraging ordered in sorted energy vectorsE(:); (iii) PITOME without
using our proposed energy score as in Eq(4) but utilizing other indicators like attention scores from
the[CLS] (PITOME w cls attn) token [19] or mean of attention scores; (iv)PITOME using a �xed of
k removed token at each layer as ToMe [15] rather than a reducing ratio ofr as our con�guration.

We run experiments on image-text retrieval and text classi�cation tasks, reporting the results in Table 7
for (i) and (ii), and in Figure 6 for (iii) and (iv). The results demonstrate that all factors contribute to
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