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Abstract

Linear causal models are important tools for modeling causal dependencies and yet
in practice, only a subset of the variables can be observed. In this paper, we examine
the parameter identifiability of these models by investigating whether the edge coef-
ficients can be recovered given the causal structure and partially observed data. Our
setting is more general than that of prior research—we allow all variables, including
both observed and latent ones, to be flexibly related, and we consider the coeffi-
cients of all edges, whereas most existing works focus only on the edges between
observed variables. Theoretically, we identify three types of indeterminacy for the
parameters in partially observed linear causal models. We then provide graphical
conditions that are sufficient for all parameters to be identifiable and show that some
of them are provably necessary. Methodologically, we propose a novel likelihood-
based parameter estimation method that addresses the variance indeterminacy in a
specific way and can asymptotically recover the underlying parameters up to trivial
indeterminacy. Empirical studies on both synthetic and real-world datasets validate
our identifiability theory and the effectiveness of the proposed method in the finite-
sample regime. Code: https://github.com/dongxinshuai/scm-identify.

1 Introduction and Related Work
Causal models, which serve as a fundamental tool to capture causal relations among random variables,
have achieved great success in many fields [49, 39, 40, 44]. A fundamental problem in the field is how
and to what extent can we identify the underlying causal model given observational data. When all
variables are observed, the problem has been well studied: the underlying structure can be identified
up to the Markov equivalence class, e.g., by the PC [49] or GES [13] algorithm; when the structure is
given, the causal coefficient (direct causal effect) between two variables can also be identified [8, 39].

However, in real-world systems, the variables of interest may only be partially observed. Thus, consid-
erable efforts have been dedicated to identification of causal models in the presence of latent variables.
One line of research focuses on structure learning given partially observed variables. Notable ap-
proaches include FCI and its variants [49, 38, 14, 2], as well as ICA-based [23, 43], tetrad-based [48,
28], high-order moments-based [46, 11, 58, 1, 12], and rank constraint-based [48, 24, 18] methods.

In this paper, we focus on the the identification of parameters of a partially observed model. Specifi-
cally, given the causal structure of and observational data from a partially observed causal model, we
are interested in identifying all the parameters, and thus the underlying causal model can be fully
specified. To identify the parameters, a classical way is to project the directed acyclic graph (DAG)
with latent variables to an acyclic directed mixed graph (ADMG) or partially ancestral graph [42],
without explicitly modeling the latent confounders. Based on ADMG, graphical criteria such as half-
trek [20], G-criterion [9], and some further developments [51, 29] have been proposed to establish the
parameter identifiability. Another way is to leverage do-calculus, proxy variables, and instrumental
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variables [47, 39, 25] to identify the direct causal effect, which corresponds to the edge coefficient in
linear causal models. For a more detailed discussion of related work, please refer to Appendix D.

Despite the effectiveness of current methods for parameter identification, however, they have two
main drawbacks: they require all the variables to be connected in specific ways, and only focus on
identifying the edge coefficients between observed variables. To this end, in this paper we propose a
novel framework that considers a more general setting for parameter identification. To be specific,
we allow all variables, including both observed and latent ones, to be flexibly related, and we aim
to recover the edge coefficients among all variables, even including those from a latent variable to
another latent variable or another observed variable, which previous methods cannot handle. We
summarize our contributions as follows.

• To the best of our knowledge, we are the first to consider parameter identifiability of partially
observed causal model in the most general scenario—all variables, including both observed and
latent ones, are allowed be flexibly related, and edge coefficients between any pair of variables are
concerned. In contrast, most existing works consider only the edges between observed variables.

• Theoretically, we identify three types of parameter indeterminacy in partially observed linear causal
models. We then provide graphical conditions that are sufficient for all parameters to be identifiable
and show that some of them are provably necessary. These necessary conditions also offer insights
into scenarios where the parameters are guaranteed to be non-identifiable.

• Methodologically, we propose a novel likelihood-based parameter estimation method, which
parameterizes population covariance in specific ways to address variance indeterminacy. Our
empirical studies on both synthetic and real-world data validate the effectiveness of our method in
the finite-sample regime, even under certain misspecification of the underlying causal model.

2 Preliminaries
2.1 Problem Setting
In this work, we focus on partially observed linear causal models, defined as follows.

Definition 1 (Partially Observed Linear Causal Models). Let G := (VG ,EG) be a DAG. Each
variable Vi ∈ VG follows a linear structural equation model Vi =

∑
Vj∈PaG(Vi)

fj,iVj + ϵVi , where
VG := LG ∪XG = {Li}mi=1 ∪ {Xi}m+n

i=m+1 contains m latent variables and n observed variables.
PaG(Vi) denotes the parent set of Vi, fj,i denotes the edge coefficient from Vj to Vi, and ϵVi

represents
the Gaussian noise term of Vi.

We drop the subscript G in LG and XG when the context is clear. We use V, V, and V to denote a
random variable, a set of variables, and a set of sets of variables, respectively. In Definition 1, the
relations between variables can also be written in the matrix form as VG = FTVG + ϵVG , where
F = (fj,i)i,j∈[m+n] is the weighted adjacency matrix. Here, fj,i ̸= 0 if and only if Vj is a parent of
Vi in G. We also write

F =

( L X
L FLL FLX

X FXL FXX

)
and Ω =

(
ΩϵL 0
0 ΩϵX

)
,

where Ω is the diagonal covariance matrix of ϵVG .

Our objective is to identify F , the causal edge coefficients of the model, given observational data and
the causal structure G. Denote by ΣL and ΣX the population covariance matrix of latent variables
L and observed variables X, respectively; their precise formulations are provided in Proposition 1.
We also denote by σi,j the (i, j)-th entry of ΣX. In this work, we assume that the noise terms of
latent variables, ϵL, have unit variance, i.e., ΩϵL = I , which will be justified later in Section 3.1.
Note that variables are partially observed and thus we only have access to i.i.d. samples of observed
variables X. As variables are jointly Gaussian, the observations can asymptotically be summarized as
the population covariance matrix ΣX. In other words, we aim to identify F and Ω given ΣX and G.
The identification of parameters is important in that, once we identify the parameters, the underlying
causal model is fully specified, and thus we can flexibly calculate causal effects, infer interventional
distributions, and finally answer counterfactual queries [39]. It is worth noting that, for parameter
identification, the structure G is assumed to be known, which is different from the setting of causal
discovery where the goal is to identify G from data.
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(a) Graph G1. Its parameters can
be fully identifiable.

(b) Graph G2. Its parameters can-
not be fully identified.

(c) G1 G2 have the same ADMG in
the latent projection framework.

Figure 1: Illustrations of the advantage of our framework. Within our framework, it can be shown
that G1’s parameters can be identified (up to sign) while G2’s cannot. In contrast, the latent projection
framework cannot even differentiate G1 from G2 as they share the same ADMG (c) after projection.
Furthermore, with ADMG, any edge coefficient that involves a latent variable cannot be considered.

2.2 Framework Comparison
Without latent variables, it has been shown all parameters are identifiable [8]. However, the problem
becomes very challenging when latent variables exist. There are two lines of research. One focuses
on the use of do-calculus, proxy variables, and instrumental variables to identify direct causal effects
among observed variables [47, 39, 25] (in linear models the direct causal effect is captured by the
edge coefficient). Another line addresses latent confounders by projecting a DAG with latent variables
into an ADMG, where the confounding effects of latent variables are simplified and represented by
correlation among noise terms [20, 9, 51, 29]. An example is in Figure 1, where (a) is the original
graph and (c) is the projected ADMG whose bidirected edges correspond to correlated noise terms.

Compared to the two previous lines of thought, our framework has two advantages. To begin with,
we additionally considers the identifiability of coefficients of edges that involve latent variables. For
example, in Figure 1, we aim to identify all the coefficients including the one from L1 to X3, i.e.,
f1,3. In contrast, the proxy variable framework and the latent projection framework identify only the
coefficients among observed variables: the proxy variable framework focuses only on the direct causal
effect from one observed variable to another observed variable, while the latent projection framework
transforms all latent variables into bidirected edges and thus can never identify the coefficient of the
edge that has a latent variable as the head or tail.

Furthermore, the projection framework deals with latent variables in a rather brute-force way: dense
latent confounding effects among observed variables may be caused by only a small number of latent
variables, but that information is lost during projection. For example, in Figure 1, (a) and (b) share
the same ADMG after projection, i.e., (c). However, as we will show later, parameters in (a) can be
identified, while in (b) the parameters cannot. If we only consider the ADMG in (c), then we can
never capture this nuance and thus cannot identify the coefficients that we might be able to.

3 Identifiability Theory
3.1 Definition of Parameter Identifiability and Indeterminacy
We follow the notion of generic identifiability and define parameter identifiability as follows.
Definition 2 (Identifiability of Parameters of Partially Observed Linear Causal Models). Let θ =
(F,Ω) ∈ Θ. We say that θ is generically identifiable, if the mapping ϕ(θ) = ΣX is injective, for
almost all θ ∈ Θ with respect to the Lebesgue measure.
Definition 2 indicates if parameter θ is identifiable, then there does not exist θ′ ∈ Θ that entails the
same observations as those of θ. As in the typical literature of parameter identification, we consider
generic identifiability to rule out some rare cases where the parameters for that structure is generally
identifiable, but with some specific parameterization, the parameters cannot be identified. This is
similar to faithfulness in causal discovery [49] and we will provide an example in Example 1. We next
introduce three important indeterminacies about parameter identification when latent variables exist.
Theorem 1 (Indeterminacy of Scaling of ΩϵL). Consider a model that follows Def. 1 with number
of latent variables m ≥ 1 and θ = (FLL, FLX, FXL, FXX,ΩϵL ,ΩϵX). Let Λ be any invertible
diagonal matrix, and θ̃ = (F̃LL, F̃LX, F̃XL, F̃XX, Ω̃ϵL , Ω̃ϵX), where

F̃LL = Λ−1FLLΛ, F̃LX = Λ−1FLX, F̃XL = FXLΛ, F̃XX = FXX, Ω̃ϵL = Λ2ΩϵL , Ω̃ϵX = ΩϵX .

Then, θ̃ and θ entail the same observations, i.e., Σ̃X = ΣX. Furthermore, we have Σ̃L = ΛΣLΛ.
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(a) G1. Its structure is identifiable but its parameters
are not identifiable even if the structure is given (due
to orthogonal indeterminacy).

(b) G2. Its structure
is not identifiable but
params are identifiable.

(c) G3. G2’s structure
is not identifiable due to
the existence of G3.

Figure 2: Illustrative examples to show that the graphical condition for structure-identifiability and
parameter-identifiability could be very different.

A similar theoretical result is provided in [4], and yet our setting is much more general and takes
that of [4] as a special case: in our setting, all variables including latent and observed ones can be
arbitrarily related while in [4] latent variables cannot be the effect of observed variables.
Remark 1 (Implication of Theorem 1). A key implication of Theorem 1 is that, without further
assumption, the edge coefficients involving latent variables, i.e., (FLL, FLX, FXL), can never be
identified, as there always exists a diagonal matrix Λ such that θ̃ and θ entail the same observations
but (F̃LL, F̃LX, F̃XL) ̸= (FLL, FLX, FXL). Thus, in the rest of this paper, we assume that the noise
terms of latent variables, ϵL, have unit variance, i.e., ΩϵL = I . Under this assumption, we have
(Ω̃ϵL)i,i = Λ2

i,i(ΩϵL)i,i = 1, i ∈ [m], which implies Λi,i = ±1. As such, this assumption makes
parameter identifiability possible. However, even though we fix the scaling of ΩϵL , there still exists
indeterminacy about the sign of parameters, captured by Theorem 2.

Theorem 2 (Group Sign Indeterminacy). Consider a model that follows Def. 1 with number of latent
variables m ≥ 1, θ = (FLL, FLX, FXL, FXX,ΩϵL ,ΩϵX), and ΩϵL = I . Let S be a diagonal sign
matrix (entries are either 1 or −1), and θ̃ = (F̃LL, F̃LX, F̃XL, F̃XX, Ω̃ϵL , Ω̃ϵX), where

F̃LL = SFLLS, F̃LX = SFLX, F̃XL = FXLS, F̃XX = FXX, Ω̃ϵL = ΩϵL = I, Ω̃ϵX = ΩϵX .

Then, θ̃ and θ entail the same observations, i.e., Σ̃X = ΣX, and (Σ̃L)ii = (ΣL)ii, ∀i ∈ [m].

Remark 2 (Remark on Theorem 2). The indeterminacy described in Theorem 2 is referred to as
group sign indeterminacy for the following reason: According to the theorem, flipping the sign of
Si,i is equivalent to flipping the signs of all coefficients of edges involving the latent variable Li.
This transformation preserves the resulting observations ΣX. In essence, each group consists of
coefficients of edges involving a particular latent variable.
Example 1 (Example for Group Sign Indeterminacy and Generic Identifiability). In Figure 2 (b),
given the structure and ΣX, by assuming ΩϵL = I , the parameters are generally identifiable up
to group sign indeterminacy. Specifically, there exist three equality constraints with three free
parameters: f1,2f1,3 = σ2,3, f1,2f1,4 = σ2,4, and f1,3f1,4 = σ3,4. The solutions are: (i) f1,2 =√

σ2,3σ2,4

σ3,4
, f1,3 = σ2,3/f1,2, f1,4 = σ2,4/f1,2 and (ii) f1,2 = −

√
σ2,3σ2,4

σ3,4
, f1,3 = −σ2,3/f1,2,

f1,4 = −σ2,4/f1,2. The two solutions are different only in terms of group sign. However, if we set
f1,2 = 0, then the parameters are not identifiable (as we will encounter division where the divisor is
zero). These rare cases of parameters are of zero Lebesgue measure so we rule out these cases for
the definition of identifiability, as in Definition 2.

Intuitively speaking, group sign indeterminacy arises because one may multiply the latent variable
Li by −1 and accordingly flip the signs of all edge coefficients involving Li. Note that such an
indeterminacy is rather minor for the following reason. (i) In practice, we can always anchor the sign
of some edges according to our preference or prior knowledge in order to eliminate the group sign
indeterminacy. For example, in Figure 4, if we expect that L2 should be understood as Extraversion
instead of non-Exterversion, we can add one additional constraint during our parameter estimation
such that the edge coefficient from L2 to E1 ("I am the life of party.") will be positive (as we believe
E1 should be positively related to Extraversion). (ii) On the other hand, there are some application
scenarios that are not influenced by the group sign indeterminacy, such as causal effect estimations
between certain variables. We note that, as the indeterminacy of group sign is rather minor, in the
following if the parameters are identifiable only up to group sign indeterminacy, we still say that the
parameters are identifiable.
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Definition 3 (Orthogonal Transformation Indeterminacy). Consider a model that follows Def. 1 with
number of latent variables m ≥ 1, θ = (FLL, FLX, FXL, FXX,ΩϵL ,ΩϵX), and ΩϵL = I . We say
that there exists an orthogonal transformation indeterminacy in the identification of parameters if
there exists a non-diagonal orthogonal matrix Q such that (FLL, FLX, FXL, FXX,ΩϵL ,ΩϵX) and
(F̃LL, F̃LX, F̃XL, F̃XX, Ω̃ϵL , Ω̃ϵX) share the same support and entail the same observations, where

F̃LL = QTFLLQ, F̃LX = QTFLX, F̃XL = FXLQ, F̃XX = FXX, Ω̃ϵL = ΩϵL = I, Ω̃ϵX = ΩϵX .

The orthogonal transformation indeterminacy is the major indeterminacy we consider in the presence
of latent variables. Such an indeterminacy also arises in factor analysis [45, 7], which can be viewed
as a special case of the data generating procedure considered in Definition 1. Here we only give the
definition and will later provide Theorem 4 with an example that captures the scenarios where such
indeterminacy exists.

It is worth noting that the graphical condition for structure identifiability and parameter identifiability
could be very different. For example, G1 in Figure 2 (a) is structure-identifiable, and yet the
parameters are not identifiable even if the structure is given. In contrast G2 in Figure 2 (b) is not
structure-identifiable, as there exists another structure G3 in Figure 2 (c) such that G2 and G3 can never
be differentiated from observational distribution; and yet if G2 is given, its parameters are identifiable
(as in Example 1). Therefore, in this paper, we first consider the cases where the structure can be
identified and then study which further conditions are needed for the identifiability of parameters.
This will give rise to conditions under which the whole causal model can be fully specified.

3.2 Graphical Condition for Structure Identifiability
To explore the conditions for the whole causal model to be specified, we start with the structure
identifiability of partially observed linear causal models. Recent advances have shown that if certain
graphical conditions are satisfied [24, 18], even though all variables including latent ones are allowed
to be very flexibly related, the causal structure can still be identified. Next, we focus on the conditions
by [18], which takes that of [24] as special cases. Roughly speaking, the identifiability of the structure
of a partially observed linear causal model is built upon the identifiability of atomic covers, defined as
follows (with effective cardinality defined as ||V|| = |(∪V∈VV)| and PChG defined in Appendix B.2).

Definition 4 (Atomic Cover [18]). Let V ∈ VG be a set of variables, where l out of |V| are latent,
and the remaining |V| − l are observed. V is an atomic cover if V is a single observed variable, or
if the following conditions hold:

(i) There exists a set of atomic covers C, with ||C|| ≥ l + 1, such that ∪C∈CC ⊆ PChG(V).
(ii) There exists a set of coversN with ||N || ≥ l+1, s.t. (∪N∈NN)∩(∪C∈CC) = ∅, every element

in ∪N∈NN is a neighbour of every element in V, and V d-separates N and C.
(iii) There does not exist a partition P of V, s.t., all elements in P are atomic covers.

Figure 3: An illustrative graph that satisfies the conditions
for structure-identifiability. At the same time, it also satisfies
the condition for parameter identifiability - given the struc-
ture and ΣX, all the parameters are identifiable only up to
group sign indeterminacy.

The intuition that we build structure identi-
fiability upon the notion of atomic covers is
as follows. When a set of latent variables
share the same set of children and neigh-
bors, it is impossible to differentiate these
latent variables from each other, and thus
we need to consider them together as the
minimal identifiable group to build up the
identifiability of the whole structure. Such
a minimal identifiable group of variables is
defined as an atomic cover. Roughly, for
a group of variables to be qualified as an
atomic cover, it has to have enough children
and neighbors. An example is as follows.

Example 2 (Example of Atomic Cover). Consider the graph in Fig. 3. V = {L1,X6} is an atomic
cover. This is because there exist C = {{X9}, {X10}} with ||C|| ≥ l + 1 = 2 such that (i) in Def. 4
is satisfied. And there exist N = {{X11}, {X12}} (or, N = {{X4}, {X5}}) with ||N || ≥ l + 1 = 2
such that (ii) in Def. 4 is satisfied. We can also find that (iii) in Def. 4 is satisfied. Thus {L1,X6} is an
atomic cover. Another example would be in Figure 8, where {L1, L2} is an atomic cover.
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Condition 1 (Basic Conditions for Structure Identifiability [18]). G satisfies the basic graphical
condition for identifiability, if every latent variable belongs to at least one atomic cover in G and for
each atomic cover with latent variables, any of its children is not adjacent to any of its neighbours.
Condition 2 (Condition on Colliders [18]). In G, if (i) there exists sets of variables V, V1, V2, and
T such that every variable in V is a collider of two atomic covers V1, V2, and T is a minimal
set of variables that d-separates V1 from V2, and (ii) there exists at least one latent variable in
V ∪V1 ∪V2 ∪T, then we must have |V|+ |T| ≥ |V1|+ |V2|.
Example 3 (Example that satisfies Conditions 1 and 2). Consider Figure 3. All latent variables in
the graph belong to at least one atomic cover and thus Condition 1 is satisfied. Plus, Condition 2
is also satisfied. This is because the sets of variables V, V1, V2, and T that satisfy (i) and (ii) in
Condition 2 are V = {X12}, V1 = {L1,X6}, V2 = {L2}, and T = {X4,X5}, and we also have
|V|+ |T| ≥ |V1|+ |V2|. Therefore, the graph in Figure 3 satisfies both Conditions 1 and 2.

The identifiability theory of structure is as follows. For a graph G, if Condition 1 and Condition 2 are
satisfied, then asymptotically the structure is identifiable up to the Markov equivalence class (MEC)
of Oa(Os(G)) (definitions of Oa(·) and Os(·) can be found in Appendix B.4). Roughly speaking, the
underlying causal structure of G can be identified except that the directions of some edges cannot be
determined. Next, we will show that, given any DAG in the identified equivalence class together with
ΣX, the parameters of the model are also identifiable, if certain conditions are satisfied.

3.3 Identifiability of Parameters
In this section we show that, given graphical Conditions 1 and 2, the causal coefficients F in
Definition 1 are also identifiable, if certain conditions are satisfied.
Theorem 3 (Sufficient Condition for Parameter Identifiability (up to group sign), Based on Structure
Identifiability). Assume that G satisfies Conditions 1 and 2 and thus the structure can be identified
up to the MEC of Oa(Os(G)). For any DAG in the equivalence class, the parameters are identifiable,
if both the following hold:

(i) For any atomic cover V = X ∪ L, |L| ≤ 1.
(ii) If an atomic cover V = X ∪ L satisfies |L| ̸= 0 and |X| ≥ 1, then all simple treks (Def. 5)

between L and X do not contain any latent variables that are not in L.
Theorem 3 provides a sufficient condition such that the parameters are identifiable. Now, for a better
understanding of Theorem 3, we provide an example of it as follows.
Example 4 (Example for Theorem 3). The graph G in Figure 3 satisfies the conditions for parameter
identifiability in Theorem 3. Specifically, condition (i) in Theorem 3, is satisfied as all atomic covers
contain no more than one latent variable. Plus, condition (ii) in Theorem 3 is also satisfied, as
the atomic cover V = X ∪ L = {L1} ∪ {X6} satisfies |L| ̸= 0 and |X| ≥ 1 and all simple treks
between {L1} and {X6} contain only observed variables except {L1}. Therefore, the parameters are
identifiable for the graph in Figure 3.

Next, we discuss under which conditions the parameters are guaranteed to be not identifiable. As
discussed in Section 3.1, there are three kinds of indeterminacy. The first one can be solved by
assuming unit variance of the noise terms of latent variables while the second one group sign
indeterminacy is rather trivial such that we still consider parameters as identifiable even if group
sign indeterminacy exists. Therefore, we will focus on the third one, orthogonal transformation
indeterminacy, in what follows.
Theorem 4 (Condition for the Existence of Orthogonal Transformation Indeterminacy). Consider the
model in Definition 1. If a set of latent variables L with |L| ≥ 2, have the same parents and children,
then there must exist orthogonal transformation indeterminacy regarding the edge coefficients F . In
other words, F can at most be identified up to orthogonal transformation indeterminacy.
Example 5 (Example for Thm. 4). Consider Fig. 8. The graph satisfies the conditions in Thm. 4 as
the parents and children of L1 and L2 are exactly the same. Therefore, there must exist orthogonal
transformation indeterminacy for the edge coefficients F and thus the parameters are not identifiable.

The Theorem 4 above indicates that, if there exist two latent variables that share the same parents and
children, then the edge parameters can at most be identified up to orthogonal transformation. This
directly implies a necessary condition for parameter identifiability as follows.
Corollary 1 (General Necessary Condition for Parameter Identifiability). For parameters to be
identifiable, every pair of latent variables has to have at least one different parent or child.
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Corollary 1 captures a necessary condition in the general cases such that parameters are identifiable. If
we further consider the graphs that are also structure identifiable (as we need to identify the structure
first to fully specified the causal model), we further have the following Corollary 2 by considering the
notion of atomic covers (the proofs of both corollaries can be found in the Appendix).
Corollary 2 (Necessary Condition about Atomic Covers for Parameter Identifiability). Assume G
satisfies Conditions 1 and 2 and thus the structure can be identified up to the MEC of Oa(Os(G)).
For any DAG G in the equivalence class, for G’s parameters to be identifiable, every atomic cover
must contain no more than one latent variable.
Remark 3 (Necessity of Conditions in Theorem 3). Condition (i) in Theorem 3 is provably necessary:
by Corollary 2, for parameters to be identifiable, one has to assume (i) in Theorem 3.
Establishing a necessary and sufficient condition is always highly non-trivial in various tasks. For ex-
ample, for the identification of linear non-Gaussian causal structure with latent variables, researchers
initially developed sufficient conditions with three pure children in [46], later relaxed to two in [11, 58],
before ultimately achieving both necessary and sufficient conditions in [1]. Similarly, for parameter
identification, although the condition we proposed is not a necessary and sufficient one, it could serve
as a stepping stone towards tighter and ultimately the necessary and sufficient condition for the field.

Below, we also provide a sufficient condition for parameter identifiability that does not rely on
structure identifiability in Theorem 5. It is particularly useful when the structure is directly given by
some domain experts.
Theorem 5 (Sufficient Condition for Parameter Identifiability (up to group sign) without Requiring
Structure Identifiability). In G, if for every latent variable L there always exist another three distinct
variables (which can be latent or observed), such that two of the three are pure children of L and the
rest one is a neighbor of L, then the parameters are identifiable.

Identifiability theory often focuses on the asymptotic case, i.e., we assume that we know the structure
and the population covariance matrix ΣX. However, in practice, we only have access to i.i.d. data
with finite sample size and thus only have the sample covariance matrix. Therefore, in the next
section, we will propose a novel method to estimate the parameters in the finite sample cases.

4 Parameter Estimation Method
4.1 Objective
Our goal is to estimate F in Definition 1, given the causal structure G and observational data. The key
is to parameterize the population covariance ΣX using θ = (F,Ω) and then maximize the likelihood
of observed sample covariance Σ̂X. To make this technically precise, we provide a closed-form
expression of ΣX in terms of θ in the following proposition, with a proof given in Appendix A.7.
Proposition 1 (Parameterization of Population Covariance). Consider the model defined in Def. 1. Let
M :=

(
I − FLL − FLX(I − FXX)−1FXL

)−1
and N :=

(
(I − FLL)F

−1
XL(I − FXX)− FLX

)−1
.

Then, the population covariance matrices of L and X can be formulated as

ΣL =MTΩϵLM +NTΩϵXN, (1)

ΣX =(I − FXX)−T
(
FT
LXΣLGFLX +ΩϵX +ΩϵXNFLX + FT

LXNTΩϵX

)
(I − FXX)−1. (2)

The formulations of ΣL and ΣX are rather complicated due to the general scenario we considered,
i.e., latent variables can be the cause or the effect of latent and observed variables. That is, the
submatrices FLL, FLX, FXL and FXX defined in the above proposition can all have nonzero entries.
In most existing works, at least one of these submatrices are assumed to be zero. For instance,
factor analysis assumes that FLL, FXL and FXX are zero, while [32] assumes that FLL and FXL

are zero. Furthermore, Proposition 1 also provides insight into the indeterminacy involved when
identifying the parameters, such as the indeterminacy of variance in Theorem 1 and the orthogonal
transformation indeterminacy in Theorem 4.

Similar to factor analysis [45, 7, 21], we assume ϵV are Gaussian and thus X are jointly Gaussian.
Thus, the negative log-likelihood of observational data can be formulated as

L = (K/2)(tr((ΣX)−1Σ̂X) + log detΣX), (3)

where K is the number of i.i.d. observations. With the parameterized negative log-likelihood, we
estimate the edge coefficients by minimizing the negative log-likelihood, as
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F̂ , Ω̂ = argmin
F,Ω
L, subject to ΩϵL = I, (4)

where the entries of matrix F that do not correspond to an edge in G are constrained to be zero during
the optimization.

Note that in Eq. (4) the constraint that the noise terms of latent variables have unit variance is crucial
to deal with the variance indeterminacy defined in Theorem 1. In practice, it is also favorable to
use another constraint to address the variance indeterminacy, i.e., the constraint that all the latent
variables have unit variance. This leads to an alternative objective as

F̂ , Ω̂ = argmin
F,Ω
L, subject to (ΣL)ii = 1, i ∈ [m], (5)

where the entries of F that do not correspond to an edge in G are also constrained to be zero.

Both objectives in Eqs. (4) and (5) can be employed, and yet using the second one gives rise to edge
coefficients that are easier to understand. To be concerete, if we normalize all observed variables to
have unit variance, then using Eq. (5) would give rise to F̂ such that −1 ≤ F̂i,j ≤ 1,∀i, j ∈ [m]. An
example can be found in Figure 4. However, it may not be straightforward to realize the constraint
in Eq. (5). To this end, in the next section we introduce a way to parameterize ΣX using F , such
that the required constraint in Eq. (5) can be automatically satisfied. Later in Section 5.2, we also
empirically compare the performance of using Eq. (4) with that of using Eq. (5).

4.2 Parameterization Trick of Covariance Matrix
In this section, we introduce how trek rules can be employed to parameterize ΣX while the unit
variance constraint on latent variables in Eq. (5) can be elegantly satisfied. We start with the definition
of trek. For readers who are less familiar with treks, please refer to Appendix B.1 for examples.
Definition 5 (Treks [50]). In G, a trek from X to Y is an ordered pair of directed paths (P1, P2) where
P1 has a sink X, P2 has a sink Y, and both P1 and P2 have the same source Z, i.e., top(P1, P2) = Z.
A Trek is simple if P1 and P2 have no intersection except their common source Z.

At this point, we are able to parameterize each entry of ΣX using (F, {σii}n+m
i=1 ), instead of (F,Ω),

by making use of the (simple) trek rule [50], as follows:

σij =
∑

P1,P2∈S(Vi,Vj)

σtop(P1,P2)f
P1fP2 , (6)

where S(Vi,Vj) is the set of all simple treks between Vi and Vj, and fP is the path monomial along
P defined as fP := Πk→l∈P fkl.

By this form of parameterization, we can simply set all entries of {σii}n+m
i=1 as 1 (which is equivalent

to requiring all variables to have unit variance), such that the constraint in Eq. (5) can be automatically
satisfied. For a better understanding of how to use the simple trek rule for parameterization, we
provide an example as follows.
Example 6 (Example for Parameterization using Simple Trek). In Figure 7 (a), there are four
simple treks between X4 and X5, as shown in (b). By the simple trek rule and further assuming that
all variables have unit variance, the covariance between X4 and X5, σ4,5, can be formulated as
f1,4f1,5 + f3,4f3,5 + f2,1f1,4f2,3f3,5 + f2,3f3,4f2,1f1,5.

5 Experiments
We validate our identifiability theory and parameter estimation method on synthetic and real-life data.

5.1 Setting and Evaluation Metric
We begin with our experimental setting of synthetic data. The causal strength fij is uniformly sampled
from [−2, 2] and the noise terms are Gaussian with variance uniformly from [1, 5]. We consider 20
graphs. 10 of them should be parameter-identifiable up to group sign indeterminacy according to our
identifiability theory and we refer to them as GS Case (examples in Figure 10 in Appendix). Another
10 should be parameter-identifiable up to group sign and orthogonal transformation indeterminacy and
we refer to them as OT Case (examples in Figure 11 in Appendix). On average each graph contains 15
variables, 3 out of them are latent. We consider three different sample sizes: 2k, 5k, and 10k. We use
three random seeds to generate the causal model and report the mean performance as well as the std.
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Table 1: Experimental result on synthetic data using MSE (mean (std)).
MSE up to group sign

Method Estimator Estimator-TR
2k 0.0023 (0.002) 0.0012 (0.0005)

GS Case 5k 0.0014 (0.002) 0.0005 (0.0005)
10k 0.0012 (0.001) 0.0003 (0.0004)

(a) MSE up to group sign indeterminacy.

MSE up to orthogonal.
Method Estimator Estimator-TR

2k 0.0278 (0.008) 0.0355 (0.015)
OT Case 5k 0.0194 (0.002) 0.0352 (0.012)

10k 0.0182 (0.003) 0.0351 (0.015)

(b) MSE up to orthogonal transformation.

Figure 4: Estimated edge coefficients by the proposed method for Big Five human personality dataset. Variables
whose name starts with "L" are latent variables while the others are observed variables.

As the optimization in Eq (4) is nonconvex, we will rely on 30 random starts and choose the one with
the best likelihood. We report the performance of the proposed method with two different objectives.
(i) Parameter Estimator with objective defined in Eq. (4), referred to as Estimator, and (ii) Parameter
Estimator with objective defined in Eq. (5) and Trek Rule parameterization trick in Eq (6), referred
to as Estimator-TR.

It is worth noting that our setting is very general in that we allow latent variables and observed
variables to be causally connected in a very flexible way, and we consider the identification of
parameters of edges that can involve both observed and latent variables. Therefore, to the best of our
knowledge, no current method can achieve the same goal to serve as the baseline (which also shows
the novelty of the proposed method). As such, we mainly focus on comparing our estimation result
with the ground truth parameters. We use two MSE-based metrics defined as follows.

MSE up to group sign: suppose the ground truth parameter is F and our estimation is F̂ . The MSE
up to group sign is defined as ∥|F |−|F̂ |∥2

2

∥F∥0
, where | · | takes element wise absolute value, ∥ · ∥2 denotes

the Frobenius norm and ∥ · ∥0 denotes the number of nonzero entries of a matrix.

MSE up to orthogonal transformation: the MSE up to orthogonal transformation is defined as

min
Q:QTQ=I

∥|FLL| − |QT F̂LLQ|∥22 + ∥|FLX| − |QT F̂LX|∥22 + ∥|FXL| − |F̂XLQ|∥22 + ∥|FXX| − |F̂XX|∥22
∥F∥0

, (7)

where the optimization is solved by Adam [27] and the orthogonal matrix Q can be directly
parameterized in PyTorch.

5.2 Synthetic Data Performance
We report the performance using synthetic data in Tables 1a and 1b, where both our Estimator and
Estimator-TR achieve very good identification performance. For example, in the GS scenario with
10k samples, our Estimator achieves 0.0.0012 MSE up to group sign and our Estimator-TR achieves
0.0003 MSE up to group sign. The good performance by Estimator and Estimator-TR not only
validates our estimation method, but also empirically verifies our identifiability theory.
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5.3 Misspecification Behavior
In this section, we show that the proposed estimation method still performs well, even under model
misspecification: violation of normality and violation of linearity.

As for violation of normality, we use uniform noise terms for the underlying model, and thus the
distribution is not jointly Gaussian anymore. We aim to see to what extent can the proposed method
still recover the correct parameters. The result is shown in Table 2 in the Appendix, which shows
even when the normality is violated, we can still estimate the parameters pretty well. The reason
lies in that our proposed asymptotic identifiability result holds true, even when we do not assume
Gaussianity; as we only make use of the second-order statistics of the distribution, the additive noise
in Definition 1 can follow any other continuous distribution.

To simulate the violation of linearity, we employ the leaky ReLU function during the generation
process, as Vi = LRELU(

∑
Vj∈Pa(Vi)

fjiVj + ϵVi), LRELU(x) = max(αx, x). When α is close to 1,
the function is close to a linear one, and when α is close to 0, the model is very nonlinear. The result
is shown in Table 3 and we found that our estimation method is quite robust to small violations of
linearity. For example, for Estimator-TR in GS case with 10k sample size, if we set α = 0.8, we still
get a small MSE of 0.001. Even when α decreases to 0.6, the MSE is around 0.005, which is still
small. However, when α is decreased to 0.3, the underlying model is considerably nonlinear, and the
MSE increases to 0.027.

5.4 Implementation Details, Runtime Analysis, and Scalability
Our code is based on Python3.7 and PyTorch [37]. Data is standardized and the optimization in
Eqs. (4), (5), and (7) are solved by Adam [27], with a learning rate of 0.02. We conduct all the
experiments with single Intel(R) Xeon(R) CPU E5-2470. All experiments can be finished within
2 hours. We note that our method is very computationally efficient. First, the computational cost
is almost irrelevant to sample size: we only need to calculate the sample covariance matrix once
and cache it for further use during the optimization. Plus, our estimation method can handle a large
number of variables. For example, the running time of our method are roughly 10 seconds, 2 minutes,
and 10 minutes for 20 variables, 50 variables, and 100 variables respectively. For 300 variables,
which is a considerably large number for typical experiments considered in causal discovery papers,
the estimation can still be finished within around one hour.

It is also worth noting that model misspecifications do not influence the computation cost of our
method. We briefly discuss the efficiency of checking whether conditions in Theorem 3 hold, together
with what if conditions do not hold in solving real-life problems in Appendices A.8 and A.9.

5.5 Real-World Data Performance
In this section, we employ a famous psychometric dataset - Big Five dataset https:
//openpsychometrics.org/, to validate our method. It consists of 50 indicators and
close to 20,000 data points. There are five dimensions: Openness, Conscientiousness, Extraversion,
Agreeableness, and Neuroticism (O-C-E-A-N). Each is measured with 10 indicators. Data is
standardized.We employ the RLCD method [18] to determine the MEC and GIN [58] to decide the
remaining directions. Then we employ the proposed Estimator-TR to estimate all the edge coefficients.
The structure satisfies the condition in Theorem 5 so we know that the parameters are identifiable.

The estimated edge coefficients are shown in Figure 4. We found that our estimated coefficients
are well aligned with existing psychology studies. For example, according to [16, 17], being
successful in exploratory endeavors depends on the stability to pursue them. This is illustrated
in our result where L5 + 0.26−−−−→L6 and L3 + 0.39−−−−→L2 indicates that Conscientiousness positively
influence openness and Agreeableness positively influences Extraversion. Moreover, it has
been shown that people are likely to weigh the outcomes of their actions, thus, their level of
Conscientiousness coupled with Neuroticism may prohibit them from engaging in risky behaviors
(L5 − 0.27−−−−→N10 − 0.12−−−−→L3 + 0.39−−−−→L2) [54]. Such consistency with current psychometric studies again
validates the effectiveness of the proposed method in parameter estimation of real-life systems.

6 Conclusion
In this paper, we characterize indeterminacy of parameter identification and provide conditions for
identifiability. Finally, we propose a novel estimation method and validate it by empirical study.
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A Proofs

A.1 Proof of Theorem 1

Theorem 1 (Indeterminacy of Scaling of ΩϵL). Consider a model that follows Def. 1 with number
of latent variables m ≥ 1 and θ = (FLL, FLX, FXL, FXX,ΩϵL ,ΩϵX). Let Λ be any invertible
diagonal matrix, and θ̃ = (F̃LL, F̃LX, F̃XL, F̃XX, Ω̃ϵL , Ω̃ϵX), where

F̃LL = Λ−1FLLΛ, F̃LX = Λ−1FLX, F̃XL = FXLΛ, F̃XX = FXX, Ω̃ϵL = Λ2ΩϵL , Ω̃ϵX = ΩϵX .

Then, θ̃ and θ entail the same observations, i.e., Σ̃X = ΣX. Furthermore, we have Σ̃L = ΛΣLΛ.

Proof of Theorem 1. Let
(
FLL FLX

FXL FXX

)
=

(
A B
C D

)
and

(
F̃LL F̃LX

F̃XL F̃XX

)
=

(
Ã B̃
C̃ D̃

)
. Let M

and N be matrices defined as in Proposition 1, and similarly for M̃ and Ñ . We then have

M̃ =
(
I − Ã− B̃(I − D̃)−1C̃

)−1

=
(
Λ−1Λ− Λ−1AΛ− (Λ−1B)(I −D)−1(CΛ)

)−1

= Λ−1
(
I −A−B(I −D)−1C

)−1
Λ

= Λ−1MΛ

and

Ñ =
(
(I − Ã)C̃−1(I − D̃)− B̃

)−1

=
(
(Λ−1Λ− Λ−1AΛ)(CΛ)−1(I −D)− Λ−1B

)−1

=
(
(I −A)C−1(I −D)−B

)−1
Λ

= NΛ.

By Proposition 1, the latent covariance matrix Σ̃L after rescaling of the parameters is given by

Σ̃L = M̃T Ω̃ϵLM̃ + ÑT Ω̃ϵXÑ

= (ΛTMTΛ−T )(ΛΩϵLΛ)(Λ
−1MΛ) + ΛTNTΩϵXNΛ

= Λ(MTΩϵLM +NTΩϵXN)Λ

= ΛΣLΛ.

This implies that the variance of each latent variable Li is scaled by Λ2
ii. By Proposition 1, the

observed covariance matrix Σ̃X after rescaling of the parameters is given by

Σ̃X = (I − D̃)−T
(
B̃T Σ̃LB + Ω̃ϵX + Ω̃ϵXÑB̃ + B̃T ÑT Ω̃ϵX

)
(I − D̃)−1

= (I −D)−T
(
(Λ−1B)T (ΛΣLΛ)(Λ

−1B)

+ ΩϵX +ΩϵX(NΛ)(Λ−1B) + (Λ−1B)T (NΛ)TΩϵX

)
(I −D)−1

= (I −D)−T
(
BTΣLB +ΩϵX +ΩϵXNB +BTNTΩϵX

)
(I −D)−1

= ΣX.

A.2 Proof of Theorem 2

Theorem 2 (Group Sign Indeterminacy). Consider a model that follows Def. 1 with number of latent
variables m ≥ 1, θ = (FLL, FLX, FXL, FXX,ΩϵL ,ΩϵX), and ΩϵL = I . Let S be a diagonal sign
matrix (entries are either 1 or −1), and θ̃ = (F̃LL, F̃LX, F̃XL, F̃XX, Ω̃ϵL , Ω̃ϵX), where

F̃LL = SFLLS, F̃LX = SFLX, F̃XL = FXLS, F̃XX = FXX, Ω̃ϵL = ΩϵL = I, Ω̃ϵX = ΩϵX .

Then, θ̃ and θ entail the same observations, i.e., Σ̃X = ΣX, and (Σ̃L)ii = (ΣL)ii, ∀i ∈ [m].
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Figure 5: A simple graph that satisfies conditions in Theorem 3, as for each atomic cover with one
latent variable, it has no observed variable.

Figure 6: A more complicated graph that satisfies conditions in Theorem 3 and there is an atomic
cover that has one latent variable and nonzero observed variables, e.g., {L1,X5} in the graph. The
condition (ii) in Theorem 3 is satisfied in that L1,X5 can be d-separated by X3.

Proof of Theorem 2. Let
(
FLL FLX

FXL FXX

)
=

(
A B
C D

)
and

(
F̃LL F̃LX

F̃XL F̃XX

)
=

(
Ã B̃
C̃ D̃

)
. Since S

is a diagonal sign matrix, we have

Ã := S−1AS, B̃ := S−1B, C̃ := CS, D̃ := D, Ω̃ϵL := S2ΩϵL , and Ω̃ϵX := ΩϵX .

Note that S is an invertible diagonal matrix. By Theorem 1, we have Σ̃XG = ΣXG and Σ̃LG =

SΣLGS, and thus (Σ̃LG )ii = (ΣLG )ii, ∀i ∈ [m].

A.3 Proof of Theorem 3

The structure identifiability part is that if G satisfies Condition 1 and Condition 2, the structure of G
can be identified up to the Markov equivalence class of Oa(Os(G)), which is by Theorem 12 in [18].

Next we will focus on the proof of parameter identifiability part, i.e., for any DAG in the equivalence
class, if (i) and (ii) in Theorem 3 are satisfied, the parameters are identifiable (up to group sign).
Without loss of generality, we assume that all variables have unit variance and zero mean. The reason
is that if we can show that the parameters are identfiable (up to group sign) under this assumption,
then it is straightforward to show that they are also identifiable under the original assumption where
ΩϵL = I .

Lemma 1. Let X,Y be two set of variables, we have ΣY|X=x = ΣY − ΣYXΣ−1
X ΣXY.

Lemma 2. Consider a graph G that satisfies (i) and (ii) in Theorem 3. For an atomic cover V in
G with one latent variable, V = {L} ∪ {Xi}ki=1 (k could be zero), if it has an observed pure child
C and the coefficients of the edges from V to C, i.e., fL→C, fX1→C, . . . , fXk→C, are known, then
for any variable A, such that A ̸= C and A is not a descendant of C, σL,A can be calculated as
(σA,C − Σk

i=1σXi,AfXi→C)/fL→C.

Proof of Lemma 2. By the definition of atomic covers, all variables in V = {L} ∪ {Xi}ki=1 are not
adjacent. By trek rule and the fact that C is a pure child of V, all treks from C to A go through V,
and thus by the trek rule we have σL,AfL→C +Σk

i=1σXi,AfXi→C = σA,C.
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Remark: This lemma implies that we can find all edge coefficients of the graph in a bottom-up
fashion. Roughly speaking, for a latent variable L that belongs to an atomic cover V, once we identify
fL→C, fX1→C, ..., fXk→C where C is an observed pure child of V, we can take L as if it is observed.
More specific explanations can be found in the following proof.
Theorem 3 (Sufficient Condition for Parameter Identifiability (up to group sign), Based on Structure
Identifiability). Assume that G satisfies Conditions 1 and 2 and thus the structure can be identified
up to the MEC of Oa(Os(G)). For any DAG in the equivalence class, the parameters are identifiable,
if both the following hold:

(i) For any atomic cover V = X ∪ L, |L| ≤ 1.
(ii) If an atomic cover V = X ∪ L satisfies |L| ̸= 0 and |X| ≥ 1, then all simple treks (Def. 5)

between L and X do not contain any latent variables that are not in L.

Proof of Theorem 3. Consider a graph G that satisfies (i) and (ii) in Theorem 3. We first show that if
all the pure children of an atomic cover V are observed, then all the edge coefficients from the atomic
cover to its children are identifiable (up to group sign). To this end, we categorize the scenarios into
four cases and prove them separately.

(a) V = {X} contains a single observed variable. The proof for this case is trivial as the edge
coefficient from X to its pure child C is simply σX,C.

(b) V = {L} contains a single latent variable. By Condition 1 there must exist C1, C2, and XN, such
that C1, C2 are pure children of V and XN is an observed variable that has a trek to V. Then we have

σC1,C2 = fL→C1fL→C2 , σC1,XN
= fL→C1σL,XN

, and σC2,XN
= fL→C2σL,XN

.

By these three equations, we can solve fL→C1 and fL→C2 . If V has more than two pure children, we
can prove the identifiability similarly in a pairwise fashion.

(c) V = {L} ∪ {Xi}ki=1 (k ≥ 1) contains a single latent variable and k observed variables, where V
has at least three pure children. We assume that there exist C1, C2, and C3, such that C1, C2, and C3

are pure children of V. Let σL|{Xi}k
i=1

= t. In this case, we have

σC1,C2|{Xi}k
i=1

= tfL→C1fL→C2 , (8)

σC1,C3|{Xi}k
i=1

= tfL→C1fL→C3 , (9)

σC2,C3|{Xi}k
i=1

= tfL→C2fL→C3 . (10)

By these three equations, we can solve fL→C1 ,fL→C2 , and fL→C3 , with the only remaining free
parameter t. In other words, we have fL→C1(t),fL→C2(t), and fL→C3(t).

Next, we show that ∀i = 1, ..., k, j = 1, ..., 3, fXi→Cj can be identified. Specifically, as all simple treks
between L and X contain only observed variables except L, and L and X are not directly adjacent,
there must exist X̂ such that X̂ d-separates L and X. Thus, fXi→CjσXi|X̂∪X\Xi

= σXiCj|X̂∪X\Xi
, by

which fXi→Cj can be solved.

Now we solve t. The key is that all the edge coefficients along all simple treks between X and L can
be identified, by using Lemma 2, with only one free parameter t. Thus, we can make use of simple
trek rule to parameterize ΣL,X as a function of t. By Lemma 1, σL|X = t can also be formulated as a
function of ΣL,X, and thus t can be solved. If V has more than three pure children, we just choose all
the combinations of any three pure children.

(d) V = {L} ∪ {Xi}ki=1 (k ≥ 1) contains a single latent variable and k observed variables, where
V has two pure children. By Condition 1, there must exist C1, C2 as the pure children of V. If
there exists one additional pure child, then it is the same as (c). Plus, if there only exist these two
pure children, there must exist VN such that VN is a neighbor of V. If VN is observed, let XN = VN,
otherwise we recursively take XN as the observed pure children of VN.

Let σL|{Xi}k
i=1

= t. In this case, we have

σC1,C2|{Xi}k
i=1

= tfL→C1fL→C2 , (11)

σC1,XN|{Xi}k
i=1

= tfL→C1σLXN
, (12)

σC2,XN|{Xi}k
i=1

= tfL→C2σLXN
. (13)
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Similar to (c), by solving the above, we have fL→C1(t) and fL→C2(t).

Next, we show that ∀i = 1, ..., k, j = 1, ..., 2, fXi→Cj can be identified. Specifically, as all simple treks
between L and X contain only observed variables except L, and L and X are not directly adjacent,
there must exist X̂ such that X̂ d-separates L and X. Thus, fXi→CjσXi|X̂∪X\Xi

= σXiCj|X̂∪X\Xi
, by

which fXi→Cj can be solved.

Now we solve t. The key is that all the edge coefficients along all simple treks between X and L can
be identified, by using Lemma 2, with only one free parameter t. Thus, we can make use of simple
trek rule to parameterize ΣL,X as a function of t. By Lemma 1, σL|X = t can also be formulated as a
function of ΣL,X, and thus t can be solved.

Taking (a), (b), (c), (d) into consideration, for a graph that satisfies the conditions in Theorem 3, for
an atomic cover V in the graph, if all pure children of it are observed, then all the edge coefficients
from V to its pure children can be identified.

Now, we will prove by induction to show that, for a graph that satisfies the conditions in Theorem 3,
for any atomic cover V in the graph, all the edge coefficients from V to its children can be identified,
and thus all the edge coefficients of the graph can be identified (the set of all edge coefficients in the
graph is the union of the set of edge coefficients from each V to each V’s children).

To this end, we first index all the atomic covers by the inverse causal ordering, such that leaf nodes
have smaller indexes. Then we have a sequence of atomic covers Vi, i = 1, ..., C in the graph, where
C is the number of atomic covers in the graph.

(i) We show for Vi, i = 1, all the edge coefficients from V1 to its children can be identified. This is
proved by considering (a) (b) (c) (d), as V1’s children must be all observed; otherwise it cannot be
indexed as 1.

(ii) We show that, for i > 1, if for all Vj, 1 ≤ j < i, all the edge coefficients from Vj to Vj’s children
has been identified, then all the edge coefficients from Vi to Vi’s children can also be identified.
This can be proved by combining (a) (b) (c) (d) with Lemma 2. If Vi has children that are latent,
then the latent children must belong to an atomic cover with a smaller index. Therefore, as all the
edge coefficients from Vj to Vj’s children have been identified, by the use of Lemma 2, the latent
children of Vi can be taken as if they are observed. Therefore, all the edge coefficients from Vi to
Vi’s children can also be identified.

Taking (i) and (ii) together, all the edge coefficients of the graph can be identified.

A.4 Proof of Theorem 5

Theorem 5 (Sufficient Condition for Parameter Identifiability (up to group sign) without Requiring
Structure Identifiability). In G, if for every latent variable L there always exist another three distinct
variables (which can be latent or observed), such that two of the three are pure children of L and the
rest one is a neighbor of L, then the parameters are identifiable.

Proof of Theorem 5. The proof is a special case of (b) in the proof of Theorem 3.

A.5 Proof of Theorem 4

Lemma 3. Let ΣX be the observed covariance matrix entailed by FLL, FLX, FXL, FXX,ΩϵL ,ΩϵX .
Let Q be an orthogonal matrix, and

F̃LL = QTFLLQ, F̃LX = QTFLX, F̃XL = FXLQ, F̃XX = FXX, Ω̃ϵL = QTΩϵLQ, and Ω̃ϵX = ΩϵX .

Then, the matrices F̃LL, F̃LX, F̃XL, F̃XX, Ω̃ϵL , Ω̃ϵX can also entail the covariance matrix ΣX.
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Proof of Lemma 3. Let
(
FLL FLX

FXL FXX

)
=

(
A B
C D

)
and

(
F̃LL F̃LX

F̃XL F̃XX

)
=

(
Ã B̃
C̃ D̃

)
. Let M

and N be matrices defined as in Proposition 1, and similarly for M̃ and Ñ . We then have

M̃ =
(
I − Ã− B̃(I − D̃)−1C̃

)−1

=
(
QTQ−QTAQ− (QTB)(I −D)−1(CQ)

)−1

= Q−1
(
I −A−B(I −D)−1C

)−1
Q−T

= QTMQ

and

Ñ =
(
(I − Ã)C̃−1(I − D̃)− B̃

)−1

=
(
(QTQ−QTAQ)(CQ)−1(I −D)−QTB

)−1

=
(
(I −A)C−1(I −D)−B

)−1
Q−T

= NQ.

By Proposition 1, the latent covariance matrix Σ̃L is given by

Σ̃L = M̃T Ω̃ϵLM̃ + ÑT Ω̃ϵXÑ

= (QTMTQ−T )(QTΩϵLQ)(Q−1MQ) +QTNTΩϵXNQ

= QT (MTΩϵLM +NTΩϵXN)Q

= QTΣLQ.

By Proposition 1, the observed covariance matrix Σ̃X is given by

Σ̃X = (I − D̃)−T
(
B̃T Σ̃LB + Ω̃ϵX + Ω̃ϵXÑB̃ + B̃T ÑT Ω̃ϵX

)
(I − D̃)−1

= (I −D)−T
(
(QTB)T (QTΣLQ)(QTB) + ΩϵX +ΩϵX(NQ)(QTB) + (QTB)T (NQ)TΩϵX

)
(I −D)−1

= (I −D)−T
(
BTΣLB +ΩϵX +ΩϵXNB +BTNTΩϵX

)
(I −D)−1

= ΣX.

This indicates that the matrices Ã, B̃, C̃, D̃, Ω̃ϵL and Ω̃ϵX can also entail the covariance matrix
ΣX.

Using Lemma 3, we can prove Theorem 4.

Theorem 4 (Condition for the Existence of Orthogonal Transformation Indeterminacy). Consider the
model in Definition 1. If a set of latent variables L with |L| ≥ 2, have the same parents and children,
then there must exist orthogonal transformation indeterminacy regarding the edge coefficients F . In
other words, F can at most be identified up to orthogonal transformation indeterminacy.

Proof of Theorem 4. Let S1, S2, S3, S4, and S5 be the indices of L, their latent parents, their
latent children, their measured parents, and their measured children in G, respectively. Let Q be a

|L| × |L| orthogonal matrix. Let
(
FLL FLX

FXL FXX

)
=

(
A B
C D

)
and

(
F̃LL F̃LX

F̃XL F̃XX

)
=

(
Ã B̃
C̃ D̃

)
.

For matrices A,B,C, and D from matrix F , suppose that we replace AS2,S1
, AS1,S3

, CS4,S1
, and

BS1,S5 with AS2,S1Q, QTAS1,S3 , CS4,S1Q, and QTBS1,S5 , respectively. Then, we will show that
the entailed covariance matrix ΣX is unchanged.

Let U be an m×m orthogonal matrix such that: (i) US1,S1
= Q, (ii) the remaining diagonal entries

are ones, and (iii) the remaining non-diagonal entries are zeros. Let

Ã := UTAU, B̃ := UTB, C̃ := CU, D̃ := D, Ω̃ϵL := UTΩϵLU = I, and Ω̃ϵX := ΩϵX .
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By Lemma 3, the matrices above can entail the same covariance matrix ΣX.

By construction of U , left multiplication of UT on B only affects BS1,∗; specifically, it is equivalent
to replacing BS1,∗ with QTBS1,∗. Furthermore, only the columns of S5 in BS1,∗ will be affected,
because those columns correspond to the measured children of L. Therefore, all entries of B̃ are the
same as B, except that BS1,S5

is replaced with QTBS1,S5
. Similar reasoning shows that all entries

of C̃ are the same as C, except that CS4,S1
is replaced with CS4,S1

Q.

Now consider UTAU . By the reasoning above, left multiplication of UT on A only is equivalent
to replacing AS1,S3

with QTAS1,S3
. Further right multiplication of U on UTA is equivalent to

replacing (UTA)S2,S1 with (UTA)S2,S1Q. Since S1, S2, and S3 are mutually disjoint, all entries
of Ã = UTAU are the same as A, except that AS2,S1

and AS1,S3
are replaced with AS2,S1

Q and
QTAS1,S3 , respectively.

Hence, for matrices A,B,C, and D, suppose we replace AS2,S1
, AS1,S3

, CS4,S1
, and BS1,S5

with AS2,S1Q, QTAS1,S3 , CS4,S1Q, and QTBS1,S5 , respectively. By the reasoning above, this is
equivalent to replacing A, B, C, and D with Ã, B̃, C̃, and D̃, respectively, which (generically) share
the same support and entail the same covariance matrix ΣX.

A.6 Proof of Corollary 1 and Corollary 2

Corollary 1 (General Necessary Condition for Parameter Identifiability). For parameters to be
identifiable, every pair of latent variables has to have at least one different parent or child.

Proof of Corollary 1. Proof by contradiction. If it is not the case that every pair of latent variables
has to have at least one different parent or child, then there exist L such that |L| ≥ 2 and L share
the same parents and children. Therefore by Theorem 4 there must exist orthogonal transformation
indeterminacy regarding F , and thus the parameters are not identifiable.

Corollary 2 (Necessary Condition about Atomic Covers for Parameter Identifiability). Assume G
satisfies Conditions 1 and 2 and thus the structure can be identified up to the MEC of Oa(Os(G)).
For any DAG G in the equivalence class, for G’s parameters to be identifiable, every atomic cover
must contain no more than one latent variable.

Proof of Corollary 2. Proof by contradiction. If for a DAG in the equivalence class, there is an
atomic cover that has more than one latent variable, then according to the definition of the concerned
equivalence class, the latent variables in that atomic cover share the same parents and children. Then
by Theorem 4 there must exist orthogonal transformation indeterminacy regarding F , and thus the
parameters are not identifiable.

A.7 Proof of Proposition 1

Proposition 1 (Parameterization of Population Covariance). Consider the model defined in Def. 1. Let
M :=

(
I − FLL − FLX(I − FXX)−1FXL

)−1
and N :=

(
(I − FLL)F

−1
XL(I − FXX)− FLX

)−1
.

Then, the population covariance matrices of L and X can be formulated as

ΣL =MTΩϵLM +NTΩϵXN, (1)

ΣX =(I − FXX)−T
(
FT
LXΣLGFLX +ΩϵX +ΩϵXNFLX + FT

LXNTΩϵX

)
(I − FXX)−1. (2)

Proof of Proposition 1. Let F =

(
FLL FLX

FXL FXX

)
=

(
A B
C D

)
.

Since matrices A and D are invertible, using the formula of 2 × 2 block matrix inversion [22,
Chapter 0.7], we obtain

(I − F )−1 =

(
M −MB(I −D)−1

−(I −D)−1CM (I −D)−1 + (I −D)−1CMB(I −D)−1

)
,
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which implies

(I − F )−T =

(
MT −MTCT (I −D)−T

−(I −D)−TBTMT (I −D)−T + (I −D)−TBTMTCT (I −D)−T

)
and

(I−F )−TΩ =

(
MTΩϵL −MTCT (I −D)−TΩϵX

−(I −D)−TBTMTΩϵL (I −D)−TΩϵX + (I −D)−TBTMTCT (I −D)−TΩϵX

)
.

We then have

ΣL = MTΩϵLM +MTCT (I −D)−TΩϵX(I −D)−1CM

= MTΩϵLM +NTΩϵXN

and

ΣX = (I −D)−TBTMTΩϵLMB(I −D)−1 + (I −D)−TΩϵX(I −D)−1

+ (I −D)−1ΩϵX(I −D)−1CMB(I −D)−1 + (I −D)−TBTMTCT (I −D)−TΩϵX(I −D)−1

+ (I −D)−TBTMTCT (I −D)−TΩϵX(I −D)−1CMB(I −D)−1

= (I −D)−T
(
ΩϵX +BTMTΩϵLMB +ΩϵX(I −D)−1CMB +BTMTCT (I −D)−TΩϵX

+BTMTCT (I −D)−TΩϵX(I −D)−1CMB
)
(I −D)−1

= (I −D)−T
(
ΩϵX +BTΣLB +ΩϵXNB +BTNTΩϵX

)
(I −D)−1.

We now discuss how M and N defined in Proposition 1 are invertible. Note that matrices I −D and
I−F are invertible because structure G is acyclic. This implies det(I−F ) ̸= 0 and det(I−D) ̸= 0.
Define

U =

 I 0

−(I −D)−1C I

 ,

which implies

(I − F )U =

(
M B

0 I −D

)
and thus

det((I − F )U) = det(M) det(I −D).

Since det(U) = 1 and det(I − F ) ̸= 0, we have

det((I − F )U) = det(I − F ) det(U) ̸= 0.

By the statement above and det(I −D) ̸= 0, we have

det(M) =
det((I − F )U)

det(I −D)
̸= 0,

which implies that M is invertible. Similar reasoning can be used to show that N is invertible.

A.8 Computational Cost of Checking Whether the Conditions in Theorem 3 Hold

Here we want to investigate, given a structure, can we efficiently check whether the proposed
sufficient conditions hold? To this end, we generate random graphs and each graph has 100 variables.
According to our empirical result, such a check can be done very efficiently. Specifically, on average,
given a structure with 100 variables, it only takes our Python code around 3 seconds to check whether
the conditions hold.
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A.9 In Practice, What If the Conditions Do not Hold?

Our condition is useful in solving real-life problems. For example, in the psychometric study, we can
properly design the questions with domain knowledge following the condition in Theorem 3 such
that each single latent variable has enough observed variables as pure children and thus it can be
ensured that all parameters are identifiable (as illustrated in our real-life data result in Figure 4).

On the other hand, even though sometimes the questionnaires and data were designed not so well
such that the conditions are not satisfied for the identification of parameters, our Theorem 3 is still
useful. In this case, we can still make use of our conditions to check the given structure, and find
some local sub-structures where our conditions are satisfied. Consequently, it can be ensured that all
the parameters of some sub-structures are identifiable, and we can employ our estimation method to
find all the edge coefficients of these sub-structures.

B Additional Definitions, Graphs, Results, and Examples

B.1 Example of Treks

Example 7 (Example of Treks). In Figure 7 (a), there are four treks between X4 and X5: (i)
X4 ← L1 → X5, (ii) X4 ← X3 → X5, (iii) X4 ← L1 ← X2 → X3 → X5, and (iv) X4 ← X3 ← X2 →
L1 → X5, illustrated in Figure 7 (b).

B.2 Definition of Pure Children

Definition 6 (Parents, Children, and Descendants of a Set of Nodes [18]). For a set of nodes X in G,
we have ChG(X) = ∪X∈XChG(X), PaG(X) = ∪X∈XPaG(X), and DeG(X) = ∪X∈XDeG(X).
Definition 7 (Pure Children of a Set of Nodes [18]). Y are pure children of a set of nodes X in
graph G, i.e., Y ∈ PChG(X), iff all of the following hold: (i) X ∩Y = ∅, (ii) Y ⊆ ChG(X), (iii)
PaG(Y) = X, and (iv) DeG(Y) ∩X = ∅.

B.3 Definition of Neighbor and MEC

Definition 8 (Neighbor). In G, nodes X and Y are neighbor of each other iff there exist an edge from
X to Y or an edge from Y to X.
Definition 9 (Markov Equivalence Class (MEC)). Two DAGS G1 and G2 belong to the same MEC,
iif they share the same skeleton and v-structures.

B.4 Definition of Rank-invariant Graph Operator

The definitions are as follows with examples.
Definition 10 (Skeleton Operator [18]). Given an atomic cover V in a graph G, and let S be
the set of all atomic covers in G such that for all S ∈ S, S ⊂ V. For all V1 ∈ V and all
V2 ∈ PChG(V)\(

⋃
S∈S PChG(S)), if V1 and V2 are not adjacent, draw an edge from V1 to V2. We

denote such an operator as skeleton operator Os(G).
Definition 11 (Intra atomic operator). For every atomic cover V in structure G, if |V| ≥ 2, we add
edges between elements in V such that edges among V form a fully connected DAG. We denote such
an operator as intra atomic operator Oa(G).
Example 8. Suppose the original graph is in Figure 9 (a). After the skeleton operator, we have
Os(G), which is shown in Figure 9 (b). After the intro atomic operator, we have Oa(Os(G)), which
is shown in Figure 9 (c).

B.5 Graphs for Synthetic Data Experiments

Please refer to Figures 10 and 11.

B.6 Additional Result under Model Misspecification

Please refer to Tables 2and 3.
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(a) Graph G to show treks. (b) The four simple treks between X4 and X5 in (a).
Figure 7: Illustrative figure to show how to parameterize ΣXG by the use of simple trek rule.

Figure 8: An illustrative graph to show orthogonal transformation indeterminacy. An atomic cover
of it, {L1, L2}, has more than one latent variable, and thus there exists orthogonal transformation
indeterminacy regarding coefficients of edges that involve {L1, L2}.

C Other Discussions

Our optimization problem in Eq. (4) is solved by gradient descent using PyTorch. Our current
implementation is based on CPU but it can be further accelerated by using GPU. A very related
discussion can also be found in [35].

The optimization problem in Eq. (5) is solved by gradient descent, which involves evaluating the
LogDet and matrix inverse (for the gradient) terms (which is similar to continuous causal discovery
methods based on Gaussian likelihood [35]). According to [53], the computational complexity is
O(td3), where d is the number of variables and t is the number of iterations of gradient descent
respectively. Note that the computational cost is largely independent of the sample size as we only
need to calculate the sample covariance once and save it for further use.

It is possible to perform inference on the learned parameters in our framework. To be specific, as
we use maximum likelihood estimation for the parameters, some standard techniques can be readily
used. For example, bootstrap can be employed to provide standard errors on linear coefficients and
Chi-square test can also be done to examine the fitness of the model.

D Extended Related Work

One main line of research in latent variable estimation centers on factor-analysis-based methods.
Representative studies include [41, 45, 36, 56, 7, 57]. Various other techniques have also been
employed for latent structure and parameter identification, including over-complete ICA-based
techniques [23, 43, 1] that leverage non-Gaussianity and matrix decomposition-based approaches [3].
However, these approaches typically consider latent variables with observed children, without
considering parameter identification in latent hierarchical structures. A more related work is [4], but
it considers a much simpler structure.

Another direction would be to project the graph to an ADMG and the latent confounding effects are
encoded by correlated noise terms. Following this idea, graphical criteria such as half-trek [20, 5],
G-criterion [9], and some further developments [51, 29, 42, 8, 19] has been proposed. Furthermore,
another line of works involve studies on causal effect estimation in the presence of latent confounders
[52, 6, 30, 33, 26], which often rely on instrumental variables or proxy variables for identification.
Notice that in this task, the parameters may not be identified [30], although the causal effect from the
treatment variable to the outcome variable can be identified.
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(a) Graph G. (b) Os(G). (c) Oa(Os(G)).

Figure 9: Example to illustrate graph operators Oa and Os.

Table 2: Performance under violation of normality using uniform noise terms in MSE (mean (std)).
Metric MSE up to group sign
Method Estimator Estimator-TR

2k 0.0017 0.0005
GS Case 5k 0.0018 0.0004

10k 0.0018 0.0003

Furthermore, several existing works also solve an optimization problem that involves parameterization
of maximum likelihood, such as those in continuous optimization for causal discovery [35, 59, 31, 10,
34] and parameter estimation of Lyapunov models [55, 15]. Differently, our formulation involving
likelihood parameterization aims to estimate parameters of partially observed linear causal models.

E Limitations

One limitation of this work is that our theoretical results are based on the assumption of linear
gaussian causal models. When data is not linear gaussian, we have also conducted experiments to see
the performance of our method. It turns out that our method still performs well in the presence of
certain extents of violation of normality and linearity. However, theoretical analysis under violation
of linearity and normality would be interesting and the focus of future work.

F Broader Impacts

The goal of this paper is to advance the field of machine learning. We do not see any potential
negative societal impacts of the work.
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Table 3: Performance under violation of linearity using leaky relu in MSE (mean (std)).
Metric MSE up to group sign
Method Estimator Estimator-TR

α = 0.8 (close to linear) 0.004 0.001
GS Case with 10k sample size α = 0.6 (quite nonlinear) 0.013 0.005

α = 0.3 (very nonlinear) 0.046 0.027

(a) Illustrative graph G1. (b) Illustrative graph G2

(c) Illustrative graph G3. (d) Illustrative graph G4

(e) Illustrative graph G5

Figure 10: Examples of graphs in the GS case. The parameters of them are identifiable up to group
sign indeterminacy.
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(a) Illustrative graph G6. (b) Illustrative graph G7

(c) Illustrative graph G8. (d) Illustrative graph G9

(e) Illustrative graph G10

Figure 11: Examples of graphs in the OT case. Parameters of them are Identifiable up to group sign
and orthogonal transformation indeterminacy.
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A discussion about the limitations can be found in Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All assumptions together with necessary definitions are provided in the main
text and all complete proofs are provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The implementation details and the experimental settings are all provided in
Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code and the data will be publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See the experiment section for the setting and details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The synthetic experiments were supported by error bars to show statistical
significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: It is not related to this work. No such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the assets are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

31

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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