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Abstract

In recent years, significant attention has been directed towards learning average-
reward Markov Decision Processes (MDPs). However, existing algorithms either
suffer from sub-optimal regret guarantees or computational inefficiencies. In this
paper, we present the first tractable algorithm with minimax optimal regret of
Õ

(√
sp (h∗)S AT

)
,1 where sp (h∗) is the span of the optimal bias function h∗, S × A

is the size of the state-action space and T the number of learning steps. Remarkably,
our algorithm does not require prior information on sp (h∗).
Our algorithm relies on a novel subroutine, Projected Mitigated Extended Value
Iteration (PMEVI), to compute bias-constrained optimal policies efficiently. This
subroutine can be applied to various previous algorithms to improve regret bounds.

1 Introduction

Reinforcement learning (RL) Burnetas and Katehakis [1997], Sutton and Barto [2018] has become a
popular approach for solving complex sequential decision-making tasks and has recently achieved
notable advancements in diverse fields of application. RL problems are generally formulated with
Markov Decision Processes (MDPs) Puterman [1994], where a learning agent seeks to maximize the
rewards that are gathered by interacting with an unknown environment.

This paper focuses on average reward MDPs where the learning agent must maximize the sum of
rewards in the long run without any reset mechanism. In this setting, the proper balancing between
exploration (i.e., playing sub-optimally to learn the unknown environment) and exploitation (i.e.,
planning optimally according to the current knowledge), usually known as the exploration-exploitation
trade-off, is key to learn efficiently. The measure of learning performance that we adopt throughout is
the regret, that compares the aggregate rewards collected by the learning agent during the learning
process to the expected performance of an omniscient agent that knows everything in advance. The
seminal work of Auer et al. [2009] provides a minimax regret lower bound of Ω

(√
DS AT

)
, where

D is the diameter (the maximal distance between two different states), S the number of states, A
the number of actions and T the learning horizon. They also provide an algorithm achieving regret
Õ

(√
D2S 2AT

)
, where Õ(−). Ever since Auer et al. [2009], many works have been devoted to close

the gap between the regret lower and upper bounds in the average reward setting Auer et al. [2009],
Bartlett and Tewari [2009], Filippi et al. [2010], Talebi and Maillard [2018], Fruit et al. [2018,
2020], Bourel et al. [2020], Zhang and Ji [2019], Ouyang et al. [2017], Agrawal and Jia [2023],

1Õ(·) hides logarithmic factors of (S , A,T ).
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Abbasi-Yadkori et al. [2019], Wei et al. [2020] and more. Subsequent works Fruit et al. [2018],
Zhang and Ji [2019] refined the minimax regret lower bound to Ω

(√
sp (h∗)S AT

)
where sp (h∗) is the

span of the bias function, which is the maximal gap of the long-term accumulative rewards starting
from two different states. The difference is significant, since sp (h∗) ≤ D and the gap between the
two can be arbitrarily large. However, no existing work achieves the following three requirements
simultaneously:

(1) The method achieves minimax optimal regret guarantees Õ
(√

sp (h∗)S AT
)
;

(2) The proposed method is tractable;
(3) No prior knowledge on the model is required.

Most algorithms simply fail to achieve minimax optimal regret, and the only method achieving it
Zhang and Ji [2019] is intractable because it relies an oracle to solve difficult optimization problems
along the learning process. Naturally, we raise the question of whether these three requirements can
be met all at once:

Is there a tractable algorithm with Õ
(√

sp (h∗)S AT
)

minimax regret without prior knowledge?

Contributions. In this paper, we answer the above question affirmatively, by proposing a polynomial
time algorithm with regret guarantees Õ

(√
sp (h∗)S AT

)
for average-reward MDPs. Our method can

further incorporate almost arbitrary prior bias informationH∗ ⊆ RS to further improve its regret.
Theorem 1 (Informal). Provided that the confidence region used by PMEVI-DT satisfy mild regularity
conditions (see Assumption 1-3), then for every weakly communicating model M with sp(h∗) ≤ T 1/5

and sp(h∗) ∈ H∗, PMEVI-DT(H∗, δ,T ) achieves regret:

O
(√

sp(h∗)S AT log
(

S AT
δ

))
+ O

(
sp(h∗)S

5
2 A

3
2 T

9
20 log2

(
S AT
δ

))
with probability 1 − 26δ. Moreover, if PMEVI-DT runs with the same confidence regions that UCRL2
Auer et al. [2009] on a communicating environment, it has a time complexity O(DS 3AT ).

Taking δ =
√

1/T , we also obtain a Õ
(√

sp (h∗)S AT
)

regret bound in expectation. The geometry of
the prior bias regionH∗ that PMEVI-DT can support is discussed later (see Assumption 4). It can be
taken trivial withH∗ = RS to obtain a completely prior-less algorithm.

To the best of our knowledge, PMEVI-DT is the first tractable algorithm with minimax optimal regret
bounds (up to logarithmic factors). The algorithm does not necessitate any prior knowledge of sp (h∗),
thus circumventing the potentially high cost associated with learning sp (h∗). On the technical side, a
key novelty of our method is the subroutine named PMEVI (see Algorithm 2) that improves and can
replace EVI Auer et al. [2009] in any algorithm that relies on it Auer et al. [2009], Fruit et al. [2018],
Filippi et al. [2010], Fruit et al. [2020], Bourel et al. [2020] to boost its performance and achieve
minimax optimal regret.

Related works on average reward MDPs. For communicating MDPs, the notable work of Auer
et al. [2009] proposes the famous UCRL2 algorithm, a mature version of their prior UCRL Auer and
Ortner [2006], achieving a regret bound of Õ(DS

√
AT ). This paper pioneered the use optimistic

methods to learn MDPs efficiently. A line of papers Filippi et al. [2010], Fruit et al. [2020], Bourel
et al. [2020] developed this direction by tightening the confidence region that UCRL2 relies on, and
sharpened the analysis through the use of local properties of MDPs, such as local diameters and
local bias variances. However, none of these works went beyond regret guarantees of order S

√
DAT

and suffer from an extra
√

S . A parallel direction was initiated by Bartlett and Tewari [2009] with
REGAL, obtaining regret bounds scaling with sp(h∗) instead of D, and extending the regret bounds
to weakly-communicating MDPs in the mean time. The computational intractability of REGAL is
addressed by Fruit et al. [2018] with SCAL, and regret guarantees are further improved by Zhang and
Ji [2019] with EBF, eventually reaching optimal minimax regret but loosing tractability.

Another successful design approach is Bayesian-flavored sampling, derived from Thompson Sampling
Thompson [1933], that usually replaces optimism. The regret guarantees of these algorithms usually
stick to the Bayesian setting however Ouyang et al. [2017], Theocharous et al. [2017], although
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Table 1: Comparison of related works on RL algorithms for average-reward MDP, where S ×A is the
size of state-action space, T is the total number of steps, D (Ds) is the (local) diameter, sp (h∗) ≤ D is
the span of the bias vector, tmix is the worst-case mixing time, thit is the hitting time (i.e., the expected
time cost to visit some certain state under any policy).

Algorithm Regret in Õ(−) Tractable Comment/Requirements
REGAL Bartlett and Tewari [2009] sp (h∗)S

√
AT × knowledge of sp (h∗)

UCRL2 Auer et al. [2009] DS
√

AT ✓ -
PSRL Agrawal and Jia [2023] DS

√
AT ✓ Bayesian regret

SCAL Fruit et al. [2018] sp (h∗)S
√

AT ✓ knowledge of sp (h∗)
UCRL2B Fruit et al. [2020] S

√
DAT ✓ extra

√
log(T ) in upper-bound

UCRL3 Bourel et al. [2020] D +
√

T
∑

s,a D2
s Ls,a ✓ Ls,a :=

∑
s′
√

p(s′|s, a)(1 − p(s′|s, a))

KL-UCRL Filippi et al. [2010], Talebi and Maillard [2018] S
√

DAT ✓ -
EBF Zhang and Ji [2019]

√
sp (h)∗S AT × optimal, knowledge of sp (h∗)

Optimistic-QWei et al. [2020] sp (h∗)(S A)
1
3 T

2
3 ✓ model-free

UCB-AVG Zhang and Xie [2023] S 5A2sp (h∗)
√

T ✓ model-free, knowledge of sp (h∗)
MDP-OOMDWei et al. [2020]

√
(tmix)2thitAT ✓ ergodic

Politex Abbasi-Yadkori et al. [2019] (tmix)3thit
√

S AT
3
4 ✓ model-free, ergodic

PMEVI-DT (this work)
√

sp (h∗)S AT ✓ -
Lower bound Ω

(√
sp (h∗)S AT

)
- -

Agrawal and Jia [2023] also enjoys Õ(S
√

DAT ) high probability regret by coupling posterior sampling
with optimism. Another line of research focuses on the study of ergodic MDPs, where the environment
is such that all states are visited infinitely often under every policy. To name a few, the model-free
algorithm Politex Abbasi-Yadkori et al. [2019] attains a regret of Õ((tmix)3thit

√
S AT

3
4 ) where tmix

and thit are respectively the mixing and the hitting times of the ergodic environment. By leveraging an
optimistic mirror descent algorithm, Wei et al. [2020] achieve an enhanced regret of Õ(

√
(tmix)2thitAT ).

We refer the readers to Table 1 for a (non-exhaustive) list of existing algorithms.

2 Preliminaries

We fix a finite state-action space structure X :=
⋃

s∈S {s} × A(s), and denoteM the collection of all
MDPs with state-action space X and rewards supported in [0, 1].

Infinite-horizon MDP. An element M ∈ M is a tuple (S,A, p, r) where p is the transition kernel
and r the reward function. The random state-action pair played by the agent at time t is denoted
Xt ≡ (S t, At), and the achieved reward is Rt. A policy is a deterministic rule π : S → A and
we write Π the space of policies. When coupled with a MDP M ∈ M, a policy properly defines
the distribution of (Xt,Rt) whose associated probability probability and expectation operators are
denoted Pπs ,Eπs , where s ∈ S is the initial state. Under M, a fixed policy has a reward function
rπ(s) := r(s, π(s)), a transition matrix Pπ, a gain gπ(s) := lim 1

T Eπs [R0 + . . .+RT−1] and a bias hπ(s) :=
Cesàro- lim Eπs [

∑T−1
t=0 (Rt − g(S t))], that all together satisfy the Poisson equation hπ + gπ = rπ + Pπhπ,

see Puterman [1994]. The Bellman operator of the MDP is:

Lu(s) := max
a∈A(s)

{r(s, a) + p(s, a)u} (1)

The optimal gain is g∗(s) := maxπ gπ(s) and the optimal bias is h∗(s) := max {hπ(s) : π s.t. gπ = g∗}.

Weakly-communicating MDPs. M is weakly-communicating Puterman [1994], Bartlett and
Tewari [2009] if the state space can be divided into two sets: (1) the transient set, consisting in states
that are transient under all policies; (2) the non-transient set, where every state is reachable starting
from any other non-transient state. In this case, h∗ is a span-fixpoint of L (see Puterman [1994]), i.e.,
Lh∗ − h∗ ∈ Re where e is the vector full of ones. We write h∗ ∈ Fix(L). Then g∗ = Lh∗ − h∗ and every
policy π satisfies rπ + Pπh∗ ≤ g∗ + h∗. We accordingly define the Bellman gaps:

∆∗(s, a) := h∗(s) + g∗(s) − r(s, a) − p(s, a)h∗ ≥ 0. (2)

Another important concept is the diameter, that describes the maximal distance from one state to
another state. It is given by D := sups,s′ infπ Eπs [inf {t ≥ 1 : S t = s′}].An MDP is said communicating
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if its diameter D is finite, in which case sp(h∗) ≤ sp(r)D, see Bartlett and Tewari [2009], Fruit [2019],
where sp(−) is the span function given by sp (u) := max(u) −min(u).

Reinforcement learning. The learner is only aware that M ∈ M but doesn’t have a clue about what
M further looks like. From the past observations and the current state S t, the agent picks an available
actionA(S t), receives a reward Rt and observe the new state S t+1. The regret of the agent is:

Reg(T ) := Tg∗ −
T−1∑
t=0

Rt. (3)

Its expected value satisfies E[Reg(T )] = E[
∑T−1

t=0 ∆
∗(Xt)] + E[h∗(S 0) − h∗(S T )] and the quantity∑T−1

t=0 ∆
∗(Xt) will be referred to as the pseudo-regret. This paper focuses on minimax regret guarantees.

Specifically, for c ≥ 1, denote Mc :=
{
M ∈ M : ∃h∗ ∈ Fix(L(M)), sp (h∗) ≤ c

}
the set of weakly-

communicating MDPs that admit a bias function with span at most c. Following Auer et al. [2009],
every algorithm A, for all c > 0, we have

max
M∈Mc

EM,A[Reg(T )] = Ω
(√

cS AT
)
. (4)

The goal of this work is to reach this lower bound with a tractable algorithm.

3 Algorithm PMEVI-DT

The algorithm PMEVI-DT that we present in this work is actually a general method can be applied to
improve various existing algorithms Auer et al. [2009], Filippi et al. [2010], Fruit et al. [2018], Bourel
et al. [2020], Tewari and Bartlett [2007]. All these algorithms work episodically, by maintaining a
policy πk that drives play during a time-window {tk, . . . , tk+1 − 1} called an episode. An episode rule
determines when πk should be considered obsolete and defines the time tk+1 at which the policy is
renewed. To compute πk, these algorithms follow the optimism-in-face-of-certainty (OFU) design
principle, by choosing πk that achieves the largest possible gain that is plausible under their current
information. This is done by building a confidence regionMt ⊆ M for the hidden model M, then
searching for a policy π solving the optimization problem:

g∗(Mt) := sup
{
gπ(Mt) : π ∈ Π, sp (gπ(Mt)) = 0

}
with gπ(Mt) := sup

{
gπ(M̃) : M̃ ∈ Mt

}
. (5)

The design of the confidence regionMt varies from a work to another. Given a confidence region
(Mt)t≥0, OFU-algorithms work as follows: At the start of episode k, the optimization problem (5) is
solved, and its solution πk is played until the end of episode. The duration of episodes can be managed
in various ways, although the most popular is arguably the doubling trick (DT), that essentially waits
until a state-action pair is about to double the visit count it had at the beginning of the current episode
(see Algorithm 1).

Notations. In the rest of this section, we use p̂t(s, a) (and r̂t(s, a)) to denote the empirical transition
(and reward) of the latest doubling update before the t-th step, and further denote M̂t := (r̂t, p̂t).

Extended Bellman operators and EVI. To solve (5) efficiently, the celebrated work Auer et al.
[2009] introduce the extended value iteration algorithm (EVI), that can be run wheneverMt is a
(s, a)-rectangular confidence region, meaning thatMt ≡

∏
s,a(Rt(s, a) × Pt(s, a)) where Rt(s, a) and

Pt(s, a) are respectively the confidence region for r(s, a) and p(s, a) after t learning steps. EVI is the
algorithm computing the sequence defined by:

vi+1(s) ≡ Ltvi(s) := max
a∈A(s)

max
r̃(s,a)∈Rt(s,a)

max
p̃(s,a)∈Pt(s,a)

(r̃(s, a) + p̃(s, a) · vi) (6)

until sp (vi+1 − vi) < ϵ where ϵ > 0 is the numerical precision. When the process stops, it is known
that any policy π such that π(s) achieves Ltvi in (6) satisfies gπ(Mt) ≥ g∗(M) − ϵ, hence is nearly
optimistically optimal. This process gets its name from the observation thatLt is the Bellman operator
ofMt seen as a MDP, hence EVI is just the Value Iteration algorithm Puterman [1994] ran inMt. A
choice of action from s ∈ S inMt consists in (1) a choice of action a ∈ A(s), (2) a choice of reward
r̃(s, a) ∈ Rt(s, a) and (3) a choice of transition p̃(s, a) ∈ Pt(s, a); It is an extended version ofA(s).
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Towards Projected Mitigated EVI. Obviously, the regret of an OFU-algorithm is directly related
to the quality of the confidence regionMt. That is why most previous works tried to approach the
regret lower bound

√
DS AT of Auer et al. [2009] by refiningMt. The older works of Auer et al.

[2009], Bartlett and Tewari [2009], Filippi et al. [2010] have been improved with a variance aware
analysis Talebi and Maillard [2018], Fruit et al. [2018, 2020], Bourel et al. [2020] that essentially
make use of tightened kernel confidence regions Pt. While all these algorithms successively reduce
the gap between the regret upper and lower bounds, they fail to achieve optimal regret

√
DS AT .

Meanwhile, the EBF algorithm of Zhang and Ji [2019] is minimax optimal but (1) the algorithm is
intractable because it relies on an oracle to retrieve optimistically optimal policies and (2) needs prior
information on the bias function. Nonetheless, the method of Zhang and Ji [2019] strongly suggests
that inferring bias information from the available data is key to achieve minimax optimal regret.

Rather surprisingly and in opposition to this previous line of work, our work suggests that the choice
of the confidence regionMt has little importance. Instead, our algorithm takes an arbitrary (well-
behaved) confidence region in, infer bias information similarly to Zhang and Ji [2019] and makes
use of it to refine the extended Bellman operator (6) associated to the input confidence region. Our
algorithm can further take arbitrary prior information (possibly none) on the bias vector to tighten
its bias confidence region. The pseudo-code given in Algorithm 1 is the high level structure our
algorithm PMEVI-DT. In the next Section 3.1, we explain how (6) is refined using bias information.

Algorithm 1: PMEVI-DT(H∗,T, t 7→ Mt)

Parameters: Bias priorH∗, horizon T , a system
of confidence regions t 7→ Mt

1: for k = 1, 2, . . . do
2: Set tk ← t, update confidence regionMt;
3: H ′t ← BiasEstimation(Ft,Mt, δ):
4: Ht ← H∗ ∩ {u : sp (u) ≤ T 1/5} ∩ H ′t ;
5: Γt ← BiasProjection(Ht,−);
6: βt ← VarianceApprox(H ′t ,Ft);
7: hk ← PMEVI(Mt, βt,Γt,

√
log(t)/t) ;

8: gk ← Lthk − hk ;
9: Update policy πk ← Greedy(Mt, hk, βt);

10: repeat
11: Play At ← πk(S t), observe Rt, S t+1;
12: Increment t ← t + 1;
13: until (DT) Nt(S t, πk(S t)) ≥ 1 ∨ 2Ntk (Xt).
14: end for

Algorithm 2: PMEVI(M, β,Γ, ϵ)

Parameters: regionM, mitigation β, projection
Γ, precision ϵ, initial vector v0 (optional)

1: if v0 not initialized then set v0 ← 0;
2: n← 0
3: L ← extended operator associated toM;
4: repeat
5: vn+ 1

2
← Lβvn;

6: vn+1 ← Γvn+ 1
2
;

7: n← n + 1;
8: until sp (vn − vn−1) < ϵ
9: return vn.

3.1 Projected mitigated extended value iteration (PMEVI)

Assume that an external mechanism provides a confidence regionHt for the bias function h∗. Provided
thatMt is correct (M ∈ Mt) and that Ht is correct (h∗ ∈ Ht), we want to find a policy-model pair
(π, M̃) that maximizes the gain among pairs with hπ(M̃) ∈ Ht. This is done with an improved version
of (6) combining two ideas, that are both necessary to achieve minimax optimal regret in the analysis.

1. Projection (Section 3.2). Whenever it is correct, the bias confidence regionHt informs the
learner that the search of an optimistic model can be constrained to those with bias within
Ht. This is done by projecting Lβt (see mitigation) using an operator Γt : RS → Ht, that has
to satisfy a few non-trivial regularity conditions that are specified in Proposition 2.

2. Mitigation (Section 3.3). When one is aware that h∗ ∈ Ht, the dynamical bias update
p̃(s, a)vi in (6) can be controlled better, by trying to restrict (6) to the p̃(s, a) such that
p̃(s, a)vi ≤ p̂t(s, a)vi + (p(s, a) − p̂t(s, a))vi with the knowledge that vi ∈ Ht. However,
controlling the error (p(s, a) − p̂t(s, a))vi by doing a union-bound on all possible values of vi
is equivalent to building a confidence region for p(s, a), which produces an extra S 1/2 in the
error term that cannot be afforded by a minimax optimal algorithm.
We take a different approach instead. For a fixed u ∈ RS, the empirical Bernstein inequality
(Lemma 38) provides a variance bound of the form ( p̂t(s, a) − p(s, a))u ≤ βt(s, a, u). By
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estimating βt(s, a) := maxu∈Ht βt(s, a, u), the search makes sure that (p̂t(s, a) − p(s, a))u ≤
βt(s, a) holds with high probability for u = h∗, even though h∗ is unknown. For β ∈ RX+ , we
introduce the β-mitigated extended Bellman operator:

L
β
t u(s) := max

a∈A(s)
sup

r̃(s,a)∈Rt(s,a)
sup

p̃(s,a)∈Pt(s,a)

{
r̃(s, a) +min { p̃(s, a)ui, p̂t(s, a)ui + β(s, a)}

}
(7)

The mitigation β(s, a) is independent of u, which is crucial for Lβt to be well-behaved.

The proposition below shows how well-behaved the composition Lt := Γt ◦L
β
t is. Its proof requires to

build a complete analysis of projected mitigated Bellman operators. This is deferred to the appendix.

Proposition 2. Fix β ∈ RX+ and assume that there exists a projection operator Γt : RX → Ht which is
(O1) monotone: u ≤ v⇒ Γu ≤ Γv; (O2) non span-expansive: sp (Γu − Γv) ≤ sp (u − v); (O3) linear:
Γ(u + λe) = Γu + λe and (O4) Γu ≤ u. Then, the projected mitigated extended Bellman operator
Lt := Γt ◦ L

β
t has the following properties:

(1) There exists a unique gt ∈ Re such that ∃ht ∈ Ht,Ltht = ht + gt;
(2) If M ∈ Mt, h∗ ∈ Ht and ( p̂t(s, a) − p(s, a))h∗ ≤ β(s, a), then gt ≥ g∗(M);
(3) IfMt is convex, then for all u ∈ RS, the policy π =: Greedy(Mt, u, β) picking the actions

achieving Lβt u satisfies Ltu = r̃π + P̃πu for r̃π(s) ≤ supRt(s, π(s)) and P̃π(s) ∈ Pt(s, π(s));

(4) For all u ∈ RS and n ≥ 0, sp
(
Ln+1

t u − Ln
t u

)
≤ sp

(
(Lt)n+1u − (Lt)nu

)
.

The property (1) guarantees that Lt has a fix-point while (2) states that this fix-point corresponds to
an optimistic gain gt if the model and the bias confidence region are correct and the mitigation isn’t
too aggressive. Combined with (3), the Poisson equation of a policy corresponds to this fix-point, i.e.,
r̃π + P̃πht = ht + gt, so that gt is the gain and ht ∈ Ht is a legal bias for π under the model (r̃π, P̃π).
Lastly, the property (4) guarantees that the iterates Ln

t u converge to a fix-point of L at least as quickly
as Ln

t u goes to a fix-point of Lt; The convergence of (Lt)nu is already guaranteed by existing studies
and is discussed in the appendix.

Provided that the bias confidence region is constructed, Proposition 2 foreshadows how powerful
the construction is: The algorithm PMEVI, obtained by iterating Lt instead of Lt in EVI, can replace
the well-known EVI within any algorithm of the literature that relies on it (UCRL2 Auer et al. [2009],
UCRL2B Fruit et al. [2020] or KL-UCRL Filippi et al. [2010]) for an immediate improvement of its
theoretical guarantees.

3.2 Building the bias confidence region and its projection operator

The bias confidence region used by PMEVI-DT is obtained as a collection of constraints of the form:

∀s , s′, h(s) − h(s′) − c(s, s′) ≤ d(s, s′). (8)

Such constraints include (1) prior bias constraints (if any) of the form of h(s)−h(s′) ≤ c∗(s, s′); (2) span
constraints of the form h(s) − h(s′) ≤ c0 := T 1/5 spawning the span semi-ball {u : sp (u) ≤ T 1/5}; and
(3) pair-wise constraints obtained by estimating bias differences in the style of Zhang and Ji [2019],
Zhang and Xie [2023] that we further improve. We start by defining a bias difference estimator.

Definition 1 (Bias difference estimator). Given a pair of states s , s′, their sequence of commute
times (τs↔s′

i )i≥0 is defined by τs↔s′
2i := inf{t > τs↔s′

2i−1 : S t = s} and τs↔s′
2i+1 := inf{t > τs↔s′

2i : S t = s′}
with the convention that τs↔s′

−1 = −∞. The number of commutations up to time t is Nt(s ↔ s′) :=
inf{i : τs↔s′

i ≤ t}, and ĝ(t) := 1
t
∑t−1

i=0 Ri is the empirical gain. The bias difference estimator at time T
is any quantity cT (s, s′) ∈ R such that:

Nt(s↔ s′)cT (s, s′) =
∑NT (s↔s′)−1

t=0
(−1)i

∑τs↔s′
i+1 −1

t=τs↔s′
i

(ĝ(T ) − Rt). (9)

Lemma 3. With probability 1 − 2δ, for all T ′ ≤ T, we have

NT ′ (s↔ s′)
∣∣∣h∗(s) − h∗(s′) − cT ′ (s, s′)

∣∣∣ ≤ 3sp (h∗)+(1+sp (h∗))
√

8T log( 2
δ
)+2

∑T ′−1

t=0
(g∗−Rt). (10)
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Lemma 3 says that the quality of the estimator cT (s, s′) is directly linked to the number of observed
commutes between s and s′ as well as the regret. The idea is that if the algorithm makes many
commutes between s and s′ and if its regret is small, then the algorithm mostly takes optimal paths
from s to s′. The bound provided by Lemma 3 is not accessible to the learner however, because sp (h∗)
is unknown in general. To overcome this issue, sp (h∗) is upper-bounded by c0 := T 1/5. Overall, this
leads to the design of the algorithm estimating the bias confidence region as specified in Algorithm 3.

Algorithm 3: BiasEstimation(Ft,Mt, δ)

Parameters: History Ft, model regionMt, confi-
dence δ > 0

1: Estimate bias differences ct via (9);
2: Estimate optimistic gain g̃← mink<K(t) gk;
3: Inner regret estimation B0 ← tg̃ −

∑t−1
i=0 Ri;

4: ℓ ←
√

8T log
(

2
δ

)
, c0 ← T

1
5 ;

5: Estimate the bias difference errors as:

dt(s, s′) ≡ error(ct, s, s′) :=
3c0 + (1 + c0)(1 + ℓ) + 2B0

Nt(s↔ s′)

6: return (ct, error(ct,−,−)), (8) definesH ′t .

Algorithm 4: BiasProjection(Ht, u)

Parameters: Ht a collection of linear constraints
(8), u ∈ RS to project

1: v← 0S;
2: for s ∈ S do
3: Using linear programming, compute:
4: v(s)← sup {w(s) : w ≤ u and w ∈ Ht};
5: end for
6: return v.

Coupled with prior information and span constraints, the bias confidence regionHt is a polyhedron
of the same kind as the one encountered in Zhang and Xie [2023]. When generated by constraints of
the form (8), following [Zhang and Xie, 2023, Proposition 3], one can project ontoHt in polynomial
time with Algorithm 4. Moreover, the resulting projection operator satisfies the prerequisites (O1-4)
of Proposition 2, making PMEVI (Algorithm 2) well-behaved. See Appendix B.2 for proofs.
Lemma 4. Assume thatH is a set of h ∈ RS satisfying a system of equations of the form of (8). IfH
is non empty, then the operator Γu := BiasProjection(H , u) (see Algorithm 4) is a projection on
H and satisfies the properties (O1-4) defined in Proposition 2.

3.3 Mitigation using finer bias dynamical error

The fact that h∗ ∈ Ht with high probability is used in PMEVI-DT to restrict the search of EVI by
reducing the dynamical bias error. This reduction is based on a empirical Bernstein inequality (see
Lemma 38) applied to (p̂(s, a) − p(s, a))u. Here, it gives that with probability 1 − δ, we have:

( p̂t(s, a) − p(s, a)) u ≤

√
2V( p̂t(s, a), u) log

(
3T
δ

)
max {1,Nt(s, a)}

+
3sp (u) log

(
3T
δ

)
max {1,Nt(s, a)}

=: βt(s, a, u) (11)

where V(p̂t(s, a), u) is the variance of u under the probability vector p̂t(s, a). More specifically, if
q is a probability on S and q ∈ RS, we set V(q, u) :=

∑
s q(s)(u(s) − q · u)2. In (11), u ∈ RS,

(s, a) ∈ X and T ≥ 1 are fixed. Once is tempted to use (11) directly to mitigate the extended Bellman
operator, but the resulting operator is ill-behaved because it loses monotony. This issue is avoided by
changing βt(s, a, u) to maxu∈Ht βt(s, a, u) in (11). The resulting inequality is not guaranteed to hold
simultaneously for all u ∈ Ht and with high probability; However, it is guaranteed to hold with high
probability for u = h∗, which will be enough.

The variance maximization problem maxu∈Ht βt(s, a, u) is a convex maximization problem with linear
constraints. Even in very simple settings, such optimization problems are NP-hard Pardalos and
Schnitger [1988] hence computing maxu∈Ht βt(s, a, u) is not reasonable in general. Thankfully, this
value can be upper-bounded by a tractable quantity that is enough in the regret analysis. The mitigation
βt used by PMEVI-DT is provided by Algorithm 5. See Lemma 12 and Appendix A.2.2 for details.

4 Regret guarantees

Theorem 5 thereafter shows that PMEVI-DT has minimax optimal regret under regularity assumptions
on the used confidence regionMt. Assumption 1 asserts that the confidence region holds uniformly
with high probability. Assumption 2 asserts that the reward confidence region is sub-Weissman (see
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Algorithm 5: VarianceApproximation(H ′t ,Ft)

Parameters: Bias regionH ′t , historyFt

1: Extract constraints (c, error(c,−,−))← H ′t ;
2: Set c0 ← T

1
5 ;

3: Pick a reference point h0 ← BiasProjection(Ht, c(−, s0));
4: for (s, a) ∈ X do
5: ρ← log

(
S AT
δ

)
/max {1,Nt(s, a)};

6: var(s, a)← V( p̂t(s, a), h0) + 8c0
∑

s′∈S p̂t(s′|s, a)c(s′, s);
7: βt(s, a)←

√
2var(s, a)ρ + 3c0ρ or +∞ if Nt(s, a) = 0;

8: end for
9: return βt.

Lemma 35) and Assumption 3 assumes that the model confidence region makes sure that EVI (6)
converges in the first place. Assumption 4 asserts that the prior bias region is correct.

Assumption 1. With probability 1 − δ, we have M ∈
⋂K(T )

k=1 Mtk .
Assumption 2. There exists a constant C > 0 such that for all (s, a) ∈ S, for all t ≤ T , we have:

Rt(s, a) ⊆
{
r̃(s, a) ∈ R(s, a) : Nt(s, a) ∥r̂t(s, a) − r̃(s, a)∥21 ≤ C log

(
2S A(1+Nt(s,a))

δ

)}
.

Assumption 3. For t ≥ 0,Mt is a (s, a)-rectangular convex region and Ln
t u converges a fix-point.

Assumption 4. The prior bias regionH∗ contains h∗(M) and is generated by constraints of the form:
∀s , s′, h(s) − h(s′) ≤ c∗(s, s′)

with c∗(s, s′) ∈ [−∞,∞] (possibly infinite).

Refer to Appendix A.2 for the feasibility of Assumption 1, Appendix A.2.3 for Assumption 2, and
Appendix A.3 for Assumption 3.
Theorem 5 (Main result). Let c > 0. Assume that PMEVI-DT runs with a confidence region system
t 7→ Mt that guarantees Assumptions 1-3. If T ≥ c5, then for every weakly communicating model
with sp (h∗) ≤ c and such that Assumption 4 is satisfied (h∗ ∈ H∗), PMEVI-DT achieves regret:

O
(√

cS AT log
(

S AT
δ

))
+ O

(
cS

5
2 A

3
2 T

9
20 log2

(
S AT
δ

))
with probability 1 − 26δ, and in expectation if δ <

√
1/T. Moreover, if PMEVI-DT runs with the same

confidence regions that UCRL2 Auer et al. [2009], then it enjoys a time complexity O(DS 3AT ).

To have a completely prior-less algorithm, pickH∗ = RS. The proof of Theorem 5 is tedious and its
details are deferred to appendix. We will focus here on the main ideas.

Notations. At episode k, the played policy is denoted πk. As a greedy response to hk, by Proposi-
tion 2 (3), there exists r̃k(s) ≤ supRtk (s, πk(s)) and P̃k(s) ∈ Ptk (s, π(x)) such that hk + gk = r̃k + P̃khk.
The reward-kernel pair M̃k = (r̃k, P̃k) is referred to as the optimistic model of πk. We write
Pk := Pπk (M) the true kernel and P̂k := Pπk (M̂tk ) the empirical kernel. Likewise, we define the
reward functions rk and r̂k. The optimistic gain and bias satisfy gk = g(πk, M̃k) and hk = h(πk, M̃k).
We further denote c0 = T

1
5 .

The regret is first decomposed episodically with Reg(T ) =
∑

k
∑tk+1−1

t=tk (g∗ − Rt). The first step goes
back to the analysis of UCRL2 Auer et al. [2009], and consists in upper-bounding the regret of the
episode k with optimistic quantities that are exclusive to that episode.
Lemma 6 (Reward optimism). With probabililty 1 − 6δ, we have:

Reg(T ) ≤
∑

k

∑tk+1−1

t=tk
(gk − Rt) ≤

∑
k

∑tk+1−1

t=tk
(gk − r̃k(Xt)) + O

(√
S AT log

(
T
δ

))
. (12)

We introduce the two optimistic regrets B(T ) :=
∑

k
∑tk+1−1

t=tk (gk−Rt) and B̃(T ) :=
∑

k
∑tk+1−1

t=tk (gk−r̃k(Xt)).
Rewriting the summand gk − r̃k(Xt) using the Poisson equation hk + gk = r̃k + P̃khk, we get:

B̃(T ) =
∑

k

∑tk+1−1

t=tk

(
p̃k(S t) − eS t

)
hk.
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O(c0 log(S AT ))

√
sp (h∗)S AT log(S AT )

S 2Ac0 log2(T )
√

Reg(T )

O
(
c0S 2A2T 1/4 log2(T )

)

Figure 1: An overview of PMEVI-DT and its regret analysis. In the above, gk and hk are the
optimistic gain and bias functions produced by PMEVI (see Algorithm 2) at episode k, and p̂tk and p̃tk
are respectively the empirical and optimistic kernel models at episode k.

The analysis proceeds by decomposing the above expression of B̃(T ) in the style of Zhang and Ji
[2019]. We write

∑tk+1−1
t=tk (p̃k(S t) − eS t )hk as:

∑tk+1−1

t=tk

(pk(S t) − eS t

)
hk︸              ︷︷              ︸

navigation error (1k)

+ (p̂k(S t) − pk(S t)) h∗︸                   ︷︷                   ︸
empirical bias error (2k)

+ ( p̃k(S t) − p̂k(S t)) hk︸                   ︷︷                   ︸
optimistic overshoot (3k)

+ ( p̂k(S t) − pk(S t)) (hk − h∗)︸                            ︷︷                            ︸
second order error (4k)


Each error term is bounded separately. Below, we denote V(q, u) :=

∑
s q(s)(u(s) − q · u)2.

Lemma 7 (Navigation error). With probability 1 − 7δ, the navigation error is bounded by:∑
k

∑tk+1−1

t=tk
(pk(S t) − eS t )hk ≤

√
2
∑T−1

t=0
V(p(Xt), h∗) log

(
T
δ

)
+ 2S A

1
2
√

3B(T ) log
(

T
δ

)
+ Õ

(
T

7
20

)
.

Lemma 8 (Empirical bias error). With probability 1 − δ, the empirical bias error is bounded by:∑
k

∑tk+1−1

t=tk
(p̂k(S t) − pk(S t)) h∗ ≤ 4

√
S A

∑T−1

t=0
V(p(Xt), h∗) log

(
S AT
δ

)
+ O

(
log2(T )

)
.

Lemma 9 (Optimistic overshoot). With probability 1 − 6δ, the optimistic overshoot is bounded by:∑
k

∑tk+1−1

t=tk
( p̃k(S t) − p̂k(S t)) hk ≤

 4
√

2S A
∑T−1

t=0 V(p(Xt), h∗) log
(

S AT
δ

)
+8(1 + c0)S

3
2 A log

3
2

(
S AT
δ

) √
B(T ) + Õ

(
T

1
4

)
 .

Lemma 10 (Second order error). With probability 1 − 6δ, the second order error is bounded by:∑
k

∑tk+1−1

t=tk
( p̂k(S t) − pk(S t)) (hk − h∗) ≤ 16S 2A(1 + c0) log

1
2

(
S 2AT
δ

) √
2B(T ) + Õ

(
T

1
4

)
.

We see that the empirical bias error (Lemma 8) and the optimistic overshoot (Lemma 9) both involve
the sum of variances

∑T−1
t=0 V(p(Xt), h∗), which is shown in Lemma 29 to be of order sp (h∗)sp (r)T +∑T−1

t=0 ∆
∗(Xt). The pseudo-regret term

∑T−1
t=0 ∆

∗(Xt) is bounded with the regret using Corollary 31, then
by B(T ). With high probability, we obtain an equation of the form:

B(T ) ≤ C
√

(1 + sp (h∗))S AT log
(

T
δ

)
+CS 2A(1 + c0) log2(T )

√
B(T ) + Õ

(
T

1
4

)
where C is a constant. Setting α := CS 2A(1 + c0) log2(T ) and β := C

√
(1 + sp (h∗))S AT log(T/δ) +

Õ(T 1/4), the above equation is of the form B(T ) ≤ β + α
√

B(T ). Solving in B(T ), we find B(T ) ≤
β + 2

√
αβ + α2. The dominant term is β, hence we readily obtain:

B(T ) ≤ C
√

(1 + sp (h∗))sp (r)S AT log
(

T
δ

)
+ Õ

(
sp (h∗)sp (r)S

5
2 A

3
2 (1 + c0)T

1
4

)
. (13)

Since c0 = o(T
1
4 ), we conclude that B(T ) = O

(√
sp (h∗)S AT log(T/δ)

)
, ending the proof.
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5 Experimental illustrations

To get a grasp of how PMEVI-DT behaves in practice, we provide in Fig. 2 a first round of illustrative
experiments. In both, the environment is a river-swim which is a model known to be hard to learn
despite its size, with high diameter and bias span, see Appendix D for the model’s description.

UCRL2

PMEVI(c=2)

PMEVI
(c=0.

5)

PMEVI(c
=1)

UCRL2B
& PMEVI

-UCRL2B

UCRL2 & PME
VI-UCRL2

KLUCRL & PMEVI-KLUCRL

Figure 2: (To the left) Running UCRL2 and PMEVI-DT with the same confidence region than UCRL2
on a 3-state river-swim. PMEVI-DT is run with prior knowledge h∗(s1) ≤ h∗(s2) − c ≤ h∗(s3) − 2c for
c ∈ {0, 0.5, 1, 1.5, 2}. (To the right) Running a few algorithms of the literature on 5-state river-swim
and comparing their average regret against their PMEVI variants, obtained by changing calls to the
EVI sub-routine to calls to PMEVI.

On the first experiment, we observe that PMEVI can exploit prior bias knowledge effectively and
drastically improve the regret performance, depending on the quality of the prior region.

On the second experiment however, we observe that without prior knowledge, PMEVI has nearly
the same regret performance that its EVI counterparts, meaning that the bias confidence region is
too large to effectively improve the regret performance. This observation is first to be taken with
caution. Indeed, the regret that is being estimated above is model specific, hence is not an estimate
of the minimax regret — This being said, it undoubtedly shows that the bias confidence region is
ineffective and this can be explained as follows. On experiments, we see that most of the regret is due
to the early phase of the learning process, where proper bias information is nearly impossible to get.
Indeed, the regret is still growing linearly, so no bias information can be inferred. But in addition, this
“bad” early data pollutes the bias estimator for a long duration. In other words, while the theoretical
regret guarantees of PMEVI-DT are better than its EVI analogues, there is room to improve the bias
estimation mechanism and the practical performance.

6 Conclusion

In this work, we have shown that regret guarantees of order
√

sp(h∗)S AT log(T ) can be achieved
for weakly communicating MDPs without prior knowledge, nor exponential computational cost.
In particular, regret guarantees can scale with the bias span rather than the diameter without prior
knowledge. This is in opposition to the recent results that the sample complexity cannot be bounded
in term of bias span without prior knowledge for average reward MDPs Tuynman et al. [2024], Wang
et al. [2024], Zurek and Chen [2024a,b]. This difference lies in the fact (ϵ, δ)-PAC algorithm must
produce a policy πτ after τ learning steps where τ is a stopping time, with P(gπτ ≤ g∗ − ϵ) ≤ δ.
Implicitly, these algorithms must hereby certify that the output policy is approximately optimal. In
opposition, regret robust algorithms have no need to assess that deployed policies are indeed optimal.

In the end, the regret advantages of PMEVI-DT over pure EVI-based methods remain theoretical, and
the experimental shortcomings displayed in Section 5 leave a few opportunities for future work. Can
bias information be inferred more efficiently? Or, do the experiments indicate that the regret analysis
of EVI-based methods may be drastically improved?
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A Construction of PMEVI-DT

This section provides the technical details required to understand the design of PMEVI-DT in Section 3.
We further discuss the assumptions 1-4 appearing in Theorem 5 and provide sufficient conditions so
that they are met.

A.1 Proof of Lemma 3, estimation of the bias error

Fix s, s′ ∈ S. We denote αT := NT (s↔ s′)(h∗(s) − h∗(s′) − cT (s, s′)). We will start by considering
the better estimator c′T (s, s′) that satisfies the same equation (9) than cT (s, s′) but with ĝ(T ) changed
to g∗, readily:

Nt(s↔ s′)c′T (s, s′) =
∑NT (s↔s′)−1

t=0
(−1)i

∑τs↔s′
i+1 −1

t=τs↔s′
i

(g∗ − Rt).

To avoid a typographical clutter, we write τi instead of τs↔s′
i in the remaining of the proof and we

write α′T := NT (s↔ s′)(h∗(s) − h∗(s′) − c′T (s, s′).

(STEP 1) We start by relating the two estimators. Intuitively, ĝ(T ) is a good estimator for g∗ when
the regret is small. Recall that ĝ(T ) := 1

T
∑T−1

t=0 Rt, hence:∑T−1

t=0
|ĝ(T ) − g∗| =

∣∣∣∣∣∑T−1

t=0
(Rt − g∗)

∣∣∣∣∣ = ∣∣∣Reg(T )
∣∣∣ .

Therefore,

|αT | ≤
∣∣∣α′T ∣∣∣ + ∣∣∣αT − α

′
T

∣∣∣ ≤ ∣∣∣α′T ∣∣∣ +∑T−1

t=0
|ĝ(T ) − g∗| ≤

∣∣∣α′T ∣∣∣ + ∣∣∣Reg(T )
∣∣∣ .

We are left with upper-bounding
∣∣∣α′T ∣∣∣.

(STEP 2) If i is even, then S τi and S τi+1 = s′; otherwise S τi = s′ and S τi+1 = s. In both cases, we
have h∗(S τi+1 ) − h∗(S τi ) = (−1)i(h∗(s′) − h∗(s)). Therefore, using Bellman’s equation, the quantity
A :=

∑τi+1−1
t=τi

(g∗ − Rt) satisfies:

A =
∑τi+1−1

t=τi

(
p(Xt) − eS t

)
h∗ +

∑τi+1−1

t=τi
(r(Xt) − Rt) +

∑τi+1−1

t=τi
∆∗(Xt)

=
∑τi+1−1

t=τi

(
eS t+1 − eS t

)
h∗ +

∑τi+1−1

t=τi

(
p(Xt) − eS t+1

)
h∗ +

∑τi+1−1

t=τi
(r(Xt) − Rt) +

∑τi+1−1

t=τi
∆∗(Xt)

= (−1)i(h∗(s′) − h∗(s)) +
∑τi+1−1

t=τi

(
p(Xt) − eS t+1

)
h∗ +

∑τi+1−1

t=τi
(r(Xt) − Rt) +

∑τi+1−1

t=τi
∆∗(Xt).

Multiplying by (−1)i and rearranging, h∗(s′) − h∗(s) + (−1)i+1 ∑τi+1−1
t=τi

(g∗ − Rt) appears to be equal to:

(−1)i+1
(∑τi+1−1

t=τi

((
p(Xt) − eS t+1

)
h∗ + r(Xt) − Rt

)
+

∑τi+1−1

t=τi
∆∗(Xt)

)
.

Proceed by summing over i. By triangular inequality, we obtain:∣∣∣α′T ∣∣∣ ≤ ∣∣∣∣∣∑NT (s↔s′)−1

i=0

∑τi+1−1

t=τi
(−1)i+1 ((

p(Xt) − eS t+1

)
h∗ + r(Xt) − Rt

)∣∣∣∣∣ +∑NT (s↔s′)−1

i=0

∑τi+1−1

t=τi
∆∗(Xt).

Because all Bellman gaps ∆∗ are non-negative, the second term is upper-bounded by the pseudo-regret∑T−1
t=0 ∆

∗(Xt). The first term is a martingale, and the martingale difference sequence (−1)i+1((p(Xt) −
eS t+1 )h∗ + r(Xt) − Rt has span at most sp (h∗) + 1 since rewards are supported in [0, 1]. Although the
number of involved terms is random, it is upper-bounded by T , hence by the maximal version of
Azuma-Hoeffding’s inequality (Lemma 32), we have that with probability at least 1− δ and uniformly
for T ′ ≤ T ,∣∣∣∣∣∑NT ′ (s↔s′)−1

i=0

∑τi+1−1

t=τi
(−1)i+1 ((

p(Xt) − eS t+1

)
h∗ + r(Xt) − Rt

)∣∣∣∣∣ ≤ (1 + sp (h∗))
√

1
2 T log

(
2
δ

)
.

(STEP 3) We conclude that with probability 1 − δ, for all T ′ ≤ T ,

αT ′ ≤ (1 + sp (h∗))
√

1
2 T log

(
2
δ

)
+

∑T ′−1

t=0
∆∗(Xt) +

∣∣∣Reg(T ′)
∣∣∣ .
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We are left with relating both
∑T ′−1

t=0 ∆
∗(Xt) and

∣∣∣Reg(T ′)
∣∣∣ to

∑T ′−1
t=0 (g̃−Rt). Using the Bellman equation

again, we find that:∣∣∣∣∣∑T ′−1

t=0
(g∗ − Rt − ∆

∗(Xt))
∣∣∣∣∣ ≤ |h∗(S 0) − h∗(S T ′ )| +

∣∣∣∣∣∑T ′−1

t=0

((
p(Xt) − eS t+1

)
h∗ + (r(Xt) − Rt)

)∣∣∣∣∣
≤ sp (h∗) + (1 + sp (h∗))

√
1
2 T log

(
2
δ

)
where the last inequality holds with probability 1 − δ uniformly over T ′ ≤ T by Azuma-Hoeffding’s
inequality again (Lemma 32). Remark that if y − z ≤ x ≤ y + z, then |x| ≤ |y| + |z|, hence we conclude
that with probability 1 − δ, for all T ′ ≤ T :∑T ′−1

t=0
∆∗(Xt) +

∣∣∣Reg(T ′)
∣∣∣ ≤ 2

∑T ′−1

t=0
∆∗(Xt) + (1 + sp (h∗))

√
1
2 T log

(
2
δ

)
+ sp (h∗)

≤ 2
∑T ′−1

t=0
(g∗ − Rt) + 3(1 + sp (h∗))

√
1
2 T log

(
2
δ

)
+ 3sp (h∗)

≤ 2
∑T ′−1

t=0
(g̃ − Rt) + 3(1 + sp (h∗))

√
1
2 T log

(
2
δ

)
+ 3sp (h∗)

where the last inequality invokes g̃ ≥ g∗. We conclude that, with probability 1 − 2δ, for all T ′ ≤ T ,
we have:

NT ′ (s↔ s′)(h∗(s) − h∗(s′) − cT ′ (s, s′)) ≤ 3sp (h∗) +
(
1 + sp (h∗)

) √
8T log

(
2
δ

)
+

∑T ′−1

t=0
(g̃ − Rt).

This concludes the proof. □

A.2 The confidence region of PMEVI-DT

The algorithm PMEVI-DT can be instantiated with a large panel of possibilities, depending on the
type of confidence region one is willing to use for rewards and kernels. In this work, we allow for
four types of confidence regions, described below. For conciseness, q ∈ {r, p} is a symbolic letter
that can be a reward or a kernel and we denote Qt(s, a) the confidence region for q(s, a) at time t. If
q = r, then dim(q) = 2 (Bernoulli rewards) with Q(s, a) = [0, 1]; and if q = p, then dim(q) = S with
Q(s, a) = P(S).

(C1) Azuma-Hoeffding or Weissman type confidence regions, with Qt(s, a) taken as:{
q̃(s, a) ∈ Q(s, a) : Nt(s, a) ∥q̂t(s, a) − q̃(s, a)∥21 ≤ dim(q) log

(
2S A(1+Nt(s,a))

δ

)}
.

(C2) Empirical Bernstein type confidence regions, with Qt(s, a) taken as:

q̃(s, a) ∈ Q(s, a) : ∀i, |q̂t(i|s, a) − q̃(i|s, a)| ≤

√
2V(q̂t(i|s,a)) log

(
2 dim(q)S AT

δ

)
Nt(s,a) +

3 log
(

2 dim(q)S AT
δ

)
Nt(s,a)

 .
with the convention that x/0 = +∞ for x > 0.

(C3) Empirical likelihood type confidence regions, with Qt(s, a) taken as:{
q̃(s, a) ∈ Q(s, a) : Nt(s, a) KL(q̂t(s, a)∥q̃(s, a)) ≤ log

(
2S A
δ

)
+ (dim(q) − 1) log

(
e
(
1 + Nt(s,a)

dim q−1

))}
.

(C4) Trivial confidence region with Qt(s, a) = Q(s, a).

A few remarks are in order. When rewards are not Bernoulli, only the confidence regions (C1) and
(C4) are elligible among the above. Then, Weissman’s inequality must be changed to Azuma’s
inequality for σ-sub-Gaussian random variables, see Lemma 34. Since rewards are supported in
[0, 1], Hoeffding’s Lemma guarantees that reward distributions are σ-sub-Gaussian with σ = 1

2 .
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A.2.1 Correctness of the model confidence regionMt and Assumption 1

The confidence regions Qt(s, a) described with (C1-4) are tuned so that the following result holds:

Lemma 11. Assume that, for all q ∈ {r, p} and (s, a) ∈ X, we choose Qt(s, a) among (C1-4). Then
Assumption 1 holds. More specifically, the region of modelsMt :=

∏
s,a(Rt(s, a) × Pt(s, a)) satisfies

P(∃t ≤ T : M <Mt) ≤ δ.

Proof. We show that, for all q ∈ {r, q} and (s, a) ∈ X, if Qt(s, a) is chosen amoung (C1-4), then

P (∃t ≤ T : q(s, a) < Qt(s, a)) ≤ δ.

If Qt(s, a) is chosen with (C1), this is a direct application of Lemma 35; with (C2), this is Lemma 36;
with (C3), this is Lemma 37; and with (C4) this is by definition. □

A.2.2 Simultaneous correctness of bias confidence regionHt, mitigation βt and optimism

In this section, we show that if Assumption 1 holds, then the bias confidence region constructed
by PMEVI-DT is correct with high probability, and that the mitigation is not too strong. Recall that
(gk, hk) are the optimistic gain and bias of the policy deployed in episode k (see Algorithm 1). In
particular, we have gk = Ltkhk − hk with hk ∈ Htk . We start by a result on the deviation of the variance,
which is what the variance approximation Algorithm 5 is based on. Recall that the bias confidence
regionHt is obtained as the collection of constraints:

(1) prior constraints (if any) h(s) − h(s′) ≤ c∗(s, s′);

(2) span constraints h(s) − h(s′) ≤ c0 := T 1/5;

(3) dynamically inferred constraints |h(s) − h(s′) − ct(s′, s)| ≤ error(ct, s′, s) (see Algorithm 3).

We start with the technical result that is behind the variance approximation Algorithm 5.

Lemma 12. Let u, v ∈ Ht and fix p a probability distribution on S. Then for all s ∈ S,

V(p, u) ≤ V(p, v) + 8c0

∑
s′∈S

p(s′) error(ct, s′, s).

Proof. We start by establishing the following result: If p is a probability distribution on S and
u, v ∈ RS, we have:

V(p, u) ≤ V(p, v) + 2 (p · |u − v|) max(u + v) (14)

where · is the dot product, u2 the Hadamard product uu and |u| the vector whose entry s is |u(s)|. (14)
is obtained with a straight forward computation:

V(p, u) − V(p, v) = p · (u2 − v2) + (p · v)2 − (p · u)2

= p · ((u − v)(u + v)) + (p · (u − v))(p · (u + v))
≤ p · (|u − v| (u + v)) + (p · |u − v|)(p · |u + v|)
≤ 2(p · |u − v|) max(u + v).

Observe that v can be changed to v + λe, where e is the vector full of ones, without changing the
result. The same goes for u. We now move to the proof of the main statement. First, translate u and v
such that u(s) = v(s) = 0. Then, we have:

p · (u − v) =
∑

s′∈S
p(s′)

∣∣∣u(s′) − u(s) − ct(s′, s) + v(s) − v(s′) + ct(s′, s)
∣∣∣

≤
∑

s′∈S
p(s′)

(∣∣∣u(s′) − u(s) − ct(s′, s)
∣∣∣ + ∣∣∣v(s′) − v(s) − ct(s′, s)

∣∣∣)
≤ 2

∑
s′∈S

p(s′) error(ct, s′, s).

Conclude using that max(u + v) ≤ max(u) +max(v) + 2c0 for u, v ∈ H such that u(s) = v(s) = 0. □

Lemma 13. Assume that Assumption 1 holds and that c0 ≥ sp (h∗). Then, with probability 1− 4δ, for
all k ≤ K(T ), (1) gk ≥ g∗ and (2) h∗ ∈ Htk and (3) for all (s, a), ( p̂tk (s, a) − p(s, a))h∗ ≤ βtk (s, a).
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Proof. Let E1 the event (∀k ≤ K(T ),M ∈ Mtk ). Let E2 the event stating that, for all T ′ ≤ T ,

NT ′ (s↔ s′)
∣∣∣h∗(s) − h∗(s′) − cT ′ (s, s′)

∣∣∣ ≤ 3sp (h∗) + (1 + sp (h∗))
√

8T log( 2
δ
) + 2

∑T ′−1

t=0
(g∗ − Rt),

and let E3 the event stating that, for all T ′ ≤ T and for all (s, a) ∈ X, we have:

( p̂T ′ (s, a) − p(s, a)) h∗ ≤

√
2V(p̂T ′ (s,a),h∗) log( S AT

δ )
NT ′ (s,a) +

3sp(h∗) log( S AT
δ )

NT ′ (s,a) .

By Assumption 1, we have P(E1) ≥ 1 − δ. By Lemma 3, we have P(E2) ≥ 1 − 2δ and by Lemma 36,
we have P(E3) ≥ 1 − δ, so P(E1 ∩ E2 ∩ E3) ≥ 1 − 4δ. We prove by induction on k ≤ K(T ) that, on
E1 ∩ E2 ∩ E3, (1) gk ≥ g∗, (2) h∗ ∈ Htk (3) and for all (s, a), ( p̂tk (s, a) − p(s, a))h∗ ≤ βtk (s, a), where
gk is the optimistic gain of the policy deployed at episode k.

It is obvious for k = 0. Indeed, N0(s↔ s′) = 0 for all s, s′ hence c0(s, s′) = c0 ≥ sp (h∗). Therefore,

H0 ⊇
{
h ∈ RS : sp (h) ≤ c0

}
⊇

{
h ∈ RS : sp (h) ≤ sp (h∗)

}
so contains h∗, proving (2). Moreover, since N0(s, a) = 0, we have β0(s, a) = +∞, proving (3). Finally,
since M ∈ M0 on E1, by the statement (2) of Proposition 2, we have gk ≥ g∗, hence proving (1).

Now assume that k ≥ 1. By induction gℓ ≥ g∗ for all ℓ < k, so on E2 we have:

Ntk (s↔ s′)
∣∣∣h∗(s) − h∗(s′) − ctk (s, s′)

∣∣∣ ≤ 3sp (h∗)+(1+sp (h∗))
√

8T log( 2
δ
)+2

∑k−1

ℓ=1

∑tℓ+1−1

t=tℓ
(gℓ−Rt).

By design ofHtk (see Algorithm 3), we deduce that (2) h∗ ∈ Htk . Denote h0 ∈ Htk the reference point
used by Algorithm 5. We have, for all (s, a) ∈ X, on E1 ∩ E2 ∩ E3, we have:

(
p̂tk (s, a) − p(s, a)

)
h∗ ≤

√
2V(p̂tk (s,a),h∗) log( S AT

δ )
Ntk (s,a) +

3sp(h∗) log( S AT
δ )

Ntk (s,a)

(h∗ ∈ Htk + Lemma 12) ≤

√
2(V( p̂tk (s,a),h0) log( S AT

δ )+8c0
∑

s′∈S p̂tk (s′ |s,a) error(ctk ,s
′,s)) log( S AT

δ )
Ntk (s,a) +

3c0 log( S AT
δ )

Ntk (s,a)

=: βtk (s, a)

by construction of Algorithm 5. Accordingly, (3) is satisfied. Finally, M ∈ Mtk on E1 so by
Proposition 2, we have (1) gk ≥ g∗. □

Corollary 14. Assume that, for all q ∈ {r, p} and (s, a) ∈ X, we choose Qt(s, a) among (C1-4). Then,
with probability 1 − 4δ, for all k ∈ K(T ), we have gk ≥ g∗ and (2) h∗ ∈ Htk and (3) for all (s, a),
( p̂tk (s, a) − p(s, a))h∗ ≤ βtk (s, a).

Proof. By Lemma 11, Assumption 1 is satisfied. Apply Lemma 13. □

A.2.3 Sub-Weissman reward confidence region and Assumption 2

Although the kernel confidence region can even chosen to be trivial with (C4), in order to work,
PMEVI-DT needs the reward confidence region to be sub-Weissman in the following sense:

Assumption 2. There exists a constant C > 0 such that for all (s, a) ∈ S, for all t ≤ T , we have:

Rt(s, a) ⊆
{
r̃(s, a) ∈ R(s, a) : Nt(s, a) ∥r̂t(s, a) − r̃(s, a)∥21 ≤ C log

(
2S A(1+Nt(s,a))

δ

)}
.

This is indeed the case if Rt(s, a) is chosen among (C1-3).

A.3 Convergence of EVI and Assumption 3

We start with a preliminary lemma on the speed of convergence of EVI. The Lemma 15 is thought to
be applied to extended MDPs. Below, when we claim that the action space is compact, we further
claim that a ∈ A(s) 7→ p(s, a) is a continuous map, so that the Bellman operator is continuous and
that g∗ and h∗ are well-defined, see Puterman [1994].

16



Lemma 15. Let M a weakly-communicating MDP with finite state space RS and compact action
space, and let L its Bellman operator. Assume that there exists γ > 0 such that, ∀u ∈ RS,

∀s ∈ S,∃a ∈ A(s), Lu(s) = r(s, a) + p(s, a)u = r(s, a) + γmax(u) + (1 − γ)qu
su (∗)

with qu
s ∈ P(S). Then, for all u ∈ RS and all ϵ > 0, if sp

(
Ln+1u − Lnu

)
≥ ϵ, then:

n ≤ 2 +
4sp (w0)
γϵ

+
2
γ

log
(

2sp (w0)
ϵ

)
.

Proof. Since M is weakly communicating, has finitely many states and compact action space, it has
well-defined gain g∗ and bias h∗ functions. Denote un+1 := Lnu.

wn := max
π∈Π
{rπ + Pπun−1} − ng∗ − h∗

= max
π∈Π
{rπ − g∗ + (Pπ − I)h∗ + Pπ (un−1 − h∗ − (n − 1)g∗)} =: max

π∈Π

{
r′π + Pπwn−1

}
.

Observe that the policy achieving the maximum is the one achieving un = rπ + Pπun−1. Remark
that r′π(s) = −∆∗(s, π(s)) ≤ 0 is the Bellman gap of the pair (s, π(s)), that we more simply write ∆π.
For all n, there exists πn ∈ Π such that wn+1 = −∆πn + Pπn wn. Moreover, by assumption, we have
Pπn = γ · e

⊤
sn

e + (1 − γ)Qn where Qn is a stochastic matrix. Moreover,(
min(−∆πn ) + γwn(sn)

)
e + (1 − γ)Qnwn ≤ wn+1 ≤

(
max(−∆πn ) + γwn(sn)

)
e + (1 − γ)Qnwn.

Hence, sp (wn+1) ≤ (1 − γ)sp (wn) + sp
(
∆πn

)
. In addition, wn = Lnu − Lnh∗, so by non-expansiveness

of L in span semi-norm, sp (wn+1) ≤ sp (wn). Overall,

sp (wn+1) ≤ min
(
(1 − γ)sp (wn) + sp

(
∆πn

)
, sp (wn)

)
. (15)

Fix ϵ > 0, and let nϵ := inf
{
n : sp (wn) < ϵ

}
.

Let π∗ an optimal policy. We have wn+1 ≥ Pπ∗wn so by induction, wn+1 ≥ Pn+1
π∗ w0 ≥ min(w0)e.

Meanwhile, we see that ∥wn∥1 ≥
∑n−1

k=0

∥∥∥∆πk

∥∥∥
1 + S min(w0), so

∑n−1
k=0

∥∥∥∆πk

∥∥∥
1 ≤ sp (w0). Since ∆πk ≤ 0

for all k, we have sp
(
∆πk

)
≤

∥∥∥∆πk

∥∥∥
1 so

∑n−1
k=0 sp

(
∆πk

)
≤ sp (w0).

By (15), either sp (wn+1) ≤ (1 − 1
2γ) max(ϵ, sp (wn)) or sp

(
∆πn

)
≥ 1

2γϵ, but because
∑+∞

k=0 sp
(
∆πk

)
≤

sp (w0), the second case can happen at most 2sp(w0)
γϵ

times. We deduce that, for all n ≤ nϵ ,

sp (wn+1) ≤
(
1 − 1

2γ
)n− 2sp(w0)

γϵ sp (w0).

In particular, for n = nϵ − 1, we get:

ϵ ≤
(
1 − 1

2γ
)nϵ−2− 2sp(w0)

γϵ sp (w0).

We obtain:

nϵ ≤ 2 +
2sp (w0)
γϵ

+
2
γ

log
(

sp (w0)
ϵ

)
.

To conclude, check that sp
(
Ln+1u − Lnu

)
= sp (wn+1 − wn) ≤ 2sp (wn). □

Before moving to the application of interest, remark that this result can be greatly improved if the
supremum sup {∆∗(s, a) : ∆∗(s, a) < 0} is not zero, to change the dominant term 4sp(w0)

γϵ
for a constant

independent of ϵ.
Corollary 16. Assume that theMt has non-empty interior, and that its Bellman operator satisfies the
requirement of Lemma 15, i.e., there exists γ > 0 such that, ∀u ∈ RS,∀s ∈ S,∃a ∈ A(s),∃r̃t(s, a) ∈
Rt(s, a),∃p̃t(s, a) ∈ Pt(s, a):

Ltu(s) = r̃t(s, a) + p̃t(s, a)u = r̃t(s, a) + γmax(u) + (1 − γ)qu
su

for some qu
s ∈ P(S). Then Assumption 3 is satisfied, and span fix-points h̃t of Lt are such that

g∗(Mt) = Lth̃t − h̃t.
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Proof. IfMt is has non-empty interior, it means that for all (s, a), Pt(s, a) has non-empty interior.
Therefore, for all state-action pair, there exists p̃t(s, a) ∈ Pt(s, a) that is fully supported. It follows that
Mt is communicating, and it follows from standard results Puterman [1994] that its span fix-points h̃
do exist and that g̃t := Lh̃t − h̃t ∈ Re does not depend on the initial state.

Moreover, if M̃ ∈ Mt and π ∈ Π with g̃π ≡ g(π,Mt) ∈ Re, letting r̃π := rπ(M̃) and P̃π := Pπ(M̃), we
have:

r̃π + p̃πh̃t ≤ Lth̃t ≤ g̃te + h̃t.

So by induction and since Lt is obviously monotone and linear, we show that:
n∑

k=0

P̃k
πr̃π ≤ ng̃te + (I − P̃n

π)h̃π.

Dividing by n and letting it go to infinity, we obtain g(π,Mt) ≤ g̃t. Observe that we have equility by
taking the policy achieving (g̃t, h̃t).

To see that EVI converges indeed, simply observe that Lemma 15 provides a finite bound on how
much time is required until the sp

(
Ln+1

t u − Ln
t u

)
≤ ϵ. Hence sp

(
Ln+1

t u − Ln
t u

)
vanishes to 0. □

About Assumption 3. The assumptions made by Corollary 16 are met if the kernel confidence
regions are:

• Built out of Weissman’s inequality (C1) (see the next section, also Auer et al. [2009]);
• Built out of Bernstein’s inequality (C2) (because the maximization algorithm to compute

p̃t(s, a)ui in EVI has the same greedy properties than with Weissman’s inequality);
• Trivial (C4).

For confidence regions build with empirical likelihood estimates (C3), there is no guarantee of
convergence (although we conjecture that one could be established), although the gain is still well-
defined becauseMt remains communicating. However, just like the original work of Filippi et al.
[2010], the convergence is always met numerically.

A.4 Proof of Theorem 5: Complexity of PMEVI with Weissman confidence regions

In this section, we show that when one is using Weissman confidence regions for kernels (C1), then
the iterates of Lt converge to an ϵ span-fix-point quickly.
Proposition 17. Assume that PMEVI-DT uses kernel confidence regions of Weissman type (C1)
satisfying Assumption 1. Then with probability 1 − δ, the number of iterations of PMEVI (see
Algorithm 2) is O

(
D
√

S AT
)
, hence the algorithm has polynomial per-step amortized complexity.

Proof. With Weissman type confidence regions for kernels, for all t ≤ T and (s, a) ∈ X, we have

Pt(s, a) ⊇

p̃(s, a) ∈ P(s, a) : ∥p̃(s, a) − p̂t(s, a)∥1 ≤

√
S log(2S AT )

T


It follows that, for all t ≤ T , the extended Bellman operator Lt satisfies the prerequisite (∗) of
Lemma 15 with

γ =
1
2

√
S log(2S AT/δ)

T
= Ω


√

S log(T/δ)
T

 .
Under Assumption 1, we have M ∈ Mt with probability 1 − δ. Under this event, Mt is weakly
communicating and sp (h∗(Mt)) ≤ D(M), we can apply Lemma 15 and conclude that every calls to
PMEVI (Algorithm 2) takes

O

 sp (w0)
√

T

ϵ

√
S log(T/δ)

T

 = O
 DT
√

S log(T )


where we use that ϵ =

√
log(S AT/δ)

T , that sp (w0) = O
(
sp (h∗(Mt))

)
= O(D(M)) and that δ ≥ 1

T . Since
the number of episodes under the doubling trick (DT) is O(S A log(T )), we conclude accordingly. □
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Every call to the projection operator solves a linear program. Although in theory, this time is
polynomial (relying on recent work on the complexity of LP such as Cohen et al. [2020], it is the
current matrix multiplication time O(S 2.38)), in practice, reducing the number of calls to the projection
operator is key to run PMEVI-DT in reasonable time.
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B Analysis of the projected mitigated Bellman operator

In this section, we fix the model regionM, the bias regionH and the mitigation vector β, dropping
the sub-script t for conciseness. We denote r̂, p̂ the respective empirical reward and kernel. Further
assume that H = H0 + Re with H0 a compact convex set. The associated projection operation
(see Appendix B.2) is denoted Γ. The (vanilla) extended Bellman operator L associated toM is
given byLu(s) := maxa∈A(s)

{
supR(s, a) + supP(s, a)u

}
. The β-mitigated extended Bellman operator

associated toM is:

Lβu(s) := max
a∈A(s)

sup
r̃(s,a)∈R(s,a)

sup
p̃(s,a)∈P(s,a)

{
r̃(s, a) +min { p̃(s, a)ui, p̂(s, a)ui + β(s, a)}

}
. (16)

The function Greedy(M, u, β) returns a stationary deterministic policy that picks its actions among
the one reaching the maximum above. The projection of Lβ toH is

L ≡ Lβ,H := Γ ◦ Lβ. (17)

The goal of this section is to establish Proposition 2 and

• Proposition 2 statement (1) is a consequence of Lemma 22;
• Proposition 2 statement (2) follows from Theorem 25;
• Proposition 2 statement (3) follows from Corollary 27;
• Proposition 2 statement (4) follows from Corollary 21;
• Proposition 2 prerequisites on the projection operator and Lemma 4 follows from Lemma 19.

B.1 Finding an optimistic policy under bias constraints

The main goal is to find and optimistic policy under bias constraints (projection) and bias error
constraints (mitigation). The bias constraints imply that we search for a policy π together with a
model M̃ such that hπ(M̃) ∈ H . The bias error means that, for h̃ ≡ hπ(M̃), we want in addition
p̃(s, π(s))h̃ ≤ p̂(s, π(s))h̃ + β(s, π(s)) where p̃ is the transition kernel of M̃. In the end, our goal is to
track the solution of the following optimization problem:

g∗(H , β,M) := sup

gπ(M̃) :
π ∈ Π, M̃ ∈ M,

∀s ∈ S, p̃(s, π(s))h̃ ≤ p̂(s, π(s))h̃ + β(s, π(s)),
h̃ ≡ hπ(M̃) ∈ H , sp(gπ(M̃)) = 0

 (18)

where the supremum is taken with respect to the product order RS. In particular, ifU ⊆ RS, check
that u∗ = supU is obtained as u∗(s) := sup {v(s) : v ∈ U}. The constraint sp(gπ(M̃)) = 0 is suggested
by the work of Fruit et al. [2018], Fruit [2019] and is key for the problem to be solvable.

The bias constraint and the constraint involving β make the problem impossible to handle with a
“pure” extended MDP solution, which is why the extended Bellman operators are mitigated (with
β) then projected (with Γ). The mitigation operation guarantees that the constraint involving β is
satisfied, while the projection onH makes sure that the bias constraint is satisfied. It is important for
both operations to be compatible, i.e., that the constraint involving β that Lβ forces is not lost when
applying Γ. As a matter of fact, projecting then mitigating would not work.

We now explain why L can be used to solve (18).

B.2 Projection operation and definition of L

We start by discussing why L is well-defined at all. The well-definition of Lβ is obvious. The point is
to explain why the projection ontoH is possible while preserving mandatory structural properties
such as monotony, non-expansivity, linearity and more. For generalH , such properties are impossible
to meet. But the bias confidence region constructed with Algorithm 3 has a specific shape that makes
the projection possible. The central property is the one below:

(A1) The downward closure {v ≤ u : v ∈ H} of every u ∈ RS has a maximum inH .

The only order that we will be considering is the product order on RS. Recall that a set U ⊆ RS
has a maximum if there exists u ∈ U such that v ≤ u for all u ∈ U. A supremum of U is a
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minimal upper-bound ofU, i.e., u such that (1) v ≤ u for all v ∈ U and (2) no w satisfying (1) can
be smaller than u. For the product order, the supremum of a subset U is unique and of the form
u(s) = sup {v(s) : v ∈ U}.

Define the projection Γ : RS → H as such:

Γu := max {v ≤ u : v ∈ H} . (19)

In general, Assumption (A1) is satisfied when H admits a join, i.e., is stable by finite supremum:
u, v ∈ H ⇒ sup(u, v) ∈ H .
Lemma 18. IfH is generated by constraints of the form h(s) − h(s′) − c(s, s′) ≤ d(s, s′), then it has
a join and (A1) is satisfied. Moreover, Γ is then correctly computed with Algorithm 4.

Proof. The first half of the result is well-known, see Zhang and Xie [2023], but we recall a proof
for self-containedness. Let v1, v2 ∈ H and define v3 := sup(v1, v2). Observe that v3(s) − v3(s′) ≤
max(v1(s) − v1(s′), v2(s) − v2(s′)) ≤ c(s, s′) + d(s, s′). So v3 ∈ H .

We continue by showing that ifH has a join, then (19) is well-defined. For s ∈ S, take a sequence
vs

n such that vs
n(s) → α(s) := sup {v(s) : v ≤ u, v ∈ H}. Because the span of every element of H

is upper-bounded by c := sup
{
sp (v) : v ∈ H

}
, it follows that vs

n evolves in the compact region
{v ≤ u : v ∈ H} ∩ {v : ∥v − αse∥∞ = 1 + c}. We can therefore extract a convergent sequence of vs

n,
converging vs

∗ that belongs toH since the latter is closed. By construction, vs
∗(s) = α(s). BecauseH

has a join, v∗ := sup
{
vs
∗ : s ∈ S

}
∈ H . □

Lemma 19. Under assumption (A1), the operator Γu := max {v ≤ u : v ∈ H} is well-defined, and is:

(1) monotone: u ≤ v⇒ Γu ≤ Γv;
(2) non span-expansive: sp (Γu − Γv) ≤ sp (u − v);
(3) linear: Γ(u + λe) = Γu + λe;
(4) Γu ≤ u.

Proof. The well-definition of Γ is obvious from (A1). For (2), if u ≤ v then w ≤ u ⇒ w ≤ v.
Hence Γu := max {w ≤ u : w ∈ H} ≤ max {w ≤ v : w ∈ H} =: Γv. For (3), check that it follows from
H = H + Re. For (4), we obviously have Γu := max {v ≤ u : v ∈ H} ≤ u.

The more difficult point is (2) span non-expansivity. Pick u, v ∈ RS. By linearity, it suffices to show
the result for

∑
s u(s) =

∑
s v(s). In that case, we have sp (v − u) = max(v − u) +max(u − v). Observe

that for all w ≤ u, we have w +min(v − u)e ≤ v. SinceH = H + Re, it follows that:

max {w ≤ u : u ∈ H} ≤ max {w ≤ v : w ∈ H} +max(u − v)e.

Similarly, we have max {w ≤ u : w ∈ H} ≥ max {w ≤ v : w ∈ H} +min(v − u)e. Using them both at
once, we find sp (Γu − Γv) ≤ sp (v − u). □

The properties (1), (3) and (4) are essential for L to properly address the optimization problem (18).
The property (2) is just as important, because it plays a central part in the convergence of value
iteration. The next result shows similar properties for the β-mitigated extended Bellman operator
Lβ. From now on, we will assume (A1), because it is almost-surely satisfied by the bias confidence
region generated by Algorithm 3.
Lemma 20. The β-mitigated extended Bellman operator Lβ is (1) monotone, (2) non-span-expansive
and (3) linear.

Proof. The properties (1) and (3) directly follow from the definition. We focus on (2). Fix u, u′ ∈ RS.
By Lemma 26, we can write Lβu = r̃π + P̃πu and Lβu′ = r̃π′ + P̃π′u′. In the following, we write
βπ(s) := β(s, π(s)). Check that:

Lβu − Lβu′ = r̃π + P̃πu −
(
r̃π′ + P̃π′u′

)
≤ r̃π + P̃πu −

(
r̃π +min

{
P̃πu′, P̂πu′ + βπ

})
.

If the minimum is reached with P̃πu′, then:

Lβu − Lβu′ ≤ P̃π(u − u′).
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If the minimum is reached with P̂πu′ + βπ, then upper-bound P̃πu by P̂πu + βπ to obtain:

Lβu − Lβu′ ≤ P̂π(u − u′).

Overall, we find that there exists Qπ ∈ Pπ such that Lβu − Lβu′ ≤ Qπ(u − u′). Similarly, we find
Qπ′ ∈ Pπ′ such that Lβu − Lβu′ ≥ Qπ′ (u − u′). We conclude that:

sp
(
Lβu − Lβu′

)
≤ sp

(
(Qπ − Qπ′ )(u − u′)

)
≤ sp

(
u − u′

)
.

This concludes the proof. □

By composition, we obtain the following result.
Corollary 21. L is (1) monotone, (2) non-span-expansive and (3) linear. Moreover, sp (Lu − Lv) ≤
sp (Lu − Lv) for all u, v ∈ RS.

B.3 Fix-points of L and (weak) optimism

Lemma 22. L has a fix-point in span semi-norm, i.e., ∃u ∈ H , sp (Lu − u) = 0.

Proof. The idea is to apply Brouwer’s fix-point theorem in RS quotiented by the equivalence relation
u ∼ v⇔ sp (u − v) = 0, where sp (−) becomes a norm. By linearity (Corollary 21), L is well-defined
in this quotient space, and if L is shown continuous on RS, so will it be on the quotient.

We show that L is sequentially continuous on H . Consider a sequence un ∈ H
N converging to

u ∈ H and fix ϵ > 0. Provided that n > Nϵ for Nϵ large enough, we have ∥un − u∥∞ < ϵ, i.e.,
un − ϵe ≤ un ≤ u + ϵe. Therefore, in the one hand, for all v ≤ un, we have v − ϵe ≤ u so
max {v ≤ un : v ∈ H} ≤ max {v ≤ u : v ∈ H} + ϵe; And on the other hand, for all v ≤ u, v + ϵe ≤ un
so max {v ≤ u : v ∈ H} ≤ max {v ≤ un : v ∈ H} + ϵe. Hence:

∥max {v ≤ u : v ∈ H} −max {v ≤ un : v ∈ H}∥ ≤ ϵ.

It shows that Γ is continuous. The operator Lβ is obviously continuous as well, so L = Γ ◦ Lβ is
continuous by composition. SinceH = H0 + Re withH0 compact and ocnvex, the quotientH/∼ is
compact and convex, and is preserved by L/∼. By Brouwer’s fix-point theorem, L/∼ has a fix-point
inH/∼. So L has a span fix-point inH . □

We write Fix(L) the span fix-points of L.
Lemma 23. L has well-defined growth. Specifically, if Lu = u + ge, then:

(1) There exists c > 0, s.t., for all v ∈ H0, (ng − c)e + u ≤ Lnv ≤ (ng + c)e + u;
(2) If u′ ∈ Fix(L), then Lu′ − u′ = ge.

Proof. Setting c := maxv∈H0 ∥v − u∥∞ < ∞, one can check that u−ce ≤ v ≤ u+ce for all v ∈ H0. this
proves (1) for n = 0 and we then proceed by induction on n ≥ 0. By induction, Lnv ≤ u + (ng + c)e
and by Corollary 21, L is monotone, so we have:

L
n+1v ≤ LLnv ≤ L(u + (ng + c)e) = u + ((n + 1)g + c)e

where the last inequality use the linearity of L together with Lu = u + ge. The lower bound of Lnv is
shown similarly, establishing (1).

For (2), pick u′ ∈ Fix(L) with Lu′ = u′ + g′e. Up to translating u′, we can assume that u′ ∈ H0 and
apply (1). We get:

(ng − c)e + u ≤ ng′e + u′ ≤ (ng + c)e + u.
Divided by n and let it go to infinity. We conclude that g = g′. □

We finally have everything in hand to claim that L solves (18).
Corollary 24. The growth of L given by g = Lu − u for u ∈ Fix(L) is well-defined, and:

∀u ∈ H , ge = lim inf
n→∞

Lnu
n
= lim sup

n→∞

Lnu
n
.

Moreover, g ≥ g∗(H , β,M).
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Proof. The growth property is a direct consequence of Lemma 23. We show g ≥ g∗(H , β,M) which
is defined in (18). Pick π ∈ Π, M̃ ∈ M its model with h̃ ≡ h(π, M̃) and P̃πh̃ ≤ P̂πh̃ + βπ where
βπ(s) := β(s, π(s)). Up to translation, we can assume that h̃ ∈ H0.

We have g(π, M̃) = g̃e for g̃ ∈ R, so

h̃ + g̃e = r̃π + P̃πh̃ ≤ Lh̃

by definition. By monotony of L, see Corollary 21, ng̃e + h̃ ≤ Lnh̃ follows by induction on n ≥ 0. By
Lemma 23, we further have Lnh̃ ≤ n(g + c)e + u where u ∈ Fix(L). In tandem,

g̃e ≤ ge +
ce + u − h̃

n
.

Letting n→ ∞, we deduce that g̃ ≤ g. Conclude by taking the best π and M̃. □

The next theorem follows directly with the same proof technique, and guarantees optimism.
Theorem 25. Assume that g∗ + h∗ ≤ Lh∗. Then g ≥ g∗.

The condition “g∗ + h∗ ≤ Lh∗” can be referred to as a weak form of optimism. We qualify this version
of optimism as weak because it is much weaker than optimism property suggested by Fruit [2019]
L ≥ L where L is the Bellman operator of the true MDP. Here, we only ask for Lh∗ ≥ Lh∗, i.e.,
optimism at a span fix-point of L. This condition is met as soon as M ∈ M, h∗ ∈ H and β large
enough.

B.4 Modelization of the projected mitigated Bellman operator L

The aim of this paragraph is to establish Corollary 27, stating that Lu can be viewed as a policy
produced by Greedy(M, u, β).
Lemma 26 (Modelization). For π ∈ Π, denote βπ(s) := β(s, π(s)), Rπ :=

∏
s R(s, π(s)) and Pπ :=∏

s P(s, π(s)). Fix u ∈ RS and let π := Greedy(M, u, β).

(1) If P is convex, then there exists (r̃π, P̃π) ∈ Rπ × Pπ such that Lβu = r̃π + P̃πu.

(2) Assume that Lβu = r̃π + P̃πu. There exists r′π ≤ r̃π such that Lu = r′π + P̃πu.

The convexity requirement of (1) is always true if the kernel confidence region is chosen via (C1-4).

Proof. For (1), fix a state s ∈ S, let a := π(s) and ρ := min(supP(s, a)u, p̂(s, a)u + β(s, a)). If
ρ = supP(s, a)u, then there is nothing to say because P is compact, hence the sup is a max and ρ is
of the form p̃(s, a)u. Otherwise, let p̃(s, a)u > p̂(s, a)u + β(s, a) with p̃(s, a) ∈ P(s, a). Introduce, for
λ ∈ [0, 1],

p̃λ(s, a) := λp̃(s, a) + (1 − λ)p̂(s, a).
By continuity, there exists λ ∈ (0, 1) such that p̃λ(s, a)u = p̂(s, a)u + β(s, a) and by convexity of
P(s, a), p̃λ(s, a) ∈ P(s, a). This proves (1).

For (2), recall that Lu = ΓLβu = Γ(r̃π + P̃πu). Since Γv ≤ v, for v ∈ RS, we have:

Γ(r̃π + P̃πu) ≤ r̃π + P̃πu.

Set r′π := Γ(r̃π + P̃πu) − P̃πu. Check that r′π satisfies r′π ≤ r̃π and Lu = r′π + P̃πu. □

The last corollary bellow is crucial to claim that greedy policies are good choices in PMEVI-DT.
Corollary 27 (Greedy modelization). Let u ∈ RS and fix π := Greedy(M, u, β). If P is convex, then
with the notations of Lemma 26, there exists r̃π ≤ supRπ and P̃π ∈ Pπ such that Lu = r̃π + P̃πu.
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C Proof of Theorem 5: Regret analysis of PMEVI-DT

Notations. At episode k, the played policy is denoted πk. As a greedy response to hk, by Proposi-
tion 2 (3), there exists r̃k(s) ≤ supRtk (s, πk(s)) and P̃k(s) ∈ Ptk (s, π(x)) such that hk + gk = r̃k + P̃khk.
The reward-kernel pair M̃k = (r̃k, P̃k) is referred to as the optimistic model of πk. We write
Pk := Pπk (M) the true kernel and P̂k := Pπk (M̂tk ) the empirical kernel. Likewise, we define the
reward functions rk and r̂k. The optimistic gain and bias satisfy gk = g(πk, M̃k) and hk = h(πk, M̃k).
We further denote c0 = T

1
5 .

Important remark. To slightely simplify the analysis, we assume that PMEVI is run with perfect
precision ϵ = 0, i.e., that hk = PMEVI(Mtk , βtk , Γtk , 0) hence is a span fix-point of Ltk . This assumption
is mild and can be dropped by adding an extra error term that has to be carried out in the calculations.

C.1 Number of episodes under doubling trick (DT)

Lemma 28 (Number of episodes, Auer et al. [2009]). The number of episodes up to time T ≥ S A is
upper-bounded by:

K(T ) ≤ S A log2

(
8T
S A

)
.

C.2 Sum of bias variances

The Lemma 29 below shows that
∑T−1

t=0 V(p(Xt), h∗) scales as T sp (h∗)sp (r) + sp (h∗) Reg(T ) in
probability.
Lemma 29. With probability at least 1 − δ, we have:∑T−1

t=0
V(p(Xt), h∗) ≤ 2sp (h∗)sp (r)T + sp (h∗)2

√
1
2 T log

(
1
δ

)
+ 2sp (h∗)

∑T−1

t=0
∆∗(Xt) + sp (h∗)2.

Proof. Using the Bellman equation h∗(s) + g∗(s) = r(s, a) + p(s, a)h∗ + ∆∗(s, a), we have:

V(p(Xt), h∗) =
(
p(Xt) − eS t

)
h∗2 + 2h∗(S t)(∆∗(Xt) + r(Xt) − g∗(S t)).

Since sp
(
h∗2

)
≤ sp (h∗)2, we get:∑T−1

t=0
V(p(Xt), h∗) ≤

∑T−1

t=0

(
p(Xt) − eS t

)
h∗2 + 2sp (h∗)

(
sp (r)T +

∑T−1

t=0
∆∗(Xt)

)
=

∑T−1

t=0

(
p(Xt) − eS t+1

)
h∗2 + 2sp (h∗)

(
1
2 sp (h∗)sp (r)T +

∑T−1

t=0
∆∗(Xt)

)
(Lemma 32) ≤ 2sp (h∗)sp (r)T + sp (h∗)2

√
1
2 T log

(
1
δ

)
+ 2sp (h∗)

∑T−1

t=0
∆∗(Xt) + sp (h∗)2

where the last inequality holds with probability 1 − δ. This concludes the proof. □

C.3 Regret and pseudo-regret: A tight relation

In this paragraph, we bound the regret with respect to the pseudo-regret (and conversely) up to a
factor of order (sp (h∗)sp (r) log( T

δ
))1/2. Hence, in proofs, the pseudo-regret can be changed to the

regret with ease.
Lemma 30. With probability 1 − 4δ, the regret and the pseudo-regret and linked as follows:∣∣∣∣∣∣∣

T−1∑
t=0

(g∗ − Rt) −
T−1∑
t=0

∆∗(Xt)

∣∣∣∣∣∣∣ ≤
2

√(
2sp (h∗)sp (r) + 1

8

)
T log

(
T
δ

)
+

√
2sp (h∗) log

(
T
δ

)∑T−1
t=0 ∆

∗(Xt)

+sp (h∗)
(

1
2 T

) 1
4 log

3
4

(
T
δ

)
+ 4sp (h∗) log

(
T
δ

)
+ 2sp (h∗)

 .
Proof. We rely again on the Poisson equation g∗(S t) − r(Xt) − ∆∗(Xt) = (p(Xt) − eS t )h

∗, so:

A :=
∣∣∣∣∣∑T−1

t=0
(g∗ − Rt − ∆

∗(Xt))
∣∣∣∣∣ ≤ ∣∣∣∣∣∑T−1

t=0

(
p(Xt) − eS t

)
h∗

∣∣∣∣∣ + ∣∣∣∣∣∑T−1

t=0
(Rt − r(Xt))

∣∣∣∣∣
≤ sp (h∗) +

∣∣∣∣∣∑T−1

t=0

(
p(Xt) − eS t+1

)
h∗

∣∣∣∣∣ + ∣∣∣∣∣∑T−1

t=0
(Rt − r(Xt))

∣∣∣∣∣ .
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Up to the constant sp (h∗), the two error terms are respectively a navigation and a reward error. The
second is bounded using Azuma’s inequality (Lemma 32), showing that with probability 1 − 2δ, we
have: ∣∣∣∣∣∑T−1

t=0
(Rt − r(Xt))

∣∣∣∣∣ ≤ √
1
2 T log

(
1
δ

)
.

We continue by using Freedman’s inequality, instantiated in the form of Lemma 33. With probability
1 − δ, we have:∣∣∣∣∣∑T−1

t=0

(
p(Xt) − eS t+1

)
h∗

∣∣∣∣∣ ≤
√

2
∑T−1

t=0
V(p(Xt), h∗) log

(
T
δ

)
+ 4sp (h∗) log

(
T
δ

)
.

The quantity
∑T−1

t=0 V(p(Xt), h∗) is a classical one that appears at several places throughout the analysis.
Using Lemma 29, we bount it explicitely. Further simplifying the bound with

√
a + b ≤

√
a +
√

b,
we get that with probability 1 − 4δ, we have:

A ≤


√

2sp (h∗)sp (r)T log
(

T
δ

)
+

√
1
2 T log

(
1
δ

)
+

√
2sp (h∗) log

(
T
δ

)∑T−1
t=0 ∆

∗(Xt)

+sp (h∗)
(

1
2 T

) 1
4 log

3
4

(
T
δ

)
+ 4sp (h∗) log

(
T
δ

)
+ 2sp (h∗)

 .
Bound log( 1

δ
) by log( T

δ
) and use

√
a +
√

b ≤ 2
√

a + b to merge the terms in
√

T log( T
δ

) under a
single square-root. □

Overall, Lemma 30 states that the regret
∑T−1

t=0 (g∗ − Rt) and the pseudo-regret
∑T−1

t=0 ∆
∗(Xt) differ by

about (sp (h∗)T log( T
δ

))1/2 in probability (up to asymptotically negligible additional terms). In general,
the precise form of Lemma 30 is not convenient to use because it is of form form x ≤ y + α

√
y + β

that is not linear in y. Corollary 31 factorizes the result into one which will be more convenient in
proofs.

Corollary 31. Denote x :=
∑T−1

t=0 (g∗ − Rt) and y :=
∑T−1

t=0 ∆
∗(Xt). Further introduce:

α :=
√

2sp (h∗) log
(

T
δ

)
β := 2

√(
2sp (h∗)sp (r) + 1

2

)
T log

(
T
δ

)
+ sp (h∗)

(
1
2 T

) 1
4 log

3
4

(
T
δ

)
+ 2sp (h∗)

(
2 log

(
T
δ

)
+ 1

)
.

Then, with probability 1 − 4δ, we have
√

x ≤
√

y + 1
2α +

√
β and

√
y ≤
√

x + α +
√
β.

Proof. This is straight forward algebra from the result of Lemma 30. □

C.4 Proof of Lemma 6, reward optimism

We start by getting rid of the reward noise. We have:

Reg(T ) :=
∑T−1

t=0
(g∗ − Rt) =

∑T−1

t=0
(g∗ − r(Xt)) +

∑T−1

t=0
(r(Xt) − Rt)

≤
∑T−1

t=0
(g∗ − r(Xt)) +

√
1
2 T log

(
1
δ

)
with probability 1 − δ by Azuma’s inequality (Lemma 32). We are left with

∑T−1
t=0 (g∗ − r(Xt)). We

continue by splitting the regret episodically and invoking optimism. By Lemma 13, with probability
1 − 4δ, we have

∑T−1
t=0 (g∗ − r(Xt)) ≤

∑
k
∑tk+1−1

t=tk (gk − r(Xt)). Introduce

B0(T ) :=
∑

k

tk+1−1∑
t=tk

(gk − r(Xt)). (20)

We focus on bounding B0(T ). By Assumption 2, r̃k(s, a) is of the form r̂k(s, a) +√
C log(2S AT/δ)/Ntk (s, a) − ηk(s, a) with ηk(s, a) ∈ R. By the statement (3) of Proposition 2,
ηk(s, a) ≥ 0. Therefore,

B0(T ) =
∑

k

tk+1−1∑
t=tk

(gk − r̃k(Xt)) +
∑

k

tk+1−1∑
t=tk

(r̃k(Xt) − r(Xt))

25



≤
∑

k

tk+1−1∑
t=tk

(gk − r̃k(Xt)) + S A +
∑

k

tk+1−1∑
t=tk

1
(
Ntk (Xt) ≥ 1

) r̂k(Xt) − r(Xt) +

√√
C log

(
2S AT
δ

)
Ntk (Xt)


(∗)
≤

∑
k

tk+1−1∑
t=tk

(gk − r̃k(Xt)) + S A +
∑

k

tk+1−1∑
t=tk

1
(
Ntk (Xt) ≥ 1

) 
√√

2 log
(

2S AT
δ

)
Ntk (s, a)

+

√√
C log

(
2S AT
δ

)
Ntk (s, a)


where (∗) holds with probability 1 − δ following Lemma 35. By the doubling trick rule (DT), we
have Nt(Xt) ≤ 2Ntk (Xt) for t < tk+1, so, with probability 1 − δ,

B0(T ) ≤
∑

k

tk+1−1∑
t=tk

(gk − r̃k(Xt)) + S A + 2
∑

k

tk+1−1∑
t=tk

1
(
Ntk (Xt) ≥ 1

) √√
(2 +C) log

(
2S AT
δ

)
Ntk (s, a)

≤
∑

k

tk+1−1∑
t=tk

(gk − r̃k(Xt)) + S A + 2
√

(2 +C) log
(

2S AT
δ

)∑
s,a

NT (s,a)−1∑
n=1

√
1
n

≤
∑

k

tk+1−1∑
t=tk

(gk − r̃k(Xt)) + S A + 4
√

(2 +C) log
(

2S AT
δ

)∑
s,a

√
NT (s, a)

(Jensen) ≤
∑

k

tk+1−1∑
t=tk

(gk − r̃k(Xt)) + S A + 4
√

(2 +C)S AT log
(

2S AT
δ

)
.

We conclude that with probability 1 − 6δ, we have:

Reg(T ) ≤
∑

k

tk+1−1∑
t=tk

(gk − r̃k(Xt)) + 4
√

(2 +C)S AT log
(

2S AT
δ

)
+

√
1
2 T log

(
2S AT
δ

)
+ S A. (21)

This concludes the proof. □

C.5 Proof of Lemma 7, navigation error

We have:

∑
k

tk+1−1∑
t=tk

(pk(S t) − eS t )hk ≤
∑

k

tk+1−1∑
t=tk

(pk(S t) − eS t+1 )hk +
∑

k

sp (hk)

≤
∑

k

tk+1−1∑
t=tk

(pk(S t) − eS t+1 )(hk − h∗)︸                                    ︷︷                                    ︸
A1

+
∑

k

tk+1−1∑
t=tk

(pk(S t) − eS t+1 )h∗︸                           ︷︷                           ︸
A2

+
∑

k

sp (hk).

The last term is O(c0S A log(T )) by Lemma 28, hence is O(T 1/5 log(T )).

(STEP 1) We start by bounding A1. By Lemma 13, with probability 1 − 4δ, we have h∗ ∈ Htk for all
k ≤ K(T ). So sp (hk − h∗) ≤ sp (hk) + sp (h∗) ≤ 2c0. By Freedman’s inequality invoked in the form of
Lemma 33, we have with probability 1 − 5δ,

A1 ≤

√√√
2
∑

k

tk+1−1∑
t=tk

V (p(Xt), hk − h∗) log
(

T
δ

)
+ 8c0 log

(
T
δ

)
It suffices to bound the first term. Recall that e is the vector full of ones. We have:∑

k

tk+1−1∑
t=tk

V(p(Xt), hk − h∗) =
∑

k

tk+1−1∑
t=tk

V (p(Xt), hk − h∗ − (hk(S t) − h∗(S t)) · e)

≤
∑

k

tk+1−1∑
t=tk

∑
s′∈S

p(s′|Xt)
(
hk(s′) − h∗(s′) − (hk(S t) − h∗(S t))

)2
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(∗)
≤ 3

∑
k

tk+1−1∑
t=tk

E

∑
s′∈S

p(s′|Xt)
(
hk(s′) − h∗(s′) − (hk(S t) − h∗(S t))

)2

∣∣∣∣∣∣Ft

 + 16c2
0 log

(
1
δ

)
= 3

∑
k

tk+1−1∑
t=tk

(hk(S t+1) − h∗(S t+1) − (hk(S t) − h∗(S t)))
2
+ 16c2

0 log
(

1
δ

)
.

Here the inequality (∗) holds with probability 1 − δ following Lemma 40. We will bound the
summand with the bias estimation error error(ck, s, s′) that spawns the inner regret estimation B0(tk) =∑k−1
ℓ=1

∑tℓ+1−1
t=tℓ (gℓ − Rt). This inner estimation is linked to B(T ) :=

∑
k,t(gk − Rt) the overall optimistic

regret by:

B0(tk) ≤
∑K(T )

ℓ=1

∑tℓ+1−1

t=tℓ
(gk − Rt) −

∑K(T )

ℓ=k

∑tℓ+1−1

t=tℓ
(gk − Rt)

(∗)
≤

∑K(T )

ℓ=1

∑tℓ+1−1

t=tℓ
(gk − Rt) −

∑K(T )

ℓ=k

∑tℓ+1−1

t=tℓ
(g∗ − Rt)

≤
∑K(T )

ℓ=1

∑tℓ+1−1

t=tℓ
(gk − Rt) −

∑K(T )

ℓ=k

∑T−1

t=tk

(
∆∗(Xt) +

(
p(Xt) − eS t

)
h∗ + r(Xt) − Rt

)
≤

∑K(T )

ℓ=1

∑tℓ+1−1

t=tℓ
(gk − Rt) + sp (h∗) −

∑K(T )

ℓ=k

∑T−1

t=tk

((
p(Xt) − eS t+1

)
h∗ + r(Xt) − Rt

)
(†)
≤

∑K(T )

ℓ=1

∑tℓ+1−1

t=tℓ
(gk − Rt) + sp (h∗) + (1 + sp (h∗))

√
1
2 T log

(
1
δ

)
=: B(T ) + sp (h∗) + (1 + sp (h∗))

√
1
2 T log

(
1
δ

)
.

In the above, (∗) holds with probability 1 − 4δ uniformly on k following Lemma 13 and (†) holds,
also uniformly on k, with probability 1 − δ by applying Azuma-Hoeffding’s inequality (Lemma 32).
Continuing, still on the event specified by Lemma 13, we have with probability 1 − 6δ:

∑
k

tk+1−1∑
t=tk

V(p(Xt), hk − h∗) ≤ 3
∑

k

tk+1−1∑
t=tk

3c0 + (1 + c0)
√

8tk log
(

2
δ

)
+ 2B0(tk)

Ntk (S t+1 ↔ S t)
+ 16c2

0 log
(

1
δ

)

≤ 3
∑

k

tk+1−1∑
t=tk

4c0 + (1 + c0)
√

32T log
(

2
δ

)
+ 2B(T )

Ntk (S t, At, S t+1)
+ 16c2

0 log
(

1
δ

)
(DT) ≤ 12c2

0S 2A + 3
(
4c0 + (1 + c0)

√
32T log

(
2
δ

)
+ 2B(T )

)
S 2A log(T )

+ 16c2
0 log

(
1
δ

)
.

(STEP 2) For A2, by Freedman’s inequality invoked in the form of Lemma 33 again, we have with
probability 1 − δ,

A2 ≤

√√√
2
∑

k

tk+1−1∑
t=tk

V(pk(S t), h∗) log
(

T
δ

)
+ 8c0 log

(
T
δ

)

≤

√√√
2

T−1∑
t=0

V(p(Xt), h∗) log
(

T
δ

)
+ 8c0 log

(
T
δ

)
.

We recognize the sum of variance
∑T−1

t=0 V(p(Xt), h∗) that we leave as is.

(STEP 3) As a result, with probability 1 − 7δ, we have:

∑
k

tk+1−1∑
t=tk

(pk(S t) − eS t )hk ≤

√√√
2

T−1∑
t=0

V(p(Xt), h∗) log
(

T
δ

)
+ 2S A

1
2
√

3B(T ) log
(

T
δ

)
+ O

(
S A

1
2 T

7
20 log

3
4

(
T
δ

))
when c0 = T

1
5 . □
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C.6 Proof of Lemma 8, empirical bias error

Because h∗ is a fixed vector, Bennett’s inequality (see Lemma 39) guarantees that ( p̂k(S t) − pk(S t)h∗
is small as follows. By doing a union bound over Lemma 39 with confidence δ

S AT over all pairs (s, a)
and visits counts N(s, a) ≤ T , we see that with probability 1 − δ, for all k, we have:

tk+1−1∑
t=tk

(p̂k(S t) − pk(S t)) h∗ ≤ sp (h∗)S A +
tk+1−1∑

t=tk

1
(
Ntk (Xt) ≥ 1

) √ 2V(p(Xt),h∗) log( S AT
δ )

Ntk (Xt)
+

sp(h∗) log
(

S AT
δ

)
3Ntk (Xt)


(by doubling trick) ≤ sp (h∗)S A + 2

tk+1−1∑
t=tk

1 (Nt(Xt) ≥ 1)


√

2V(p(Xt),h∗) log( S AT
δ )

Nt(Xt)
+

sp(h∗) log
(

S AT
δ

)
3Nt(Xt)

 .
Summing this over k and factorizing over state-action pairs, we get that with probability 1 − δ,∑

k

(2k) ≤ sp (h∗)S A + 2
∑
s,a

NT (s,a)∑
n=1

√
2V(p(s,a),h∗) log( S AT

δ )
n +

NT (s,a)∑
n=1

sp(h∗) log
(

S AT
δ

)
n


≤ sp (h∗)S A + 4

∑
s,a

√
NT (s, a)V(p(s, a), h∗) log

(
S AT
δ

)
+ 2sp (h∗)S A log

(
S AT
δ

)
log(T )

(Jensen) ≤ sp (h∗)S A + 4
√

S A
∑

s,a
V(p(s, a), h∗) log

(
S AT
δ

)
+ 2sp (h∗)S A log

(
S AT
δ

)
log(T )

= sp (h∗)S A + 4

√∑T−1

t=0
V(p(Xt), h∗) log

(
S AT
δ

)
+ 2sp (h∗)S A log

(
S AT
δ

)
log(T )

We recognize the sum of variances
∑T−1

t=0 V(p(Xt), h∗), that is left to be upper-bounded later on. □

C.7 Proof of Lemma 9, optimistic overshoot

Because of the β-mitigation generated by Algorithm 5, the quantity ( p̃k(S t) − p̂k(S t))hk is shown to
be directly related to V(p(Xt), h∗) up to a provably negligible error. Denote h′k the reference point
BiasProjection(Htk , ctk (−, s0)) used in Algorithm 5 (denoted h0 in the algorithm). By Lemma 13,
with probability 1 − 4δ, we have h∗ ∈ Htk for all k. To lighten up notations, we write dtk (s′, s) instead
of error(ctk , s

′, s).

(STEP 1) Denote A := ( p̃k(S t) − p̂k(S t))hk. By construction of p̃k, we have A ≤ βtk (Xt), so:

A ≤ βtk (Xt)

=:

√√
2
(
V( p̂k(S t), h′k) + 8c0

∑
s′∈S p̂k(s′|S t)dtk (s′, S t) log

(
S AT
δ

))
Ntk (Xt)

+
3c0 log

(
S AT
δ

)
Ntk (Xt)

≤

√
2V(p̂k(S t), h′k)

Ntk (Xt)︸                ︷︷                ︸
A1

+

√√
16c0

∑
s′∈S p̂k(s′|S t)dtk (s′, S t) log

(
S AT
δ

)
Ntk (Xt)︸                                                  ︷︷                                                  ︸

A2

+
3c0 log

(
S AT
δ

)
Ntk (Xt)

.

The rightmost term of A is of order O(log2(T )) hence is negligible. We focus on the other two. The
analysis of A1 will spawn a term similar to A2, hence we start by the second. Recall that dtk is the bias
error provided by Algorithm 3 and that the inner regret estimation is B0(tk) =

∑k−1
ℓ=1

∑tℓ+1−1
t=tℓ (gℓ − Rt).

Now, remark that:

B0(tk) ≤
∑K(T )

ℓ=1

∑tℓ+1−1

t=tℓ
(gk − Rt) −

∑K(T )

ℓ=k

∑tℓ+1−1

t=tℓ
(gk − Rt)

(∗)
≤

∑K(T )

ℓ=1

∑tℓ+1−1

t=tℓ
(gk − Rt) −

∑K(T )

ℓ=k

∑tℓ+1−1

t=tℓ
(g∗ − Rt)

≤
∑K(T )

ℓ=1

∑tℓ+1−1

t=tℓ
(gk − Rt) −

∑K(T )

ℓ=k

∑T−1

t=tk

(
∆∗(Xt) +

(
p(Xt) − eS t

)
h∗ + r(Xt) − Rt

)
≤

∑K(T )

ℓ=1

∑tℓ+1−1

t=tℓ
(gk − Rt) + sp (h∗) −

∑K(T )

ℓ=k

∑T−1

t=tk

((
p(Xt) − eS t+1

)
h∗ + r(Xt) − Rt

)
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(†)
≤

∑K(T )

ℓ=1

∑tℓ+1−1

t=tℓ
(gk − Rt) + sp (h∗) + (1 + sp (h∗))

√
1
2 T log

(
1
δ

)
=: B(T ) + sp (h∗) + (1 + sp (h∗))

√
1
2 T log

(
1
δ

)
.

In the above, (∗) holds with probability 1 − 4δ uniformly on k following Lemma 13 and (†) holds,
also uniformly on k, with probability 1 − δ by applying Azuma-Hoeffding’s inequality (Lemma 32).
Therefore, with probability 1 − 5δ, for all k and t ∈ {tk, . . . , tk+1 − 1}, we have:√√

16c0
∑

s′∈S p̂k(s′|S t)dtk (s′, S t) log
(

S AT
δ

)
Ntk (Xt)

≤

√
16c0 log

(
S AT
δ

)∑
s′∈S Ntk (S t, At, s′)dtk (s′, S t)

Ntk (Xt)

≤

√
16c0 log

(
S AT
δ

)∑
s′∈S Ntk (S t ↔ s′)dtk (s′, S t)

Ntk (Xt)

≤

√
16c0 log

(
S AT
δ

)
S
(
3c0+(1+c0)

(
1+

√
8T log

(
2
δ

))
+2B0(tk)

)
Ntk (Xt)

≤

√
16c0 log

(
S AT
δ

)
S
(
(1+c0)

(
3+2

√
8T log

(
2
δ

))
+2B(T )

)
Ntk (Xt)

≤

√
16c0 log

(
S AT
δ

)
S
(
(1+c0)

(
3+2

√
8T log

(
2
δ

)
+2B(T )

))
Ntk (Xt)

.

This bound will be enough. We move on to A1. We have:√
V( p̂k(S t), h′k) ≤

√∣∣∣V(p̂k(S t), h′k) − V(p(Xt), h∗)
∣∣∣ + √

V(p(Xt), h∗)

≤

√∣∣∣V(p̂k(S t), h′k) − V( p̂k(Xt), h∗)
∣∣∣ √|V( p̂k(S t), h∗) − V(p(Xt), h∗)| +

√
V(p(Xt), h∗)

(∗)
≤

√
8c0

∑
s′∈S

p̂k(s′|S t)dk(s′, S t) + sp (h∗)
√
∥p̂k(S t) − pk(S t)∥1 +

√
V(p(Xt), h∗)

(†)
≤

√
8c0

∑
s′∈S

p̂k(s′|S t)dk(s′, S t) + sp (h∗)

S log
(

S AT
δ

)
Ntk (Xt)


1
4

+
√

V(p(Xt), h∗)

≤
A2√

2Ntk (Xt)
+ sp (h∗)

S log
(

S AT
δ

)
Ntk (Xt)


1
4

+
√

V(p(Xt), h∗)

where (∗) is obtained by applying Lemma 12 and (†) holds with probability 1 − δ by applying
Weissman’s inequality, see Lemma 35. All together, with probability 1 − 6δ, A is upper-bounded by:

A ≤

√√
2V(p(Xt), h∗) log

(
S AT
δ

)
Ntk (Xt)

+ 2A2 + sp (h∗)

√√√√√
2 log

(
S AT
δ

) √
S log S AT

δ

Ntk (Xt)
√

Ntk (Xt)
+

3c0 log
(

S AT
δ

)
Ntk (Xt)︸                                                             ︷︷                                                             ︸

A3(k,t)

.

(STEP 2) The number of visits Nk(Xt) is lower-bounded by 1
2 Nt(Xt) when Nk(Xt) ≥ 1 by doubling

trick (DT). By summing over t and k, we find that with probability 1 − 6δ,

∑
k

(3k) ≤ S Ac0 +
∑

k

tk+1−1∑
t=tk

1Ntk (Xt)≥1

√√
2V(p(Xt), h∗) log

(
S AT
δ

)
Ntk (Xt)

+
∑

k

tk+1−1∑
t=tk

1Ntk (Xt)≥1(2A2(k, t) + A3(k, t))

(DT) ≤ S Ac0 + 2
∑

k

tk+1−1∑
t=tk

1Ntk (Xt)≥1

√
2V(p(Xt), h∗) log

(
S AT
δ

)
Nt(Xt)

+
∑

k

tk+1−1∑
t=tk

1Ntk (Xt)≥1(2A2(k, t) + A3(k, t))

≤ S Ac0 + 4

√
2S A

∑T−1

t=0
V(p(Xt), h∗) log

(
S AT
δ

)
+

∑
k

tk+1−1∑
t=tk

1Ntk (Xt)≥1(2A2(k, t) + A3(k, t))
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where the last inequality is obtained with computations that are similar to those detailed in the proof
of Lemma 8. We recognize the variance that we will leave as is. We finish the proof by bounding the
lower order terms A2 and A3.

(STEP 3) We start with A2. We have:

∑
k

tk+1−1∑
t=tk

1Ntk (Xt)≥1A2(k, t) :=
∑

k

tk+1−1∑
t=tk

1Ntk (Xt)≥1

√
16c0 log

(
S AT
δ

)
S
(
(1+c0)

(
3+2

√
8T log

(
2
δ

)
+2B(T )

))
Ntk (Xt)

(DT) ≤ 2

√
16c0S log

(
S AT
δ

) (
(1 + c0)

(
3 + 2

√
8T log

(
2
δ

)
+ 2B(T )

))
S A log(T )

≤ 8(1 + c0)S
3
2 A log

3
2

(
S AT
δ

) (
2 + 4T

1
4 log

1
4

(
S AT
δ

)
+

√
2B(T )

)
.

(STEP 4) We are left with A3. We have:

∑
k

tk+1−1∑
t=tk

1Ntk (Xt)≥1A3(k, t) :=
∑

k

tk+1−1∑
t=tk

1Ntk (Xt)≥1

sp (h∗)

√√√√√
2 log

(
S AT
δ

) √
S log S AT

δ

Ntk (Xt)
√

Ntk (Xt)
+

3c0 log
(

S AT
δ

)
Ntk (Xt)


(DT) ≤

∑
k

tk+1−1∑
t=tk

1Ntk (Xt)≥1

sp (h∗)

√√√√√
2 log

(
S AT
δ

) √
S log S AT

δ

Ntk (Xt)
√

Ntk (Xt)
+

3c0 log
(

S AT
δ

)
Ntk (Xt)


≤ Csp (h∗)S

5
4 AT

1
4 log

3
4

(
S AT
δ

)
+ 6c0S A log

(
S AT
δ

)
= O

(
sp (h∗)S

5
4 AT

1
4 log

(
S AT
δ

))
.

This concludes the proof. □

C.8 Proof of Lemma 10, second order error

Recall that by Lemma 13, with probability 1 − 4δ, h∗ ∈ Htk for all k, hence sp (hk − h∗) ≤ 2c0 for all
k on the same event. Therefore, with probability 1 − 4δ,∑

k

(4k) := 2c0S A +
∑

k

tk+1−1∑
t=tk

1Ntk (Xt)≥1 ( p̂k(S t) − pk(S t)) (hk − h∗)

= 2c0S A +
∑

k

tk+1−1∑
t=tk

∑
s′∈S

1Ntk (Xt)≥1( p̂k(s′|S t) − pk(s′|S t))(hk − h∗(s′))

(∗)
≤ 2c0S A + 2

∑
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t=tk

∑
s′∈S

1Ntk (Xt)≥1( p̂k(s′|S t) − pk(s′|S t))dtk (s′, S t)

(†)
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∑
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√√
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δ
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√c0

√√
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(
S 2AT
δ

)
Ntk (Xt)

+
3c0 log

(
S 2AT
δ

)
Ntk (Xt)


≤ 2c0S A + 4

∑
k

tk+1−1∑
t=tk

∑
s′∈S

1Ntk (Xt)≥1

√c0

√
2 p̂k(s′|S t)dk(s′, S t) log

(
S 2AT
δ

)
Nt(Xt)

+
3c0 log

(
S 2AT
δ

)
Nt(Xt)


where (∗) uses that h∗ ∈ Htk , and (†) is obtained by applying the empirical Bernstein’s inequality, see
Lemma 36, to p̂k(s′|S t) − pk(s′|S t), and holds with probability 1 − δ. The rightmost term’s sum is
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upper-bounded by:

4
∑

k

tk+1−1∑
t=tk

∑
s′∈S

3c0 log
(

S 2AT
δ

)
Nt(Xt)

≤ 12S 2A log(T ) log
(

S 2AT
δ

)
.

For the other term, follow the line of the proof of Lemma 9 (term A2). We have with probability
1 − 5δ (4δ of which is by invoking Lemma 13):

p̂k(s′|S t)dk(s′, S t) =
Ntk (S t, At, s′)

(
(1 + c0)

(
1 +

√
8tk log

(
2
δ

))
+ 2B0(tk)

)
Ntk (S t ↔ s′)Ntk (Xt)

≤

(
(1 + c0)

(
3 + 2

√
8T log

(
2
δ

)
+ 2B(T )

))
Ntk (Xt)

.

Therefore,

√
c0

√
2 p̂k(s′|S t)dtk (s′, S t) log

(
S 2AT
δ

)
Nt(Xt)

≤

4(1 + c0)
√(

3 + 2
√

8T log
(

2
δ

)
+ 2B(T )

)
log

(
S 2AT
δ

)
Nt(Xt)

.

Summing over k, t, s′, with probability 1 − 6δ, we have:

∑
k

(4k) ≤

16S 2A(1 + c0) log
1
2

(
S 2AT
δ

) (√
2B(T ) + 2

(
8T log

(
2
δ

)) 1
4
)

+32S 2A
(
log(T ) log

(
S 2AT
δ

)
+ (1 + c0) log

1
2

(
S 2AT
δ

))


This concludes the proof. □
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D More details on experiments

D.1 River swim as a hard communicating environment

Experiments of Fig. 2 are run on n-states river-swim. Such MDPs are, despite their size, known to
be hard to learn. They consists in n states aligned in a straight line with two playable actions right
and left whose dynamics are given in the figure below. Rewards are Bernoulli and null everywhere
excepted for r(sn, right) = 0.95 and r(s0, left) = 0.05.

s1 s2 · · · · · · sn

0.6

0.4

0.6

0.35

0.05 0.05

0.35

0.95

0.05

1

1 1 1

Figure 3: The kernel of a n-state river-swim.

3-state river-swim. The gain is g∗ ≈ 0.82 and h∗ ≈ (−4.28,−2.24, 0.4).

5-state river-swim. The gain is g∗ ≈ 0.82 and h∗ ≈ (−9.62,−7.58,−4.96,−2.27, 0.45).

D.2 Experiments in weakly-communicating environments

Beyond communicating models, PMEVI-DT is superior to EVI-based methods. On Fig. 4, we see that
PMEVI-DT can learn in environments of infinite diameter while UCRL2 cannot. The gain is due to the
truncation operation, that makes sure that the optimistic bias vector has span less than T 1/5.

s0 s1
1

0.5

0.1

UCR
L2

PMEVI

Figure 4: Bernoulli bandit with dandling state (weakly-communicating model). Each arrow is a
choice of action whose label is the mean reward of the associated state-action pair. The learner starts
in state s0 and transitions to the absorbing state s1 as soon as an action is played.

Without the truncation operation, EVI-based methods can never reject the plausibility that the reward
at s0 is maximal (equal to one) and that there is a positive probability ϵ to switch from s1 to s0 when
taking the sub-optimal action from s1. More precisely, denote the actions a, b where r(s0, a) = 1,
r(s1, a) = 0.5 and r(s1, b) = 0.1, so that a is the optimal action and b is sub-optimal. There are two
policies πa and πb choosing action a and b from s1 respectively. Because s0 is only visited once, the
best reward that can be achieved from s0 is r̃t(s0, a) = 1 at all times. If one runs UCRL2, the confidence
region for transition kernels is roughly of the form Pt(x) = { p̃(x) : Nt(x) ∥p̃(x) − p̂t(x)∥21 ≤ Cp log(t)}
and the plausible transition kernel p̃(x) ∈ Pt(x) that goes the quickest from s1 to s0 is of the form:

p̃t(s0|s1, a) =

√
Cp log(t)
Nt(s1, a)

and p̃t(s0|s1, b) =

√
Cp log(t)
Nt(s1, b)

.
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After running EVI for i steps, the current vector vi (see (6)) is V∗i (Mt), the maximal amount of
reward that one can collect in i steps on Mt seen as an extended Markov decision process, see
Auer et al. [2009]. If the data is well concentrated, the optimal reward from s1 are respectively
r̃t(s1, a) ≈ 0.5 +

√
Cr log(t)/Nt(s1, a) and r̃t(s1, b) = 0.1 +

√
Cr log(t)/Nt(s1, b). From all this, one can

argue that when i is large enough, the optimistic scores of πa and πb over i steps are roughly equal to:

Vπa
i (s1;Mt) ≈ i +

−0.5 +

√
Cr log(t)
Nt(s1, a)


√

Nt(s1, a)
Cp log(t)

= i − 0.5

√
Nt(s1, a)
Cp log(t)

+

√
Cr

Cp

Vπb
i (s1;Mt) ≈ i +

−0.9 +

√
Cr log(t)
Nt(s1, b)


√

Nt(s1, b)
Cp log(t)

= i − 0.9

√
Nt(s1, b)
Cp log(t)

+

√
Cr

Cp
.

So Vπa
i (s1;Mt) ≤ Vπb

i (s1;Mt) if Nt(s, b) ≪ 25
81 Nt(s, a).

This means that EVI will output πb if Nt(s, b) ≪ 25
81 Nt(s, a), leading to Nt(s, a) ≍ Nt(s, b) so both

growing linearly with t. This informal argument can be generalized to EVI-based algorithms with
other types of confidence regions: EVI-based methods such as UCRL Auer et al. [2002], UCRL2B Fruit
et al. [2020] and KLUCRL Filippi et al. [2010] will suffer from Nt(s, b) = Θ(t) and their regret will
grow linearly.

In opposition, PMEVI-based methods use truncation, making sure that |vi(s1) − vi(s0)| ≤ T 1/5 at
all times. Intuitively, it makes PMEVI-based method “think” that p̃t(s0|s1, b) cannot be as small as√

Cp log(t)/Nt(s1, b), because the optimistic bias of πb would be too large otherwise; Or, equivalently,
that p̃t(s0|s1, b) =

√
Cp log(t)/Nt(s1, b) but with r̃t(s0, a) ≪ 1, hence killing the optimistic reward at

(s0, a) to meet the bias constraints.

Overall, these features of PMEVI-based methods are shared with algorithms such as REGAL Bartlett
and Tewari [2009] and SCAL Fruit et al. [2018]. The difference is that these methods require precise
prior information on sp(h∗) that PMEVI-DT does not need.
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E Standard concentration inequalities

Lemma 32 (Azuma’s inequality, Azuma [1967]). Let (Ut)t≥0 a martingale difference sequence such
that sp (Ut) ≤ c a.s., i.e., there exists at ∈ R such that at ≤ Ut ≤ at + c a.s. Then, for all δ > 0,

P
(∑T−1

t=0
Ut ≥ c

√
1
2 T log

(
1
δ

))
≤ δ.

Lemma 33 (Freedman’s inequality, Zhang et al. [2020]). Let (Ut)t≥0 a martingale difference sequence
such that |Ut | ≤ c a.s., and denote its conditional variance Vt := E[U2

t |Ft−1]. Then, for all δ > 0,

P
∃T ′ ≤ T :

∑T ′−1

t=0
Ut ≥

√
2
∑T ′−1

t=0
Vt log

(
T
δ

)
+ 4c log

(
T
δ

) ≤ δ.
Lemma 34 (Time-uniform Azuma, Bourel et al. [2020]). Let (Ut) a martingale difference sequence
such that, for all λ ∈ R, E[exp(λUt)|U1, . . . ,Ut−1] ≤ exp( λ

2σ2

2 ). Then:

∀δ > 0, P
(
∃n ≥ 1,

(∑n

k=1
Uk

)2
≥ nσ2

(
1 + 1

n

)
log

(√
1+n
δ

))
≤ δ.

Lemma 35 (Time-uniform Weissman). Let q a distribution over {1, . . . , d}. Let (Ut) a sequence of
i.i.d. random variables of distribution q. Then:

∀δ > 0, P
(
∃n ≥ 1,

∥∥∥∥∑n

i=1

(
eUi − q

)∥∥∥∥2

1
≥ nd log

(
2
√

1+n
δ

))
≤ δ.

Proof. Remark that
∥∥∥∑n

k=1(eUk − q)
∥∥∥

1 = maxv∈{−1,1}d
∑n

k=1
〈
eUk − q, v

〉
. Let Wv

k :=
〈
eUk − q, v

〉
. Re-

mark that for each v ∈ {−1, 1}d, (Wv
k ) is a family of i.i.d. random variables with − ⟨q, v⟩ ≤ Wv

k ≤

1 − ⟨q, v⟩, so E[exp(λWv
k )] ≤ exp( λ

2

8 ) by Hoeffding’s Lemma. By Lemma 34, we have:

P

∃n ≥ 1,

∥∥∥∥∥∥∥
n∑

k=1

(eUk − q)

∥∥∥∥∥∥∥
1

≥

√
nd log

(
2
√

1+n
δ

) = P
∃v ∈ {−1, 1}d ,∃n,

n∑
k=1

Wv
k ≥

√
nd log

(
2
√

1+n
δ

)
≤

∑
v∈{−1,1}d

P
∃n,

n∑
k=1

Wv
k ≥

√
nd log

(
2
√

1+n
δ

)
≤

∑
v∈{−1,1}d

P
∃n,

n∑
k=1

Wv
k ≥

√
1
2 n

(
1 + 1

n

)
log

(√
1+n

2−dδ

)
≤ 2d · 2dδ = δ.

This concludes the proof. □

Lemma 36 (Time-uniform Empirical Bernstein). Let (Uk)k≥1 a martingale difference sequence such
that sp (Un) ≤ c a.s., let Ûn := 1

n
∑n

k=1 Uk the empirical mean and V̂n := 1
n
∑n

k=1(Uk − Ûn)2 the
population variance. Then,

∀δ > 0,∀T > 0, P
(
∃t ≤ T,

∑t

i=1
Ui ≥

√
2tV̂t log

(
3T
δ

)
+ 3c log

(
3T
δ

))
≤ δ.

Proof. This is obtained with a union bound on the values of n ≤ T , then applying Lemma 38. □

Lemma 37 (Time-uniform Empirical Likelihoods, Jonsson et al. [2020]). Let q a distribution on
{1, . . . , d}. Let (Ut) a sequence of i.i.d. random variables of distribution q. Then:

∀δ > 0, P
(
∃n ≥ 1, n KL(q̂n||q) > log

(
1
δ

)
+ (d − 1) log

(
e
(
1 + n

d−1

)))
≤ δ.

Lemma 38 (Empirical Bernstein inequality, Audibert et al. [2009]). Let (Uk)k≥1 a martingale
difference sequence such that sp (Un) ≤ c a.s., let Ûn := 1

n
∑n

k=1 Uk the empirical mean and V̂n :=
1
n
∑n

k=1(Uk − Ûn)2 the population variance. Then,

∀δ > 0,∀n ≥ 1, P
(∑n

k=1
Uk ≥

√
2nV̂n log

(
3
δ

)
+ 3c log

(
3
δ

))
≤ δ.
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Lemma 39 (Bennett’s inequality, Audibert et al. [2009]). Let (Ut)t≥0 a martingale difference sequence
such that |Ut | ≤ c a.s., and denote its conditional variance Vt := E[U2

t |Ft−1]. Then,

∀δ > 0,∀n ≥ 1, P
∃k ≤ n,

∑k

i=1
Ui ≥

√
2
∑n

i=1
Vi log

(
1
δ

)
+ 1

3 c log
(

1
δ

) ≤ δ.
Lemma 40 (Lemma 3 of Zhang and Xie [2023]). Let (Ut) be a sequence of random variables such
that 0 ≤ Ut ≤ c a.s., and let Ft := σ(U0,U1, . . . ,Ut−1). Then:

∀δ > 0, P
(
∃T ≥ 0,

∑T−1

t=0
Ut ≥ 3

∑T−1

t=0
E[Ut |Ft−1] + c log

(
1
δ

))
≤ δ;

∀δ > 0, P
(
∃T ≥ 0,

∑T−1

t=0
E[Ut |Ft−1] ≥ 3

∑T−1

t=0
Ut + c log

(
1
δ

))
≤ δ.

35



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim that the algorithm reaches minimax optimal regret, and it does.
We claim that our algorithm can effectively use bias information, and the experimental
illustration supports the claim.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
• The claims made should match theoretical and experimental results, and reflect how

much the results can be expected to generalize to other settings.
• It is fine to include aspirational goals as motivation as long as it is clear that these goals

are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [NA]

Justification: The paper is a theoretical one that covers all weakly communicating MDPs,
and although it may help the design of algorithms intended to be applicable in real-life
scenarios, our method is not meant to be directly applied.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
• The authors should reflect on the scope of the claims made, e.g., if the approach was

only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
• The authors should reflect on the factors that influence the performance of the approach.

For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
• The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.
• If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.
• While the authors might fear that complete honesty about limitations might be used by

reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: To every result is attached a proof or a reference.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
• Inversely, any informal proof provided in the core of the paper should be complemented

by formal proofs provided in appendix or supplemental material.
• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The algorithmic content in the main body is detailed enough to implement
the algorithm, the exception being the confidence intervals and the implementation of EVI
(because those come from already existing works). The confidence intervals are discussed
in a dedicated section in the Appendix, while the works of Auer et al. [2009], Filippi et al.
[2010], Fruit et al. [2020] etc. provide detailed ready-to-implement pseudo-code for EVI.
Our code is mostly written in Python. Experiments took a few dozen minutes on a low end
laptop.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
• While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided in the supplementary material, together with the scripts
to reproduce the exact figures of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
• The instructions should contain the exact command and environment needed to run to

reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
• At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: People that are unfamiliar with Markov decision processes may not know
the river-swim setting in which experiments are driven, but it is not required to understand
the figures and the discussion. Moreover, a description of the environment (river-swim)
is provided in the appendix in addition to be referenced. See also Experimental Result
Reproducibility for more.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]
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Justification: We did a hundred runs for every algorithm, which is enough to get statistical
significance for the small sized problems that we experiment on. Also, experiments are
mostly illustrative and do not account for an extensive numerical validation of the theoretical
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
• The factors of variability that the error bars are capturing should be clearly stated (for

example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
• The method for calculating the error bars should be explained (closed form formula,

call to a library function, bootstrap, etc.)
• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
• For asymmetric distributions, the authors should be careful not to show in tables or

figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
• If error bars are reported in tables or plots, The authors should explain in the text how

they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: This is mostly a theoretical paper. Most of the computational cost of the work
is processing LATEX and rendering a PDF. Like said earlier, experiments all together took
less than a hour on a low end laptop.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: -

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: It’s mainly a theoretical work on small sized Markov decision processes.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
• The conference expects that many papers will be foundational research and not tied

to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
• The authors should consider possible harms that could arise when the technology is

being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
• If there are negative societal impacts, the authors could also discuss possible mitigation

strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: -

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
• Datasets that have been scraped from the Internet could pose safety risks. The authors

should describe how they avoided releasing unsafe images.
• We recognize that providing effective safeguards is challenging, and many papers do

not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
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Justification: -
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
• For existing datasets that are re-packaged, both the original license and the license of

the derived asset (if it has changed) should be provided.
• If this information is not available online, the authors are encouraged to reach out to

the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: -
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
• The paper should discuss whether and how consent was obtained from people whose

asset is used.
• At submission time, remember to anonymize your assets (if applicable). You can either

create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: -
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: -
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
• We recognize that the procedures for this may vary significantly between institutions

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
• For initial submissions, do not include any information that would break anonymity (if

applicable), such as the institution conducting the review.
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