
Score Distillation via Reparametrized DDIM

Artem Lukoianov1 Haitz Sáez de Ocáriz Borde2

Kristjan Greenewald3 Vitor Campagnolo Guizilini4 Timur Bagautdinov5

Vincent Sitzmann1 Justin Solomon1

1Massachusetts Institute of Technology 2University of Oxford 3MIT-IBM Watson AI Lab, IBM
Research 4Toyota Research Institute 5Meta Reality Labs Research

https://lukoianov.com/sdi/

Abstract

While 2D diffusion models generate realistic, high-detail images, 3D shape genera-
tion methods like Score Distillation Sampling (SDS) built on these 2D diffusion
models produce cartoon-like, over-smoothed shapes. To help explain this dis-
crepancy, we show that the image guidance used in Score Distillation can be
understood as the velocity field of a 2D denoising generative process, up to the
choice of a noise term. In particular, after a change of variables, SDS resembles
a high-variance version of Denoising Diffusion Implicit Models (DDIM) with
a differently-sampled noise term: SDS introduces noise i.i.d. randomly at each
step, while DDIM infers it from the previous noise predictions. This excessive
variance can lead to over-smoothing and unrealistic outputs. We show that a better
noise approximation can be recovered by inverting DDIM in each SDS update step.
This modification makes SDS’s generative process for 2D images almost identical
to DDIM. In 3D, it removes over-smoothing, preserves higher-frequency detail,
and brings the generation quality closer to that of 2D samplers. Experimentally,
our method achieves better or similar 3D generation quality compared to other
state-of-the-art Score Distillation methods, all without training additional neural
networks or multi-view supervision, and providing useful insights into relationship
between 2D and 3D asset generation with diffusion models.

a) DDIM (CFG=7.5) b) 2D SDS (CFG=7.5) c) 2D ours (CFG = 7.5) d) 3D SDS (CFG=100) e) 3D ours (CFG=7.5)

Figure 1: Score Distillation Sampling (SDS) “distills” 3D shapes from 2D image generative models
like DDIM. While DDIM produces high-quality images (a), the same diffusion model, yields blurry
results with SDS in the task of 2D image generation (b); in 3D, SDS yields over-saturated and
simplified shapes (d). By replacing the noise term in SDS to agree with DDIM, our algorithm better
matches the quality of the diffusion model in 2D (c) and significantly improves 3D generation (e).

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://lukoianov.com/sdi/

Figure 2: Examples of 3D objects generated with our method.

1 Introduction

Image generative modeling saw drastic quality improvement with the advent of text-to-image diffusion
models [1] trained on billion-scale datasets [2] with large parameter counts [3]. From a short
prompt, these models generate photorealistic images, with strong zero-shot generalization to new
classes [4]. Ef�cient training methods for image data, combined with Internet-scale datasets, enabled
the development of these models. However, applying similar techniques to domains where huge
datasets are scarce, such as 3D shape generation, remains challenging.

The need for 3D objects in downstream applications like vision, graphics, and robotics motivated
methods like Score Distillation Sampling (SDS) [5] and Score Jacobian Chaining (SJC) [6], which
optimize volumetric 3D representations [7, 8, 9] using queries to a 2D generative model [10]. In
every iteration, SDS renders the current state of the 3D representation from a random viewpoint, adds
noise to the result, and then denoises it using the pre-trained 2D diffusion model conditioned on a
text prompt. The difference between the added and predicted noise is used as a gradient-style update
on the rendered images, which is propagated to the parameters of the 3D model. The underlying
3D representation helps make the generated images multi-view consistent, and the 2D model guides
individual views towards a learned distribution of realistic images.

In practice, however, as noted in [11, 12, 13], SDS often produces 3D representations with over-
saturated colors and over-smoothed textures (�g. 1d), not matching the quality of the underlying 2D
model. Existing approaches tackling this problem improve quality at the cost of expensive re-training
or �ne-tuning of the image diffusion model [11], complex multi-stage handling of 3D representations
like mesh extraction and texture �ne-tuning [14, 15, 11], or altering the SDS guidance [13, 12, 16].

As an alternative to engineering-based improvements to SDS, in this paper we reanalyze the vanilla
SDS algorithm to understand the underlying source of artifacts. Our key insight is that the SDS
update rule steps along an approximation of the DDIM velocity �eld. In particular, we derive Score
Distillation from DDIM with a change of variables to the space of single-step denoised images.
In this light, SDS updates are nearly identical to DDIM updates, apart from one difference: while
DDIM samples noiseconditionallyon the previous predictions, SDS resamples noise i.i.d. in every
iteration. This breaks the denoising trajectory for each independent view and introduces excessive
variance. Our perspective uni�es DDIM and SDS and helps explain why SDS can produce blurry and

2

over-saturated results: the variance-boosting effect of noisy guidance is usually mitigated with high
Classi�er-Free Guidance (CFG) [17] to reduce sample diversity at the cost of over-saturation [18].

Based on our analysis, we propose an alternative score distillation algorithm dubbed Score Distillation
via Inversion (SDI), closing the gap to DDIM. We obtain the conditional noise required for consistency
of the denoising trajectories by inverting DDIM on each step of score distillation (�g. 5). This
modi�cation yields 3D objects with high-quality textures consistent with the 2D diffusion model
(�g. 1e). Moreover, in 2D, our method closely approximates DDIM while preserving the incremental
generation schedule of SDS (�g. 1c).

Our key contributions are as follows:

• We prove that guidance for each view in the SDS algorithm is a simpli�ed reparameterization
of DDIM sampling: vanilla SDS samples random noise at each step, while DDIM keeps the
trajectories consistent with previously-predicted noise.

• We propose a new method titled Score Distillation via Inversion (SDI), which replaces the problem-
atic random noise sampling in SDS with prompt-conditioned DDIM inversion and signi�cantly
improves 3D generation, closing the quality gap to samples from the 2D model.

• We systematically compare SDI with the state-of-the-art Score Distillation algorithms and show
that SDI achieves similar or better generation quality, while not requiring training additional neural
networks or multiple generation stages.

2 Related work

3D generation by training on multi-view data. Recent 3D generation methods leverage multi-view
or 3D data. Zero123 [19] and MVDream [20] generate consistent multi-view images from text; a
3D radiance �eld is then obtained via score distillation. Video generative models can be �ne-tuned
on videos of camera tracks around 3D objects, similarly yielding a model that samples multi-view
consistent images to train a 3D radiance �eld [21, 22]. Diffusion with Forward Models [23] and
Viewset Diffusion [24] directly train 3D generative models from 2D images. While these methods
excel at generating multi-view consistent, plausible 3D objects, they depend on multi-view data with
known camera trajectories, limiting them to synthetic or small bundle-adjusted 3D datasets. We
instead focus on methods that require only single-view training images.

Distilling 2D into 3D. Score Distillation was introduced concurrently in Dreamfusion or SDS [5],
Score Jacobian Chaining (SJC) [6], and Magic3D [14]. The key idea is to use a frozen diffusion
model trained on 2D images and “distill” it into 3D assets. A volumetric representation of the shape
is rendered from a random view, perturbed with random noise, and denoised with the diffusion
model; the difference between added and predicted noise is used to improve the rendering. These
works, however, suffer from over-smoothing and lack of detail. Usually a high value of classi�er free
guidance (CFG� 100) [17] is used to reduce variance at the cost of over-saturation [18].

Proli�cDreamer [11] generates sharp, detailed results with standard CFG values (� 7:5) and without
over-saturation. The key idea is to over�t an additional diffusion model to speci�cally denoise the
current 3D shape estimate. Fine-tuning the second model, however, is cumbersome and theoretical
justi�cation for this change is still unclear. Recent papers further improve on Proli�cDreamer's results
or try to explain its behavior. SteinDreamer [25], for example, hypothesizes that Proli�cDreamer's
improvements come from variance reduction of the sampling procedure [26].

Other papers propose heuristics that improve SDS. [12, 16, 27] decompose the guidance terms and
speculate about their relative importance. Empirically, visual quality can be improved by suppressing
the denoising term with negative prompts [12] or highlighting the classi�cation term [16]. [14, 15, 11,
28] use multi-stage optimization: they �rst train a volumetric representation and then extract a mesh
or voxel grid to �ne-tune geometry and texture. HiFA [13] combines ad-hoc techniques: additional
supervision in latent space, time annealing, kernel smoothing,z-variance regularization, and a
pretrained mono-depth estimation network to improve the quality of single-stage NeRF generation.

LucidDreamer, or Interval Score Matching (ISM), hypothesizes based on empirical evidence that in
SDS, the high-variance random noise term and large reconstruction error of a single-step prediction
togehter cause over-smoothing [29]. Based on these observations, the authors replace the random
noise term in SDS with noise obtained by running DDIM inversion and introduce multi-step denoising
to improve reconstruction quality. As we will show in section 4, the update rule of ISM can be seen

3

Figure 3: The effect of CFG values on 2D generation with StableDiffusion 2.1 [1]. For small values,
the model tends to ignore certain words in the prompt. For high values, images become over-saturated.

as a special case of our formulation. Moreover, our analysis reveals that the added noise should be
inferredconditionallyon the text prompty, which further improves quality.

In this work, rather than augmenting the SDS pipeline or relying on heuristics, we derive Score
Distillation through the denoising process of DDIM and propose a simple modi�cation of SDS that
signi�cantly improves 3D generation.

3 Background

Diffusion models. Denoising Diffusion Implicit Models (DDIM) generate images by reversing a
diffusion process [30, 31, 32]. After training a denoiser� t

� and freezing its weights� , the denoising
process can be seen as an ODE on rescaled noisy images�x(t) = x(t)=

p
� (t). Given a prompty and

current time stept 2 [0; 1], the denoising process satis�es:

d�x(t)
dt

= � t
�

� p
� (t)�x(t); y

� d� (t)
dt

, (1)

where�x(1) is sampled from a Gaussian distribution,� (t) =
p

1 � � (t)=
p

� (t), and� (t) are scaling
factors. When discretized with forward Euler, this equation yields the following update to transition
from stept to a less noisy stept � � < t :

�x(t � �) = �x(t) + � t
�

� p
� (t)�x(t); y

�
[� (t � �) � � (t)] . (2)

The DDIM ODE can also be integrated in reverse direction to estimate�x(t) for anyt 2 [0; 1] from a
clean imagex0. This operation is calledDDIM inversionand is studied in multiple works [33, 34].

Classi�er-free guidance. Classi�er-free guidance (CFG) [17] provides high-quality conditional
samples without gradients from auxilary models [35]. CFG modi�es the noise prediction�̂ t

� (score
function) by linearly combining conditional and unconditional predictions:

� t
�

�
x(t); y

�
= �̂ t

� (x(t); ?) +
 �
�
�̂ t

� (x(t); y) � �̂ t
� (x(t); ?)

�
; (3)

where the guidance scale
 is a scalar, with
 = 0 corresponding to unconditional sampling and

 = 1 to conditional. In practice, larger values
 > 1 are necessary to obtain high-quality samples at
a cost of reduced diversity and extreme over-saturation. We demonstrate the effect of different CFG
values in �g. 3. For the rest of the paper we use the modi�ed CFG version of the denoiser� t

�

�
x(t); y

�
.

Score Distillation. Diffusion models ef�ciently generate images and can learn to represent common
objects from arbitrary angles [36] and with varying lighting [5]. Capitalizing on this success, Score
Distillation Sampling (SDS) [5] distills a pre-trained diffusion model� t

� to produce a 3D asset. In
practice, the 3D shape is usually parameterized by a NeRF [7], InstantNGP [8], or Gaussian Splat-
ting [9]. Multiple works additionally extract an explicit representation for further optimization [14,
15, 11, 28]. We use InstantNGP [8] to balance between speed and ease of optimization.

Denote the parameters of a differentiable 3D shape representation by 2 Rd and differentiable
rendering by a functiong(; c) : Rd � C ! RN � N that returns an image given camera parameters
c 2 C. Intuitively, in each iteration, SDS samplesc, renders the corresponding (image) viewg(; c),
perturbs it with� � N (0; I) to level t � [0; 1], and denoises it with� t

� ; the difference between
the true and predicted noise is propagated to the parameters of the 3D shape. More formally, after
sampling the camera viewc and randomly drawing a timet, SDS renders the volume and adds

4

Figure 4: Left: Evolution of variables in Score Distillation with time. The top row depicts how
noisy imagesx(t) evolve during 2D generation; the middle row shows evolution of a NeRF for 3D
generation; and the bottom row shows how the single step denoised variablex0(t) changes witht.
Right: Each step of DDIM steps toward a denoised image. This can be seen as a step tox0(t) and a
step back to a slightly less noisy image. Through a change-of-variables we obtain a process onx0(t).

Gaussian noise� to obtain a noisy imagex(t) =
p

� (t)g(; c) +
p

1 � � (t)�: Then, SDS improves
the generated volume by using a gradient(-like) direction to update its parameters :

r L SDS = Et;�;c � (t)
�
� t

�

�
x(t); y

�
� �

� @g
@

. (4)

We refer to the term
�
� t

�

�
x(t); y

�
� �

�
asguidancein score distillation, as it `guides' the views of the

shape. In theory, this expression may not correspond to the true gradient of a function and there are
many hypotheses about its effectiveness [5, 25, 12, 16, 26]. In this work, we show that instead it can
be seen as a high-variance version of DDIM after a change of variables.

4 Linking SDS to DDIM

Discrepancy in image sampling.Beyond the lack of formal justi�cation of eq. (4), in practice SDS
results are over-saturated and miss details for high CFG values, while they are blurry for low CFG
values. To illustrate this phenomenon, �g. 1 shows a simple experiment, inspired by [11]: We replace
the volumetric representation in eq. (4) with an imageg2D (2D ; c) := 2D 2 RN � N . In this case,
SDS becomes an image generation algorithm that can be compared to other sampling algorithms like
DDIM [37]. Even in this 2D setting, SDS fails to generate sharp details, while DDIM with the same
underlying diffusion model produces photorealistic results, motivating our derivation below.

Why not use DDIM as guidance?Given the experiment above, a natural question to ask is if it is
possible to directly use DDIM's update direction from eq. (1) as SDS guidance in eq. (4) to update the
3D representation. The problem with this approach lies in the discrepancy between the training data
of the denoising model and the images generated by rendering the current 3D representation. More
speci�cally, the denoising network expects an image with a certain level of noise corresponding to
timet as de�ned by the forward (noising) diffusion process, whereas renderings of 3D representations
g(; c) evolve from a blurry cloud to a well-de�ned sample (�g. 4 left).

Evolution of x0(t). Instead of seeing DDIM as a denoising process de�ned on the space of noisy
imagesx(t), we reparametrize it to a new variable:

x0(t) , �x(t) � � (t)� t
�

�
x(t); y

�
: (5)

In words,x0(t) is the noisy image at timet denoised with a single step of noise prediction. Empirically,
the evolution ofx0(t) is similar to the evolution ofg(; c)—from blurry to sharp. The left side of
�g. 4 compares these processes. This similarity motivates us to rewrite eq. (1) in terms ofx0(t), and
to understand SDS as applying similar updates to the renderings of its 3D representation.

Reparametrizing DDIM. Figure 4 (right) shows schematically how the DDIM update to�x(t)
alternates between denoising to obtainx0(t) and adding the predicted noise back to get a cleaner
�x(t � �). Based on the intuition above, we reorder the steps, adding noise tox0(t) and then denoising
to estimatex0(t � �). Consider neighboring time pointst andt � � < t in discretized DDIM eq. (2)
(lower time means less noise). We rewrite eq. (2) using the de�nition ofx0(t) from eq. (5) to �nd

x0(t � �) = x0(t) � � (t � �)
�
� t � �

�

�
x(t � �); y

�
� � t

�

�
x(t); y

��
, (6)

5

Figure 5: Overview of SDI. At each training iteration, SDI renders a random view of the 3D shape,
runs DDIM inversion up to the noise levelt, and denoises the image with a pre-trained diffusion
model for noise levelt � � . Finally, the denoised image is back-propagated into the 3D shape.

which is consistent with the intuition behind SDS: improving an image involves perturbing the current
image and then denoising it with a better noise estimate. We cannot directly apply eq. (6) to SDS in
3D, since it depends onx(t); if we think of x0(t) as similar to a rendering of the 3D representation
for some camera angle, it is unclear how to obtain a consistent set of preimagesx(t) at each step of
3D generation. From eq. (5), however,x(t) should satisfy the following �xed point equation:

x(t) =
p

� (t)x0(t) +
p

1 � � (t)� t
�

�
x(t); y

�
, (7)

or rewritten in terms of noise� = [x(t) �
p

� (t)x0(t)]=
p

1 � � (t):

� = � t
�

� p
� (t)x0(t) +

p
1 � � (t)�; y

�
. (8)

De�ne � t
y

�
x0(t)

�
= � as a solution of this equation givenx0(t). Then, we can write:

� t
�

�
x(t); y

�
= � t

y

�
x0(t)

�
and x(t � �) =

p
� (t � �)x0(t) +

p
1 � � (t � �)� t

y

�
x0(t)

�
. (9)

Thus, eq. (6) turns into:

x0(t� �) = x0(t)� � (t� �)
�
� t � �

�

�
x 0 noised with� t

y to timet � �
z }| {p

� (t � �)x0(t)+
p

1� � (t � �)� t
y

�
x0(t)

�
; y

�

| {z }
predicted noise

� � t
y

�
x0(t)

�

| {z }
noise sample� t

y

�
. (10)

We can already see that the structure of eq. (10) is very similar to the SDS update rule in eq. (4). Note
that the update direction in eq. (10) is the same as in the SDS update rule in eq. (4), where� t

y plays
the role of the random noise sample� . We could use it as a guidance for the 3D generative process
in SDS by replacing� in eq. (4) with� t

y (x0(t)) : In practice, however, it is hard to solve eq. (8), as
� t

� is high-dimensional and nonlinear. In an unconstrained 2D generation,� t
y can be cached from a

previous denoising step, matching the update step to DDIM exactly as in �g. 1c. In 3D, however, this
is impossible due to the simultaneous optimization of multiple views and projections to the space of
viable 3D shapes. Below we show that a naïve approximation replacing� t

y with a Gaussian yields
SDS, and we will propose alternatives that are more faithful to the derivation above.

SDS as a special case.From eq. (10), to get a cleaner image, we need to bring the current image to
time t with noise sample� t

y , denoise the obtained image, and then subtract the difference between
added and predicted noise from the initial image. A coarse approximation of� t

y uses i.i.d. random
noise� SDS(x0(t)) � N (0; I), matching the forward process by which diffusion adds noise. This
choice of� SDS precisely matches the update rule eq. (10) to the SDS guidance in eq. (4).

ISM as a special case.The main update formula in Interval Score Matching (ISM) [29] is a particular
case of eq. (10), where� t

y is obtained via DDIM inversion without conditioning on the text prompty.
As demonstrated in section 5, DDIM inversion approximates a solution of eq. (10), explaining the
improved performance of ISM. However, our analysis suggests that an even better-performing� t

y
should incorporate the text prompty, which further improves the results and avoids over-saturation.

5 Score Distillation via Inversion (SDI)

As we have shown, SDS follows the velocity �eld of reparametrized DDIM in eq. (10), when
� SDS(x0(t)) is randomly sampled in each step. Our derivation, however, suggests that� SDS(x0(t))

6

could be improved by bringing it closer to a solution of the �xed-point equation in eq. (8). Indeed,
randomly sampling� SDS as in Dreamfusion yields excessive variance and blurry results for standard
CFG values, while using higher CFG values leads to over-saturation and lack of detail. On the other
hand, solving eq. (8) exactly is challenging due to its high dimensionality and nonlinearity.

Like ISM [29], we suggest to obtain� t
y by inverting DDIM, that is, by integrating the ODE in eq. (1)

with t evolving backwards (from images to noise) as in [37, 33, 34]. As we can see in eq. (8),� t
y

should be a function of the text prompty, leading us to perform DDIM inversionconditionallyony,
unlike ISM. This process approximates but is not identical to the exact solution for� t

y : �xed points
of eq. (8) invert a single large step of DDIM, while running the ODE in reverse inverts the entire
DDIM trajectory. We ablate alternative choices for� t

y in section 6.2 and conclude that in practice
DDIM inversion offers the best approximation quality. Additionally, to match the iterative nature
of DDIM, we employ a linear annealing schedule oft. We refer to our modi�ed version of SDS as
Score Distillation via Inversion, or SDI.

Figure 6: Comparison of intermediate variables in SDS and SDI (ours) for different timestepst.
Starting with a rendering of a 3D shape we demonstrate how each algorithm perturbs it (x(t) variable
on the top row) and how it is denoised with a single step of diffusion (x0(t) variable on the bottom
row). The prompt used is “Pumpkin head zombie, skinny, highly detailed, photorealistic, side view.”

Figure 6 shows the effect of inferring the noise via DDIM inversion instead of sampling it randomly.
The special structure of the improved� t

y results in more consistent single-step generations and
produces intricate features at earlier times. When inverted and not sampled, the noise appears `in the
right place': in SDS the noise covers the whole view, including the background, whereas in ours the
noise is concentrated on the meaningful part of the 3D shape. This improves geometric and temporal
coherency forx0(t) predictions even for larget. The reduced variance drastically increases sharpness
and level of detail. Moreover, it allows to reduce CFG value of generation
 fwd to the standard7:5,
avoiding over-saturation. Another interesting �nding is that DDIM inversion works best when the
reverse integration is performed with negative CFG
 inv = �
 fwd = � 7:5. The overview of our
method is presented in �g. 5, the details about inversion algorithm are presented in section 6.2, and
the implementation details are discussed in appendix A.

6 Experiments

6.1 3D generation

We demonstrate the high-�delity 3D shapes generated with our algorithm in �g. 2 and provide more
examples of360� views in appendix H.2. A more detailed qualitative and quantitative comparison of
our method with ISM [29] is provided in appendix B. Additionally, we report the diversity of the
generated shapes in appendix C.

Qualitative comparisons. Figure 7 compares 3D generation quality with the results reported in
past work using a similar protocol to [11, 12]. For the baselines we chose: Dreamfusion [5] (the
work we build on), Noise Free Score Distillation (NFSD) [12] (uses negative prompts in SDS),
Proli�cDreamer [11] (�ne-tunes and trains a neural network to denoise the 3D shape), Interval Score
Matching (ISM) [29] (obtain the noise sample by inverting DDIM and perform multi-step denoising),
and HiFA [13] (guides in both image and latent spaces, regularizes the NeRF, and supervises the
geometry with mono-depth estimation). Our �gures indicate that Score Distillation via Inversion
(SDI) yields similar or better results compared with state-of-the-art. Appendix H.3 presents more
extensive comparison.

7

Figure 7: Comparison of 3D generation with other methods using their reported results. The prompts
are “An ice cream sundae” and “A 3D model of an adorable cottage with a thatched roof”.

Quantitative comparison. We follow [5, 16, 25] to quantitatively evaluate generation qual-
ity. Table 1 provides CLIP scores [38] to measure prompt-generation alignment, computed with
torchmetrics [39] and the ViT-B/32 model [40]. We also report ImageReward (IR) [41] to imitate
possible human preference. We include CLIP Image Quality Assessment (IQA) [42] to measure
quality (“Good photo” vs. “Bad photo”), sharpness (“Sharp photo” vs. “Blurry photo”), and realism
(“Real photo” vs. “Abstract photo”). For each method, we test43 prompts with 50 views. For
multi-stage baselines, we run only the �rst stage for fair comparison. We report the percentage of
generations that run out-of-memory or generate an empty volume as diverged (“Div.” in the table).
as well as mean run time and VRAM usage. For VRAM, we average the maximum usage of GPU
memory between runs. As many baselines are not open-source, we use their implementations in
threestudio [43]. SDI outperforms SDS and matches or outperforms the quality of state-of-the-art
methods, offering a simple �x to SDS without additional supervision or multi-stage training.

Table 1: Quantitative comparisons to baselines for text-to-3D generation, evaluated by CLIP Score
and CLIP IQA. We report mean and standard deviation across 43 prompts and 50 views for each.

Method CLIP Score (") CLIP IQA (%) " IR (") Div. (%) # Time VRAM

“quality” “sharpness” “real”

SDS [5],10k steps 29:81� 2:49 76� 6:6 99� 1:2 98� 2:4 � 1:51� 0:83 18:6 66min 6.2GB
SJC [6],10k steps 30:39� 1:98 76� 6:4 99� 0:1 98� 1:1 � 1:76� 0:51 11:6 13min 13.1GB
VSD [11], 25k steps 33:31� 2:39 77� 6:7 98� 1:3 96� 4:4 � 1:17� 0:58 23:2 334min 47.9GB
ESD [44],25k steps 32:79� 2:15 77� 7:2 98� 1:2 97� 2:7 � 1:20� 0:64 14:0 331min 46.8GB
HIFA [13], 25k steps 32:80� 2:35 81� 6:5 98� 1:5 97� 1:2 � 1:16� 0:69 4:7 235min 46.4GB
SDI(ours), 10k steps 33:47� 2:49 82� 6:3 98� 1:3 97� 1:2 � 1:18� 0:59 4:7 119min 39.2GB

6.2 Ablations

Figure 8: Ablation study of proposed improvements.

Proposed improvements.Figure 8 ablates the changes we implement on top of SDS. Starting from
Dreamfusion [5] with CFG7:5 we incrementally add: higher NeRF rendering resolution (64� 64 to
512� 512), linear schedule ont, and—our core contribution—DDIM inversion. The results clearly
demonstrate that the main improvement in quality comes from the inferred noise.

Choice of � t
y (x). The key component of our algorithm is the choice of inferred noise� t

y (x). In
theory,� t

y (x) should solve eq. (8), but it is impractical to do so. Hence, in �g. 9 we compare the
following choices of� t

y (x) and report their numerical errors:

8

• Random, resampled:Sample� t
y (x) in each new update step fromN (0; I) ;

• Random, �xed:Sample� t
y (x) from N (0; I) once, and keep it �xed for each iteration;

• Fixed point iteration:Since the optimal solution is a �xed point of eq. (8), initialize� t
y (x) �

N (0; I) and run �xed point iteration [45] for 10 steps (in practice, more steps did not help).
• SGD optimization:Optimize� t

y (x) via gradient decent for 10 steps, initializing with noise.
• DDIM inversion: Run DDIM inversion forint (10t) (fewer steps for smallert) steps to timet, with

negative CFG
 inv = � 7:5 for inversion and positive
 fwd = 7 :5 for forward inference.

The left side of �g. 9 compares the choices for 3D generation qualitatively; the right side plots
error induced in eq. (8) (rescaled tox0 variable due to its ambiguity around0). As can be seen, the
regressed noise has a big impact on the �nal generations. Both �xed point iteration and optimization
via gradient descent fail to improve the approximation of� t

y , while �xed point iteration diverges in
3D. On the other hand, DDIM inversion yields a reasonable approximation of� t

y and signi�cantly
improves 3D generation quality. We provide visual comparison of the obtained noisy images for each
baseline in appendix D.

Figure 9: The ablation study of different� t
y choices in our algorithm. We show the obtained 3D

generations on the left (Fixed Point Iteration diverges), and the numerical error in eq. (8) induced for
each timestep on the right. The resampled and �xed noise strategies produce the same error.

CFG for inversion. [33, 34] report that DDIM inversion accumulates big numerical error for CFG

 > 0. Surprisingly, we �nd that DDIM inversion for CFG
 fwd > 0 can be adequately estimated by
running the inversion with negative CFG
 inv = �
 fwd. Figure 10 compares 3D inversion strategies
qualitatively and quantitatively. Naïvely taking
 inv =
 fwd = 7 :5 yields the biggest numerical
error, while other strategies perform on par. 3D generations, illustrated on the right, show that

 inv =
 fwd = 7 :5 introduces excessive numerical errors, causing generation to drift in a random
direction. The best parameters (as we demonstrate in appendix E) for 2D inversion (
 inv =
 fwd = 0)
fail to converge in 3D as there is not enough guidance toward a class sample. Introducing guidance
only on the forward pass with
 inv = 0 ;
 fwd = 7 :5 solves the problem, and the algorithm generates
the desired 3D shape, but constantly adding CFG on each step over-saturates the image. Note
in that con�guration the inversion is performed unconditionally from the text prompt, matching
ISM [29]. As we can see, prompt conditioning is an important component in eq. (8), and using

 inv = � 7:5;
 fwd = 7 :5 cancels the over-saturation and produces accurate 3D generations.

Figure 10: Comparing DDIM inversion strategies. Left: Numerical error in eq. (8) from the inferred
noise. Right: Generations for different strategies of using CFG values for denoising and inversion.

Number of steps for DDIM inversion. Figure 11 ablates the number of steps required for DDIM
inversion. We usen = 10 as it provides a good balance between generation quality and speed.

9

Figure 11: Ablation study of the number of inversion steps. For each con�guration we report an
average run time and CLIP IQA “quality” computed on 43 different prompts.

7 Conclusion, Limitations, and Future Work

Helping explain the discrepancy between high-quality image generation with diffusion models and
the blurry, over-saturated 3D generation of SDS, our derivation exposes how the strategies are
reparameterizations of one another up to a single term. Our proposed algorithm SDI closes the gap
between these methods, matching the performance of the two in 2D and signi�cantly improving 3D
results. The ablations show that DDIM inversion adequately approximates the correct noise term,
and adding it to SDS signi�cantly improves visual quality. The results of SDI match or surpass
state-of-the-art 3D generations, all without separate diffusion models or additional generation steps.

Some limitations of our algorithm motivate future work. While we improve the sample quality of
each view, 3D consistency between views remains challenging; as a result, despite the convexity loss,
our algorithm occasionally produces �at or concave “billboards.” A possible resolution might involve
supervision with pre-trained depth or normal estimators. A related problem involves content drift from
one view to another. Since there was no 3D supervision, there is little to no communication between
opposite views, which can lead to inconsistent 3D assets. Stronger view conditioning, multi-view
supervision, or video generation models might resolve this problem. Finally, score distillation is
capped by the performance of the underlying diffusion model and is hence prone to reproduce similar
“hallucinations” (e.g., text and limbs anomalies); the algorithm inherits the biases of the 2D diffusion
model and can produce skewed distributions. Appendix H.1 demonstrates typical failure cases.

Potential broader impacts. Our work extends existing 2D diffusion models to generation in 3D
settings. As such, SDI could marginally improve the ability of bad actors to generate deepfakes or to
create 3D assets corresponding to real humans to interact with in virtual environments or games; it
also inherits any biases present in the 2D model. While this is a critical problem in industry, our work
does not explicitly focus on this use case and, in our view, represents a negligible change in such
risks, as highly convincing deepfake tools are already widely available.

Acknowledgments

The authors thank Lingxiao Li and Chenyang Yuan for their thoughtful insights and feedback.

Artem Lukoianov acknowledges the generous support of the Toyota–CSAIL Joint Research Center.

Vincent Sitzmann was supported by the National Science Foundation under Grant No. 2211259, by
the Singapore DSTA under DST00OECI20300823 (New Representations for Vision and 3D Self-
Supervised Learning for Label-Ef�cient Vision), by the Intelligence Advanced Research Projects Ac-
tivity (IARPA) via Department of Interior/Interior Business Center (DOI/IBC) under 140D0423C0075,
by the Amazon Science Hub, and by IBM.

The MIT Geometric Data Processing Group acknowledges the generous support of Army Research
Of�ce grants W911NF2010168 and W911NF2110293, of National Science Foundation grant IIS-
2335492, from the CSAIL Future of Data program, from the MIT–IBM Watson AI Laboratory, from
the Wistron Corporation, and from the Toyota–CSAIL Joint Research Center.

10

	Introduction
	Related work
	Background
	Linking SDS to DDIM
	Score Distillation via Inversion (SDI)
	Experiments
	3D generation
	Ablations

	Conclusion, Limitations, and Future Work
	Implementation details.
	Timesteps.
	Geometry regularization.
	System details.
	Prompts used in the quantitative evaluation

	Comparison with Interval Score Matching
	Diversity of the generations
	Visual comparison of noise patterns
	CFG for inversion in 2D
	ODE derivation
	Additional Intuition: Out-of-Distribution Correction
	Additional Results
	Failure Cases
	Additional generations
	Additional comparison with baselines

