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Abstract

This paper presents Diffusion Forcing, a new training paradigm where a diffusion
model is trained to denoise a set of tokens with independent per-token noise
levels. We apply Diffusion Forcing to sequence generative modeling by training
a causal next-token prediction model to generate one or several future tokens
without fully diffusing past ones. Our approach is shown to combine the strengths
of next-token prediction models, such as variable-length generation, with the
strengths of full-sequence diffusion models, such as the ability to guide sampling
to desirable trajectories. Our method offers a range of additional capabilities, such
as (1) rolling-out sequences of continuous tokens, such as video, with lengths past
the training horizon, where baselines diverge and (2) new sampling and guiding
schemes that uniquely profit from Diffusion Forcing’s variable-horizon and causal
architecture, and which lead to marked performance gains in decision-making
and planning tasks. In addition to its empirical success, our method is proven to
optimize a variational lower bound on the likelihoods of all subsequences of tokens
drawn from the true joint distribution. Project website: https://boyuan.space/
diffusion-forcing/

1 Introduction

Probabilistic sequence modeling plays a crucial role in diverse machine learning applications including
natural language processing [6, 47], video prediction [31, 69] and decision making [3, 22]. Next-token
prediction models in particular have a number of desirable properties. They enable the generation of
sequences with varying length [32, 21, 37] (generating only a single token or an “infinite” number
of tokens via auto-regressive sampling), can be conditioned on varying amounts of history [21, 37],
support efficient tree search[70, 23, 25], and can be used for online feedback control [22, 3].

Current next-token prediction models are trained via teacher forcing [64], where the model predicts
the immediate next token based on a ground truth history of previous tokens. This results in two
limitations: (1) there is no mechanism by which one can guide the sampling of a sequence to
minimize a certain objective, and (2) current next-token models easily become unstable on continuous
data. For example, when attempting to auto-regressively generate a video (as opposed to text [6] or
vector-quantized latents [33]) past the training horizon, slight errors in frame-to-frame predictions
accumulate and the model diverges.

∗Work done as a visiting student at MIT.
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Figure 1: Diffusion Forcing capabilities. Today, different applications such as language modeling [6],
planning [36], or video generation [31, 69] rely on either auto-regressive next-token prediction or
full-sequence diffusion, according to their respective unique capabilities. The proposed Diffusion
Forcing is a novel sequence generative model that enjoys key strengths of both model types.

Full-sequence diffusion seemingly offers a solution. Commonly used in video generation and
long-horizon planning, one directly models the joint distribution of a fixed number of tokens by
diffusing their concatenation [31, 1], where the noise level is identical across all tokens. They
offer diffusion guidance [30, 16] to guide sampling to a desirable sequence, invaluable in decision-
making (planning) applications [36, 34]. They further excel at generating continuous signals such as
video [31]. However, full-sequence diffusion is universally parameterized via non-causal, unmasked
architectures. In addition to restricting sampling to full sequences, as opposed to variable length
generation, we show that this limits the possibilities for both guidance and subsequence generation
(Figure 1). Further, we demonstrate that a naive attempt at combining the best of both worlds
by training a next-token prediction model for full-sequence diffusion leads to poor generations,
intuitively because it does not model the fact that small uncertainty in an early token necessitates
high uncertainty in a later one.

In this paper, we introduce Diffusion Forcing (DF), a training and sampling paradigm where each
token is associated with a random, independent noise level, and where tokens can be denoised
according to arbitrary, independent, per-token schedules through a shared next-or-next-few-token
prediction model. Our approach is motivated by the observation that noising tokens is a form of
partial masking—zero noise means a token is unmasked, and complete noise fully masks out a token.
Thus, DF forces the model to learn to “unmask” any collection of variably noised tokens (Figure 2).
Simultaneously, by parameterizing predictions as a composition of next-token prediction models, our
system can flexibly generate varying length sequences as well as compositionally generalize to new
trajectories (Figure 1).

We implement DF for sequence generation as Causal Diffusion Forcing (CDF), in which future
tokens depend on past ones via a causal architecture. We train the model to denoise all tokens of
a sequence at once, with an independent noise level per token. During sampling, CDF gradually
denoises a sequence of Gaussian noise frames into clean samples where different frames may have
different noise levels at each denoising step. Like next-token prediction models, CDF can generate
variable-length sequences; unlike next-token prediction, it does so stabily from the immediate next
token to thousands of tokens in the future – even for continuous tokens. Moreover, like full-sequence
diffusion it accepts guidance towards high-reward generations. Synergistically leveraging causality,
flexible horizon, and variable noise schedules, CDF enables a new capability, Monte Carlo Guidance
(MCG), that dramatically improves the sampling of high-reward generations compared to non-causal
full-sequence diffusion models. Fig. 1 overviews these capabilities.

In summary, our contributions are: (1) We propose Diffusion Forcing, a new probabilistic sequence
model that has the flexibility of next-token prediction models while being able to perform long-
horizon guidance like full-sequence diffusion models. (2) Taking advantage of Diffusion Forcing’s
unique capabilities, we introduce a novel decision-making framework that allows us to use Diffusion
Forcing as simultaneously a policy ([10]) and as a planner ([36]). (3) We formally prove that,
under appropriate conditions, optimizing our proposed training objective maximizes a lower bound
on the likelihood of the joint distribution of all sub-sequences observed at training time. (4) We
empirically evaluate CDF across diverse domains such as video generation, model-based planning,
visual imitation learning, and time series prediction, and demonstrate CDF’s unique capabilities,
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Figure 2:Method Overview. Diffusion Forcing trains causal sequence neural networks (such as
an RNN or a masked transformer) to denoise �exible-length sequences where each frame of the
sequence can have adifferentnoise level. In contrast, next-token prediction models, common in
language modeling, are trained to predict a single next token from aground-truthsequence (teacher
forcing [64]), and full-sequence diffusion, common in video generation, train non-causal architectures
to denoise all frames in a sequence at once with thesamenoise level. Diffusion Forcing thus
interleavesthe time axis of the sequence and the noise axis of diffusion, unifying strengths of both
alternatives and enabling completely new capabilities (see Secs. 3.2,3.4).

such as stabilizing long-rollout autoregressive video generation, composing sub-sequences of those
observed at training time with user-determined memory horizon, Monte Carlo Guidance, and more.

2 Related Work and Preliminaries

We discuss related work and preliminaries for our core application, sequence generative modeling;
see Appendix D for further literature review.

Our method uni�es two perspectives on sequence modeling: Bayesian �ltering along the time
axis, denoted by subscriptt, and diffusion along an “uncertainty” (or noise level) axis denoted by
superscriptk. In the following, we denote observations asx 2 X and latent states asz 2 Z .

Bayesian Filtering. Given a Hidden Markov Model (HMM) de�ned by latent stateszt and obser-
vationsx t , a Bayes �lter is a probabilistic method for estimating latent states recursively over time
from incoming observations. A prior modelp(zt +1 jzt ) infers a belief over the next state given only
the current state, and an observation model infers a belief over the next observation given the current
latent statep(x t jzt ). When a new observation is made, a posterior modelp(zt +1 jzt ; x t +1 ) provides
an updated estimation of the next latent statezt +1 . When trained end-to-end with neural networks
[22, 23], latent states are not an estimate of any physical quantity, but a suf�ciently expressive latent
that summarizes past observations for predicting future observations(x t 0)t 0>t in the sequence.

Diffusion Models. Diffusion models [56, 28] have proven to be highly expressive and reliable
generative models. We review their essentials here. Letq(x) denote a data distribution of interest,
and letx0 � x � q. We consider a forward diffusion process that gradually adds Gaussian noise to a
data point over a series of time steps. This process is modeled as a Markov chain, where the data at
each stepk is noised incrementally:

q(x k jx k � 1) = N (x k ;
p

1 � � k x k � 1; � k I ) (2.1)

whereN is the normal distribution and� k is the variance of the noise added at each step controlled
by a schedulef � k 2 (0; 1)gK

k=1 . The process continues until the data is converted into pure noise at
xK . The reverse process is also a Markov chain and attempts to recreate the original data from the
noise with a parameterized modelp� :

p� (x k � 1jx k ) = N (x k � 1; � (x k ; k); 
 k I ); (2.2)

where the mean� is a model with a neural network, and where it is shown [29] that one can set
the covariance to the identity scaled by a �xed constant
 k depending onk. Adopting the standard

3



exposition, we reparametrize the mean� in terms of noise prediction� = (
p

1 � �� t ) � 1x k t
t �

p
�� t � .

This leads [28] to the following least squares objective:

L (� ) = Ek; x 0 ;�
�
k� k � � � (x k ; k)k2�

; (2.3)

wherex k =
p

�� t x0 +
p

1 � �� t � k and� k � N (0; I ) . One can then sample from this model via
Langevin dynamicsx k � 1  1p

� k
(x k

t � 1� � kp
1� �� k

� � (x k
t ; k) + � k w) [28].

Guidance of Diffusion Models. Guidance [30, 16] allows biasing diffusion generation towards
desirable predictions at sampling time. We focus on classi�er guidance [16]: given a classi�er
c(yjx k ) of some desiredy (e.g. class or success indicator), one modi�es the Langevin sampling
[29] gradient� � (x k ; k) to be� � (x k ; k) �

p
1 � �� k r x k logc(yjx k ). This allows sampling from the

joint distribution ofx and class labely without the need to train a conditional model. Other energies
such as a least-squares objective comparing the model output to a desirable ground truth have been
explored in applications such as decision making [16, 36].

Next-Token Prediction Models. Next-token prediction models are sequence models that predict the
next framex t +1 given past framesx1:t . At training time, one feeds a neural network withx1:t and
minimizesjj x̂ � x jj2 for continuous data or a cross-entropy loss for discrete data [64]. At sampling
time, one samples the next framex̂ t +1 following p(x t +1 jx1:t ). If one treatŝx t +1 asx t +1 , one can
use the same model to predictx t +2 and repeat until a full sequence is sampled. Unlike full-sequence
diffusion models, next-token models do not accept multi-step guidance, as prior frames must be fully
determined to sample future frames.

Diffusion Sequence Models.Diffusion has been widely used in sequence modeling. [43] use full-
sequence diffusion models to achieve controllable text generation via guidance, such as generating
text following speci�ed parts of speech. [31] trains full-sequence diffusion models to synthesize short
videos and uses a sliding window to roll out longer conditioned on previously generated frames. [36]
uses full-sequence diffusion models as planners in of�ine reinforcement learning. This is achieved by
training on a dataset of interaction trajectories with the environment and using classi�er guidance
at sampling time to sample trajectories with high rewards towards a chosen goal. [49] modi�es
auto-regressive models to denoise the next token conditioned on previous tokens. It trains with
teacher forcing [64] and samples next-token auto-regressively for time series data. Most similar to
our work is AR-Diffusion [65], which trains full-sequence text diffusion with a causal architecture
with linearly dependent noise level along the time axis. We provide a detailed comparision between
this approach and ours in Appendix D.

3 Method

3.1 Noising as partial masking

Recall thatmaskingis the practice of occluding a subset of data, such as patches of an image [26] or
timesteps in a sequence [15, 48], and training a model to recover unmasked portions. Without loss of
generality, we can view any collection of tokens, sequential or not, as an ordered set indexed byt.
Training next-token prediction with teacher forcing can then be interpreted as masking each token
x t at timet and making predictions from the pastx1:t � 1. Restricted to sequences, we refer to all
these practices asmasking along the time axis. We can also view full-sequence forward diffusion, i.e.,
gradually adding noise to the datax0

1:T � x1:T , as a form ofpartial masking, which we refer to as
masking along the noise axis. Indeed, afterK steps of noising,xK

1:T is (approximately) pure white
noise without information about the original data.

We establish a uni�ed view along both axes of masking (see Fig. 2). We denotex1:T for a sequence of
tokens, where the subscript indicates the time axis. As above,x k t

t denotesx t at noise levelkt under
the forward diffusion process(2.1); x0

t = x is the unnoised token, andxK
t is white noiseN (0; I ).

Thus,(x k t
t )1� t � T denotes a sequence of noisy observations where each token has adifferentnoise

level kt , which can be seen as the degree ofpartial maskingapplied to each token through noising.

3.2 Diffusion Forcing: different noise levels for different tokens

Diffusion Forcing(DF) is a framework for training and sampling arbitrary sequence lengths of noisy
tokens(x k t

t )1� t � T , where critically,the noise levelkt of each token can vary by time step. In this
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Algorithm 1 Diffusion Forcing Training

1: loop
2: Sample tajectory of observations(x 1 ; :::; x T ).
3: for t = 1 ; :::; T do
4: Sample independent noise levelkt 2

f 0; 1; :::; K g
5: x k t

t = ForwardDiffuse(x t ; kt )

6: De�ne � t =
x k t

t �
p

�� k t x tp
1� �� k t

7: Updatezt � p� (zt jzt � 1 ; x k t
t ; kt ).

8: Set�̂ t = � � (zt � 1 ; x k t
t ; kt )

9: end for
10: L = MSELoss([ �̂ 1 ; :::; �̂ n ] ; [� 1 ; :::; � n ])
11: Backprop withL and update�
12: end loop

Algorithm 2 DF Sampling with Guidance

1: Input: Model � , scheduling matrixK , initial latent
z0 , guidance costc(�).

2: Initialize x 1 ; : : : ; x T � N (0; � 2
K I ).

3: for row m = M � 1; :::; 0 do
4: for t = 1 ; : : : ; T do
5: znew

t � p� (zt j zt � 1 ; x t ; Km +1 ;t ).
6: k  K m;t , w � N (0; I ).
7: x new

t  1p
� k

(x t � 1� � kp
1� �� k

� � (znew
t ; x t ; k))+

� k w
8: Updatezt  znew

t .
9: end for

10: x 1:H  AddGuidance(x new
1:H ; r x log c(x new

1:H ))
11: end for
12: Return x 1:T .

paper, we focus on time series data, and thus instantiate Diffusion Forcing with causal architectures
(wherex k t

t depends only on past noisy tokens), which we callCausal Diffusion Forcing(CDF). For
simplicity, we focus on a minimal implementation with a vanilla Recurrent Neural Network (RNN)
[11]. Potential transformer implementation of Diffusion Forcing is also possible but we defer its
discussion to Appendix C.1.

The RNN with weights� maintains latentszt capturing the in�uence of past tokens, and these evolve
via dynamicszt � p� (zt jzt � 1; x k t

t ; kt ) with a recurrent layer. When an incoming noisy observation
x k t

t is made, the hidden state is updated in a Markovian fashionzt � p� (zt jzt � 1; x k t
t ; kt )2. When

kt = 0 , this is the posterior update in Bayes �ltering; whereas whenkt = K (andxK
t is pure noise

and thus uninformative), this is equivalent to modeling the “prior distribution”p� (zt j zt � 1) in Bayes
�ltering. Given latentzt , an observation modelp� (x0

t jzt ) predictsx t .

Training. The dynamics modelp� (zt jzt � 1; x k t
t ; kt ) and the observation modelp� (x0

t jzt ) together
form a RNN unit. Such unit has the same input-output behavior as a standard conditional diffusion
model, using a conditioning variablezt � 1 and a noisy tokenx k t

t as input to predict the noise-free
x t = x0

t and thus, indirectly, the noise� k t via af�ne reparametrization [29]. We can thus directly
train (Causal) Diffusion Forcing with the conventional diffusion training objective. We parameterize
the aforementioned unit in terms of noise prediction� � (zt � 1; x k t

t ; kt ). We then �nd parameters� by
minimizing the loss

E
k t ;x t ;� t

z t � p� (z t j z t � 1 ;x k t
t ;k t )

TX

t =1

h
k� t � � � (zt � 1; x k t

t ; kt )k2
i
; (3.1)

where we samplek1:T uniformly from [K ]T , x1:T from our training data, and� t � N (0; � 2
k t

I ) in
accordance with the forward diffusion process (see Algorithm 1 for pseudocode). Importantly, the
loss(3.1)captures essential elements of Bayesian �ltering and conditional diffusion. In Appendix B.1,
we further re-derive common techniques in diffusion model training for Diffusion Forcing, which
proves extremely useful for video prediction experiments. In Appendix C.2, we discuss the need
of samplingk1:T uniformly. Finally, we prove the validity of this objective stated informally in the
following Theorem 3.1 in Appendix A.

Theorem 3.1 (Informal). The Diffusion Forcing training procedure (Algorithm 1) optimizes a
reweighting of an Evidence Lower Bound (ELBO) on the expected log-likelihoodsln p� ((x k t

t )1� t � T ),
where the expectation is averaged over noise levelsk1:T � [K ]T andx k t

t noised according to the
forward process. Moreover, under appropriate conditions, optimizing(3.1)also maximizes a lower
bound on the likelihood forall sequences of noise levels, simultaneously.

2We implementzt = p� (zt jzt � 1 ; x k t
t ; kt ) to be deterministic, withzt representing a distribution over beliefs

rather than a sample from it. This allows training by backpropogating through the latent dynamics in Eq.(3.1).
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We remark that a special case of `all sequences of noise levels' are those for which eitherkt = 0
or kt = K ; thus, one can mask outany prior tokenand DF will learn to sample from the correct
conditional distribution, modeling the distribution of all possible sub-sequences of the training set.

Sampling. Diffusion Forcing sampling is depicted in Algorithm 2 and is de�ned by prescribing a
noise schedule on a 2DM � T grid K 2 [K ]M � T ; columns correspond to time stept and rows
indexed bym determine noise-level.Km;t represents the desired noise level of the time-stept
token for rowm. To generate a whole sequence of lengthT, initialize the tokensx1:T to be white
noise, corresponding to noise levelk = K . We iterate down the grid row-by-row, denoising left-
to-right across columns to the noise levels prescribed byK. By the last rowm = 0 , the tokens are
clean, i.e. their noise level isK0;t � 0. Appendix B.5 discusses corner cases of this scheme; the
hyperparameters(� k ; �� k ; � k ) are set to their standard values [29]. The matrixK speci�es how fast
each token gets denoised at every step of sequence diffusion. Since Diffusion Forcing is trained
to denoise tokens of all sequences of noise levels,K can be designed to �exibly achieve different
behaviors without re-training the model.

3.3 New Capabilities in Sequence Generation

We now explain the new capabilities this �exible sampling paradigm has to offer.

Stabilizing autoregressive generation.For high-dimensional, continuous sequences such as video,
auto-regressive architectures are known to diverge, especially when sampling past the training horizon.
In contrast, Diffusion Forcing can stably roll out long sequences even beyond the training sequence
length by updating the latents using the previous latent associated with slightly “noisy tokens” for
some small noise level0 < k � K . Our experiments (Sec. 4.1) illustrates the resulting marked
improvements in long-horizon generation capabilities; App. C.4 provides further intuition.

Keeping the future uncertain. Beginning from a sequence of white noise tokens[xK
1 ; xK

2 ; xK
3 ]> ,

we may denoise the �rst token fully and the second token partially, yielding[x0
1; xK= 2

2 ; xK
3 ]> , then

[x0
1; x0

2; xK= 2
3 ]> , and �nally denoising all tokens fully to[x0

1; x0
2; x0

3]> . Interpreting the noise level as
uncertainty, this “zig-zag” sampling scheme intuitively encodes the immediate future as more certain
than the far future. Sec. 3.4 describes how this leads to more effective sequence guidance.

Long-horizon Guidance. In Line 10 of Algorithm 2, one may add guidance to the partially diffused
trajectoryx1:T as in Sec. 2. Due to the dependency of future tokens on the past, guidance gradients
from future tokens can propagate backwards in time. The unique advantage of Diffusion Forcing is
that, because we can diffuse future tokens without fully diffusing the past, the gradient guides the
sampling ofpasttokens, thereby achieving long-horizon guidance while respecting causality. We
elaborate on implementation details in Appendix C.3. As we show in Section 4.2, planning in this
manner signi�cantly outperforms guided full-sequence diffusion models.

3.4 Diffusion Forcing for Flexible Sequential Decision Making

The capabilities offered by Diffusion Forcing motivate our novel framework for sequential decision
making (SDM), with key applications to robotics and autonomous agents. Consider a Markov
Decision Process de�ned by an environment with dynamicsp(st +1 jst ; at ), observationp(ot jst ) and
rewardp(r t jst ; at ). The goal is to train a policy� (at jo1:t ) such that the expected cumulative reward
of a trajectoryE[

P T
t =1 r t ] is maximized. We assign tokensx t = [ at ; r t ; ot +1 ]. A trajectory is a

sequencex1:T , possibly of variable length; training is conducted as in Algorithm 1. At each stept
of execution, past (noise-free) tokensx1:t � 1 are summarized by a latentzt � 1. Conditioned on this
latent, we sample, via Algorithm 2, a planx̂ t :t + H , with x̂ t = [ ât ; r̂ t ; ôt +1 ]> containing predicted
actions, rewards and observations.H is a look-ahead window, analogous to future predictions in
model predictive control [20]. After taking planned action̂at , the environment produces a rewardr t
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Figure 3:Video Generation.Among tested methods, Diffusion Forcing generations are uniquely
temporally consistent and do not diverge even when rolling out well past the training horizon. Please
see the project website for video results.

and next observationot +1 , yielding next tokenx t = [ ât ; r t ; ot +1 ]> . The latent is updated according
to the posteriorp� (zt jzt � 1; x t ; 0). Our framework enables functionality as bothpolicyandplanner:

Flexible planning horizon. Diffusion Forcing (a) can be deployed ontasks of variable horizon,
because each new action is selected sequentially, and (b) its lookahead windowH can be shortened to
lower latency (using Diffusion Forcing as apolicy), or lengthened to perform long-horizonplanning
(via guidance described below), without re-training or modi�cations of the architecture. Note that (a)
is not possible for full-sequence diffusion models like Diffuser [36] with full-trajectory generation
horizons, whereas diffusion policies [10] need �xed, small lookahead sizes, precluding (b).

Flexible reward guidance. As detailed in Appendix C.3, Diffusion Forcing can plan via guidance
using any reward (in place oflogc) speci�ed over future steps: this includes dense per-time step
rewards on the entire trajectory

P T
t =1 r t , dense rewards on a future lookahead

P t + H
t 0= t r t , and sparse

rewards indicating goal completion�k oT � gk2. Per-time step policies cannot take advantage of
this latter, longer horizon guidance.

Monte Carlo Guidance (MCG), future uncertainty. Causal Diffusion Forcing allows us to in�u-
ence the generation of a tokenx k

t by guidance on the whole distribution of futurex t +1: T . Instead
of drawing a single trajectory sample to calculate this guidance gradient, we can draw multiple
samples of the future and average their guidance gradients. We call this Monte Carlo Guidance. In
the spirit of so-called shooting methods like MPPI [63], x k

t is then guided by the expected reward
over the distribution of all future outcomes instead of one particular outcome. The effect of MCG is
enhanced when combined with sampling schedules that keep the noise level of future tokens high
when denoising immediate next tokens (e.g. the zig-zag schedule described in Sec. 3.3), accounting
for greater uncertainty farther into the future. Appendix C.5 further justi�es the signi�cance of MCG,
and why Diffusion Forcing uniquely takes advantage of it.

4 Experiments

We extensively evaluate Diffusion Forcing's merits as a generative sequence model across diverse
applications in video and time series prediction, planning, and imitation learning. Please �nd the
dataset and reproducibility details in the Appendix, as well as video results on the project website.

4.1 Video Prediction: Consistent, Stable Sequence Generation and In�nite Rollout.

We train a convolutional RNN implementation of Causal Diffusion Forcing for video generative
modeling on videos of Minecraft gameplay [68] and DMLab navigation [68]. At sampling time, we
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Environment MPPI CQL IQL Diffuser* Diffuser w/ diffused action Ours wo/ MCG Ours

Maze2D U-Maze 33.2 5.7 47.4 113.9� 3.1 6.3� 2.1 110.1� 3.9 116.7� 2.0
Maze2D Medium 10.2 5.0 34.9 121.5� 2.7 13.5� 2.3 136.1� 10.2 149.4� 7.5
Maze2D Large 5.1 12.5 58.6 123.0� 6.4 6.3� 2.1 142.8� 5.6 159.0� 2.7

Single-task Average 16.2 7.7 47.0 119.5 8.7 129.67 141.7

Multi2D U-Maze 41.2 - 24.8 128.9� 1.8 32.8� 1.7 107.7� 4.9 119.1� 4.0
Multi2D Medium 15.4 - 12.1 127.2� 3.4 22.0� 2.7 145.6� 6.5 152.3� 9.9
Multi2D Large 8.0 - 13.9 132.1� 5.8 6.9� 1.7 129.8� 1.5 167.1� 2.7

Multi-task Average 21.5 - 16.9 129.4 20.6 127.7 146.2

Table 1:Diffusion Forcing for Planning. (top) During sampling, Diffusion Forcing allows each time
step to be denoised on different noise schedules, enabling us to account for causal uncertainty during
guided planning. Diffusion Forcing keeps the far future more uncertain than the near future while
Diffuser [36] puts them at the same noise level during sampling. (bottom) Quantitatively, Diffusion
Forcing achieves the highest average reward across runs. Diffuser fails dramatically when executing
the actually generated actions, requiring a hand-crafted PD controller (indicated by the asterisk) and
ignoring generated actions.

perform auto-regressive rollout with stabilization proposed in Sec. 3.3. We consider two baselines,
both leveraging the same exact RNN architecture: a next-frame diffusion baseline trained with
teacher forcing [64] as well as a causal full-sequence diffusion model. Figure 3 displays qualitative
results of roll-outs generated by Diffusion Forcing and baselines starting from unseen frames for both
datasets. While Diffusion Forcing succeeds at stably rolling out even far beyond its training horizon
(e.g.1000frames), teacher forcing and full-sequence diffusion baselines diverge quickly. Further,
within the training horizon, we observe that full-sequence diffusion suffers from frame-to-frame
discontinuity where video sequences jump dramatically, while Diffusion Forcing roll-outs show
ego-motion through a consistent 3D environment. This highlights the ability of Diffusion Forcing to
stabilize rollouts of high-dimensional sequences without compounding errors.

4.2 Diffusion Planning: MCG, Causal Uncertainty, Flexible Horizon Control.

Decision-making uniquely bene�ts from Diffusion Forcing's capabilities. We evaluate our proposed
decision-making framework in a standard of�ine RL benchmark, D4RL [18]. Speci�cally, we
benchmark Diffusion Forcing on a set of 2D maze environments with sparse reward. An agent
is tasked with reaching a designated goal position starting from a random starting position. In
Appendix E.5 we provide a detailed description of the environment. The benchmark provides a
dataset ofrandom walksthrough mazes (thus stochastic). We train one model per maze.

We benchmark the proposed decision-making framework 3.4 with state-of-the-art of�ine RL methods
and the recently introduced Diffuser [36], a diffusion planning framework. See Fig. 1 for qualitative
and quantitative results: DF outperforms Diffuser and all baselines across all6 environments.

Bene�t of Monte Carlo Guidance. The typical goal for an RL problem is to �nd actions that
maximize theexpectedfuture rewards, which we achieve through MCG. Full-sequence diffusion
models such as Diffuser do not support sampling to maximize expected reward, as we formally
derive in Appendix C.5. To understand MCG's importance, we ablate it in Table 1. Removing MCG
guidance degrades our performance, though Diffusion Forcing remains competitive even then.
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Figure 4: In our real robot task, a robot arm is asked to swap the slots of two fruits using a third slot.
Since the fruits are input in random slots at the beginning, one cannot determine the next steps from a
single observation without knowledge of the initial placement of the fruits. As illustrated in (a) and
(b), the upper observation is the same but the desired outcome illustrated below can vary—the task
thus requires remembering the initial con�guration. In addition, as shown in (c), the same model that
generates actions also synthesizes realistic video from just a single frame.

Bene�t of Modeling Causality. Unlike pure generative modeling, sequential decision-making takes
actions and receives feedback. Due to compounding uncertainty, the immediate next actions are
more important than those in the far future. Though Diffuser and subsequent models are trained to
generate sequences of action-reward-state tuples[at ; r t ; ot ], directly executing the actions will lead
to a trajectory that deviates signi�cantly from the generated states. In other words, the generated
states and actions are not causally consistent with each other. To address this shortcoming, Diffuser's
implementation ignores the generated actions and instead relies on a hand-crafted PD controller to
infer actions from generated states. In Table 1, we see that Diffuser's performance drops dramatically
when directly executing generated actions. In contrast, Diffusion Forcing's raw action generations
are self-consistent, outperforming even actions selected by combining Diffuser's state predictions
with a handcrafted PD controller.

Bene�t of Flexible Horizon. Many RL tasks have a �xed horizon, requiring the planning horizon to
shrink as an agent makes progress in the task. Diffusion Forcing accomplishes this by design, while
full-sequence models like Diffuser perform poorly even with tweaks, as we explain in Appendix C.6.

4.3 Controllable Sequential Compositional Generation

We demonstrate that by only modifying the sampling scheme, we can �exibly compose sub-sequences
of sequences observed at training time. We consider a dataset of trajectories on a 2D, square plane,
where all trajectories start from one corner and end up in the opposite corner, forming a cross
shape. As shown in Fig. 1, when no compositional behavior is desired, one can let DF keep full
memory, replicating the cross-shaped distribution. When one desires compositionality, one can
let the model generate shorter plans without memory using MPC, leading to the stitching of the
cross's sub-trajectories, forming a V-shaped trajectory. Due to limited space, we defer the result to
Appendix E.2.

4.4 Robotics: Long horizon imitation learning and robust visuomotor control

Finally, we illustrate that Diffusion Forcing (DF) opens up new opportunities in the visuomotor
control of real-world robots. Imitation learning [10] is a popular technique in robotic manipulation
where one learns an observation-to-action mapping from expert demonstrations. However, the lack
of memory often prevents imitation learning from accomplishing long-horizon tasks. DF not only
alleviates this shortcoming but also provides a way to make imitation learning robust.

Imitation Learning with Memory. We collect a dataset of videos and actions by teleoperating with
a Franka robot. In the chosen task, one needs to swap the position of an apple and an orange, using
a third slot. See Fig. 4 for an illustration. The initial positions of the fruits are randomized such
that there are two possible goal states. As illustrated in Fig. 4, when one fruit is in the third slot, the
desired outcome cannot be inferred from the current observation—a policy must remember the initial
con�guration to determine which fruit to move. In contrast to common behavior cloning methods,
DF naturally incorporates memory in its latent state. We found that DF achieves80%success rate
while diffusion policy [10], a state-of-the-art imitation learning algorithm without memory, fails.
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Robustness to missing or noisy observations.Because it incorporates principles from Bayes
�ltering, Diffusion Forcing can perform imitation learning while being robust to noisy or missing
observations. We demonstrate this by adding visual distractions and even fully occluding the camera
during execution. DF allows us to easily indicate these observations as “noisy” by usingk > 0, in
which case DF relies heavily on its prior model to predict actions. Consequently, the success rate is
only lowered by4% to 76%. In contrast, a next-frame diffusion model baseline attains a success rate
of 48%: it must treat perturbed observations as ground truth and suffers out-of-distribution error.

Potential for pre-training with video. Finally, in parallel to generating actions, Fig. 4 illustrates
that Diffusion Forcing is capable of generating a video of the robot performing the task given only an
initial frame, unifying diffusion policy/imitation learning and video generative modeling and paving
the way to pre-training on unlabeled video.

4.5 Time Series Forecasting: Diffusion Forcing is a Good General-purpose Sequence Model

In Appendix E, we show that DF is competitive with prior diffusion [49] and transformer-based [50]
work on multivariate time series forecasting, following the experimental setup of [53].

5 Discussion

Limitations. Our current causal implementation is based on an RNN. Applications to higher-
resolution video or more complex distributions likely require large transformer models following
instructions in Appendix C.1. We do not investigate the scaling behavior of Diffusion Forcing to
internet-scale datasets and tasks.

Conclusion. In this paper, we introduced Diffusion Forcing, a new training paradigm where a model
is trained to denoise sets of tokens with independent, per-token noise levels. Applied to time series
data, we show how a next-token prediction model trained with Diffusion Forcing combines the
bene�ts of both next-token models and full-sequence diffusion models. We introduced new sampling
and guidance schemes that lead to dramatic performance gains when applied to tasks in sequential
decision making. Future work may investigate the application of Diffusion Forcing to domains other
than time series generative modeling, and scale up Diffusion Forcing to larger datasets.
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A Theoretical Justi�cation

In this section, we provide theoretical justi�cation for the train of Diffusion Forcing. The main
contributions can be summarized as follows:

• We show that our training methods optimize a reweighting of the Evidence Lower Bound
(ELBO) on the average log-likelihood of our data. We �rst establish this in full generality
(Theorem A.1), and then specialize to the form of Gaussian diffusion (Corollary A.2). We
show that the resulting terms decouple in such a fashion that, in the limit of a fully expressive
latent and model, makes the reweighting terms immaterial.

• We show that the expected likelihood overanydistribution over sequences of noise levels
can be lower bounded by a sum over nonnegative terms which, when reweighted, correspond
to the terms optimized in the Diffusion Forcing training objective maximizes. Thus, for a
fully expressive network that can drive all terms to their minimal value, Diffusion Forcing
optimizes a valid surrogate of the likelihood ofall sequences of noise levels simultaneously.

We begin by stating an ELBO for general Markov forward processesq(�), and generative models
p� (�), and then specialize to Gaussian diffusion, thereby recovering our loss. We denote our Markov
forward processq(�) as

q(x1:K j x0) =
KY

k=1

q(x k j x k � 1); (A.1)

and a parameterized probability model

p� ((( x k
t )1� k � K ; zt )t � 1) (A.2)

We assume thatp� satis�es theMarkov propertythat

p� (zt ; x k t
t j z1:t � 1; (x k s

s )1� s<t ) = p� (zt ; x k t j zt � 1) (A.3)

that is, the latent codeszt � 1 is a suf�cient statistic forx k t given the history. We say thatp� has
deterministic latentsif p� (zt j z1:t � 1; (x k s

s )1� s<t ; x k t
t ) is a Dirac delta.

Remark1. In order forp� to have deterministic latents and correspond to a valid probability distri-
bution, we need to view the latentszt not as individual variables, but as a collection of variables
zt (k1:t ) indexed byt 2 [T] and thehistoryof noise levelsk1:t 2 f 0; 1; : : : ; K gt . In this case, simply
settingzt (k1:t ) = ( k1:t ; (x k s

s )1� s� t tautologically produces deterministic latents. The reason for

indexingzt (k1:t ) with k1:t then arises because, otherwise,p� (zt j ((x k s
s )1� s� t ; (x k 0

s
s )1� s� t ) would

be ill-de�ned unlessks = k0
s for all 1 � s � t, and thus,p� would not correspond to a joint

probability measure. The exposition and theorem that follows allowzt (k1:t ) to be indexed on past
noise levelsk1:t but suppresses dependence onk1:t to avoid notational confusion.

A.1 Main Results

We can now state our main theorem, which provides an evidence lower bound (ELBO) on the expected
log-likelihood of partially-noised sequences(x k t

t )1� t � T , under uniformly sampled levelskt andx k t
t

obtained by noising according toq(�) as in(A.1). Notice that this formulation does not require an
explicit for of q(�) or p� , but we will specialize to Gaussian diffusion in the following section.

Theorem A.1. Fix x0
1:T . De�ne the expectation over the forward process with random noise level

k1:T as

E
forward

[�] := E
k1 ;:::;k T

unif
� [K ]

E
x k s

s � q(x k s
s j x 0

s ) ;1� s� T
[�]; (A.4)

and the expectation over the latents underp� (�) conditioned onk1:T ; (x k t
s )1� t � T as

E
p;z1: T

[�] := E
zs � p(zs j zs � 1 ;x k s

s ) ;s � T

h
� j k1:T ; (x k t

t )1� t � T

i
(A.5)
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Then, as long asp� satis�es the Markov property,

E
forward

[ln p� ((x k t
t )1� t � T )] � C(x0

1:T )

+ E
forward

E
p;z1: T

2

4
TX

t =1

0

@ 1
K + 1

ln p� (x0
t j x1

t ; zt � 1) +
KX

j =2

j
K + 1

DKL

�
q(x j � 1

t j x j
t ; x0

t ) k p� (x j
t j x j � 1

t ; zt � 1)
�

1

A

3

5 ;

whereC(x0
1:T ) is a constant depending only onx0

1:T (the unnoised data). Moreover, if the latents are
deterministic (i.e.p� (zt j zt � 1; x k t

t ) is a Dirac distribution), then the inequality holds with inequality
if and only if q(x k t +1: T

t j x k t
t ) � p� (x k t +1: T

t j x k t
t ; zt � 1), i.e. the variational approximation is

exact.

The proof of the above theorem is given in Appendix A.2. Remarkably, it involvesonly two
inequalities! The �rst holds with equality under deterministic latents and the second holds if and only
if variational approximation is exact:q(x k t +1: T

t j x k t
t ) � p� (x k t +1: T

t j x k t
t ; zt � 1). This tightness of

the ELBO suggests that the expression in Theorem A.1 is a relatively strong surrogate objective for
optimizing the likelihoods.

A.1.1 Specializing to Gaussian diffusion

We now special Theorem A.1 to Gaussian diffusion. For now, we focus on the “x-prediction”
formulation of diffusion, which is the one used in our implementation. The “� -prediction” formalism,
used throughout the main body of the text, can be derived similarly (see Section 2 of [7] for a clean
exposition). The following theorem follows directly by apply standard likelihood and KL-divergence
computations for the DDPM [28, 7] to Theorem A.1.

Corollary A.2. Let

q(x k+1 j x k
t ) = N (x k ;

p
1 � � k x k � 1; � k I ); (A.6)

and de�ne� k = (1 � � k ), �� k =
Q k

j =1 � j . Suppose that we parameterizep� (x j
t j x j +1

t ; zt � 1) =

N (� � (x j +1
t ; zt � 1; j ); � 2

j ), where further,

� � (x j
t ; zt � 1; j ) =

(1 � �� j � 1)p � j

1 � �� j
x j

t +
(1 � � j )

p
�� j � 1

1 � �� j
x̂ � (x j

t ; zt � 1; j ); � 2
j :=

(1 � � j )(1 �
p

�� j � 1)
1 � �� j

:

Then, as long asp� satis�es the Markov property, we obtained

E
forward

[ln p� ((x k t
t )1� t � T )] + C(x0

1:T ) � E
forward

E
p;z1: T

2

4
TX

t =1

j
K + 1

KX

j =1

cj kx̂0
� (x j

t ; zt � 1; j ) � x0
t k2

3

5

= E
forward

E
p;z1: T

"
TX

t =1

1f kt � 1g � kt ck t kx̂0
� (x k t

t ; zt � 1; kt ) � x0
t k2

#

;

where above, we de�necj = (1 � � j )2 �� j � 1

2� 2 (1 � �� j )2 .

Proof. The �rst inequality follows from the standard computations for the “x-prediction” formulation
of Diffusion (see Section 2.7 of [7] and references therein). The second follows by replacing the sum

overj with an expectation overkt
unif� f 0; 1; : : : ; K g.

We make a couple of remarks:

• As noted above, Corollary A.2 can also be stated for� -prediction, or the so-called “v -
prediction” formalism, as all are af�nely related.

• De�ne an idealized latent~zt � 1 consisting of all past tokens(x k t
t ) as well as of their

noise levelskt . This is a suf�cient statistic forzt � 1, and thus we can always view
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x̂0
� (x k t

t ; zt � 1; kt ) = x̂0
� (x k t

t ; �zt � 1; kt ), wherezt � 1 is just compressing�zt � 1. When ap-
plying the expectation ofx1:T � q to both sides of the bound in Corollary A.2, and taking
an in�mum over possible function approximatorx̂0

� , we obtain

inf
p�

E
q

E
forward

E
p;z1: T

kx̂0
� (x k t

t ; zt � 1; kt ) � x0
t k2 = inf

p�
E
q

E
forward

E
p;z1: T

kx̂0
� (x k t

t ; �zt � 1) � x0
t k2

= Var q[x0
t j (x k s

s )1� s� t ; k1; : : : ; kt ]:

This leads to a striking �nding: with expressive enough latents andp� , we can view the
maximization of each term in Corollary A.2 separately across time steps. The absence of
this coupling means that the weighting terms are immaterial to the optimization, and thus
can be ignored.

• Given the above remarks, we can optimize the ELBO by taking gradients through the
objective speci�ed by Corollary A.2, and are free to drop any weighting terms (or rescale
them) as desired. Backpropagation throughEp;z1: T is straightforward due to deterministic
latents. This justi�es the correctness of our training objective(3.1)and protocol Algorithm 1.

A.1.2 Capturing all subsequences

Theorem A.1 stipulates that, up to reweighting, the Diffusion Forcing objective optimizes a valid
ELBO on the expected log-likelihoods over uniformly sampled noise levels. The following theorem
can be obtained by a straightforward modi�cation of the proof of Theorem A.1 generalizes this to
arbitrary (possibly temporally correlated) sequences of noise.
Theorem A.3. LetD be an arbitrary distribution over[K ]T , and de�nePt (j j k1:t � 1) := Pr D [kt =
j j k1:t � 1]. Fix x0

1:T . De�ne the expectation over the forward process with random noise levelk1:T
as

E
forward ;D

[�] := E
k1 ;:::;k T �D

E
x k s

s � q(x k s
s j x 0

s ) ;1� s� T
[�]; (A.7)

and the expectation over the latent underp� (�) conditioned onk1:T ; (x k t
s )1� t � T as

E
p;z1: T

[�] := E
zs � p(zs j zs � 1 ;x k s

s ) ;s � T

h
� j k1:T ; (x k t

t )1� t � T

i
(A.8)

Then, as long asp� satis�es the Markov property,

E
forward ;D

[ln p� ((x k t
t )1� t � T )] � C(x0

1:T ) + E
forward ;D

E
p;z1: T

"
TX

t =1

� t

#

; where

� t :=

0

@Pt (1 j k1:t � 1) ln p� (x0
t j x1

t ; zt � 1) +
KX

j =2

jP t (j j k1:t � 1)DKL

�
q(x j � 1

t j x j
t ; x0

t ) k p� (x j
t j x j � 1

t ; zt � 1)
�

1

A ;

whereC(x0
1:T ) is a constant depending only onx0

1:T (the noise-free data), and where the inequality
is anequalityunder the conditions that (a)p� (zt j zt � 1; x k t

t ) is a Dirac distribution (deterministic
latents), and (b)q(x k t +1: T

t j x k t
t ) � p� (x k t +1: T

t j x k t
t ; zt � 1), i.e. the variational approximation is

sharp.

In particular, in the Gaussian case of Corollary A.2, we have

E
forward ;D

[ln p� ((x k t
t )1� t � T )] + C(x0

1:T ) � E
forward ;D

E
p;z1: T

"
TX

t =1

1f kt � 1gkt ck t kx̂0
� (x k t

t ; zt � 1; kt ) � x0
t k2

#

;

The most salient case for us is the restriction ofD to �xed sequences of noisek1; : : : ; kT (i.e. Dirac
distributions on[K ]T ). In this case,Pt (j j k1:t � 1) = 0 for all but j = kt , and thus our training
objective need not be a lower bound onEforward ;D [ln p� ((x k t

t )1� t � T )]. However, the terms in the
lower bound are, up to reweighting, ansubsetof those terms optimized in the training objective.
Thus, in light of the remarks following Corollary A.2, a fully expressive network can optimize all the
terms in the loss simultaneously. We conclude that, for a fully expressive neural network, optimizing
the training objective(3.1) is a valid surrogate for maximizing the likelihood of all possible noise
sequences.
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A.2 Proof of Theorem A.1

De�ne E<t [�] as shorthand forE
k1: s

unif
� [K ]

Ex k s
s � q(x k s

s j x 0
s ) ;1� s� t � 1 Ezs � p(zs j zs � 1 ;x k s

s ) ;s � t [�]. We

begin with the following claim

Claim 1 (Expanding the latents). The following lower bound holds:

E
forward

[ln p� ((x k t
t )1� t � T )] �

TX

t =1

E
<t

E
k t

unif
� f 0;1;:::;K g

E
x k t

t � q(x k t
t j x 0

t )

h
ln p� (x k t

t j zt � 1)
i

; (A.9)

Moreover, this lower bound holds with equality ifzs � p(zs j zs� 1; x k s
s ) is a Dirac distribution (i.e.,

deterministic latents).

Proof. Let's �x a sequencek1:T . It holds that

p� ((x k t
t )1� t � T ) =

Z

z1: T

TY

t =1

p(x k t
t ; zt j (x k s

s ; zs)s<t )

=
Z

z1: T

TY

t =1

p(x k t
t ; zt j zt � 1) (Markov Property)

=
Z

z1: T (k )

TY

t =1

p(zt j zt � 1; x k t
t )p� (x k t

t j zt � 1)

= E
zs � p(zs j zs � 1 ;x k s

s ) ;s � T

TY

t =1

p� (x k t
t j zt � 1): (Importance Sampling)

Thus, by Jensen's inequality,

ln p� ((x k t
t )1� t � T ) � E

zs � p(zs j zs � 1 ;x k s
s ) ;s � T

TX

t =1

ln p� (x k t
t j zt � 1) = E

p;z1: T

"
TX

t =1

ln p� (x k t
t j zt � 1)

#

;

where the inequality is and equality whenp� (zs j zs� 1; x k s
s ) is a Dirac distribution. By applying

Eforward to both sides of the above display, and invoking the Markov property of the latents, we
conclude that

E
forward

[ln p� ((x k t
t )1� t � T )] � E

forward
E

p;z1: T

"
TX

t =1

ln p� (x k t
t j zt � 1)

#

=
TX

t =1

E
<t

E
k t

unif
� f 0;1;:::;K g

E
x k t

t � q(x k t
t j x 0

t )

h
ln p� (x k t

t j zt � 1)
i

:

We now unpack the terms obtained from the preceding claim.

Claim 2 (ELBO w.r.t. q). It holds that

E
x k t

t � q(x k t
t j x 0

t )

h
ln p� (x k t

t j zt � 1)
i

� C1(x0; kt ) +

"

E
x k t :K

t � q(x k t :K
t j x 0

t )
ln

p� (x k t :K
t j zt � 1)

q(x k t +1: K
t j x0

t )

#

:

whereC1(x0; kt ) is a constant depending only onx0 andkt , and where the inequality holds with
equality if and only ifq(x k t +1: T

t j x k t
t ) � p� (x k t +1: T

t j x k t
t ; zt � 1).
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Proof. We have that

E
x k t

t � q(x k t
t j x 0

t )

h
ln p� (x k t

t j zt � 1)
i

= E
x k t

t � q(x k t
t j x 0

t )

�
ln

Z
p� (x k t :K

t j zt � 1)dx k t +1: K
t

�

= E
x k t

t � q(x k t
t j x 0

t )

"

ln

 

E
x k t +1: K

t � q(x k t +1: K
t j x k t

t )

"
p� (x k t :K

t j zt � 1)

q(x k t +1: K
t j x k t

t )

#!#

� E
x k t

t � q(x k t
t j x 0

t )

"

E
x k t +1: K

t � q(x k t +1: K
t j x k t

t )

"

ln
p� (x k t :K

t j zt � 1)

q(x k t +1: K
t j x k t

t )

##

((Jensen's inequality))

= E
x k t :K

t � q(x k t :K
t j x 0

t )

"

ln
p� (x k t :K

t j zt � 1)

q(x k t +1: K
t j x k t

t )

#

(Markov property ofq(�))

= C1(x0; kt ) +

"

E
x k t :K

t � q(x k t :K
t j x 0

t )
ln

p� (x k t :K
t j zt � 1)

q(x k t +1: K
t j x0

t )

#

;

where the constantC1(x0; kt ) = Ex k t :K
t � q(x k t :K

t j x 0
t )

h
ln q(x k t +1: K

t j x 0
t )

q(x k t +1: K
t j x k t

t )

i
depends only onx0 andkt .

To check the conditions for equality, note that ifq(x k t +1: T
t j x k t

t ) � p� (x k t +1: T
t j x k t

t ; zt � 1), then

E
x k t +1: K

t � q(x k t +1: K
t j x k t

t )

"

ln
p� (x k t :K

t j zt � 1)

q(x k t +1: K
t j x k t

t )

#

= ln p� (x k t
t j zt � 1) + E

x k t +1: K
t � q(x k t +1: K

t j x k t
t )

h
ln p� (x k t +1: K

t j zt � 1; x k t
t )

i

Since ln( �) is strictly concave,Ex k t +1: K
t � q(x k t +1: K

t j x k t
t )

h
ln p� (x k t

t j zt � 1)
i

= 0 if and only if

p� (x k t +1: K
t j zt � 1; x k t

t ) = q(x k t +1: K
t j x k t

t ).

Claim 3 (Computing the expected ELBO).

E
x k t :K

t � q(x k t :K
t j x 0

t )
ln

p� (x k t :K
t j zt � 1)

q(x k t +1: K
t j x0

t )

= C3(x0; kt ) + 1f kt = 0gln p� (x0
t j x1

t ; zt � 1) +
K � 1X

j =1

1f j � kt gDKL

�
q(x j

t j x j +1
t ; x0

t ) k p� (x j
t j x j +1

t ; zt � 1)
�

;

whereC2(x0; kt ) is some other constant depending onx0 andkt .

Proof. The proof invokes similar manipulations to the standard ELBO derivation for diffusion, but
with a few careful modi�cations to handle the fact that we only noise to levelkt . As is standard, we
require the identity

q(x j
t j x j � 1

t ; x0
t ) = q(x j � 1

t j x j
t ; x0

t ) �
q(x j

t j x0
t )

q(x j � 1
t j x0

t )
: (A.10)
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Part 1: Expanding the likelihood ratios . Using the above identity, we obtain

ln
p� (x k t :K

t j zt � 1)

q(x k t +1: K
t j x0

t )

= ln p(xK
t j zt � 1) + ln
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t ; zt � 1)

q(x k t +1
t j x0

t )
+

KX

j = k t +2

ln
p� (x j � 1
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!
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t j x k t
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+ ln p� (x k t
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t ; zt � 1)
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t j x k t

t )
+ ln

p� (x k t
t j x k t +1

t ; zt � 1)

q(x k t
t j x k t +1

t )1f k t � 1g
+

K � 1X

j = k t +1

ln
p� (x j

t j x j +1
t ; zt � 1)

q(x j
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;

where(i ) uses A.10,(ii ) invokes a cancellation in the telescoping sum, and the �nal display follows
from the computation

q(x k t
t j x k t +1

t )1f k t � 1g =
�

1 kt = 0
q(x k t

t j x k t +1
t ) kt � 1

: (A.11)

Observe that, because we don't parameterizep(xK
t j zt � 1), ln

�
q(x k t

t j x k t +1
t )1f k t � 1g

�
+

ln p(x K
t j z t � 1 )

q(x K
t j x k t

t )
can be regarded as some constantC0(x k t

t ; x k t +1
t ; xK

t ). Thus,
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(A.12)

Part 2: Taking expecations. We can now simplify to taking expectations. Observe that
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and similarly,
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kt � 1:

Finally, Ex k t :K
t � q(x k t :K

t j x 0
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t ; x k t +1
t ; xK

t ) is a constantC2(kt ; x0) depending only onkt ; x0.
Thus, from (A.12)
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Completing the proof of the ELBO. We are now ready to complete the proof. By combining the
previous two claims, we have

E
x k t

t � q(x k t
t j x 0

t )

h
ln p� (x k t

t j zt � 1)
i
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;

whereC3(x0; kt ) = C1(x0; kt ) + C2(x0; kt ) and where again, the above is an equality when

q(x k t +1: T
t j x k t

t ) � p� (x k t +1: T
t j x k t
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and consequently,
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Invoking Claim 1,
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We conclude by observing that
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since both terms only depend onk1:t � 1; (x k s
s )1� s� t � 1 andz1:t � 1. We conclude then that
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as needed. Lastly, we recall that the above is anequalityunder the conditions that
(a) p� (zt j zt � 1; x k t

t ) is a Dirac distribution, and (b)q(x k t +1: T
t j x k t

t ) � p� (x k t +1: T
t j x k t

t ; zt � 1),
and we reindexj  j +1 to ensure consistency with indexing in standard expositions of the diffusion
ELBO.

B Additional Method Details

B.1 Fused SNR reweighting

SNR reweighting [24] is a widely used technique to accelerate the convergence of image diffusion
models. In short, it reweighs the diffusion loss proportional to the signal-to-noise ratio (SNR) of
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noisyx k . In Diffusion Forcing, conditioning variablezt � 1 can also contain a non-trivial amount of
information aboutx t , in addition tox k t

t . For example, in a deterministic markovian system, ifx k t � 1
t � 1

has its noise levelkt � 1 = 0 , the posterior statezt � 1 contains all the information needed to predictx0
t

regardless of the noise level ofx k t
t .

Therefore were-derive SNR reweighting to re�ect this change in Diffusion Forcing. We call this
technique Fused SNR reweighting. We follow the intuition of original SNR reweighting to loosely
de�ne SNR in a sequence with independent levels of noises at different time steps. DenoteSt as the
normalized SNR reweighting factor forx k t

t following its normal derivation in diffusion models. For
example, if one uses min snr strategy [24], its reweighting factor will always fall between[0; C]
which we divide byC to getSt 2 [0; 1]. De�ne signal decay factor0 < 
 < 1, measuring what
proportion of signal inx k t � 1

t � 1 contribute to denoisingx k t
t . This is the simple exponential decay

model of sequential information. Now, de�ne cumulated SNR recursively as the running mean of
St : �St = 
 �St � 1 + (1 � 
 )St to account for signals contributed by the entire noisy history to the
denoising at time stept. The other factor that contributes to the denoising isSt of noisy observation
x k t

t . To combine them, we use a simpli�ed model for independent events. NoticeSt and �St always
falls in range[0; 1], and therefore can be reinterpreted as probabilities of having all the signal one
needs to perfect denoisex k t

t . Since the noise level att is independent of prior noise levels, we can
view St and �St � 1 as probabilities of independent events and thus can composed to de�ne a joint
probabilityS0

t = 1 � (1 � St )(1 � �St � 1), and we use thisS0
t as our fused SNR reweighting factor

for diffusion training.

In our experiments, we choose to follow the min-SNR reweighting strategy [24] to derive theS. Our
Fused SNR reweighting proves extremely useful to accelerate the convergence of video prediction,
while we didn't observe a boost on non-image domains so we didn't use it there.

B.2 Architecture

Video Diffusion We choose both the raw imagex and latent statez to be 2D tensors with channel,
width, and height. For simplicity, we use the same width and height forx andz. We then implement
the transition modelp(x k t

t jzt � 1) with a typical diffusion U-net [46]. We use the output of the U-net
as the input to a gated recurrent unit (GRU) and usezt � 1 as the hidden state feed into a GRU. The
output of GRU is treated aszt . For observation modelp(x t jzt ), we use a1-layer resnet [27] followed
by a conv layer. We combine these two models to create an RNN layer, where the latent of a particular
time step iszt � 1, input isx k t

t and output iŝx . One can potentially obtain better results by training
Diffusion Forcing with a causal transformer architecture. However, since RNN is more ef�cient for
online decision-making, we also stick with it for video prediction and it already gives us satisfying
results.

We choose the number of channels inz to be16 for DMlab and32 for Minecraft. In total, our
Minecraft model consists of36 million parameters and our DMlab model consists of24 million
parameters. We can potentially obtain a better Minecraft video prediction model with more parameters,
but we defer that to future works to keep the training duration reasonable (< 1 day). In maze planning,
the number of total parameters is4:33million.

Non-Video Diffusion For non-spatialx that is not video nor images, we use residue MLPs [59]
instead of Unet as the backbone for the dynamics model. Residue MLP is basically the ResNet [27]
equivalent for MLP. Similar to video prediction, we feed the output of resMLP into a GRU along
with zt � 1 to getzt . Another ResMLP serves as the observation model.

B.3 Diffusion parameterization

In diffusion models, there are three equivalent prediction objectives,x0, � [28], andv parameteriza-
tion [52]. Different objectives lead to different reweighting of loss at different noise levels, together
with SNR reweighting. For example,� parameterization andv parameterization are essential in
generating pixel data that favors high-frequency details.

In our experiments, we usev parameterization for video prediction and found it essential to both
convergence speed and quality.
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We observe thatx0 parameterization is strongly favorable in planning and imitation learning, likely
because they don't favor an arti�cial emphasis on high-frequency details. We observe the bene�ts of
v-parameterization in time-series prediction.

B.4 Noise schedule

We use sigmoid noise schedule [9] for video prediction, linear noise schedule for maze planning, and
cosine schedule for everything else.

B.5 Implementation Details of Sampling with Guidance

Corner case of sampling noiseIn our sampling algorithm, due to the �exibility of the scheduling
matrixK, there are corner cases whenx k t

t is required to stay at its same noise level during a sampling
step. The core question of this corner case is whether we should updatex k t

t at all. One option is just
copying over the old value. The other option is to run a backward diffusion followed by a forward
diffusion back to its old noise level to resample under the diffusion process. While we conclude
this can be an open question, we prefer the later approach, resampling, and use it in Monte Carlo
Guidance to generate multiple samples. We note that even if one takes the �rst approach, the guidance
gradient can still �ow back in the time steps beforet as the dynamics modelp(zt jx

k t
t ; zt � 1) can still

propagate the guidance gradient tozt � 1.

Other than Monte Carlo Guidance, this corner case only happens whenkt = 0 or kt = K throughout
our experiments. That is, we chose ourK such that once any token gets diffused slightly, it will keep
diffusing. In the case ofkt = K , keepingx k t

t at the same noise level implies it will stay as white
noise, and we don't even need to sample another white noise. In casekt = 0 , the time step is already
completely diffused either approach should give us the same result so we just opt for copying over
for simplicity.

Guidance for maze planning In maze planning, our main baseline Diffuer [36] discards the reward
from the dataset and directly plans with the goal position and velocity. We adopt the same convention
for Diffusion Forcing. One can perform guidance on goal position using log-likelihoodjjpT � gjj ,
but a �exible horizon model should not require users to manually specify aT to reach its goal, instead
we want it to try to reach the goal for any possible horizon. Therefore we use the reward modelP

t jjpT � gjj so any time step can be the �nal step to reach the goal. This objective is challenging
due to the non-convex nature of 2D maze, but we found Diffusion Forcing can still reliably �nd plans
without bumping into walls. However, we also observe that the agent tend to leave the goal location
due to the nature of the provided dataset - the goal location is just one possible waypoint for the robot
to pass through, and there are no trajectories that simply stay at the goal. We also tried this reward for
guidance with Diffuser, but it didn't work even with a good amount of tuning.

B.6 Performance Optimization

Accelerating the diffusion sampling of Diffusion Forcing is similar to that of normal diffusion models.
We adopt DDIM [57] sampling for the diffusion of each token. While we useK = 1000 steps of
diffusion, we sample with only100DDIM for video prediction and50 for non-video domains.

While Diffusion Forcing can be implemented with transformers, we use an RNN as the backbone for
Diffusion Forcing experiments it's widely used in decision-making for its �exibility and ef�ciency in
online decision-making systems. To further reduce training time and GPU memory usage, we use
frame-stacking to stack multiple observed images as a singlex. This is due to the fact that adjacent
tokens can be very similar - e.g. recording the same motion at higher fps can lead to this. We deem
that it's wasteful if we roll out the dynamics model multiple times to generate almost identical tokens.
For video datasets, we manually examine how many time steps it takes to require a minimal level
of prediction power instead of copying frames over. There is another reason why we use frame
stacking - many diffusion model techniques such as different noise schedules are designed to model
x with correlated elements or redundancy. Low-dimensional systems may need drastically different
hyperparameters when they lack the data redundancy these techniques are tested on. Frame stacking
is thus also helpful for our non-image experiments so we can start with canonical hyperparameters of
diffusion models. We use a frame stack of4 for DMlab video prediction,8 for Minecraft, and10 for
maze planning.
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At sampling time, we also have a design choice to reduce compute usage, as re�ected in line 8 of
Algorithm 2. In line 8, we directly assignznew

t to zt , instead of recalculatingzt with posterior model
p(zt jzt � 1; xnew

t ; k � 1). Since the model is trained to condition onzt estimated from arbitrary noisy
history, we recognize that both are valid approaches. The reason why the choose line8 is twofold.
First, it cuts the compute by half, avoiding computing posterior every step. Second, this happens to
be what we want for stabilization -znew

t already contains the information of the cleanxnew
t under our

simpli�ed observation model, and happens to be estimated withk = kt , a noise level higher than that
of xnew

t . This happens to implement the behavior we want for stabilization.

B.7 Sampling schedule for causal uncertainty

Inference is depicted in Algorithm 2 and Figure 2. In Equation B.1, we illustrate a speci�c instantiation
of theK matrix we used for causal planning. For simplicity, we denote the case where a latentz0 is
given and aim to generatex1:H +1 .

Kpyramid =

2
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(B.1)

Diffusion Forcing begins by sampling our sequences as white noise with noise levelK . It then
denoises along each rowm = 1 ; : : : ; M of K in decreasing order. It does so by proceeding
sequentially through framest = 1 ; : : : ; T , updating the latent (Line 5 of Algorithm 2), and then
partially applying the backward process to noise levelk = Km;t dictated by the scheduling matrixK
(Line 6-7 of Algorithm 2). We call aK like this pyramid scheduling, as the tokens in the far future
are kept at higher noise level than near future.

B.8 Metrics for Maze Planning

We report the episode reward of Diffusion Forcing for different maze planning environments in
Table 1. However, we found that the episode reward isn't necessarily a good metric: Intuitively, maze
planning should reward smart agents that can �nd the fastest route to the goal, not a slow-walking
agent that goes there at the end of the episode. The dataset never contains data on the behavior
of staying at the goal, so agents are supposed to walk away after reaching the goal with sequence
planning methods. Diffuser may had an unfair advantage of just generating slow plans, which happens
to let the agent stay in the neighborhood of the goal for more steps and get a very high reward as a
result. This metric seems to exploit �aws in the environment design - a good design would involve a
penalty of longer time taken to reach the goal. Therefore, in future works based on our paper, we
encourage alternative metrics like the time it takes to reach the goal for the �rst time, which Diffusion
Forcing excels at.

B.9 Implementation Details of Timeseries Regression

We follow the implementation of pytorch-ts, where the validation set is a random subset of the
training set with the same number of sequences as the test set. We use early stopping when validation
crps-sum hasn't increased for 6 epochs. We leverage the same architecture (1 mlp and 4 grus) as well
as a batch size of 32.

B.10 Compute Resources

All of our experiments usefp 16mixed precision training. Time series, maze planning, composition-
ally, and visual imitation experiments can be trained with a single2080T i with 11GB of memory.
We tune the batch size such that we fully use the memory of GPUs. This translates to a batch size of
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2048for maze planning and compositional experiments, and32 for visual imitation learning. While
we use early stopping on the validation set for time series experiments, we did not carefully search for
the minimal number of training steps required, though the model usually converges between50k to
100k steps. The above environments thus usually take4 � 8 hours to train although there is without
doubt a signi�cant potential for speed up.

Video prediction is GPU intensive. We use8 A100 GPUs for both video prediction datasets. We
train for50K steps with a batch size of8 � 16. It usually takes12hours to converge at40K steps of
training (occasional validation time also included).

C Additional Intuitions and Explainations

C.1 Extension to transformer backbone

While this paper focuses on a causal implementation of Diffusion Forcing with RNNs, it's easy to
adopt Diffusion Forcing with modern architectures like transformers. One can simply modify a
transformer-based sequence diffusion model to train with independent noise levels across tokens
and follow the techniques listed in Section B.1. A strict implementation of causal Diffusion Forcing
would involve a causal attention mask on the transformer. However, Diffusion Forcing's fractional
masking can do something more interesting: Consider the scenario that we use a transformer without
a causal mask. We can still implement causality by controlling noise. By labeling the future as full
white noise, there is no information leaked into the past tokens. By labeling future tokens as free of
noise, we make the model completely non-causal. By labeling the future tokens as noisy, a slight
amount of information about the future is provided for the prediction of past tokens. This effectively
states that one only needs a non-causal architecture, but controlling fractional noise of the future, to
achieve partial or complete causality. These extensions are beyond the scope of this paper, but we
already veri�ed their effectiveness and thus provide them as intuitions for future works.

C.2 The need for independent noise levels

When training Diffusion Forcing, we choose to sample per-token noise level following i.i.d uniform
distribution from[1; 2:::K ]. One may wonder about the necessity of this choice. Here we discuss the
unique abilities of independent noise and the compute overhead added by it.

The use of independent noise confers a number of special capabilities in our model, including
stabilization of autoregressive rollout 3.3, modeling causal uncertainty 3.3, and removing the need
for expensive reconstruction guidance when conditioning on context C.6. None of these capabilities
can be achieved by full-sequence diffusion. AR-diffusion [66] and Rolling Diffusion [51] can only
achieve the �rst and third one. There are more sampling-time applications such as �exible frame
interpolation. Finally, we also saw the practical bene�ts of using independent noise in hyperparameter
tuning. One can simply try different sampling schemes to �gure out the most effective one for their
applications. All these capabilities only require training the model once with Diffusion Forcing. In
contrast, any tuning of the sampling scheme would require re-training the model for AR-diffusion
and Rolling Diffusion.

On the other hand, we didn't observe much computing overhead when comparing Diffusion Forcing
to full-sequence diffusion, as soon as one closely follows our training techniques like B.1. The
empirical evidence is based on our experiments with an experimental transformer implementation
of Diffusion Forcing and is thus not fully consistent with the main paper. However, we present
the high-level descriptions below for readers interested in more insights: The complexity added by
independent noise levels is in the temporal dimension. Therefore, we �rst adopt a standard technique
for video diffusion models - image pre-training, to abstract away the complexity of the image pixels
themselves. Then the complexity left is temporal prediction only. We then take the pre-trained
image-only model and continue training it on video data. It turns out the sampling result of Diffusion
Forcing with fewer training steps in this second stage is already better than that of full-sequence
diffusion at convergence. We speculate that the better result is due to the same data-augmentation
effect described in prior works [39]. This shows that the overhead added by independent noise is
well-warranted when considering the overall training compute (including image pre-training).
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C.3 Guidance as planning

As stated in Section 2, one can use the gradient of the logarithmic of a classi�erlogc(yjx k
t ) to guide

the sampling process of diffusion model towards samples with a desired attributey. For example,y can
refer to the indicator of a success event. However, we can consider the logarithmic of a more general
energy functionc(x k

t ). This has the interpretation asPr
�
yjx k

t

�
, wherePr

�
y = 1 j x k

t

�
= ec(x k

t ) .
Some popular candidate energies include

c(x k
t ) = E

"
X

t 0>t

r 0(x k t 0

t 0 ) j x k
t

#

; (C.1)

corresponding to a cost-to-go; we can obtain unbiased estimates of this gradient by using cumulative
reward~c(x k

t ) =
P

t 0>t r 0(x k t 0

t 0 ). We can also use goal distancec = �k x kT
T � gk2 as a terminal

reward. We provide details about the guidance function deployed in the maze2d planning experiment
in Appendix B.5.

C.4 Noising and stabilizing long-horizon generations

Here, we explain in detail how we use noising to stabilize long-horizon generation. At each timet,
during the denoising, we maintain a latentzk small

t � 1 from the previous time step, with0 < k small �
K corresponding to some small amount of noise. We then donext tokendiffusion to diffuse
the tokenx t across noise levelsxK

t ; xK � 1
t ; : : : ; x0

t (corresponding to Algorithm 2 with horizon
T = 1 , initial latent zk

t � 1, and noise scheduleKm; 1 = m); this process also produces latents
zK

t ; zK � 1
t ; : : : ; z0

t associated with each noise level. From these, we use the latentzk small
t to repeat

the process. This noised latent can be interpreted as an implementation of conditioning onx k small
t

in an autoregressive process. In a potential transformer implementation of Diffusion Forcing as we
discussed in Appendix C.1, one can instead run a forward diffusion on a fully diffused token to
achieve stabilization.

It is widely appreciated that adding noise to data ameliorates long-term compounding error in behavior
cloning applications [38, 42], and even induces robustness to non-sequential adversarial attacks [13].
In autoregressive video generation, the noisedx k small

t is in-distribution for training, because Diffusion
Forcing trains from noisy past observation in its training objective. Hence, this method can be
interpreted as a special case of the DART algorithm for behavior cloning [42], where the imitiator (in
our case, video generator) is given actions (in our case, next video frames) from noisy observations
(in our case, noised previous frames). Somewhat more precisely, because we use both tokens at
training time to train Diffusion Forcing, and using slightly noised tokens for autoregression at test
time, our approach inherits the theoretical guarantee of the HINT algorithm [5].

C.5 Why Monte Carlo Guidance relies on Diffusion Forcing

Monte Carlo Guidance provides substantial variance reduction in our estimate of cost-to-go guidance
(C.1). This technique crucially relies on the ability to roll out future tokens from current ones to
use these sample rollouts to get Monte Carlo estimates for gradients. This is not feasible with
full-sequence diffusion, because this requires denoising all tokens in tandem; thus, for a given �xed
noise level, there is no obvious source of randomness to use for the Monte Carlo estimate. It may be
possible to achieve variable horizon via the trick proposed in the following subsection to simulate
future rollouts, but to our knowledge, this approach is nonstandard.

C.6 Does the replacement technique lead to �exible horizons in full-sequence diffusion?

A naive way to obtain �exible horizon generation in full-sequence diffusion is via the “replacement
trick”: consider a full sequence model trained to diffusex1:T , which we partition intox1:t � 1; x t :T ].
Having diffused tokensx1:t � 1, we can attempt to denoise tokens of the form[~x k

1:t � 1; x k
t :T ], where

we �x ~x k
1:t � 1 = x1:t � 1 to be the previously generated token, and only have score gradients update the

remainingx k
t :T . One clear disadvantage of this method is inef�ciency - one still needs to diffuse the

whole sequence even when there is one step left att = T � 1. What's more, [31] points out that this
approach of conditioning, named “conditioning by replacement”, is both mathematically unprincipled
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Figure 5: Diffusion Forcing is trained on independent level of noises at different timesteps. As a
result, we can control the noise levelk to achieve different effects on conditioning and prediction.

and can lead to inconsistency in the generated sequence. The best �x proposed by [31] incorporates
an additional gradient term with respect tox t :T at every diffusion step; this is still an incomplete �x
and suffers the computation cost of an extra backward propagation for every sampling step.

C.7 Further connection to Bayesian �ltering

The core idea of Diffusion Forcing can be interpreted as using diffusion to construct an interpolation
between prior distribution and posterior distribution of a Bayes �lter. Consider the hybrid distribution
p(zt jzt � 1; x k

t ). Whenk = 0 , this hybrid distribution becomes the posteriorp(zt jzt � 1; x t ). On the
other hand, whenk = K , the hybrid distribution becomesp(zt jzt � 1; n) for n � N (0; I ). Since
the independent Gaussian noise termn contains no information aboutz, this is exactly the prior
distributionp(zt jzt � 1). By varyingk betweenK and0, the same neural network can parameterize
everything between prior and posterior.

C.8 Connection to other sequence training schemes

Noise as masking provides a uni�ed view of different sequence training schemes. The following
exposition uses a length3 sequence as an example: We always start with fully masked sequence
[xK

1 ; xK
2 ; xK

3 ] with the goal of denoising it a “clean sequence” of zero noise.[x0
1; x0

2; x0
3]. Assume

all diffusions are sampled with3-step DDIM.

Autoregressive. In teacher forcing, one trains a model to predict the next token conditioned on
prior observations. One can train next-token diffusion models with teacher forcing such as [49]:
feed neural network with past observations as well as a current observation and ask it to predict
clean current observation. A typical training pair can have the input of[x0

1; x0
2; xK

3 ]> and target of
[x0

1; x0
2; x0

3]> .
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At sampling time, one fully diffuses the next token before adding the diffused observation to history
to perform an autoregressive rollout. The diffusion process would thus look like

[xK
1 ; xK

2 ; xK
3 ]>

[xK== 2
1 ; xK

2 ; xK
3 ]> ;

[x0
1; xK

2 ; xK
3 ]> ;

[x0
1; xK== 2

2 ; xK
3 ]>

[x0
1; x0

2; xK
3 ]> ;

[x0
1; x0

2; xK== 2
3 ]> ;

[x0
1; x0

2; x0
3]> :

Notably, Diffusion Forcing can also perform this sampling scheme at sampling time for applications
like imitation learning, when one wants to diffuse the next action as fast as possible.

Full Sequence Diffusion.Full sequence diffusion models accept a noisy sequence and denoises
level-by-level

[xK
1 ; xK

2 ; xK
3 ]>

[xK== 2
1 ; xK== 2

2 ; xK== 2
3 ]> ;

[x0
1; x0

2; x0
3]> :

Notably, Diffusion Forcing can also perform this sampling scheme at sampling time.

Diffusion Forcing with causal uncertainty As shown in Figure 2, to model causal uncertainty,
Diffusion Forcing keeps the far future more uncertain than the near future by having a larger noise
level k, at any time of diffusion. An example pattern looks like this:

[xK
1 ; xK

2 ; xK
3 ]>

[xK== 2
1 ; xK

2 ; xK
3 ]> ;

[x0
1; xK== 2

2 ; xK
3 ]> ;

[x0
1; x0

2; xK== 2
3 ]>

[x0
1; x0

2; x0
3]>

Notable, [65] is the �rst one to propose such a linear uncertainty sampling scheme for causal diffusion
models, although Diffusion Forcing provides a generalization of such scheme in combination with
other abilities.

Diffusion Forcing with stablization Previously we introduced the autoregressive sampling scheme
that Diffusion Forcing can also do. However, such a scheme can accumulate single-step errors
because it treats predictedx as ground truth observation. Diffusion Forcing addresses this problem
by telling the model that generated images should be treated as noisy ground truth, as shown in 2.

It �rst fully diffuses the �rst token,

[xK
1 ; xK

2 ; xK
3 ]>

[xK== 2
1 ; xK

2 ; xK
3 ]> ;

[x0
1; xK

2 ; xK
3 ]>

Then, it feed the diffusedx0
1 into the model but tell it is of a slightly higher noise level, asx1

1 to
diffusex2.

[x1
1; xK== 2

2 ; xK
3 ]>

[x1
1; x0

2; xK
3 ]>

Then, it feeds the diffusedx0
2 into the model but tells it is of a higher noise level, asx1

2.

[x1
1; x1

2; xK== 2
3 ]> ;

[x1
1; x1

2; x0
3]> :
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Figure 6: Prediction intervals of Diffusion Forcing for the �rst prediction window of the test set in
the Electricity time series dataset. Only the �rst 16 features out of 370 are plotted.

D Extended Related Work

Reconstructing masked tokens.Masked Autoencoders for images [26] and videos [17] are a
popular method for representation learning in pixel space. They have been extended to perform
diffusion to generate masked patches conditioned on unmasked ones [62, 19].

Casting Image Generation as Sequence Generation.[60, 8] show that even generative modeling
of non-sequential data, such as images, can be fruitfully cast as sequence generative modeling.

Non-Diffusion Probabilistic Sequence Models.[12] parameterize token-to-token transitions via a
variational auto-encoder. This makes them probabilistic, but does not directly maximize the joint
probability of sequences, but rather, enables sampling from the distribution of single-step transitions.

Sequence Diffusion with Varying Noise Levels.Most similar to our work is AR-Diffusion [65]
which similarly aims to train next-token prediction models for sequence diffusion. Key differences
are that AR-Diffusion proposes a noise level that islinearly dependent on the position of each word
in the sequence, while our critical contribution is to have each noise level beindependent, as this
uniquely enables our proposed sampling schemes, such as stabilizing auto-regressive generation and
conditioning on corrupted observations. Further, AR-Diffusion only explores language modeling
and does not explore guidance, while we investigate Diffusion Forcing as a broadly applicable
sequence generative model with particular applications to sequential decision-making. In particular,
we introduce Monte-Carlo Guidance as a novel guidance mechanism. Another closely related work
is Rolling Diffusion [51], which proposes to diffuse a sequence with near future more certain and far
future more uncertain, resembling the causally uncertain sampling scheme of Diffusion Forcing. Like
AR-Diffussion, Rolling Diffusion's training noise levels are linearly dependent on the positions of
tokens and must use the exact same noise level scheme at sampling time. It, therefore, shares the
aforementioned limitations of AR-Diffusion as well.

E Additional Experiment Results

E.1 Multivariate Probabilistic Time Series Forecasting

To illustrate Diffusion Forcing's new training objective does not degrade it as a generic sequence
model, we evaluate Diffusion Forcing on high-dimensional and long-horizon sequence prediction
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tasks in time series prediction. We adopt multiple time series datasets with real-world applications
from GluonTS [2] and evaluate Diffusion Forcing with strong baselines with standard metrics in this
domain. In this section, we mainly focus on the results and analysis. For a detailed description of
datasets and the metric, we refer the reader to Appendix F.4.

Problem Formulation Let X = f x t g
T
t =1 be a sequence (multivariate time series) ofD -dimensional

observationsx t 2 RD of some underlying dynamical process, sampled in discrete time steps
t 2 f 1; : : : ; Tg, whereT 2 N. In the problem setting of probabilistic time series forecasting, the
sequenceX = f X c; X pg is split into two subsequences at time stept0 2 N with 1 < t 0 � T : the
context windowX c := f x t g

t 0 � 1
t =1 (also called history or evidence) of lengtht0 � 1, and the prediction

windowX p := f x t g
T
t = t 0

of lengthT � t0 + 1 (also known as the prediction horizon). Then, the task
is to model the conditional joint probability distribution

q(x t 0 :T j x1:t 0 � 1) :=
TY

t = t 0

q(x t j x1:t � 1) (E.1)

over the samples in the prediction window. If we know the distribution in(E.1), we can sample
forecast prediction sequences given some initial context from the evidence sequence. However,
most time-dependent data generation processes in nature have complex dynamics and no tractable
formulation ofq(x t 0 :T j x1:t 0 � 1). Instead, we construct a statistical model that approximates the
generative process in(E.1)and estimates quantiles via Monte Carlo sampling of simulated trajectories.
In this way, con�dence levels or uncertainty measures can be calculated, and point forecasts can be
produced as the mean or median trajectory [35].

Table 2: Results for time series forecasting. We report the test setCRPSsum (the lower, the better) of
comparable methods on six time series datasets. We measure the mean and standard deviation of our
method from �ve runs trained with different seeds.

Method Exchange Solar Electricity Traf�c Taxi Wikipedia

VES [35] 0.005� 0.000 0.900� 0.003 0.880� 0.004 0.350� 0.002 - -
VAR [44] 0.005� 0.000 0.830� 0.006 0.039� 0.001 0.290� 0.001 - -
VAR-Lasso [44] 0.012� 0.000 0.510� 0.006 0.025� 0.000 0.150� 0.002 - 3.100� 0.004
GARCH [61] 0.023� 0.000 0.880� 0.002 0.190� 0.001 0.370� 0.001 - -
DeepAR [54] - 0.336� 0.014 0.023� 0.001 0.055� 0.003 - 0.127� 0.042
LSTM-Copula [53] 0.007� 0.000 0.319� 0.011 0.064� 0.008 0.103� 0.006 0.326� 0.007 0.241� 0.033
GP-Copula [53] 0.007� 0.000 0.337� 0.024 0.025� 0.002 0.078� 0.002 0.208� 0.183 0.086� 0.004
KVAE [40] 0.014� 0.002 0.340� 0.025 0.051� 0.019 0.100� 0.005 - 0.095� 0.012
NKF [14] - 0.320� 0.020 0.016� 0.001 0.100� 0.002 - 0.071� 0.002
Transformer-MAF [50] 0.005� 0.003 0.301� 0.014 0.021� 0.000 0.056� 0.001 0.179� 0.002 0.063� 0.003
TimeGrad [49] 0.006� 0.001 0.287� 0.020 0.021� 0.001 0.044� 0.006 0.114� 0.020 0.049� 0.002
ScoreGrad sub-VP SDE [67] 0.006� 0.001 0.256� 0.015 0.019� 0.001 0.041� 0.004 0.101� 0.004 0.043� 0.002
Ours 0.003� 0.001 0.289� 0.002 0.023� 0.001 0.040� 0.004 0.075� 0.002 0.085� 0.007

Results. We evaluate the effectiveness of Diffusion Forcing as a sequence model on the canonical
task of multivariate time series forecasting by following the experiment setup of [53, 50, 49, 58, 67]
Concretely, we benchmark Diffusion Forcing on the datasets Solar, Electricity, Traf�c, Taxi, and
Wikipedia. These datasets have different dimensionality, domains, and sampling frequencies, and
capture seasonal patterns of different lengths. The features of each dataset are detailed in Table 3. We
access the datasets from GluonTS [2], and set the context and prediction windows to the same length
for each dataset. Additionally, we employ the same covariates as [49]. We evaluate the performance of
the model quantitatively by estimating the Summed Continuous Ranked Probability ScoreCRPSsum
via quantiles. As a metric,CRPSsum measures how well a forecast distribution matches the ground
truth distribution. We provide detailed descriptions of the metric in Appendix F.4. We benchmark
with other diffusion-based methods in time series forecastings, such as TimeGrad [49] and the
transformer-based Transformer-MAF [50]. In particular, the main baseline of interest, TimeGrad [49],
is a next-token diffusion sequence model trained with teacher forcing. We track theCRPSsum metric
on the validation set and use early stopping when the metric has not improved for 6 consecutive
epochs, while all epochs are �xed to 100 batches across datasets. We then measure theCRPSsum on
the test set at the end of the training, which we report in Table 2. We use the exact same architecture
and hyperparameters for all time series datasets and experiments. Diffusion Forcing outperforms all
prior methods except for [67] with which Diffusion Forcing is overall tied, except for the Wikipedia
dataset, on which Diffusion Forcing takes fourth place. Note that time series is not the core application
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of Diffusion Forcing, and that we merely seek to demonstrate that the Diffusion Forcing objective is
applicable to diverse domains with no apparent trade-off in performance over baseline objectives.

E.2 Additional results in compositional generation

Since Diffusion Forcing models the joint distribution of any subset of a sequence, we can leverage
this unique property to achieve compositional behavior - i.e., Diffusion Forcing can sample from the
distribution ofsubsetsof the trajectory and compose these sub-trajectories into new trajectories.

In particular, we show that we can also have �exible control over how compositional Diffusion
Forcing is. As shown in 7, consider a dataset of trajectories on a 2D, square plane, where all
trajectories start from one corner and end up in the opposite corner, forming a cross shape. When
no compositional behavior is desired, one can let the models replicate the cross-shaped distribution
by allowing full memory of the HMM model. When one desires compositional such as generating
a V-shaped trajectory, which stitches two sub-trajectories together, one can let the model generate
shorter plans with no-memory context using MPC. (Add �gures).

(a) Dataset (b) W/ memory (c) W/o memory

Figure 7: Given a dataset of trajectories (a), Diffusion Forcing models the joint distribution of all
subsequences of arbitrary length. At sampling time, we can sample from the trajectory distribution
by sampling Diffusion Forcing with full horizon (b) or recover Markovian dynamics by disregarding
previous states (c).

E.3 Additional results in video prediction (wo/ cherry picking)

In�nite Rollout without sliding window Diffusion Forcing can rollout longer than maximum train-
ing horizonwithout sliding window. That is, we run Diffusion Forcing's RNN continuously without
ever reinitializingz0. This is a surprising effect we observed from the rollout stabilization property of
Diffusion Forcing. In Figure 8, 10, we use Diffusion Forcing to generate video sequences of length
180and visualize subsampled sequences. Notably, Diffusion Forcing used in these visualizations is
trained with a maximum length of72 frames for Minecraft and36 frames for DMLab, illustrating it
can rollout 2x-5x times longer than it's trained onwithout sliding window. In addition, we also tried
rolling these models out for2000frames and without seeing the model blowing up on both datasets.
There are occasional cases where the Minecraft agent gets stuck and the entire screen is the “dirt”
block, but this is more of a dataset issue E.5 and the agent is able to recover after it turns around.

Consistency We also present additional results where we only generate within our maximum training
length. As shown in �gure 13 12, Diffusion Forcing can generate consistent videos. Results are not
cherry-picked.
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Figure 8: Visualization shows Diffusion Forcing trained on72 frames is able to rollout180frames on
Minecraft datasetwithout sliding window. The visualization shows a non-cherry-picked subsampling
of these180frames, although Diffusion Forcing can roll out much longer (such as 2000 frames) on
this dataset.

E.4 Additional results in planning

We provide some additional visualizations of causal planning in 15. We also present additional
visualization of Diffusion Forcing performing model predictive control in action. As shown in
�gure 14, Diffusion Forcing can generate plans of shorter horizons since it's �exible horizon.
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Figure 9: Diffusion Forcing trained on72 frames is able to rollout180frames on Minecraft dataset
without sliding window. The visualization shows a non-cherry-picked subsampling of these180
frames, although Diffusion Forcing can roll out much longer (such as 2000 frames) on this dataset.
The �rst few frames marked in red are the ground truth images of the dataset used for conditioning.

E.5 Real robot experiment setup

In Figure 16 we visualize our robot experiment setup with corruption on observation. The dataset is
collected when the target bag isn't present, while we test with such a bag in the scene zero-shot for
the imitation learning experiment with observation corruption. The typical failure mode is when the
robot no longer reacts to the visual clues of the randomized location of objects. We didn't observe
the robot act wildly due to visual distractors.

F Additional details about datasets

F.1 Dataset for video diffusion

We adopt the video prediction dataset Minecraft and DMlab used by TECO[68].

Minecraft Navigation The Minecraft navigation dataset consists of �rst-person-view videos of
random walks in the Minecraft `swamp` biome. The agent walks via a technique called `sprint jump`
which allows it to jump across blocks without getting stuck at 1 block obstacles. The agent walks
straight most of the time, with small chances of turning left or right. The height and width of the
video is128pixels and we trim long videos to subsequences of72 frames. The dataset comes with
paired action data but we discard them to bring more stochasticity to the prediction task. Due to
limited compute, we only train on about10%of the total subsequences.

One problem we noticed about the dataset is when the agent runs into obstacles with a height of 2
blocks or more. In this case, the agent will get stuck and the entire video sequence will consist of grey
granite patterns or brown dirty patterns. This leads to a huge amount of frames with these patterns,
making video models predict meaningless frames. Yet, we deem this as a problem of this dataset
itself.

DMLab Navigation Deepmind Lab navigation dataset consists of random walks in a 3D maze
environment. For DMLab, the resolution is64pixels and we use subsequences of48 frames. We also
disregard the provided actions due to training.

We note that the VQ-VAE latent that stable video diffusion [4] diffuses is also only128� 128� 3,
indicating Diffusion Forcing has the potential to scale up to higher resolution images with pre-trained
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