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Abstract

Conducting experiments and collecting data for machine learning models is a
complex and expensive endeavor, particularly when confronted with limited in-
formation. Typically, extensive experiments to obtain features and labels come
with a significant acquisition cost, making it impractical to carry out all of them.
Therefore, it becomes crucial to strategically determine what to acquire to max-
imize the predictive performance while minimizing costs. To perform this task,
existing data acquisition methods assume the availability of an initial dataset that
is both fully-observed and labeled, crucially overlooking the partial observability
of features characteristic of many real-world scenarios. In response to this chal-
lenge, we present Partially Observable Cost-Aware Active-Learning (POCA), a
new learning approach aimed at improving model generalization in data-scarce and
data-costly scenarios through label and/or feature acquisition. Introducing µPOCA
as an instantiation, we maximize the uncertainty reduction in the predictive model
when obtaining labels and features, considering associated costs. µPOCA enhance
traditional Active Learning metrics based solely on the observed features by gener-
ating the unobserved features through Generative Surrogate Models, particularly
Large Language Models (LLMs). We empirically validate µPOCA across diverse
tabular datasets, varying data availability, acquisition costs, and LLMs.

1 Introduction

In real-world machine learning (ML) applications, fully-observed, pristine training data is an excep-
tion rather than the norm. This challenge is especially evident during the initial stages of model
development when training data is limited and varies in its informativeness across samples [1–3]. At
this stage, obtaining additional data is crucial for improving model generalization but is fraught with
challenges [4–6]. In particular, acquiring new data can be costly, often resulting in only essential fea-
tures and labels being collected, leading to partially observed features in training data. Therefore, it’s
vital that acquisition is efficient, yet it remains unclear which features and labels from each instance
will ultimately prove essential. Furthermore, data sources themselves can also be partially observed,
with different features available across samples, further complicating the acquisition process. These
challenges emphasize the importance of a new problem we call Partially Observable Cost-Aware
Active-Learning (POCA) illustrated in Figure 1. Before its formalization in Section 2, we provide an
intuitive overview:

“In situations with limited labeled data and partial feature observations, our objective is to
enhance the generalization capabilities of a predictive model by strategically collecting features
and/or labels. This goal should account the cost associated with data collection, as well as the
varying levels of informativeness of labels and features across different instances”
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Addressing the POCA problem is vital when building systems with partial observation or relevant
features are yet to be defined, particularly in fields like customer churn, monitoring, healthcare,
and finance (see Appendix A). For example, developing a churn customer prediction system might
start with some basic client information, such as demographics and income. However, to build such
a system, additional features may be needed, which could be gathered through further customer
interactions or surveys. At the outset, it’s uncertain which specific features will prove essential, and
acquiring additional information and relevant labels (e.g., churn events) necessary to refine the ML
system involves costs related to money, time, or risks limiting the data acquisition in practice. From a
practical perspective, we envision POCA to be useful in applications or fields where missing features
exist, and also data acquisition techniques like Active Learning (AL) are necessary. Applications
from different fields dealing with missing features and/or applying AL can be found in Table 2.

Figure 1: Overview of data acquisition meth-
ods. POCA acquires features and/or labels from
a partially-observed pool incorporating them into
a partially-observed training set. In contrast, AL
targets label acquisition assuming a fully-observed
pool set and training set.

Related work. The most related data acquisi-
tion technique is AL [7–10]. AL centers around
enhancing model generalization through the ac-
quisition of only additional labels. It operates
under the assumption of having access to an ini-
tial small, fully observed training set (referred to
as the historical labeled set) and seeks to acquire
additional labels for samples from an unlabeled
dataset (referred to as the pool set). This set is
assumed to be fully observed in features, miss-
ing only labels. The distinctions between POCA
and AL are illustrated in Figure 1. Tangentially,
Active Feature Acquisition (AFA) methods [11–
13] have been proposed to enhance the predic-
tion of individual samples at test time—where
the sample is partially observed. Like AL, it as-
sumes a fully-observed historical labeled set, on
which a model has already been trained. Given the trained model, the task then becomes identifying
the most relevant unobserved features to acquire for partially observed instances at test time. We
emphasize that AFA’s primary focus is on optimizing feature acquisition for individual test samples,
differing from our broader goal of data collection to enhance model training.

Towards an Instantiation of POCA. Given this problem definition, it is natural to wonder whether
traditional AL metrics can be employed straightforwardly in the POCA setting. These metrics are
usually derived from a predictive model that typically operates with fixed-size inputs. Consequently,
predictions on partially observed instances can adversely affect the accuracy of AL metric estimations,
leading to acquiring poor quality samples [14]. To overcome this challenge, we incorporate Generative
Surrogate Models (GSM) to impute missing features in partially observed inputs, facilitating a more
precise estimation of AL metrics. The effectiveness of GSM hinges on its ability to discern feature
interrelations from available but unlabeled data. This task is particularly challenging due to the
varying degrees of missingness in the instances and the constraints of limited sample sizes. To address
these complexities, we employ Large Language Models (LLMs) to instantiate GSMs, utilizing their
generation ability based on arbitrary conditioning and strong sample efficiency, allowing robust
imputations to support the estimation of AL metrics under partial observability [15–17]

Uncertainty POCA. We term this instantiation uncertainty POCA (µPOCA), due to its connection
with Bayesian Experimental Design [18–22], and its application in Bayesian Active Learning (BAL)[7,
23] and Bayesian Optimization (BO)[24–26]. From a Bayesian perspective, µPOCA maximizes
the expected information gain or also known as expected uncertainty reduction, in the model’s
hypothesis resulting from an experiment. More specifically, µPOCA extends the concepts of expected
information gain in the model’s parameters (EIG) and expected predictive information gain (EPIG) to
partially observed scenarios, introducing PO-EIG and PO-EPIG, respectively [7, 27, 28]. Here, these
methodologies maximize the expected uncertainty reduction when acquiring labels and a subset of
features. Since the impact of unacquired features cannot be directly assessed, GSMs facilitate the
computation of these metrics.

In summary, we make the following contributions:

2



1⃝We address the unexplored challenge of costly data acquisition to enhance model generalization
in partially observed scenarios. This leads us to introduce and formalize POCA, a novel ML
paradigm for the acquisition of features and/or labels in the partially observed setting.

2⃝We propose µPOCA, a cost-aware Bayesian instantiation of POCA that maximizes the un-
certainty reduction when acquiring data. µPOCA extends traditional AL metrics by imputing
partially observed instances using GSMs. We theoretically show that the uncertainty reduction is
larger than using vanilla AL metrics.

3⃝We propose the use of LLMs as a specific instance of GSMs, designed to address challenges in
partially observed scenarios, including data efficiency, arbitrary information conditioning, and
handling both categorical and numerical feature values.

4⃝ We empirically demonstrate µPOCA outperforms standard active learning on a variety of
partially observability scenarios spanning datasets, sample availability, and acquisition metrics—
highlighting the usefulness and applicability of µPOCA.

2 POCA: Partially Observable Cost-Aware Active-Learning

Preliminaries. Partially Observable Cost-Aware Active-Learning is a data acquisition problem that
focuses on improving the predictive performance of pϕ(y|x) in the supervised setting, with ϕ the
models we can employ. We denote x ∈ X and y ∈ Y as instances of observed features and target,
alongside the respective random variables (RV) X and Y . Bold variables, expressed as x = {xj}Jj=1,
represent a set of variables, in this case, features indexed by j ∈ [J ] = {1, . . . , J}, where the bold
form of j indicates a set of sub-indices j. The sample index i ∈ [I] = {1, . . . , I}, representing
possible indexes in the pool set, is omitted when unnecessary, i.e., xi,j ≡ xj . We denote xo as the
observed features with o ⊆ [J ].1 In the general case, we assume that each feature xi,j considered for
acquisition and the output of interest yi have associated acquisition costs ci,j and ci,J+1. Here, ci,j
represents the total cost of acquiring the variables indexed by j for instance i.

POCA
In the context of partially observed data, our focus is on efficiently gathering features and/or labels
to optimize a utility function, Ut(·) subject to an acquisition constraint rt(·) at iteration t. Ut(·)
quantifies the trade-off between the costs of data acquisition and the increased generalization
capabilities of the model ϕ, estimated from the available information xo and the hypothetical
acquisition of a specific set of features and/or labels. We formulate the optimization of this utility
as follows:

(i, j)∗ = argmax
i∈[I],j⊆[J+1]

Ut(i, j), s.t. rt(i, j). (1)

Ut(·) is broadly defined, potentially estimated as result of using Bayesian techniques [18, 23, 27],
frequentist techniques [29–31], RL techniques [32, 33], or can even be subjectively defined through
human desires. Note, optimizing Ut(·) involves an iterative process of 1 selecting the instance and
variables (i, j)∗ to acquire (features and/or labels); 2 adding these variables into the training set; 3

updating the model ϕ using the updated training set. In a more general case, this could also encompass
batch acquisition [34, 35] by using i instead of i. Note that Eq. (1) represents the most general form
of POCA, supporting model generalization when only features are acquired, as in semi-supervised or
self-supervised learning. Our specific µPOCA instantiation (Section 2.1) focuses on the supervised
case, where selected features and labels are acquired.

Common modalities for POCA. We anticipate that most applications of POCA will center on
the tabular domain (see Table 2). However, it could also find valuable uses in fields like medical
and satellite imaging, where noise-induced occlusion is common. In these cases, determining when
a sample requires additional information (features) is essential for enhancing prediction accuracy
and model training. Likewise, interactive robots that learn through vision may benefit from this
approach, as they need to discern which scenarios (samples) merit interaction to effectively learn the
relationship between features (objects) and labels (task to solve).

1In contrast with AL, POCA assumes xo ⊆ x instead of the fully observed assumption of AL xo ≡ x. In
addition, POCA considers the acquisition of features and/or labels, in this case, represented as j.
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2.1 µPOCA: A Bayesian implementation of POCA

Although several techniques can be used to implement POCA, we opt for a Bayesian approach due
to its widespread success in data acquisition literature. Building on the foundational principles of
Bayesian Experimental Design [18, 23, 27], which provides a comprehensive framework for integrat-
ing various sources of information [36, 37], we introduce an instantiation of POCA within a Bayesian
framework. This new approach, termed uncertainty POCA or µPOCA, leverages information theory
[38] to recast Eq. (1) as a cost-aware uncertainty reduction problem [27, 39]. The core of µPOCA
is centered on reducing uncertainty through a class of models that are exclusively trained using
supervised learning, focusing on feature and label acquisition in partially observed scenarios. Here,
we denote µ̂i,j as the uncertainty reduction for acquiring the label and features j for sample i, which
varies based on the approximation or method used.

µPOCA
We reformulate the optimization problem (1) by substituting Ut with a utility function Ũ . This
function Ũ is designed to capture the trade-off between uncertainty reduction, µ̂i,j , and the
acquisition costs associated with features and labels, represented by c̄i,j . The new objective can
be expressed as:

(i, j)∗ = argmax
i∈[I],j⊆[J]

Ũ(µ̂i,j , c̄i,j), s.t. r(i, j), (2)

here c̄i,j = ci,j + ci,J+1. In our research, we explore one specific instantiation, among potentially
infinite options, denoted by Ũi,j = µ̂i,j and r(i, j) = c̄i,j < c, respectively, with c indicating the
iteration’s budget.2

How to obtain this uncertainty? We aim to minimize epistemic uncertainty [40, 41] by acquiring
data, decreasing the predictive uncertainty produced by the possible hypothesis explaining the data.
We work within the supervised model framework, hence we represent hypotheses as distributions
over parameters. Our approach assumes the predictive model pϕ(y|x′) can be expressed as:

pϕ(y|x′) = Epϕ(ω)[pϕ(y|x′, ω)], (3)

where ω ∈ W is an instance of the parameter space and Ω its associated RV. Here, ϕ specifies the
model choice, defining the functional form of pϕ(ω) = p(ω|D), the posterior given the observed
training set D, and the posterior predictive distribution pϕ(y|x′), marginalized over ω. Here, x′ rep-
resents a partially observed input, so estimating pϕ(y|x′) must be adaptable to varying lengths of x′.
To achieve this flexibility, models capable of handling variable-length inputs (such as Transformers)
or, more broadly, marginalization techniques introduced in Section 3.2 can be employed.

This formulation is general, encompassing Bayesian models, neural networks with certain stochastic
parameters [42, 43], and ensemble models [44, 45]. It also applies to Gaussian processes [46] when
the posterior p(ω|D) is interpreted as a distribution over functions.

3 Method: Optimizing µPOCA

The challenge in optimizing µPOCA is in developing an uncertainty reduction metric, µ̂i,j , that
accurately represents the decrease in uncertainty when acquiring a subset of features j for instance
i, which has not been thoroughly investigated in the Bayesian literature. To address this, let’s first
provide some key background information. For data acquisition in ML, the primary focus has been
on maximizing the expected uncertainty reduction, also known as expected information gain, when
acquiring data [27]. This concept can be mathematically defined as:

I(A,B) := H(A)− H(A|B), (4)

where H(A) quantifies the uncertainty (entropy) about A, and H(A|B) represents
the uncertainty of A after observing B (in expectation). Existing AL approaches
that utilize the expected reduction of uncertainty are summarized in Table 1. These
methods maximize the uncertainty reduction of I(G, Y |•) when Y is observed.

2Alternative utility functions may balance uncertainty against costs as Ũi,j = µ̂i,j/c̄i,j . Other constraints
could consider c as the overall experimental budget.
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Table 1: AL metrics with form of I(G, Y |•).
Method G • objective

BALD [7] Ω xo,D min. parameter uncertainty
EPIG [28] Yeval xo,D,Xeval min. predictive uncertainty
JEPIG [47] Y i

eval xo,D,Xi
eval min. predictive uncertainty

Here, we use G to represent any random
variable aligned with the generalization
capabilities of the model and • any arbi-
trary conditioning. In the Appendix, for
completeness, we derive the estimation for
these acquisition metrics.

3.1 Metrics for uncertainty reduction in partially observed scenarios

Challenges in designing µ̂i,j . In real-world scenarios, the challenge is estimating uncertainty
reduction based solely on accessible data xo. Traditional AL acquisition metrics, denoted as µϕ(xo),
estimate uncertainty scores assuming xo ≡ x. However, in partially observed scenarios where only a
subset of inputs, xo ⊆ x, is available, the observed features may lack sufficient informativeness for
precise y estimates and reliable uncertainty scores µϕ(xo).

Figure 2: µPOCA leverages GSMs trained on
unlabeled data for imputing missing features.
The imputed observations are used as an input
for the predictive model, whose outputs are used
to compute the acquisition metric.

Generative Surrogate Model (GSM) to estimate
metrics. A more accurate estimate of current met-
rics can be achieved using the aforementioned AL
metrics by imputing the potential missing features
in expectation:

µj
ϕ,θ(xo) := Ex̃j

[µϕ(xo ∪ x̃j)]. (5)

Here, the samples x̃j are obtained with a GSM
denoted as pθ(xj |xo), which sample possible un-
observed features xj based on the observed xo. It’s
worth noting that training pθ(xj |xo) could be done
leveraging unlabeled data. In Figure 2, we illustrate
the acquisition process of µPOCA using GSMs.

Why generative imputation can help Active
Learning? In Bayesian active learning, acquisi-
tion is closely linked to the concept of uncertainty
reduction. To identify which features need to be
acquired, it is essential to estimate the possible un-
observed values. If these values lie in areas of high uncertainty within the hypothesis space, acquiring
these features is beneficial, as it will help reduce this uncertainty. Conversely, if the possible values
for certain unobserved features show little or no impact on uncertainty, then acquiring these features
may not be necessary. Notably, deterministic imputation cannot achieve this, as the lack of variability
prevents assessment of its effect on uncertainty within the hypothesis space. This concept is illustrated
in Figure 11 from Appendix H.

Are we doing better? We demonstrate the theoretical value of this approach for a family of
acquisition metrics presented in Table 1, delving into their impact on the optimization process. These
propositions convey the intuitive idea that acquiring more information, in this case, features, leads to
a higher reduction in uncertainty for the predictive model (proofs can be found in Appendix B).
Proposition 1. Let µ(xo) be an acquisition metric that can be written as I(G, Y |•), with G and •
representing the same variables observed in traditional AL (Table 1), and with Y , Xj as previously
defined. If G ⊥⊥Xj |•, the following equality holds:

I(G, (Y,Xj)|•) = Exj
I(G, Y |xj , •) (6)

Corollary 1. Under the assumptions of Proposition 1, the subsequent inequality is established:

Exj
I(G, Y |xj , •) ≥ I(G, Y |•) (7)

Equality is attained when G ⊥⊥Xj |Y, •.

ü Proposition 1 states that the uncertainty reduction of G (e.g., the random variable of the
parameters, Ω) by knowing Y and Xj is equivalent to the expected uncertainty reduction
achieved by knowing Y while conditioning on unobserved variables xj . This is convenient as
the conditioning on xj can be computed using Monte-Carlo approximation [48].
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ü Corollary 1 implies that acquiring both labels and features results in greater uncertainty
reduction compared to acquiring only labels, the objective maximized in traditional AL (Table 1).
The uncertainty reduction is equivalent when, given • and Y , the unobserved features Xj don’t
have any impact in generalization G.

Note that the independence assumption of Proposition 1 is valid in the supervised models we consider.
In essence, this is because acquiring features without labels do not aid parameter updates and in
consequence generalization improvements. The foundation of this assumption lies in the predictive
mapping process from X → Y ← Ω, rather than in the data itself. Appendix B provides a more
detailed explanation of this independence assumption’s validity. Additionally, empirical evidence
supporting the validity of Corollary 1 and, by extension, Proposition 1, is shown in Appendix K.

Equations (6) and (7) always apply to the true random variable of unobserved features or any of its
approximations. However, the terms in Eq. (6) reflect the uncertainty reduction of obtaining the
actual features when the approximated distribution of the GSM accurately reflects the distribution of
the true random variable. We empirically investigate this approximation and its practical utility.

PO Active learning metrics. Building on Proposition 1 and Corollary 1, we ex-
tend BALD and EPIG as ▶ Partially Observable Expected Information Gain (PO-EIG):
Exj

I(Ω, Y |xj ,xo,D) and ▶ Partially Observable Expected Predictive Information Gain (PO-EPIG):
Exj

I(Y eval, Y |xj ,xo,X
eval,D). Corollary 1 states that these metrics provide a higher uncertainty

reduction than their vanilla counterparts. We use Monte-Carlo for estimation (see Appendix C).

3.2 Predictive models in the PO setting

Our derivations are based on a distribution perspective, considering different numbers of conditioned
variables. For instance, when calculating PO-EIG, expressed as Exj

I(Ω, Y |xj ,xo,D), it is necessary
to compute the distribution pϕ(y|xo,xj). Here, xo could vary in length from one instance to another
and xj varies based on the number of features considered for computing the uncertainty reduction
metric. In practical terms, this means that the predictive model, attempting to approximate this
distribution, must effectively handle inputs with varying variables and lengths.

To address this challenge, we employ GSMs to impute the missing information to enable predictive
models that expect fixed-size inputs. This imputation is separated in two different steps (1) condition-
ing and (2) marginalization. Essentially, when evaluating the uncertainty reduction of an unobserved
subset of features xj considered for acquisition, we condition on this subset xj and xo (the observed
features), marginalizing over the remaining subset of unobserved features xj′ (where xj ∪ xj′ is the
set of all unobserved features). This approximation process is mathematically formalized as follows,
with supplementary visual aids provided in Figure 8 of Appendix C.3:

pϕ(y|xo,xj) =

∫
pϕ(y|xo,xj ,xj′)pθ(xj′ |xo,xj) = Epθ(xj′ |xo,xj)[pϕ(y|x)], (8)

Here the predictive model simulates the behavior, wherein the predictive model only has access to
xo and xj but it is computed using a model as it would have all the features. The marginalization
step is essential for accurate metric estimation in the pool set and can also be applied during training.
However, to reduce costs, we use GSM to impute features not acquired in the training set.

3.3 Efficient computation of utility function, Eq. (2)

Algorithm 1 Acquisition process
1: P = [ ], F = [ ]
2: for i ∈ [I] do
3: j∗ = [J ]
4: while r(i, j∗) do
5: v∗ = argmaxv∈j∗ Ũi,j∗\v s.t. r(i, j∗\v)

6: j∗ = j∗\v∗

7: end while
8: P.add(µ̂i,j∗), F.add(j∗)
9: end for

10: i∗ = argmaxi∈[I] P [i], j∗ = F [i∗]

11: Return: (i∗, j∗)

Our goal is to maximize Ũi,j(·) ≡ Ũ(µ̂i,j , c̄i,j),
which incorporates the uncertainty reduction µ̂i,j . It
is crucial to recognize that µ̂i,j could encompass all
possible combinations of unobserved features. How-
ever, computing µ̂i,j for every possible combination
of (i, j) is impractical, since it is of order O(2J).
To overcome this challenge, we propose estimating
the uncertainty reduction for all unobserved features
and subsequently excluding the less relevant ones, i.e.
those contributing minimally to uncertainty reduction.
This ensures that we always retain the most relevant
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features until the constraint r in Eq. (2) is satisfied, in order O(J2). The acquisition process is
summarized in Algorithm 1, with feature selection steps highlighted in teal. Appendix C.3 provides
details on an efficient approach to computing the marginalization step necessary for estimating µ̂i,j .
This efficiency can be further improved by selecting the most informative samples, followed by the
application of Algorithm 1 (see Appendix D). For a comprehensive overview, including cost analyses,
and details on GSM training and sampling, refer to Appendix D.

3.4 Large Language Models as Generative Surrogate Models

LLMs as GSMs. For the scenarios outlined in POCA, we specify the following desiderata for
GSMs: (P1) generative capability, (P2) ability to learn from partially observed data, (P3) sample
efficiency, and (P4) seamless integration of mixed-type variables. We argue that LLMs are well-suited
to meet these criteria due to their ▶ generative capabilities and flexibility in training under ▶ arbitrary
conditioning contexts [49–51]. Moreover, recent research highlights their exceptional performance in
▶ few-shot settings [52, 53] and their generative capabilities applied to ▶ tabular data comprising
mixed-type attributes [51]. These strengths provide strong justification for focusing our research on
LLMs as GSMs. However, any imputation method that fulfills these criteria may also serve as a
suitable GSM, as further discussed in Appendix G.

We use LLMs as GSMs leveraging the unlabelled information via Supervised Fine-Tuning (SFT).
When working with tabular data, we serialize rows of the data, thereby converting it to natural
language. For example, a set of features is serialized as “Age is 25, Gender is Female, . . . , Blood
pressure is 0.57”. The LLM is then used to predict unobserved features based on available information.
To achieve this, we utilize SFT on the LLM with the available observed features. The training data can
encompass all unlabeled data, including historical and pool set data. The process entails generating
random masks to form an input, m⊙ xo, and an output, (1−m)⊙ xo, for SFT across all available
data. This empowers the LLM to predict missing information by leveraging various combinations of
observed features.3 For more details, refer to Appendix F.2.

Analysis of GSMs. The effectiveness of µPOCA in partially observed settings is closely tied to the
GSM’s ability to approximate the distribution of unobserved features. Two primary factors influence
the accuracy of this approximation: (1) the approximation capacity of the GSM and (2) intrinsic
characteristics of the dataset. A detailed examination of these factors is provided in Appendix J.

4 Experiments

We evaluate µPOCA across three dimensions 4: First, in the case that all features are acquired,
we demonstrate that µPOCA acquisition metrics are more informative in selecting instances with
informative features than AL metrics. Second, we present a synthetic experiment accompanied by
theoretical insights. Finally, we explore scenarios with budget constraints demonstrating that µPOCA
on more challenging scenarios.

Comparing µPOCA with the current AL models is complex, as the latter are designed for fixed-size
inputs. To address this challenge, we developed Scenario 1 (see visual aid in Appendix H). This
scenario involves dividing each instance in the pool set into the same observed and unobserved feature
sets. We specifically select half of the features to remain unobserved, chosen by their high relevance
to the predictive task as identified by a preliminary RF. It is important to note that while µPOCA
methods can handle any form of missing data, Scenario 1 ensures a fair comparison by allowing AL
models to operate without any modification, which could bias our evaluation. This scenario presumes
the availability of a historical unlabeled dataset for training the GSM, using instances that include
data on unobserved features. In practical applications, the pool set can often serve as the training set
itself, representing a more realistic scenario we may encounter. We refer to this setting as Scenario 2.
Results for this scenario are presented in Appendix I, where GSM is trained on partially observed
data, while vanilla AL employs deterministic imputation to manage this case.

We select Magic, Adult, Housing, Cardio, and Banking tabular datasets based on their use in AL [28],
tabular generation [49, 51], LLM-based classification [54], and relation with potential real-world

3Without loss of generality, in-context learning is viable for an LLM-based GSM
4Code can be found at: https://github.com/jumpynitro/POCA or https://github.com/

vanderschaarlab/POCA
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Figure 3: PO-EIG and PO-EPIG computed across diverse datasets - showing they either outperform
or match their fully observed counterpart in terms of predictive performance

applications (Appendix A). These datasets have diverse characteristics: sample size, number of
features, number of categorical, and numerical variables. We prioritize datasets with over 1000
samples to guarantee sufficient samples for the pool set. We showcase results using a RF trained with
100 estimators. We start training with two fully observed samples per class, conduct 150 acquisition
cycles, repeat each experiment over 60 seeds, and display a 95% confidence interval. We train
Mistral7B-Instruct-v0.3 using 8 Monte-Carlo samples for generative imputation.

4.1 Need for POCA: Shortfalls of Active Learning

Objective. To assess the need for more generalized methodologies such as µPOCA, we analyze
the performance of PO-EIG, a partially observed extension of BALD (EIG)—the most widely used
metric in active learning literature. Additionally, we incorporate EPIG into the study, a recently
developed active learning metric within the 1 family. According to our theoretical framework (see
Corollary 1), PO-metrics outperforms their vanilla counterparts in terms of uncertainty reduction.
Our goal is to examine whether this uncertainty reduction leads to improved downstream performance
when all features are acquired based on the same information, xo, or, in other words, if the selected
instances possess features that are more relevant.

Setup. To ensure a fair comparison, we evaluated PO-metrics and Vanilla-metrics under Scenario
1, using Random and Oracle as reference baselines. Here, Oracle represents the Vanilla-metrics
acquisition metric, but with access to all features. Ideally, when GSM functions optimally, the
performance of PO-EIG should align with that of Oracle.

Analysis. The first thing to note is that EIG metrics computed with partially observed features can
be significantly worse than simple baselines like random as shown in Magic dataset from Figure 3)
(top). Figure 3 (top) demonstrates that PO-EIG generally either outperforms or worst case matches
their fully observable counterparts BALD across all datasets. A similar behavior is observed for
PO-EPIG, which generally outperforms their vanilla metric counterpart. This suggests that an
increase in uncertainty reduction translates into an increase in downstream performance. While
PO-EIG and PO-EPIG metrics consistently outperform baselines, they occasionally fall short of
oracle performance, notably in the Housing datasets. This may stem from two factors: Firstly, the
GSM has poor prediction performance on the unobserved data due to insufficient data or model
capacity. Secondly, even with adequate capacity and data, weak correlation between unobserved
data and the target hinders the acquisition process. We study these factors in Appendix J. We note
that it is non-trivial to quantify the GSM’s capability or correlations of unobserved data to the target.
Thus, the practical implication is that both PO-metrics should be preferred in PO settings, providing
a performance boost or at least matching their vanilla counterparts. Additionally, in Appendix I.1,
we include other relevant Active Learning metrics that, while not fitting into the family of studied
metrics, also demonstrate performance gains with the proposed framework.

� First, AL metrics computed on partially observed features can dramatically fail for selecting
relevant instances. Second, PO-EIG and PO-EPIG generally outperform or match fully observed
counterparts.
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4.2 Theoretical insights

Objective. We investigate the implications of our theoretical findings (Eq. (7)) on the acquisition
process; determining whether a weak correlation between unobserved features and the target, results
in a small gap between PO-EIG and BALD. We also explore how correlation affects performance.

Setup: We create an intuitive synthetic 2D experimental setup (Figure 4) with a variable target. The
target is determined linearly with varying slopes, leading to different correlations with the features.
Our chosen features—X1, X2, and X3—represent data along the x-axis, y-axis, and a Gaussian
category, respectively. Introducing the Gaussian category injects stochasticity into the marginalization
process, ensuring non-trivial solutions. The observed feature is X1, with possible acquisition of X2,
X3. We examine three scenarios: 1) Low Corr(X2,Y ), where the class depends solely on X1 due to
vertical slope; 2) High Corr(X2,Y ), where the class depends solely on X2, rendering X1 irrelevant;
and 3) Mid. Corr(X2,Y ), where X1 has some impact. Note, we evaluate acquisition metrics and
performance until the convergence of the oracle (BALD with all features)

Low Corr X2 Y

Class 1
Class 2

Mid Corr X2 Y

Class 1
Class 2

High Corr X2 Y

Class 1
Class 2

Figure 4: Synthetic dataset
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Figure 5: Comparing PO-EIG and BALD.

Analysis. Figure 5A empirically validates that
PO-EIG is always equal to or greater than BALD,
consistent with our theoretical insights (Eq. (7)).
Figure 5B illustrates the evolution of the metric
gap between PO-EIG and BALD under varying
correlations between X2,3 and Y . In low corre-
lation scenarios (orange line), the gap diminishes
towards the acquisition’s end, aligning with Corol-
lary 1 where both metrics should converge when
G ⊥⊥ X2,3|x1, •, i.e., when the unobserved fea-
tures don’t impact generalization. Initially, the
gap exists as the model learns from data the redun-
dancy of unobserved features. The same figure shows larger correlation leads to a wider gap, observed
most notably in the large correlation scenario (purple) and moderately in the medium correlation
scenario (teal). Figure 5 shows that, generally, the degree of problem correlation provides a proxy
correlation with acquisition performance. For example, the purple line exhibits the largest differ-
ence between BALD and EIG. Particularly in low correlation scenarios, the performance difference
between PO-EIG and BALD is negligible across the acquisition (orange line).

4.3 Cost-aware active learning

Objective: We evaluate the performance of µPOCA (specifically PO-EIG) under budget-constrained
feature acquisition, aiming to determine if acquiring only a subset of features, denoted as j, offers an
advantageous trade-off in performance. This selective acquisition approach enables acquiring a larger
number of instances within the same budget. Furthermore, we aim to show that imputation alone
cannot fully replace the need for direct data acquisition.

Setup. We use the Magic dataset as a case study to examine the impact of cost constraints on
predictive performance and the feature acquisition process. To facilitate this assessment, we introduce
costs associated with both features and labels. For simplicity and visualization clarity, we assume
the cost of an instance to be 1, representing the sum of the costs for all features and the label, with
each feature assigned an equal cost. This setup allows us to analyze four distinct approaches: (1) the
Vanilla acquisition metric (EIG), (2) PO-EIG, (3) PO-EIG with a maximum feature acquisition limit
of 60%, and (4) PO-EIG with unrestricted feature acquisition. We evaluate the performance of these
approaches in three ways: by accuracy based on acquired instances (Figure 6, left), by performance
relative to the budget utilized (assuming no label costs) (Figure 6, middle), and by performance with
varying label costs under a fixed total budget of 50 (Figure 6, right).

Analysis. Figure 6 (left) illustrates that acquiring fewer features generally results in decreased perfor-
mance; however, it still outperforms the EIG baseline. While limited feature acquisition impacts per-
formance, it allows for a more efficient budget allocation across instances, enabling the acquisition of
a larger instance pool. This trend is visible in Figure 6 (middle), where performance is plotted against
the total budget spent, assuming no label cost. Here, methods focusing on selective feature acquisition
excel, as they gather more overall information through increased instance count and key features.
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Figure 6 (right) demonstrates that the optimal PO-EIG method de-
pends on feature acquisition cost: when cost is heavily weighted
toward feature acquisition (right histogram), the best method is PO-
EIG with 20% of features acquired, whereas a 50% label cost favors
PO-EIG with 60% feature acquisition. While these findings might
suggest that acquiring fewer features and imputing the rest is optimal
for maximizing instances, this approach may introduce noise into
the training set, potentially biasing the model. To explore this, we
analyze model performance at different levels of feature acquisition
in Figure 7, with varying levels of pool data, using the full pool set
for training (excluding non-acquired features). As shown on the y-axis, acquiring more features
enhances performance. When the budget is unlimited, acquiring all available data is preferable;
however, in practice, this may not be feasible, making POCA approaches advantageous.

� First, µPOCA metrics (PO-EIG) can be more cost-effective than common active learning
metrics. Second, imputation is useful for missing data but shouldn’t replace data acquisition.

5 Discussion

We introduce and formalize POCA a data acquisition framework, addressing the vital but underex-
plored challenge of partially observed settings. Through µPOCA, a practical implementation of this
framework, we demonstrate the feasibility of acquiring unobserved features and labels based on those
partially observed features, using more generalized AL utility metrics — computed by estimating fea-
tures generated using an LLM-based GSM. Our results over various scenarios are substantially more
effective than alternatives — of substantial value for data acquisition in cost-restrictive environments.
We hope the POCA framework and our subsequent findings will spur additional work to advance
data acquisition in partially observed settings.

Limitations. Our work focuses on the values of features, providing a general framework where
restrictions are the main source of constraints in terms of acquisition. However, we do not assess
how these restrictions are selected, which could be a promising area for future research. We also note
that we use LLMs in the context of data acquisition. Like any GSM, LLMs can indeed exhibit biases
that affect the acquisition process. In this study, we did not consider this issue, and it represents an
interesting avenue for future work. If necessary, current debiasing techniques can be applied.

Practical consideration and future work. (1) In the PO setting with data “missingness,” GSM
imputation is essential for acquisition. Future work could quantify uncertainty [43, 55] to assess
GSM efficacy. (2) LLM capability also impacts acquisition; while we use a 7B-parameter model,
larger models could further enhance performance, though this is beyond our current scope.
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Appendix: POCA: Partially Observable
Cost-Aware Active-Learning with Large
Language Models.
A Appendix A: Real-World Use Cases

Table 2: Real-world use-cases of POCA. We outline real-world scenarios where the POCA frame-
work can have an impact. For each problem domain, we describe partially observable features, labels,
and the underlying predictive task. We categorize references into three types: A) where active learn-
ing is employed, B) where predictive modelling is performed in the presence of partially observed
features, and C) active learning is applied to partially observed settings (with data pre-processing to
handle missing features). The symbol ▶ stands for acquisition costs.

Problem Setting Observed Features Acquirable Features Possible Labels / ML Task References

Customer Churn Basic customer data (demographics,
plan type, usage patterns).

Detailed customer interaction data and satisfaction sur-
veys ▶ data collection and operational costs.

Churn events. ▶ Risk, analysis of customer status
over time.

A: [56, 57], B: [58]

Marketing and
Consumer Re-
search

Consumer demographics, basic pur-
chase history.

Consumer preferences via surveys, social media activ-
ity ▶ survey deployment and data processing.

Purchase decisions or brand perception changes. ▶
market analysis or consumer feedback mechanisms.

A: [59, 60], B: [61,
62]

Finance Basic financial information (income
level, employment status, existing
debts), market trends.

Credit history, detailed investment portfolios. ▶ oper-
ational costs, data acquisition from external agencies
and privacy concerns.

Loan defaulting, investment outcomes ▶ Risk (time
required for outcomes to manifest and the analysis
needed.)

A: [63–66], B: [67–
69]

Healthcare Diag-
nostics (Medicine)

Basic patient information (demo-
graphics, medical history, basic vi-
tals).

Results from specific medical tests (blood tests, MRI
scans, etc.). ▶ Medical test costs/operation costs.

Diagnosis of specific diseases ▶ Clinical evaluation,
Expert analysis or medical tests that could be more
expensive than acquiring features.

A:[70–76], B:[77–
80], C: [70, 81]

Predictive Mainte-
nance in Manufac-
turing

Regular operation data (machine
runtime, temperature, vibration lev-
els).

Detailed inspections or advanced sensor data (acoustic
emissions, ultrasonic testing). ▶ operational costs.

Failure events or maintenance needs ▶ Risk for not
doing mantainence. Inspection or equipment failure
costs.

A: [82–86], B:[87–
89]

Customized
E-commerce Rec-
ommendations

User activity (page views, clicks),
basic demographics

Detailed purchase history, and product review text.
Also consumer preferences via surveys, social media
activity ▶ Survey deployment

Recommendation ▶ Risk of wrong recommenda-
tion

A: [90–92], B:[93,
94]

Environmental
Monitoring

Basic weather data (temperature, hu-
midity, precipitation), satellite im-
agery.

Results from specific sensor data (soil moisture, spe-
cific pollutant levels) ▶ Operational costs of measuring
data

Environmental condition classifications ▶ field sur-
veys, lab analysis of samples

A: [95], B [96]

Table 2 illustrates that active learning is extensively utilized in a variety of real-world application
scenarios. Furthermore, it is not uncommon in these contexts to encounter situations with incomplete
data, which can harm generalization [2, 6, 97, 98] capabilities of downstream models. The breadth
of related work covers diverse sectors including customer churn prediction, marketing research,
healthcare diagnostics, and predictive maintenance. While active learning is adept at selectively
querying labels in scenarios where data is fully observed, its application in the context of missing
data is less clear. The challenge is compounded by the fact that, in similar problem settings, it is
not always guaranteed that features will be fully observed. This reality underscores the need for
alternative machine learning techniques to address such challenges. Our proposed approach, POCA,
offers a novel solution for applying active learning in scenarios with partially observed data, taking
into account realistic cost constraints.
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B Appendix B: Acquisition metrics for partially observed scenarios.

Proposition 1. Let µ(xo) be an acquisition metric that can be written as I(G, Y |•), with G and •
representing the same variables observed in traditional AL (Table 1), and with Y , Xj as previously
defined. If G ⊥⊥Xj |•, the following equality holds:

I(G, (Y,Xj)|•) = Exj
I(G, Y |xj , •) (9)

Proof: We can decompose the left part of Eq. (9) as:

I(G, (Y,Xj)|•) = I(G,Xj |•) + I(G, Y |Xj , •) (10)

Using G ⊥⊥ Xj |• =⇒ I(G,Xj |•) = 0, the first term on the right of Eq. (10) cancels, obtaining
I(G, (Y,Xj)|•) = I(G, Y |Xj , •) = Exj I(G, Y |xj , •) concluding the proof.
Corollary 1. Under the assumptions of Proposition 1, the subsequent equivalent inequality is
established:

Exj
I(G, Y |xj , •) ≥ I(G, Y |•) (11)

Equality is attained when G ⊥⊥Xj |Y, •.

Proof: Symmetrically as before we can decompose the left part of Eq. (9) as:

I(G, (Y,Xj)|•) = I(G, Y |•) + I(G,Xj |Y, •) (12)
Using proposition (1), we obtain:

Exj
I(G, Y |xj , •) = I(G, Y |•) + I(G,Xj |Y, •) (13)

Clearly the equality is obtained when G ⊥⊥ Xj |Y, • since the mutual information is zero. When
taking I(G,Xj |Y , •) ≥ 0 we obtain:

Exj
I(G, Y |xj , •) ≥ I(G, Y |•), (14)

concluding the proof.

Observation: Note that, the independence assumption G ⊥⊥ Xj |• always hold for the class of
supervised learning models we consider. G is a random variable representing the generalization
capabilities of the model ω ∈ W , with random variable Ω. This random variable is subject to model
training A, which can be written as the mapping between the training set D and hyperparameters
h ∈ H to the output ω, i.e., A : D ×H → W . Additionally, the model prediction is a mapping P
between the model ω and the input x ∈ X to the output Y , i.e., P :W ×X → Y .

It is crucial to acknowledge that the “world generator” influences D, X , and Y , but does not directly
affect Ω. Given that D is observable, any connection through this path is cut. The sole connection
of Ω to X and Y is through the mapping P , which establishes a causal structure: Ω → Y ← X .
According to this structure, Ω and X are generally independent unless Y is observed, leading to
a dependence due to P creating a configuration known as an “immorality” among these variables.
This explains why G ⊥⊥Xj |• holds; however, this independence may not persist in scenarios where
G ⊥⊥Xj |•, Y .

In the context of our work the input X can be decomposed in X = xo, Xj the observed part of the
random variable and the unobserved part of the random variable. Consequently, Xj follows the same
independency assumptions of X .

20



C Appendix C: Monte-Carlo Estimates

In our study, we evaluate BALD and EPIG, along with their partially observed counterparts, PO-
EIG and PO-EPIG. For completness, we show the estimatation the vanilla metrics, and later their
corresponding partially observed extensions.

C.1 PO-EIG and BALD

We follow a similar notation to [28]. For categorical variables, BALD can be decomposed as:

I(Ω, Y |xo,D) = H(y|xo,D)−H(y|xo,Ω,D) (15)

= Epϕ(ω)

[
Epϕ(y|x)[log pϕ(y|x)] + Epϕ(y|x,ω)[log pϕ(y|x, ω)]

]
(16)

≈ −
∑
y∈Y

p̂ϕ(y|xo) log p̂ϕ(y|xo) +
1

K

K∑
k=1

∑
y∈Y

pϕ(y|xo, ωk) log pϕ(y|xo, ωk),

(17)

where K represent the total number of parameter samples ωk ∼ pϕ(ω) from the posterior distribution
given D. Here,

p̂ϕ(y|xo) =
1

K

K∑
k=1

pϕ(y|xo, ωk). (18)

PO-EIG extends this formulation to include missing features as conditioning samples x̃j from the
GSM, accommodating partially observed settings. To illustrate, let’s first consider the case where the
metric is conditioned over all unobserved features, i.e., j′ = ∅, which correspond to results of Figure
3. Following a similar decomposition, we can approximate Ex̃j

I(Ω, Y |xo,D, x̃j) as:

Ex̃j
I(Ω, Y |xo,D, x̃j) ≈

L∑
l=1

[
−

∑
y∈Y

p̂ϕ(y|xl) log p̂ϕ(y|xl)

+
1

K

K∑
k=1

∑
y∈Y

pϕ(y|xl, ωk) log pϕ(y|xl, ωk)

]
,

(19)

here L represent the total number of Monte-Carlo samples from the GSM, with x̃l
j one possible

sample. Here,

pϕ(y|xl) = pϕ(y|xo, x̃
l
j︸ ︷︷ ︸

x

) (20)

p̂ϕ(y|xl) =
1

K

K∑
k=1

pϕ(y|xl, ωk). (21)

What happen when j doesn’t consider all unobserved features?. This scenario is useful when we
want to asses the impact acquiring of subset of the unobserved features. Utilizing a smart notation,
this approximation can be stated identically as Equation (19), but the estimation of the predictive
distribution changes slightly:

pϕ(y|xl, wk) =

P∑
p=1

pϕ(y|xo,x
l
j ,x

p
j′︸ ︷︷ ︸

x

, wk), (22)

here, P are a total of new MC samples from the GSM. This marginalization trick is necessary to deal
with model that expect fixed size inputs.
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C.2 PO-EPIG and EPIG

For PO-EPIG and EPIG, we replace the sub-index eval by ∗. Similar to before, for categorical
variables, EPIG can be decomposed as:

I(Y∗, Y |xo, X∗,D) = Ex∗ [I(Y∗, Y |xo, x∗,D)] (23)
= Ex∗ [KL(pϕ(y∗, y|xo, x∗)||pϕ(y∗|x∗)pϕ(y|xo)] (24)

≈ 1

M

M∑
m=1

∑
y∈Y

∑
y∗∈Y∗

p̂ϕ(y, y∗|xo, x
m
∗ ) log

p̂ϕ(y, y∗|xo, x
m
∗ )

p̂ϕ(y|xo)p̂ϕ(y∗|xm
∗ )

, (25)

here,

p̂ϕ(y, y∗|xo, x
m
∗ ) =

1

K

K∑
k=1

pϕ(y|xo, ωk)pϕ(y∗|xm
∗ , ωk), (26)

p̂ϕ(y|xo) =

K∑
k=1

pϕ(y|xo, ωk), (27)

p̂ϕ(y∗|xm
∗ ) =

K∑
k=1

pϕ(y∗|xm
∗ , ωk) (28)

Similarly as before, PO-EPIG extends this formulation to include missing features when conditioning
on samples x̃j from the GSM. We now derive the estimation of this metric when estimating PO-EPIG
when considering all the unobserved features j. We can decompose Ex̃j

I(Y∗, Y |xo, X∗,D, x̃j) as:

Ex̃j
I
(
Y∗, Y | xo, X∗,D, x̃j

)
≈

L∑
l=1

[
1

M

M∑
m=1

∑
y∈Y

∑
y∗∈Y∗

p̂ϕ
(
y, y∗ | xl, xm

∗∗
)

× log
p̂ϕ

(
y, y∗ | xl, xm

∗∗
)

p̂ϕ
(
y | xl

)
p̂ϕ

(
y∗ | xm

∗∗
)],

(29)

p̂ϕ(y, y∗|xl, xm
∗ ) =

1

K

K∑
k=1

pϕ(y|xo, x̃
l
j︸ ︷︷ ︸

x

, ωk)pϕ(y∗|xm
∗ , ωk), (30)

p̂ϕ(y|xl) =

K∑
k=1

pϕ(y|xo, x̃
l
j︸ ︷︷ ︸

x

, ωk), (31)

p̂ϕ(y∗|xm
∗ ) =

K∑
k=1

H∑
h=1

pϕ(y∗|xm
∗ ,xh

j , ωk), (32)

Note that the marginalization step of the “evaluation set” is also necessary since we also assume it
to be partially observed. Here, xh

j are Monte-Carlo samples necessary make the predictive model
receive fixed inputs. While expensive, PO-EPIG can also compute metrics when only a subset of
features is estimated to be acquired. The trick is similar to PO-EIG, being necessary a marginalization
across the j′ for the the predictive mode receive fixed-size inputs (as (22)).
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C.3 Illustration of efficient MC estimation

As outlined in the earlier sections, we approximate the PO-metrics through the techniques of condi-
tioning and marginalization. Figure 8 provides a visual representation of this approximation.

In Eq. (8), for efficient computation in the marginalization of j′, we substitute pθ(xj′ |xo,xj) with
pθ(xj′ |xo), using the same samples used to compute the uncertainty reduction across all unobserved
features. This approximation does not significantly compromise precision, as we exclude the least
relevant feature sequentially. Consequently, the samples used to marginalize an “irrelevant” feature
remain minimally impacted by the overall sampling strategy.

Figure 8: Illustrative diagram demonstrating the application of conditioning and marginalization
techniques in the estimation of PO-metrics for an arbitrary instance.
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D Pseudo-code of the whole acquisition process

Algorithm 2 µPOCA Algorithm

Require:

Initial pool set P indexed initially by [I], initial partially observed unlabeled datasetDu, initial partially observed
labeled dataset Dl, identify costs c for every element in the pool set, identify number of features J , select
downstream model ϕ, select Generative Surrogate Model parameterized by θ, select number of Monte-Carlo
samples S. If using heuristic select the number of instances to analize for subset of feature selection.

1: θ ← maximize_likehood(θ,Du)
2: PS ← generative_imputation(θ,P, S)
3: while stop_condition(·) == False do
4: D̃l ← impute_missing_data(Dl, θ) # Imputing when using a predictive model that receive

fixed-size input
5: ϕ̃← maximize_likehood(ϕ, D̃l)
6: if use_heuristic then
7: I∗ ← compute_top_uncertain_instances(ϕ̃,PS , [I], [J ]))
8: end if
9: P = [ ], F = [ ]

10: for i ∈ [I] do
11: if use_heuristic and i /∈ I∗ then
12: P.add(− inf), F.add([])
13: continue
14: end if
15: j∗ = [J ]
16: while r(i, j∗) do
17: U = [ ]
18: for v ∈ j∗ do
19: if r(i, j∗\v) then
20: µ̂i,j∗ ← compute_uncertainty(ϕ̃,PS , i, j

∗\v))
21: U.add(Ũ(µ̂i,j , c̄i,j))
22: else
23: U.add(−inf)
24: end if
25: end for
26: v∗ = argmaxU
27: j∗ = j∗\v∗
28: end while
29: P.add(µ̂i,j∗), F.add(j∗)
30: end for
31: i∗ = argmaxi∈[I] P [i], j∗∗ = F [i∗]

32: Dl ← Dl ∪ P[i∗][j∗∗]
33: P ← P \ P[i∗]
34: PS ← PS \ PS [i

∗]
35: I ← I − 1
36: end while

We assume that GSMs will be trained using available unlabeled data, which may be either fully
observed (if a bank of fully observed unlabeled data is available) or partially observed (using the pool
set itself), respectively. This assumption enables us to train the GSM and generate imputed values for
the pool set before the acquisition process begins. The complete acquisition is detailed in Algorithm
2.

We define the generation cost as Cg and the downstream cost as Cd. Algorithm 2 indicates that the
sampling cost for GSMs is O(I · J · S · Cg), where I is the number of instances, J is the number of
features, and S represents the number of Monte Carlo samples. The inference cost of the downstream
model is O(I · J · S · Cd).

The cost of acquiring a subset of features depends on the restriction r(i, j), which is bounded by J
(the case where J features are discarded for acquisition). The cost for acquiring a subset of features
for a single instance is O(J2 · S · Cd) using Algorithm 1. To reduce this overhead, we first select the
most informative instance (assuming all features are acquired) in O(I · J · S · Cd) (L7 in Algorithm
2), and then select the subset of features to acquire using Algorithm 1 (10 in our case) in order
O(J2 ·R · S · Cd). This analysis shows that the most critical factor is the number of features J , as it
affects both sampling and the downstream model (quadratically in this case).

Another consideration is when the available data is insufficient for a reliable GSM. In this case, any
additional features acquired during the acquisition process can be used to update the GSM weights
periodically, which increases the costs.
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E Datasets

Datasets were constructed such the number of pool samples were numerous enough to determine
the impact of the acquisition performance any confounding effect. The distribution of pool set
were selected maintaining the distribution of the original dataset similar to previous work [28]. The
“evaluation distribution” in EPIG is follows the same distribution of pool set. As mentioned in the
main text, we maintain a small unlabeled historical set for GSM training allowing fair comparison
with Active Learning. For large datasets like Adult and Housing we limit their maximum original
data size avoiding unnecessary costs in Monte-Carlo sample generation. The test set is defined as the
30 % of the intial dataset.

• Magic [99]: Original data size of 19020 samples. Historical set of 1000 samples. Pool set
distribution; Class0: 4980 samples. Class1: 2700

• Adult [100]. Original data size of 19020 samples (after cut). Historical set of 1000 samples.
Pool set distribution; Class0: 5760 samples. Class1: 1920.

• Housing. Original data size of 19020 samples (after cut). Historical dataset of 1000 samples.
Pool set distribution; Class0: 3840, Class1: 3840.

• Cardio [101]. Original data size of 100k samples. Historical dataset of 1000 samples. Pool
set distribution; Class0: 3000, Class1: 3000.

• Banking [102] Original data size of 45211 samples. Historical dataset of 400 samples. Pool
set distribution; Class0: 2000, Class1: 500.

We did slight modification in datasets allowing LLM better comprehension. For Magic, we didn’t
include fConc1 since its name similarity with fConc. For CMC dataset, we change categorical values
0 and 1 to the categories that were represented on metadata. For example, in column “Standard-of-
living_index” instead of using 0,1, 2, 3 we use Low, Medium-Low, Medium-High, and High.

With this adjustment the final columns of these datasets are:

• Magic. 9 numerical columns: fLength, fWidth, fSize, fConc, fAsym, fM3Long’, fM3Trans,
fAlpha, fDist.

• Adult. 8 categorical columns: workclass, education, marital-status, occupation, relationship,
race, sex, native-country. 6 numerical columns: age, fnlwgt, education-num, capital-gain,
capital-loss, hours-per-week.

• Housing. 8 numerical columns: MedInc, HouseAge, AveRooms, AveBedrms, Population,
AveOccup, Latitude, Longitude.

• Cardio. 10 numerical columns: ID, age, age_years, height, weight, ap_hi, ap_lo, bmi. 7
categorical variables: gender, cholesterol, gluc, smoke, alco, active, bp_category_encoded.

• Bank. 2 numerical columns: age, balance. 6 categorical variables: job, marital, education,
contact, day_of_week, default.

For model training, we use one hot encoding for categorical variables.

F Large Language Models, training and evaluation

We analyzed primarily one open-source Mistral7B-Instruct-v0.3 with more in Section J. Preliminary
findings show that instruct LLMs generally outperformed their non-instruct counterparts. In what
follows, we give component used and a general overview of the prompts used:

• Input: The input is the tabular information provided to the LLM. Here, it is in the form
of “{feature A: value A, feature B: value B, feature C: value C}”, for possible features and
values.

• Query: The query represents the information requested by the LLM to generate a response.
It should only include the attribute names, formatted as follows: “{feature D: [Mask],
feature E: [Mask], feature F: [Mask]”.
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• Response: The input is the tabular information provided to the LLM. Here, it is in the form
of only values: “{feature D: value D, feature E: value E, feature F: value F}”.

The specific prompts were adjusted to specific LLM format.

F.1 Mistral7B-Instruct-v0.3

Training time: approximately 1-2 hours

{**Input, **Query} ###Response: {**Input, **Response}

Test time: The total number of generated samples varies depending on the dataset, with processing
times ranging from 3 to 8 hours.

{**Input, **Query} ###Response:

Here as some samples and the respones On Magic:

{fAsym: -90.6431, fM3Trans: -10.169, fDist: 250.51, fConc: 0.1637, fAlpha: [Mask], fM3Long:
[Mask], fSize: [Mask], fWidth: [Mask], fLength: [Mask]} ###Response: {fAsym: -90.6431,
fM3Trans: -10.169, fDist: 250.51, fConc: 0.1637, fAlpha: 1.719, fM3Long: -33.7346, fSize:
3.3316, fWidth: 28.4232, fLength: 69.8763}

{fConc: 0.3174, fM3Trans: -4.5924, fAsym: -28.5264, fDist: 150.686, fSize: [Mask], fM3Long:
[Mask], fWidth: [Mask], fAlpha: [Mask], fLength: [Mask]} ###Response: {fConc: 0.3174,
fM3Trans: -4.5924, fAsym: -28.5264, fDist: 150.686, fSize: 2.6819, fM3Long: -21.4579, fWidth:
16.6296, fAlpha: 18.3037, fLength: 27.3688}

{fM3Trans: -19.0262, fDist: 294.682, fConc: 0.1546, fAsym: -137.729, fAlpha: [Mask], fLength:
[Mask], fWidth: [Mask], fM3Long: [Mask], fSize: [Mask]} ###Response: {fM3Trans: -19.0262,
fDist: 294.682, fConc: 0.1546, fAsym: -137.729, fAlpha: 0.294, fLength: 124.816, fWidth:
38.3973, fM3Long: -71.1274, fSize: 3.3655}

{fM3Trans: -11.0238, fDist: 85.2971, fConc: 0.1765, fAsym: 32.2464, fWidth: [Mask], fM3Long:
[Mask], fAlpha: [Mask], fLength: [Mask], fSize: [Mask]} ###Response: {fM3Trans: -11.0238,
fDist: 85.2971, fConc: 0.1765, fAsym: 32.2464, fWidth: 27.559, fM3Long: -51.3547, fAlpha:
21.297, fLength: 56.6845, fSize: 3.3454}

F.2 Masking

We tested two masking strategies. First, when we had access to all the historical data, particularly
when comparing against traditional AL in the main text. Second, when certain features might be
missing, as encountered in Appendix I. In the first scenario, we randomly masked some observed
information, always ensuring at least two features as input to prevent overly complex tasks for the
LLM. In the second scenario, due to the partial observability of data, some features could be less
observed than others, leading to varying degrees of missingness.

F.3 Training specification

We train the models using QLoRA using 4 bit quantization, r = 32, lora_alpha= 64, for 10000 steps,
with 2 samples per batch size, and a learning rate of 7.5e-5.
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G Generative Surrogate Models

In this section, we outline the core desiderata for Generative Surrogate Models to be used within the
µPOCA framework and compares related imputation methods against the desiderata.

• [P1] Generative capability: The model must model a non-deterministic distribution over
the unobserved features to effectively identify and prioritize the most relevant features. To
exemplify, we consider xj∗ as the subset of current features under review for acquisition,
and xj′ as the features already excluded from acquisition. PO-EIG’s acquisition metric
strategically selects the feature,v∗, that maximizes uncertainty reduction among all possible
features, v, considered for exclusion from the set j∗. This effectively minimizes information
loss. Formally, this is expressed as:

v∗ = argmax
v∈j∗

Ex̃j\v I(Ω, Y |x̃j\v,xo,D). (33)

In contrast, employing a deterministic GSM modifies the acquisition strategy for imputed
features x̄, simplifying to:

v∗ =argmax
v∈j∗

I(Ω, Y |x̄j\v,xo,D).

=argmax
v∈j∗

I(Ω, Y |x̄,xo,D). (34)

The second equality arises from the fact that we are limited to a single value due to estimated
conditioning and marginalization. Consequently, any permutation of conditioning sets j and
marginalization sets j′ will lead to the same metric for a deterministic GSM. (34) explicitly
demonstrates that employing deterministic GSM results in an acquisition metric independent
of v, the feature under consideration for exclusion through a greedy approach. In conclusion,
the GSM should model a stochastic distribution for acquisition purposes.

• [P2] Learning on partially observed data: The GSM must learn from partially observed
training data, where different instances will have varying observed features.

• [P3] Sample-efficiency: Given the potential scarcity and variability of feature observability
of training data, the GSM must efficiently learn from limited samples with different observed
features.

• [P4] Supports mixed-type variables: To support a broad range of data types, the GSM
should enable generative modelling across both continuous and discrete variables.

Table 3: Overview of imputation methods. Comparison based on key desiderata of a GSM.

Desiderata LLM Generative imputation Discriminative imputation Sample statistics

References - [103–109] [110–116]

[P1] ✓ ✓ ✗ ✗
[P2] ✓ ✓ ✓ ✓
[P3] ✓ ✗ ✓ ✗
[P4] ✓ ✗ ✗ ✗

Flexibility of Large Language Models. We believe that Large Language Models hold significant
potential as sample-efficient methods for feature estimation. Although LLMs are not specifically
pretrained for tabular data estimation, their general capabilities have demonstrated effectiveness across
various domains. These general abilities have been successfully applied in optimization [24, 117, 118],
reasoning [119, 120], planning [121–123], concepts [124, 125], autonomous adaptation [126–128],
digital twin construction [129, 130], meta-learning [131, 132], uncertainty reduction [133, 134],
and as tabular data generators [49]. They have also shown promise as few-shot tabular learners
in supervised settings [52, 53]. The application of LLMs in the intersection of tabular data tasks,
particularly in the last two contexts, provides direct evidence of their viability in this area and to be
used as GSMs in the context of data acquisition.
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H Comparing with Active Learning

Figure 9: Scenario 1.

Figure 10: Scenario 2.

We used Scenario 1 as indicated in the main text. Another scenario where traditional active learning
metrics can be applied is Scenario 2, which utilizes conventional imputation methods. The results for
this scenario are shown in Figure 12 when all features are acquired for the Active Learning metric. As
discussed in the main paper deterministic imputation does not allowed for the acquisition of subset of
features, which is illustrated in Figure 11.

Imputed
data point

Uncertainty

No AL
Uncertainty!

Figure 11: Figure (a) shows the distribution of X2 and X3 conditioned on x1. With estimates of
X2 and X3, µPOCA can identify the relevant feature (X2) and the relevant region. In contrast, AL
metrics might use deterministic imputation (green), which does not reveal feature relevance or area
of importance under partial observability. This is because a point estimate can not explore the X2,
X3 and how their variability affects the outcome.
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I Additional Results
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Figure 12: Pool set.

Figure 12 illustrates that Mistral-Instruct-v0.3 trained LLMs solely on the Pool dataset, introducing
a different scenario than the discussed in the main text. In this setup, only three features are
consistently observed in the pool set, while others may be absent with uniform of probability. While
the effectiveness of LLMs would depend on case-by case scenarios. In this demonstration, we
underscore their viability and potential as Generative Surrogate Models (GSMs).

I.1 Varying uncertainty metrics
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Figure 13: Partially observed active learning metrics and their fully observed counterparts.
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J Analysis of GSM

The performance of µPOCA in partially observed settings fundamentally depends on how well the
GSM approximates the distribution of the unobserved features. There are two key factors that affect
the quality of this estimation:

• GSM’s approximation power: Referring to the model’s capacity to accurately model the
unobserved features.

• Intrinsic characteristics of the dataset: Referring to inherent correlations between ob-
served and unobserved features. Indeed, lower correlations are more challenging.

In what follows, we investigate each factor in turn, [G1] studying the impact of different GSMs and
[G2] investigating different dataset characteristics. This approach aims to delineate the conditions
under which µPOCA is expected to excel.

[G1] GSM impact on acquisition performance

Setup. We evaluated various LLMs (including Mistral-7B-Instruct-v0.3, Gemma2, and Llama-3.1)
as GSMs to assess how model quality affects acquisition performance.

Analysis. Figure 14 demonstrates that GSM quality significantly influences acquisition results.
Notably, Mistral-7B consistently outperforms the alternative GSMs, with one exception in the
housing dataset. Interestingly, Gemma 2 performs well on this benchmark, highlighting this inter-
model variability. The Cardio dataset further highlights these differences, with Mistral-7B performing
significantly better than the other models.

Takeaway. These findings underscore the critical role of GSM quality in acquisition performance.
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Figure 14: Varying LLMs with Mistral7B-Instruct v0.3 based on EIG acquisition metric.
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[G2] Performance across varying data characteristics

Setup. Next, we turn our attention to investigating how the data distribution affects acquisition
performance. We are particularly interested in analyzing the effect of the correlation between
unobserved features Xunobs and observed features Xobs on acquisition performance.

To demonstrate this, we examine a scenario where (1) Xunobs correlates with the outcome, while (2)
observed features do not. In this context, the GSM becomes crucial for downstream performance, as
Xobs alone provides insufficient information to predict outcomes accurately. As such, the GSM must
effectively model the relationship between Xobs and Xunobs to acquire missing features critical for
predicting the outcome.

We model both Xobs and Xunobs as two-dimensional random Gaussian variables centered at zero
and establish a specific controllable correlation between them through ρ:

Σ =

[
I2 ρXobsXunobs

I2
ρXobsXunobs

I2 I2

]
The label Y is then constructed to be independent of Xobs using the orthogonalization:

Xorthogonal = Xunobs −Xobs(X
T
obsXobs)

−1XT
obsXunobs

which we use to construct the label using

logits =
1

1 + e−
∑

Xorthogonal
, C = 1logits>0

Analysis. Figure 15a illustrates how varying ρ between Xobs and Xunobs empirically affects variable
correlation, c, validating our synthetic experiment design. Figure 15b analyzes EIG (traditional active
learning without GSM) and PO-EIG with varying ρ. We note that when the correlation between Xobs

and Xunobs is low, GSMs provide no performance benefits. However, as correlation increases, the
performance gains of PO-EIG over EIG expand significantly, confirming our hypothesis.
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(b) Performance of EIG Across Datasets with Varying Correla-
tions Between Observed Features (Xobs) and Unobserved Features
(Xunobs). Observation: As correlation increases, the performance
gains of PO-EIG (using GSM) over BALD (traditional AL) becomes
more notable.

Figure 15: Synthetic experiments. Figure (a) visualizes the characteristics of the synthetic data with
different values of ρ, while Figure (b) demonstrates the performance of EIG (BALD) and PO-EIG as
the degree of correlation between observed and unobserved features varies.
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K PO-EIG vs BALD

Figure 16 illustrates the comparison of uncertainty reduction between PO-EIG and BALD (EIG) at
iteration 50 of training with seed zero. It is evident that PO-EIG consistently achieves equal or greater
uncertainty reduction than EIG. This empirical observation supports the validity of Corollary 1, and
consequently, substantiates the assumption made in Proposition 6.
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Figure 16: PO-EIG vs BALD metrics on various scenarios at iteration 50.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflects the claims made in the paper.
We formalize the POCA problem and provide an instantiation of POCA which we validate
empirically.

Guidelines:

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 5 discusses possible limitations with mitigation strategies.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide all assumptions for proofs in Sections 2 and 3. We also provide
additional details in Appendix B and C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental details are provided in Section 4, with further details in
Appendix D and E. The implementation of our instantiation closely follows Section 3.
Code can be found at: https://github.com/ADDUSER/POCA or https://github.com/
vanderschaarlab/POCA

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Besides the descriptions in Sec 4, we also provide details about the algorithms
and data in Appendix D and E.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the details on data, training, prompts etc for the experiments are provided
in Appendix D and E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars (95% confidence interval) are included as relevant over 15 seeds for
the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute details on the experiments are provided in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics do not violate any of the dimensions.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We highlight broader impacts in Section 1 and 5 of the paper, as well as,
Appendix A — discussing both positive impacts and possible negative impacts (e.g. biases).

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable — our paper presents a process for data acquisition — which
does not fall into this category.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Appendix D provides details and/or citations for all the open source data assets
used in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not produce new assets such as datasets, but uses existing
datasets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not have crowdsourcing experiments or research with humans.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not have crowdsourcing experiments or research with humans that
would need an IRB.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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