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Abstract

Mixed time series (MiTS) comprising both continuous variables (CVs) and discrete
variables (DVs) are frequently encountered yet under-explored in time series analy-
sis. Essentially, CVs and DVs exhibit different temporal patterns and distribution
types. Overlooking these heterogeneities would lead to insufficient and imbalanced
representation learning, bringing biased results. This paper addresses the problem
with two insights: 1) DVs may originate from intrinsic latent continuous vari-
ables (LCVs), which lose fine-grained information due to extrinsic discretization;
2) LCVs and CVs share similar temporal patterns and interact spatially. Con-
sidering these similarities and interactions, we propose a general MiTS analysis
framework MiTSformer, which recovers LCVs behind DVs for sufficient and
balanced spatial-temporal modeling by designing two essential inductive biases: 1)
hierarchically aggregating multi-scale temporal context information to enrich the
information granularity of DVs; 2) adaptively learning the aggregation processes
via the adversarial guidance from CVs. Subsequently, MiTSformer captures com-
plete spatial-temporal dependencies within and across LCVs and CVs via cascaded
self- and cross-attention blocks. Empirically, MiTSformer achieves consistent
SOTA on five mixed time series analysis tasks, including classification, extrinsic
regression, anomaly detection, imputation, and long-term forecasting. The code is
available at https://github.com/chunhuiz/MiTSformer.

1 Introduction

Multivariate time series analysis is energized in various real-world applications, such as weather
forecasting [7], activity recognition [20], and industrial maintenance [47]. Empowered by deep
learning, plentiful time series models have been proposed based on foundation models such as RNNs
[23, 25, 22], CNNs [6, 36, 40], Transformers [30, 41, 10] and modernized MLPs [50, 45, 39]. These
sophisticated models have achieved increasingly remarkable performance in various time series
analysis tasks, e.g., classification [17], forecasting [7, 42], imputation [40] and anomaly detection [9].

The primary challenge in time series analysis is effectively modeling spatial-temporal patterns,
including intra-variable temporal variations and inter-variable spatial correlations [46, 48, 16, 11, 43].
So far, most current approaches naturally assume that time series data are composed solely of
continuous variables, and then uniformly model spatial-temporal patterns in continuous spaces. Yet,
in broad practical scenarios, the acquired data are often mixed time series (MiTS) that encompass both
continuous variables (CVs) and discrete variables (DVs). Take meteorological data as an example
(Fig. 1 (Left)), some sensor-derived variables are commonly recorded as CVs (e.g., temperature,
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Figure 1:Left: Illustration of mixed time series.Right: Spatial-temporal heterogeneity problem.

humidity, and wind speed), while certain variables like cloudage and rainfall patterns are typically
tracked as DVs due to measurement restrictions or distinctive nature. Up to now, mixed time series
analysis is still a formidable yet under-explored problem. Essentially, MiTS presents spatial-temporal
heterogeneity problems as depicted in Fig. 1 (Right). On one hand, CVs commonly encapsulate rich
temporal variation information, exhibited inautocorrelations, periodical patterns, local �uctuations,
etc, while DVs often undergosudden changesor steady statesdue to limited value ranges, resulting
in the temporal variation discrepancy between CVs and DVs that complicates temporal modeling.
On the other hand, CVs generally adhere to Gaussian distributions, while DVs follow Bernoulli
distributions, resulting in the distribution type discrepancy that hinders spatial correlation analysis
between CVs and DVs. Neglecting these heterogeneities and equally treating mixed variables would
yield insuf�cient and imbalanced spatial-temporal modeling problems, i.e., the model may struggle to
characterize distinct temporal patterns of DVs and CVs and fail to reliably capture spatial correlations
within and across DVs and CVs, posing a bottleneck for MiTS analysis.

The key to addressing the spatial-temporal heterogeneity lies in bridging the information gap between
DVs and CVs. Essentially, in real-world MiTS, the observed DVs may originate from intrinsic
continuous-valued factors, which are unobservable owing to extrinsic factors such as measurement
limitations, storage requirements, and transmission interference. Continuing with the aforementioned
meteorological example, cloud cover percentage is an intrinsically continuous variable, whose �ne-
grained values are hard to measure directly. In practice, discretizing it with coarse-grained discrete
variable-cloudage (re�ect “cloudy” or not) is suf�cient for most applications and is memory-ef�cient.
In this paper, we introduce latent continuous variables (LCVs) to describe the intrinsic continuous
factors behind DVs. Given its numerically continuous nature, the LCV of cloudage, i.e., cloud cover
percentage, may be spatially correlated with other observed CVs (e.g., humidity and wind speed)
and exhibit similar temporal variation patterns (e.g., autocorrelation and seasonal �uctuation) with
them, as both of them originate from the same meteorological system. Thereby, we can progressively
recover the LCVs behind DVs by leveraging these temporal similarities and spatial interactions among
CVs and LCVs. In this way, spatial-temporal dependencies of mixed variables can be completely
and reliably modeled in a uni�ed continuous numerical space, and the spatial-temporal heterogeneity
problem is mitigated. Also, by bridging the mutual spatial-temporal interactions, LCVs and CVs can
supply complementary information for various downstream analysis tasks.

Enlightened by the above insights, we reconcile the intrinsic tension between the two highly dependent
problems - Latent Continuity Recovery and Spatial-Temporal Modeling - in one coherent and
synergistic framework,MiTSformer , for general mixed time series analysis. By leveraging the
temporal similarities and spatial interactions between LCVs and CVs, MiTSformer can gradually
decipher the LCVs behind DVs and capture the complete spatial-temporal dependencies within
and across LCVs and CVs. Speci�cally, we design a recovery network to portray LCVs behind
DVs by adaptatively and hierarchically aggregating temporal contextual information. Followingly,
an adversarial variable modality discrimination objective and smoothing constraints are devised to
guide the learning of the recovery network, ensuring the recovered LCVs share similar temporal
properties and distributions with CVs. Additionally, MiTSformer employs self-attention to learn
spatial-temporal dependencies within LCVs or CVs and cross-attention to exploit those across LCVs
and CVs, facilitating various downstream analysis tasks. Our contributions lie in three aspects:

(1) Novel Problem: To the best of our knowledge, our paper pioneers the exploration of the
general mixed time series analysis, which is practical and challenging. We reveal the crucial
spatial-temporal heterogeneity problem, which is caused by the discrepancies in temporal
variation properties and distribution types between DVs and CVs.
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(2) Customized Framework: To solve the spatial-temporal heterogeneity problem, we propose
a task-general framework MiTSformer customized for MiTS, which adaptively recovers
LCVs behind DVs by leveraging the adversarial guidance of CVs and task supervisions.
Moreover, MiTSformer can capture spatial-temporal dependencies within and across CVs
and LCVs via self- and cross-attention blocks, thus learning suf�cient and balanced spatial-
temporal representations and being amenable to various mixed time series analysis tasks.

(3) Versatile Effectiveness: Empirically, our proposed MiTSformer establishes the state-of-
the-art performance on �ve mainstream mixed time series analysis tasks with 34 datasets
covering wide-ranging real-world application domains. We believe our work makes a
predominant attempt at general mixed time series analysis in practical applications.

2 Related Work

General Time Series AnalysisGeneral time series analysis aim at learning universal temporal
representations by developing task-general backbones and task-speci�c heads for diverse tasks.
To date, these methods have been designed predominantly for time series comprising continuous
variables solely. As a pioneering work, TimesNet [40] leverages fast Fourier transform and parameter-
ef�cient inception block to capture intra-period and inter-period variations for time series modeling.
Followingly, ModernTCN [16] modernizes and modi�es the traditional TCN by introducing larger
effective receptive �elds and cross-variable dependency modeling, bringing great performance and
ef�ciency. Meanwhile, GPT2TS [52] leverages pre-trained language models, e.g., GPT2 [32], for
various time series analysis tasks with task-speci�c �ne-tuning.

Yet, most of the current works naturally assume uniformity in variable types of time series and are
inapplicable for MiTS, as they lack the differentiation of distinct variable modalities. In this paper, we
develop a systematic framework with delicate differentiation and deft alignment of mixed variables
to support suf�cient and balanced spatial-temporal modeling for general mixed time series analysis.

Mixed Data Analysis Previous studies have revealed the signi�cance of mixed data analysis and
made several attempts to shed light on this challenging problem. A naive solution for mixed data
modeling is roughly pre-processing DVs and CVs into the same variable modality, e.g., discarding
DVs or discretizing CVs by certain policies [35, 13]. However, these methods may lose vital �ne-
scaled information and bring errors inevitably. Towards concurrently modeling of DVs and CVs,
Mixed Data RBF-ELM method [24] adopts a distance-based learning scheme for ef�cient and direct
mixed data classi�cation, while Mixed-variate Restricted Boltzmann Machine (Mv.RBM) [15, 14]
construct ensembles of mixed-data Deep Belief Nets with varying depths for anomaly detection
of mixed data. Another line of work treats DVs as semantic attributes of CVs and establishes the
relationships between DVs and CVs by developing speci�c inference rules [18, 44]. More recently,
researchers have utilized mixed naive Bayes models [37, 38] or variational inference [12] for mixed
data modeling in industrial processes with different distribution priors of CVs and DVs.

However, current studies mostly focus on speci�c analysis tasks (e.g., designed only for classi�cation)
and may be restricted by linear, non-temporal data, or other rigorous assumptions, which are not
capable of handling real-world MiTS that exhibit intricate spatial-temporal patterns. Instead, our
proposed MiTSformer can model complete spatial-temporal dependencies within and across DVs
and CVs and can produce task-general representations for various MiTS analysis tasks.

3 MiTSformer

3.1 Problem Formulation and Motivation Analysis

Mixed Time Series. Given a collection of multivariate time seriesX = f x1; x2; :::; xpg
comprisingp variables with lengthT. Among them, there arep � n continuous variables
X C = f x1; x2; :::; xp� n g 2 R(p� n ) � T with continuous numerical values, andn discrete vari-
ablesX D = f xp� n +1 ; xp� n +2 ; :::; xn g 2 An � T with discrete states. Without loss of generality, we
consider the binary-valued discrete variables, whose value can be0 or 1, i.e.,A = f 0; 1g. Mixed time
series are used as model input to support various analysis tasks, such as regression and classi�cation.

Hampered by the spatial-temporal heterogeneity problem, directly modeling spatial-temporal depen-
dencies of CVs and DVs without considering their discrepancies may inevitably yield non-negligible
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biases. Such research bottlenecks prompt us to exploit the underlying generation and interaction
mechanism of DVs and CVs. As aforementioned, the observed DVs are potentially derived from
LCVs, which undergo discretization processes due to external interferences as depicted in Fig. 2. For
each DVxD , we adopt a corresponding LCVxLC to portray its latent continuity. To reliably and
completely model inherent spatial-temporal patterns within MiTS, deciphering and recovering LCVs
behind DVs is indispensable. Yet, it is challenging since a single discrete state can not be directly trans-
formed into a continuous value without proper supervision. In this study, we address this challenge
by revealing and leveraging the temporal similarity and spatial interaction between LCVs and CVs:

Figure 2: Connections among DVs, CVs, and LCVs.

Temporal Similarity The unobserved
LCVs share similar temporal variation
patterns (e.g., autocorrelation, periodicity,
trend, etc.) with the observed CVs.

Spatial Interaction LCVs and CVs exhibit
information interactions and inter-variable
spatial correlations. The synergistic effect
of LCVs and CVs provides complementary
information for various downstream tasks.

Built upon these two insights, we design
MiTSformer, which will be elaborately introduced in the following parts.

Figure 3: Overall pipeline of MiTSformer. First, MiTS undergo latent continuity recovery (DVs only) and are
embedded as variate tokens, which are then re�ned through spatial-temporal attention blocks. The acquired
variate tokens are utilized both for reconstructing the original MiTS and serving various downstream tasks.

3.2 Framework Overview

As aforementioned, there are two key steps for general MiTS analysis: 1) unifying the temporal
characteristics and distribution types of DVs and CVs; 2) modeling suf�cient and balanced spatial-
temporal dependencies for effective representation learning. MiTSformer facilitates these two
steps in a highly versatile manner with a coherent framework as depicted in Fig. 3. The overall
pipeline contains two key parts: 1)Latent Continuity Recoverythat adaptively aggregate contextual
information of DVs to recover LCVs with the adversarial alignment guidance of CVs and temporal
smoothness constraints; 2)Spatial-Temporal Attention Blocksthat model intra- and inter-variable
modality spatial-temporal dependencies with cascaded self-attention and cross-attention sub-blocks.

3.3 Latent Continuity Recovery

Since single time points of DVs contain limited information, it is dif�cult to directly transform
discrete states to latent continuous values. Fortunately, time series commonly present auto-correlation
natures, i.e., the value of a certain time step is correlated with its adjacent ones. Speci�cally, for
a discrete state of “1” surrounded by states “1”, its latent continuous value would be relatively
large, e.g., 0.9. In contrast, for a discrete state of “1” surrounded by states “0”, its latent continuous
value would be relatively small, e.g., 0.6. Thus, an intuitive solution for enriching the information
density of a single time point of DVs is to properly leverage its adjacent context information.
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Figure 4: LCV recovery with adversarial
variable modality discrimination.

Contextual Aggregation Recovery NetworkWe con-
vert the above insights into the model inductive bias
and realize the latent continuity recovery byadaptively
and hierarchically aggregating multi-scale adjacent con-
text informationof DVs. Speci�cally, convolutional
neural networks (CNNs) own an inductive bias that
can aggregate receptive local information by convolu-
tional kernels. Technically, we devise the recovery net-
works that receive DVs as input to generate LCVs as
xLC = Rec-Net

�
xD

�
. As depicted in Fig. 4, the

recovery network is composed of several residual di-
lated convolutional blocks, which employ dilated con-
volutional kernels along the temporal dimension to ag-
gregate adjacent context information, and utilize resid-
ual connections to adaptively accumulate multi-scale
temporal information to characterize intricate tempo-
ral patterns of LCVs. The residual dilated convolu-
tional network is implemented by the iterative process as
hi = Conv di (hi � 1)+ hi � 1, wherehi represents the out-
put of thei -th residual block,i = 1 ; 2; : : : ; n, Convdi

denotes the convolution operation along the temporal
axis to aggregate contextual information with dilation
ratedi . The �nal output,xLCV = hn , is the result aftern residual blocks.
Temporal Adjacent Smoothness Constraint: To facilitate spatial-temporal modeling across LCVs
and CVs, the recovered LCVs should be equipped with interpretable autocorrelation or trend proper-
ties, instead of “sudden changes” as DVs. To this end, we encourage the smoothness of LCVs across
time with a regularization term as

L smooth =

 Abs

�
SxD �



�
SxLC � 

 2

2 ; S =

2

6
4

� 1 1

. . .
. . .

� 1 1

3

7
5 2 R(T � 1) � T (1)

whereS is the smoothness matrix and
 denotes the Hadamard product operation.Abs
�
SxD

�
=

Abs
�

xD
[2:T ] � xD

[1:T � 1]

�
denotes the absolute value of the �rst-order difference of DVs and can re�ect

the “sudden change” points (with state “1”). Overall, minimizingL smooth is equivalent to minimizing
P T � 1

t =1 Abs
�
xD

t+1 � xD
t

� �
xLC

t+1 � xLC
t

� 2
by introducing the multiplication of the constant matrixS.

Alternatively, we can adopt the K-Lipschitz continuity as smoothness constraints, where the CVs can
act as guidance to determine the smoothness degree of the recovered LCVs. Empirically, we �nd out
such design would bring similar performance.

After latent continuity recovery, raw series ofxLC andxC are independently embedded as tokens
zLC andzC through variate-wise linear projection to describe the properties of each variable.

Adversarial Variable-Modality Discrimination : Inspired by the temporal similarity property, the
recovered LCVs should exhibit similar temporal patterns and distributions to CVs. Accordingly, we
devise a variable modality discrimination objective, which is optimized in an adversarial manner as

argmin
� Dis

�
max

� Rec ;� Emb

�
L Dis = E

�
log

�
Dis

�
zC ���

+ E
�
log

�
1 � Dis

�
zLC ����

�
(2)

whereDis denotes the variable modality discriminator.Dis is trained to distinguish LCVs and
CVs as accurately as possible, while the recovery networks are facilitated to generate LCVs with
characteristics similar to CV as much as possible to confuse the discriminator. We adopt gradient
reversal layer [19](GRL) to achieve the adversarial learning objective. In this way, we bridge the
interactions between CVs and DVs and enable CVs to supply supervision signals for LCV recovery.

3.4 Intra- and Inter-Variable-Modality Spatial-Temporal Dependency Learning

Spatial-temporal dependencies are of vital importance for time series representation learning. Specif-
ically for MiTS, the complete spatial-temporal correlations include the ones within LCVs or CVs
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Figure 5: Spatial-temporal attention blocks.Left: MiTS variable adjacency matrix, including the
variable relationships i)within CVs or LCVs and ii)acrossCVs and LCVs;Middle: Intra-variable-
modality self-attention for modeling spatial-temporal dependencieswithin CVs or LCVs, andRight:
Inter-variable-modality cross-attention for modeling thoseacrossCVs and LCVs.

and the ones across LCVs and CVs, which are explicitly characterized by spatial-temporal attention
blocks in MiTSformer (as shown in Fig. 5).

Intra-Variable-Modality Self-Attention Within each variable modality, we adopt self-attention to
model their spatial-temporal dependencies as

ẑC
l = LN

�
zC

l + Self -Attn
�h

QC
l ; K C

l ; V C
l

i��
; ẑC

l = LN
�

ẑC
l + FFN

�
ẑC

l

��

ẑLC
l = LN

�
zLC

l + Self -Attn
�h

QLC
l ; K LC

l ; V LC
l

i��
; ẑLC

l = LN
�

ẑLC
l + FFN

�
ẑLC

l

�� (3)

whereSelf-Attn denotes the Multi-head Self-Attention that captures intra-variate spatial correlations
by computing Softmax scores with query and key embeddings and weighted aggregating the value
embeddings.FFN denotes the feed-forward network that processes each variable token to learn
intra-variate global temporal representations.LN denotes Layer Normalization, which is applied to
individual variate tokens and has been proven effective in tackling non-stationary problems [28].

Inter-Variable-Modality Cross-Attention We adopt symmetric cross-attention sub-blocks to model
the spatial-temporal interactions across LCVs and CVs as

zC
l +1 = LN

�
ẑC

l + Cross-Attn
�h

QC
l ; K LC

l ; V LC
l

i��
; zC

l +1 = LN
�
zC

l +1 + FFN
�
zC

l +1

��

zLC
l +1 = LN

�
zLC

l +1 + Cross-Attn
�h

QLC
l ; K C

l ; V C
l

i��
; zLC

l +1 = LN
�
zLC

l +1 + FFN
�
zLC

l +1

�� (4)

Subsequently, the acquired token embeddingszLC
L andzC

L are utilized both for 1) original MiTS
reconstruction withL Rec as Eq. 5, and 2) downstream tasks with task supervision lossL Task , e.g.,
Cross Entropy loss for the classi�cation task. See Appendix A for pipelines of each task.

Self-ReconstructionWe devise variate-wise decoders based on MLPs to reconstruct the original
DVs and CVs, which can not only provide self-supervision signals for spatial-temporal dependency
learning but also guarantee the recovered LCVs retain the information of the observed DVs.

L Rec =
p� nX

i =1

MSE(Rec-DecoderC
�
zC

L;i

�
; xC

i ) +
nX

i =1

CE(Rec-DecoderLC
�
zLC

L;i

�
; xD

i ) (5)

3.5 Synergy of Latent Continuity Recovery and Downstream Tasks

Considering both latent continuity recovery and downstream analysis task, the overall optimization
objective of MiTSformer is expressed as

L All = � 1L Smooth + � 2L Rec + � 3L Dis| {z }
Self - Supervision

+ L Task| {z }
Task - Supervision

(6)

While seemingly separated from each other, the loss components of MiTSformer work in a collabora-
tive fashion on two aspects: 1).The �rst three self-supervision losses facilitate latent continuity
recovery synergeticallyto tackle the spatial-temporal heterogeneity problem. Speci�cally, the
smoothness lossL Smooth favorably manifests the autocorrelation of LCVs and alleviates the sudden
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Table 1: Summary of experiment benchmarks. For each dataset, we randomly selectn = b0:5pc
variables as DVs, whose values are �rst MinMax normalized and then discretized into the value of 0
or 1 with the threshold 0.5 asint (MinMax(x) > 0:5). See Table 5 for more details.

Tasks Benchmarks Metrics Series-length#Variables (p)
Classi�cation UEA (10 subsets) Accuracy 29� 1751 3� 963

Extrinsic RegressionUCR (10 subsets) MAE,RMSE 24� 1140 4� 24
Imputation ETT (4 subsets), Electricity,Weather MSE, MAE 96 7� 321

Anomaly Detection SMD, MSL, SMAP, SWaT, PSM Precision, Recall, F1-Socre 100 25� 55

Long-term ForecastingETT (4 subsets), Electricity, Traf�c, Weather, Exchange, ILI MSE, MAE
96� 720

(ILI: 24� 60) 7 � 862

changes. Also, the discrimination lossL Dis guarantees LCVs to be equipped with similar temporal
dynamics with CVs adversarially, which guarantees a crucial condition for spatial-temporal modeling.
Meanwhile, the reconstruction loss provides auxiliary self-supervision signals and constrains the
LCV recovery processes to be reversible. Our experiments, particularly the ablation study displayed
in Section 4.2, further justify the mutual dependency of the synergy between the three components;
2) The latent continuity recovery losses and task loss also work collaboratively, as reliable latent
continuity recovery can bring excellent downstream task performance, while task supervision loss
may, in turn, also reciprocate the recovery processes. Take MiTS classi�cation as an example, the
ideally recovered LCVs can prompt learning discriminative representations for classi�cation, while
the class label loss provides additional supervision for learning appropriate recovery functions.

4 Experiments

To verify the effectiveness and versatility of MiTSformer, we extensively experiment on �ve main-
stream mixed time series analysis tasks, includingmixed time series classi�cation, extrinsic regression,
long-term forecasting, imputation, and anomaly detection.

ImplementationsTable 1 summarizes the experiment benchmarks. For each dataset, we randomly
selecthalf the variablesand discretize them as DVs to generate MiTS data. More information about
datasets and experimental platforms, hyperparameters and experimental con�gurations, and algorithm
implementations can be found in Appendix A.1, A.2,A.3, respectively. The pipelines of different
mixed time series analysis tasks can be found in Appendix A.5� A.8.

BaselinesWe extensively compare MiTSformer with the latest and advanced models in the time
series community, including CNN-based models: ModernTCN (2024), TimesNet (2023) and MICN
(2023); Transformer-based models: iTransformer (2024), PatchTST (2023), Crossformer (2023),
FEDformer (2022) and Pyraformer (2022); MLP-based models: LightTS (2023), DLinear (2023) and
FiLM (2022). To guarantee fairness, we keep the original backbone for each method as the feature
extractor, and we adopt universal task-speci�c heads and loss functions consistently for all methods.

4.1 Main Results on Different Tasks

Figure 6: Classi�cation Results (Acc" )

(1) Mixed Time Series Classi�cation We se-
lect 10 multivariate datasets from the UEA Time
Series Classi�cation Archive [5] and pre-press
them following [40]. As shown in Fig. 6, MiTS-
former achieves the best performance with an
average accuracy of 71.9%, surpassing all pow-
erful baselines. Besides, it can be observed that
frequency-based methods FiLM and FEDformer
show inferior performance, as the introduction
of DVs may make it dif�cult to estimate the fre-
quency reliably and yield non-negligible errors.
In comparison, MiTSformer adaptively recovers
and aligns the LCVs behind DVs with the guid-
ance of both CVs and class-label supervision,
thereby facilitating high-level representation learning and bene�ting the classi�cation tasks.
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Table 2: Imputation Task. The best results areboldedand the second-best results areunderlined. The
same goes for Table 3. See Table 14 for full results.

Models
MiTSformer

(Ours)
iTrans.
(2024)

M-TCN.
(2024)

TimesNet
(2023)

PatchTST
(2023)

Cross.
(2023)

MICN
(2023)

LightTS
(2023)

Dlinear
(2023)

FiLM
(2022)

FED.
(2022)

Pyra.
(2022)

Metric MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ETTm1 0.156 0.0490.169 0.0570.135 0.0370.1390.0390.164 0.0570.160 0.0510.160 0.0520.178 0.0640.193 0.0800.194 0.0800.170 0.0600.199 0.081

ETTm2 0.116 0.0360.186 0.0800.188 0.0770.170 0.0650.1450.0550.216 0.1030.245 0.1310.209 0.0950.253 0.1470.258 0.1520.238 0.1230.265 0.141

ETTh1 0.2230.096 0.241 0.1160.215 0.0920.237 0.1120.251 0.1290.246 0.1210.234 0.1070.266 0.1450.262 0.1450.268 0.1520.244 0.1120.247 0.113

ETTh2 0.186 0.0830.2500.1340.309 0.2130.319 0.2390.260 0.1480.304 0.1980.318 0.2200.314 0.2090.312 0.2110.342 0.2620.350 0.2580.367 0.253

Electric 0.186 0.0760.212 0.0930.2070.0880.211 0.0940.203 0.1150.209 0.0970.229 0.1030.223 0.0990.257 0.1300.257 0.1280.260 0.1300.274 0.150

Weather0.062 0.0310.091 0.0380.0810.0330.149 0.0650.088 0.0370.115 0.0430.135 0.0550.107 0.0410.121 0.0480.124 0.1840.139 0.0570.100 0.042

Figure 7: Regression Results (MAE#)

(2) Mixed Time Series Extrinsic Regression
We select 10 multivariate datasets from TSER
repository [34] and pre-process them as [34].
As summarized in Fig. 7 (b), MiTSformer out-
performs all the rivals with an average MAE
of 0.524, verifying its capacity to model com-
plex extrinsic regression patterns. Besides,
some transformer-based models, e.g., PatchTST
and Crossformer, present competitive perfor-
mance by learning global dependencies with self-
attention. Notably, Dlinear shows inferior re-
sults. This is probably because Dlinear adopts
single-layer MLP to model temporal dependen-
cies, which might be suitable for some autore-
gressive endogenous patterns, but are not appli-
cable for nonlinear exogenous regression relationships and degenerate performance.

(3) Mixed Time Series Anomaly DetectionWe conduct experiments on �ve widely-used anomaly
detection benchmarks: SMD [33], MSL [21], SMAP [21], SWaT [29] and PSM [4].

Figure 8: Anomaly detection results (F1-score).

For fair comparisons, we adopt the reconstruc-
tion loss for both CVs and DVs to train base
models and use the reconstruction error as the
shared anomaly criterion for all experiments.
Speci�cally for MiTSformer, no additional task-
orientation loss is added since there are already
reconstruction losses. Fig. 8 presents the per-
formance comparison evaluated by the F1-score
(" ), demonstrating that MiTSformer consistently
achieves state-of-the-art performance on �ve
benchmarks. Besides, iTrasformer also achieves
great performance by adaptively modeling multi-
variate correlations with self-attentions. In
comparison, MiTSformer not only recovers the
LCVs behind DVs but also comprehensively and
explicitly characterizes the spatial-temporal dependencies within and across DVs and CVs, thereby
equipping meticulous anomaly detection ability.

(4) Mixed Time Series Imputation Following [40], we select datasets of ETT [49], Weather
(Wetterstation) and Electricity (UCI) benchmarks. In practice, imputating the values of CVs is more
important and meaningful than those of DVs. Therefore, we focus on imputing the CVs in each
experiment, while DVs are used as inputs to provide auxiliary information. To compare the model
capacity under different proportions of missing data, we randomly mask the time points in the ratio
of f 12:5%; 25%; 37:5%; 50%g in length-96 mixed time series and report the averaged imputation
accuracy of CVs from 4 different mask ratios.
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Table 3: Long Term Forecasting of CVs. “-” denotes out of memory. See Table 16 for full results.

Models
MiTSformer

(Ours)
iTrans.
(2024)

M-TCN.
(2024)

TimesNet
(2023)

PatchTST
(2023)

Cross.
(2023)

MICN
(2023)

LightTS
(2023)

Dlinear
(2023)

FiLM
(2022)

FED.
(2022)

Pyra.
(2022)

Metric MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ETTm1 0.376 0.3280.385 0.3400.380 0.3340.403 0.3570.379 0.3300.407 0.3580.385 0.3310.394 0.3480.381 0.3310.397 0.3570.425 0.3710.484 0.470

ETTm2 0.365 0.3630.371 0.373 0.366 0.3710.376 0.3950.368 0.3640.878 1.0560.528 0.5990.529 0.5780.512 0.5680.376 0.3890.386 0.3850.896 1.732

ETTh1 0.414 0.3730.427 0.393 0.415 0.3880.446 0.4120.416 0.3810.425 0.3760.448 0.4040.478 0.4650.417 0.3760.443 0.4300.437 0.3900.526 0.543

ETTh2 0.430 0.4490.442 0.4720.442 0.4800.453 0.4900.440 0.4640.917 1.4220.692 1.0000.729 1.0630.675 0.9820.450 0.4900.476 0.5081.304 2.548

Weather 0.326 0.2680.334 0.279 0.328 0.2690.348 0.2960.332 0.2760.3380.257 0.356 0.2780.354 0.2770.346 0.2740.353 0.2910.386 0.3220.357 0.274

Exchange0.445 0.3980.452 0.4120.448 0.4030.503 0.4980.453 0.4170.596 0.6320.412 0.3230.459 0.4020.409 0.3180.449 0.3980.564 0.5990.650 0.679

ILI 0.779 1.4820.995 2.1320.922 1.957 0.891 2.0150.973 2.1401.140 2.9621.358 2.3601.734 5.4321.340 3.1971.188 2.7021.267 3.0031.096 2.747

Electric. 0.260 0.1680.293 0.207 0.270 0.174 0.288 0.1870.295 0.2070.326 0.2370.295 0.1850.339 0.2400.314 0.2200.316 0.2340.351 0.2480.400 0.319

Traf�c 0.312 0.4990.372 0.593 0.366 0.635 0.354 0.8030.360 0.603 - - 0.355 0.6920.465 0.8240.421 0.742 - - 0.416 0.7740.456 0.945

Due to the missing values, the imputation task requires the model to deeply exploit the underlying
temporal dependencies and spatial correlations from partial observations. According to Table 2,
MiTSformer achieves the best performance on most tasks. Through the recovery of LCVs and
the intra- and inter-variable modality attention mechanisms, MiTSformer can effectively bridge
spatial-temporal information interactions between CVs and DVs. In this way, not only can CVs
exploit useful information for self-imputation by mining temporal and spatial correlation themselves,
but also DVs can provide reliable auxiliary information for more accurate imputation of CVs.

(5) Mixed Time Series Long-term ForecastingWe follow the settings of prediction lengths and
benchmarks as [40], including ETT [49], Electricity (UCI), Weather (Wetterstation), Exchange [23]
and ILI (CDC), corresponding to different applications. We focus on forecasting both DVs and CVs.

Since CVs contain more �ne-grained information granularity and can more adequately evaluate
the model forecasting performance, we mainly focus on the prediction accuracy of CVs, which are
summarized in Table. 3. As reported, MiTSformer presents the best performance on most tasks
(76 % according to Table 16), surpassing extensive advanced MLP-based, Transformer-based and
CNN-based models. In addition, recent baselines- modernTCN and iTransformer present great
performance due to their delicate design of global temporal receptive �elds.

(a) ETTh1 case#1 (b) ETTh1 case#2 (c) ETTh1 case#3

(d) ETTh1 case#4 (e) ETTh1 case#5 (f) ETTh2 case#1

(g) ETTh2 case#2 (h) ETTh2 case#3 (i) ETTh2 case#4

Figure 9: Visualization of LCV recovery. For each sub�gure, theLeft plots the observed DVs, and the
Right plots the actual LCVs (red line)and recovered LCVs (black line). Thegrey rectangular patches
denotes the area where the observed DV is “1”.
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Table 4: Ablation analysis. For anomaly detection tasks, we do not ablateL Rec , as it is needed to
support anomaly criterion calculation. The corresponding results are omitted with “ / ”.

Models Components Cls. (Acc.) Long-term-forecasting 96-720 (MAE) Anomaly detection (F1)
L Dis L Smooth L Rec Cross-Att UCR Avg. ETTm1 ETTm2 ETTh1 ETTh2 Avg. SMD MSL SMAP Avg.

MiTSformer ! ! ! ! 71.9 0.415 0.439 0.442 0.455 0.438 87.84 85.30 96.83 89.99
w/o L Dis % ! ! ! 70.1 0.416 0.440 0.446 0.459 0.440 86.56 83.24 95.70 88.50

w/o L Smooth ! % ! ! 70.7 0.416 0.437 0.445 0.463 0.440 87.58 82.41 95.73 88.57
w/o L Rec ! ! % ! 69.7 0.463 0.478 0.624 0.509 0.519 / / / /
w/o LCVs % % % ! 69.3 0.501 0.479 0.626 0.509 0.529 / / / /

w/o Cross-Att ! ! ! % 70.2 0.428 0.442 0.451 0.461 0.446 84.92 84.10 95.79 88.27

4.2 Ablation Studies

To further verify the effectiveness of each key design, we conduct ablation experiments on mixed time
series classi�cation, long-term forecasting, and anomaly detection tasks. The results are summarized
in Table 4, where “w/o LCVs” denotes removingL Dis , L Smooth , andL Rec together, and “w/o
Cross-Att” denotes removing the cross-attention sub-block and adopt self-attention sub-block solely.

Latent Continuity Recovery The three loss terms,L Dis , L Smooth , andL Rec support the latent
continuity recovery from different perspectives and work collaboratively. As shown in Table 4,
ablating each loss term would lead to performance degradation for different tasks. Remarkably, the
employment of all recovery loss functions in conjunction yields the optimal result.

Attention BackbonesThe cross-attention block is devised to bridge the information prorogation
among LCVs and CVs by modeling spatial-temporal dependencies across LCVs and CVs, as LCVs
and CVs provide complementary information for analysis tasks. The results in Table 4 also emphasize
the importance of cross-variable-modality dependency modeling for MiTS analysis.

4.3 Visualization and Model Investigations

Visualization of the Recovered LCVsTo verify the interpretability of LCV recovery, we provide
visualization plots in Fig. 9. We �nd that DVs commonly show patterns of “sudden changes” or
“steady states”, which are less informative for analyzing spatial-temporal correlations. Fortunately,
MiTSformer not only recovers their latent �ne-grained and informative temporal variation patterns
but also further leverages them for spatial-temporal representation learning, thereby mitigating the
spatial-temporal heterogeneity challenge and achieving superior performance.

Additional Analysis We analyze the model ef�ciency in the Appendix. B, showing MiTSformer
maintains great performance and ef�ciency compared with most baselines. In addition, we investigate
hyperparameter sensitivity in the Appendix C. The results demonstrate that (1) MiTSformer is
relatively stable in the selection of odel capacity-related hyper-parametersdmodel and number of
layersL ; (2) MiTSformer is quite robust to the weights of loss items (i.e.,� 1, � 1, and,� 3), and
moderate weights bring optimal performance.

5 Conclusion and Future Work

This paper focuses on a challenging yet seldomly explored problem in the time series community
and provides a systematic and universal solution for mixed time series analysis. To address the
spatial-temporal heterogeneity problem, we �rst reveal the LCVs behind DVs and try to recover them
for suf�cient and balanced spatial-temporal modeling. Accordingly, MiTSformer is developed as a
task-general mixed time series analysis framework by leveraging the temporal similarities and spatial
interactions between LCVs and CVs. MiTSformer can perform adaptive LCV recovery for DVs via
the adversarial guidance of CVs as well as smooth constraints, and model complete spatial-temporal
dependencies via self- and cross-attention blocks. With extensive empirical evaluations, MiTSformer
shows great practicality, superiority, and versatility in �ve mainstream mixed time series analysis
tasks. In the future, it is of interest to empower MiTSformer with advanced pre-training techniques
and powerful large language models for broader applications of mixed time series.
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A Implementation Details

A.1 Datasets and Experimental Platforms

Despite being a fundamental issue, modeling mixed time series remains underexplored in academia,
with a lack of specialized benchmark datasets for mixed time series. To meet the tasks for mixed
time series, we employed benchmark time-series datasets and implemented discretization to convert
some CVs into DVs. Our conversion process simulates the generation process of DVs and discretizes
variables while preserving their inherent coupling relationships and properties. We summarized the
dataset descriptions in Table 5. All experiments are repeated three times, implemented in PyTorch2

and conducted on Linux servers with Intel(R) Xeon(R) Gold 6246 CPUs and NVIDIA 3090 24GB
GPUs. The versions of Python and Pytorch are 3.9.7, and 1.10.0 respectively.

A.2 Hyperparameters and Experimental Con�gurations

All the baselines that we reproduced are implemented based on their of�cial codes or Time Series
Library (TSlib)3. Since some baseline models are designed for speci�c analysis tasks, we modify
them to serve different analysis tasks by replacing task heads and loss functions. Speci�cally, we keep
the original backbone architecture for each method as the feature extractor, and we adopt universal
task-speci�c heads and loss functions consistently for all methods. The architectures of task heads
and related loss functions will be introduced in the following section.

The hyper-parameter con�gurations of MiTSformer are summarized in Table 6 and the hyper-
parameter con�gurations of baseline models are summarized in Table 7. Some hyperparameters,
including batch size, training epochs, dropout rate, and the number of attention heads (transformer-
based models only) are �xed and kept the same for all baseline models and MiTSformer. Moreover,
to compare the upper bound of different models speci�cally for mixed time series analysis tasks, we
conduct grid searches of model capacity-related hyper-parameters, including number of layers and
dmodel / hidden size and optimization-related hyper-parameter-learning rate. Compared with baseline
models, MiTSformer additionally �ne-tuned the weight of smoothness loss weight� 1 to adapt to
different temporal variations of different datasets. The variable modality discrimination loss weight
is �xed at 1:0 and the reconstruction loss weight is �xed at1:0 for all experiments.

A.3 Algorithm Implementations of MiTSformer

Mixed time series modeling differs signi�cantly from typical time series tasks due to variable
heterogeneity. Thereby, each component in MiTSformer is essential to address it via latent continuity
recovery and alignment. We summarized the model feed-forward, loss-calculation, and parameter-
update procedures of MiTSformer with pseudo-codes, which are presented in Algorithm 1. We
also report the standard deviation of MiTSformer performance with different random seeds in Table
8, which exhibits that the performance of MiTSformer is stable. Here we introduce the detailed
architectures of each module in MiTSformer.

Recovery Network The recovery network, receiving the input of DVsX D with shape
(Batchsize� n � T) and outputting LCVsX LCV with shape(Batchsize� n � T), is com-
posed of 3 dilated convolution blocks with residual connections. Speci�cally, thelth di-
lated convolution block is composed of 2 dilated 1D convolutional layers withkernel_size =
2; hidden_channel = 8; dilation = 2 l and GELU activations. Additionally, padding operation
Padding = ((kernel _size� 1) � dilation + 1) ==2 is adopted for the convolutional layer to ensure
that the input and output have the same lengthT, where(kernel_size� 1) � dilation + 1 denotes the
receptive �eld). Finally, we perform z-score normalization for eachxLC 2 R1� T to ensure training
stability as

xLC =
xLC � Mean(xLC )

Std(xLC )
whereMean andStd denote the mean and the standard deviation along the time axis, respectively.

Self-attention and Cross-attention Sub-blocksThe self-attention sub-block is composed of vanilla
FullAttention with 8 attention heads and 0.1 dropout rate. The same for the cross-attention sub-block.

2https://pytorch.org/
3https://github.com/thuml/Time-Series-Library
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Table 5: Dataset descriptions. The dataset size is organized in (Train, Validation, Test). “Dim.p”
denotes the total variable dimension and “Dim.n” denotes the discrete variable dimension. Since
current benchmark datasets are time series encompassing only continuous variables, we generate
mixed time series from these datasets by discretizing partial variables. For each dataset, we randomly
select half variables as DVs (n = b0:5pc), whose values are �rst MinMax normalized and then
discretized into the value of 0 or 1 with the threshold 0.5 asint (MinMax(x) > 0:5).

Task Dataset Dim p Dim n Series Length Dataset Size Semantics

Classi�cation
(UEA)

EthanolConcentration 3 1 1751 (261, 0, 263) Alcohol Industry

FaceDetection 144 72 62 (5890, 0, 3524) Face (250Hz)

Handwriting 3 1 152 (150, 0, 850) Handwriting

Heartbeat 61 30 405 (204, 0, 205) Heart Beat

JapaneseVowels 12 6 29 (270, 0, 370) Voice

PEMS-SF 963 481 144 (267, 0, 173) Transportation (Daily)

SelfRegulationSCP1 6 3 896 (268, 0, 293) Health (256Hz)

SelfRegulationSCP2 7 3 1152 (200, 0, 180) Health (256Hz)

SpokenArabicDigits 13 6 93 (6599, 0, 2199) Voice (11025Hz)

UWaveGestureLibrary 3 1 315 (120, 0, 320) Gesture

Extrinsic
Regression

(UCR)

AppliancesEnergy 24 12 144 (96,0,42) Energy Monitoring

HouseholdPower.1 5 2 1440 (746,0,694) Energy Monitoring

HouseholdPower.2 5 2 1440 (746,0,694) Energy Monitoring

BenzeneConcentration 8 4 240 (3433,0,5445) Environment Monitoring

BeijingPM25Quality 9 4 24 (12432,0,5100) Environment Monitoring

BeijingPM10Quality 9 4 24 (12432,0,5100) Environment Monitoring

LiveFuelMoisture. 7 3 365 (3493,0,1510 ) Environment Monitoring

AustraliaRainfall 3 1 24 (112186,0,48081) Environment Monitoring

PPGDalia 4 2 256 (43215,0,21482) Health Monitoring

IEEEPPG 5 2 1000 (1768,0,1328) Health Monitoring

Imputation

ETTm1,ETTm2 7 3 96 (34465, 11521, 11521) Electricity (15 mins)

ETTh1,ETTh2 7 6 96 (8545, 2881, 2881) Electricity (15 mins)

Electricity 321 160 96 (18317, 2633, 5261) Electricity (Hourly)

Weather 21 10 96 (36792, 5271, 10540) Weather (10 mins)

Anomaly
Detection

SMD 38 19 100 (566724, 141681, 708420) Server Machine

MSL 55 27 100 (44653, 11664, 73729) Spacecraft

SMAP 25 12 100 (108146, 27037, 427617) Spacecraft

SWaT 51 25 100 (396000, 99000, 449919) Infrastructure

PSM 25 12 100 (105984, 26497, 87841) Server Machine

Long-term
Forecasting

ETTm1,ETTm2 7 3 {96;96,192,336,720} (34465, 11521, 11521) Electricity (15 mins)

ETTh1,ETTh2 7 6 {96;96,192,336,720} (8545, 2881, 2881) Electricity (15 mins)

Electricity 321 160 { 96;96,192,336,720} (18317, 2633, 5261) Electricity (Hourly)

Traf�c 862 431 { 96;96,192,336,720} (12185, 1757, 3509) Transportation (Hourly)

Weather 21 10 { 96;96,192,336,720} (36792, 5271, 10540) Weather (10 mins)

Exchange 8 4 { 96;96,192,336,720} (5120, 665, 1422) Exchange rate (Daily)

ILI 7 3 {24;24,36,48,60} (617, 74, 170) Illness (Weekly)
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Table 6: Experiment con�guration of MiTSformer. All the experiments use the ADAM optimizer
with the default hyperparameter con�guration for(� 1; � 2) as (0.9, 0.999) with proper early stopping,
and adopt a dropout rate of 0.1.� 1 denotes the weight of smoothness loss,� 2 denotes the weight of
reconstruction loss, and� 3 denotes the weight of variable modality discrimination loss. LR� denotes
the initial learning rate. The number of attention heads is set to 8 for all experiments.

Task
Model Hyperparameters Training Process

Layers dmodel � 1 � 2 � 3 LR� Batch sizeEpochs

Classi�cation {1,2} {16,32,64,128,256}{0.1,0.3,0.5} 1 1 f 10� 3 ; 5 � 10� 4 ; 10� 4g 64/16y 100

Extrinsic Regression {1,2} {16,32,64,128,256}{0.1,0.3,0.5} 1 1 f 10� 3 ; 5 � 10� 4 ; 10� 4g 64 100

Imputation {1,2} {64,128,256} {0.3,0.5} 1 1 f 10� 3 ; 10� 4g 32 10

Anomaly Detection {1,2} {64,128,256} {0.3,0.5} 1 1 f 10� 3 ; 10� 4g 32 10

Long-term Forecasting{1,2} {64,128,256} {0.3,0.5} 1 1 f 10� 3 ; 10� 4g 32 10
yWe set the batch size to 16 for the PEMS-SF dataset due to its high dimensionality. We set the batch size to 64
for other classi�cation datasets. The same for Table .7

Table 7: Experiment con�guration of baseline models. All the experiments use the ADAM optimizer
with the default hyperparameter con�guration for(� 1; � 2) as (0.9, 0.999) with proper early stopping,
and adopt a dropout rate of 0.1. LR� denotes the initial learning rate. For Transformer-based models,
the number of attention heads is set to 8 for all experiments.

Task
Model Hyperparameters Training Process

Layers dmodel / hidden size LR� Batch size Epochs

Classi�cation {1,2} {16,32,64,128,256} f 10� 3 ; 5 � 10� 4 ; 10� 4g 64/16y 100

Extrinsic Regression {1,2} {16,32,64,128,256} f 10� 3 ; 5 � 10� 4 ; 10� 4g 64 100

Imputation {1,2} {64,128,256} f 10� 3 ; 10� 4g 32 10

Anomaly Detection {1,2} {64,128,256} f 10� 3 ; 10� 4g 32 10

Long-term Forecasting {1,2} {64,128,256} f 10� 3 ; 10� 4g 32 10

Variable Modality Discriminator The variable modality discriminator, receiving the input
variate embeddings with shape(Batchsize� p � dmodel ) and outputting the variable modal-
ity class with shape(Batchsize� p � 2), is composed of 3-layer MLP with structure of
f d_model; 4 � d_model; 4 � d_model; 2g. Relu activation and batch normalization are also adopted.

Reconstruction Decoders The discrete variable reconstruction decoder, receiving the
input of LCV embeddings (Batchsize� n � dmodel ) and outputting the reconstructed
DVs (Batchsize� n � T � 2), is composed of a linear layer withinput _size =
d_model; output _size = 2� T (the discrete variable reconstruction can be treated as a binary classi-
�cation task). The continuous variable reconstruction decoder, receiving the input of CV embeddings
(Batchsize� (p � n) � dmodel ) and outputting the reconstructed CVs(Batchsize� (p � n) � T),
is composed of a linear layer withinput _size = d_model; output _size = T.

In the following, we will introduce the architectures of task heads and loss functions for different
downstream tasks.

A.4 Pipeline for Classi�cation

Classi�cation is a long-standing task in the time series community and is widely used to evaluate the
high-level representation capacity of models. The overall pipeline of MiTSformer-based classi�cation
is depicted in Fig. 10. For the classi�cation task, both token embeddings of LCVs and CVs provide
complementary information. Thereby, we concatenate the embeddings of LCVs and CVs. The fused
embeddings are �attened and fed into a classi�er network to predict the class labels. For MiTSformer
and baseline models, the classi�er is composed of a single-layer MLP with GELU activation and
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Algorithm 1 The training process of MiTSformer

Input: Input mixed time series with continuous variablesX C = f x1; x2; :::; xp� n g 2 R(p� n ) � T ,
and discrete variablesX D = f x1; x2; :::; xn g 2n � T , number of attention blocksL , loss weights
� 1, � 2 and� 3.

Output: Optimized model parameters of MiTSformer.
1: Initialize the parameters of MiTSformer;
2: while not convergedo
3: (1) Feedforward Computation:
4: . Latent Continuity Recovery for DVs
5: xLC  Rec-Net(xD );
6: . Variate-wise Token Embedding of LCVs and CVs
7: zLC

0  EmbedLCV (xLC )
8: zC

0  EmbedCV (xC )
9: . Inter- and Intra-Variable-Modality Spatial-Temporal Modeling

10: for l = [0 ; 1; :::; L � 1] do
11: . Intra-Variable-Modality Self-Attention Sub-Block
12: ẑC

l  LN
�

zC
l + Self -Attn

�h
QC

l ; K C
l ; V C

l

i��

13: ẑC
l  LN

�
ẑC

l + FFN
�

ẑC
l

��

14: ẑLC
l  LN

�
zLC

l + Self -Attn
�h

QLC
l ; K LC

l ; V LC
l

i��

15: ẑLC
l  LN

�
ẑLC

l + FFN
�

ẑLC
l

��

16: . Inter-Variable-Modality Cross-Attention Sub-Block
17: zC

l +1  LN
�

ẑC
l + Cross-Attn

�h
QC

l ; K LC
l ; V LC

l

i��

18: zC
l +1  LN

�
zC

l +1 + FFN
�
zC

l +1

��

19: zLC
l +1  LN

�
zLC

l +1 + Cross-Attn
�h

QLC
l ; K C

l ; V C
l

i��

20: zLC
l +1  LN

�
zLC

l +1 + FFN
�
zLC

l +1

��

21: end for
22: . Task Prediction (if needed)
23: ŷ  Task-Heads(zLC

L ; zC
L )

24: (2) Loss Calculation:
25: . Task Supervision Loss (if needed)
26: L Task  Task-Criterion( ŷ; y).
27: . Smoothness Constraint Loss
28: L smooth =


 Abs

�
SxD

�



�
SxLC

� 
 2

2.
29: . Reconstruction Loss
30: L Rec =

P p� n
i =1 MSE(Rec-Decoder

�
zC

L;i

�
; xC

i ) +
P n

i =1 CE(Rec-Decoder
�
zLC

L;i

�
; xD

i ).
31: . Variable Modality Discrimination Loss (via Gradient Reverse Layer)
32: L Dis = E

�
log

�
GRL(Dis

�
zC

��
)
�

+ E
�
log

�
1 � GRL(Dis

�
zLC

��
)
�

33: . Overall Loss
34: L All = L Task + � 1L Smooth + � 2L Rec + � 3L Dis

35: (3) Parameter Update:
36: Update the parameters of models using Adam optimizer to minimizeL all ;
37: end while
38: return Optimized model parameters.
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Table 8: Robustness of MiTSformer performance on forecasting datasets. Averaged MAE, MSE, and
their standard deviations based on different random seeds are reported.

Dataset ETTh1 ETTm1 ETTm2

Horizon MAE MSE MAE MSE MAE MSE

96 0.381±0.001 0.323±0.0000.342±0.001 0.271±0.0000.293±0.002 0.231±0.003
192 0.408±0.000 0.369±0.0000.363±0.003 0.31±0.0020.344±0.001 0.324±0.002
336 0.424±0.002 0.402±0.0020.382±0.002 0.338±0.0030.383±0.002 0.395±0.001
720 0.442±0.004 0.398±0.0020.415±0.003 0.391±0.0030.439±0.003 0.503±0.002

Dataset Electricity Weather Traf�c

Horizon MAE MSE MAE MSE MAE MSE

96 0.235±0.002 0.143±0.0010.231±0.000 0.147±0.0010.292±0.002 0.459±0.002
192 0.250±0.000 0.159±0.0020.294±0.000 0.216±0.0010.310±0.003 0.494±0.002
336 0.265±0.002 0.171±0.0010.353±0.001 0.298±0.0010.316±0.003 0.508±0.003
720 0.291±0.003 0.198±0.0020.426±0.002 0.412±0.0010.330±0.005 0.534±0.003

a dropout layer with a dropout rate of 0.1. The task supervision loss is Cross-Entropy Loss. The
classi�cation accuracy is used as the performance evaluation metric.

Figure 10: Overall pipeline of MiTSformer-based classi�cation. The embeddings of LCVs and CVs
are concatenated, �attened, and fed into the classi�er for classi�cation.

A.5 Pipeline for Extrinsic Regression

Closely related to classi�cation, time series extrinsic regression aims to learn the relationship between
a time series and a continuous scalar variable. The overall pipeline of MiTSformer-based extrinsic
regression is depicted in Fig. 11. Similar to classi�cation, both token embeddings of LCVs and CVs
provide complementary information for regression tasks. Thereby, we concatenate the embeddings of
LCVs and CVs. The fused embeddings are �attened and fed into a regressor network to predict the
numerical values. For MiTSformer and baseline models, the regressor is composed of a single-layer
MLP with GELU activation and a dropout layer with a dropout rate of 0.1. The task supervision loss
is MSE Loss. We adopt the mean absolute error (RMAE) and the root mean square error (RMSE) as
the performance evaluation metrics as

RMSE =

vu
u
t 1

Ny

N yX

i =1

(ŷi � yi )
2 (7)

MAE =
1

Ny

N yX

i =1

jŷi � yi j (8)

whereNy denotes the number of test samples,ŷi denotes the predicted labels andyi denotes the
ground-truth label.
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Figure 11: Overall pipeline of MiTSformer-based extrinsic regression. The embeddings of LCVs and
CVs are concatenated, �attened, and fed into the regressor for regression.

A.6 Pipeline for Imputation

The imputation techniques are developed to impute the missing values based on the partially observed
time points. For the imputation task, we mainly focus on imputating the missing value of CVs, while
DVs are adopted as input to provide auxiliary information. The overall pipeline of MiTSformer-based
imputation is depicted in Fig. 11. For MiTSformer, the task head is an imputation decoder composed
of a linear layer, which performs variate-wise imputation for each CV. For baseline methods that
adopt the channel-independent strategy, we adopt the same task head as MiTSformer. For baseline
methods that adopt the channel-mixing strategy, we adopt a linear layer with input size ofdmodel and
output size of continuous variable dimensionp � n to reconstruct the CVs. We use a mask matrix
M 2 RT � (p� n ) to represent the missing values in input CVs. The state ofM denotes whether
the corresponding element value of CVs is missing (denoted by 0) or not (denoted by 1). The task
supervision loss is the MSE loss calculated on the masked observations. Speci�cally for MiTSformer,
the reconstruction loss of CVs is calculated on unmasked observations. We adopt the mean absolute
error (MAE) and the root mean square error (RMSE) as the performance evaluation metrics that are
computed on masked elements.

Figure 12: Overall pipeline of MiTSformer-based imputation. The embeddings of CVs are individu-
ally fed into the imputation decoder to impute missing values of CVs.

A.7 Pipeline for Long-term Forecasting

Forecasting is a fundamental problem in the time series community, and long-term forecasting is a
more practical and challenging task. The long-term forecasting task for MiTS includes the prediction
of both DVs and CVs. The overall pipeline of MiTSformer-based long-term forecasting is depicted
in Fig. 13. For MiTSformer, the task head is composed of linear layer-based DVforecastor and
CVforecaster, which perform variate-wise forecasting for each DV and each CV, respectively. For
baseline models, we also adopt the linear layer-based forecaster to forecast the DVs with the extracted
temporal features. We adopt the mean absolute error (MAE) and the root mean square error (RMSE)
as the forecasting performance evaluation metrics.
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Figure 13: Overall pipeline of MiTSformer-based long-term forecasting. The embeddings of LCVs
are individually fed into the DVForecaster to predict the future value of corresponding DVs, and
the embeddings of CVs are individually fed into the DVForecaster to predict the future value of
corresponding CVs.

A.8 Pipeline for Anomaly Detection

The anomaly detection task is achieved by self-supervised autoencoding with the reconstruction of
both CVs and DVs. The reconstruction errors of DVs and DVs are utilized as anomaly criteria. In our
experiment, we estimate the anomaly thresholds respectively for DVs and CVs. For a test sample, the
reconstruction error of DVs exceeding the threshold or the reconstruction error of DVs exceeding the
threshold is considered an anomaly. The overall pipeline of MiTSformer-based anomaly detection is
depicted in Fig. 13. Since there already exist reconstruction decoders and corresponding losses, no
task head and additional losses are devised. For baseline models, we also adopt the linear layer-based
reconstruct decoders to reconstruct the DVs and linear layer-based reconstruct decoders to reconstruct
the CVs with the extracted temporal features. MSE loss is used for reconstruction of CVs and
CrossEntropy loss is used for reconstruction of DVs. We adopt the Precision, Recall and F1-Socre as
matrices.

Figure 14: Overall pipeline of MiTSformer-based anomaly detection. The anomaly detection tasks
only rely on self-reconstruction and thus no task head is attached.

B Model Ef�ciency Analysis

Complexity of MiTSformer Considering the self-attention and cross-attention sub-blocks, the
complexity of MiTSformer can be derived as

O
�
n2�

+ O
�

(p � n)2
�

| {z }
self -attention

+ O (n (p � n)) + O ((p � n) n)
| {z }

cross-attention

(9)

wheren denotes the number of DVs andp � n denotes the number of CVs,p is the number of total
variables. In our experimental setting, we keepn = b0:5pc. Thereby, the complexity of MiTSformer
is quadratic to the number of DVs asO

�
n2

�
.
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(a) ETTh1 (3DVs, 4CVs) (b) Electricity (160DVs, 161CVs)

Figure 15: Model ef�ciency analysis. Experiments are carried out on ETTh1 and Electricity datasets
with “input-output” setting of “96-720”. For each sub�gure, dots with different colors represent
different methods, and the size of the circle represents the magnitude of the memory footprint. The
horizontal axis represents the training time (seconds) per iter, and the vertical axis represents the
forecasting accuracy (MAE).

Model Ef�ciency Comparison We comprehensively compare the model performance, training speed,
and memory footprint of MiTSformer and baseline models. The results are with the optimal model
con�gurations as reported in Table 6 and 7. Two representative long-term forecasting datasets ETTh1
(3DVs, 4CVs) and Electricity (160DVs, 161CVs) with input-96 and output-720 settings are adopted
for ef�ciency comparison. The results are depicted in Fig. 15.

In general, MiTSformer maintains great performance and ef�ciency compared with most baselines in
datasets with a relatively small number of variables (ETTh1). When encountering datasets with a
relatively large number of variables (Electricity), MiTSformer occupies a relatively large memory
footprint, speci�cally compared with some advanced ef�cient models such as modern TCN and
DLinear. However, the training time of MiTSformer is still ef�cient.

C Hyper-parameter Sensitivity Analysis

We evaluate the hyper-parameter sensitivity of MiTSformer with respect to the following two aspects:

Sensitivity of Model CapacityThe hidden dimensiondmodel and number of layersL in�uence the
model capacity of MiTSformer. We evaluate the sensitivity of these two hyper-parameters on typical
long-term forecasting datasets, including ETTh1, ETTh2, and Weather with four different prediction
horizon settings. The results are presented in Fig. 16. We can �nd that MiTSformer is relatively
stable in the selection ofdmodel andL , particularly for ETTh2 and Weather datasets. Speci�cally for
the ETTh1 dataset, the model capacities are not essentially favored to be as large as possible.

Sensitivity of Loss FunctionsWe further investigate the effects of loss items, including smoothness
loss weight� 1, reconstruction loss weight� 2, and variable modality discrimination loss weight� 3 on
classi�cation datasets (JapaneseVowels, SpokenArabicDigits, and SelfRegulationSCP1). The results
are presented in Fig. 17. In general, we can observe that MiTSformer is quite robust to the weights of
loss items, and moderate weights bring optimal performance. For example,� 1 controls the magnitude
of the smoothing constraints for latent continuity recovery. Too small� 1 would make the smoothness
invalid while too large� 1 may lead to over-smoothing problems. Therefore, a moderate setting of� 1
is favored for MiTSforemer.

D Limitations and Future Work

Handling Discrete Variables with Natural Sudden ChangesThe smoothness loss in our method is
suitable for DVs with sudden changes that are caused by inherent smooth variations. However, it may
not adequately account for DVs with inherent sudden changes that are essential characteristics of
the dataset. For such cases, we can adjust the coef�cient� 1 with a relatively small value, or we can
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