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Abstract

Advanced image editing techniques, particularly inpainting, are essential for seam-
lessly removing unwanted elements while preserving visual integrity. Traditional
GAN-based methods have achieved notable success, but recent advancements in
diffusion models have produced superior results due to their training on large-scale
datasets, enabling the generation of remarkably realistic inpainted images. Despite
their strengths, diffusion models often struggle with object removal tasks without
explicit guidance, leading to unintended hallucinations of the removed object. To
address this issue, we introduce CLIPAway, a novel approach leveraging CLIP
embeddings to focus on background regions while excluding foreground elements.
CLIPAway enhances inpainting accuracy and quality by identifying embeddings
that prioritize the background, thus achieving seamless object removal. Unlike
other methods that rely on specialized training datasets or costly manual anno-
tations, CLIPAway provides a flexible, plug-and-play solution compatible with
various diffusion-based inpainting techniques. Code and models are available via
our project website: https://yigitekin.github.io/CLIPAway/.

1 Introduction

In today’s digital era, the demand for sophisticated image editing techniques has surged, with
inpainting emerging as a fundamental method for seamlessly removing unwanted elements from
images while maintaining visual coherence. Image inpainting has long been studied in both academia
and industry. Traditionally, research has predominantly focused on Generative Adversarial Network
(GAN)-based methods [21, 17, 12, 16, 14, 26, 32], which have shown notable success in inpainting
tasks. However, recent advancements in diffusion models have attracted considerable interest due to
their ability to produce high-quality results [24, 28, 1, 31]. A key factor behind the effectiveness of
diffusion models is their extensive training on large-scale datasets. By leveraging comprehensive
collections of diverse image data, diffusion models can learn complex patterns and correlations, and
intricate details, allowing them to inpaint missing regions with exceptional realism.

Despite their strengths, diffusion-based text-guided image inpainting models [28, 1] often encounter
challenges in object removal tasks without explicit guidance. When tasked with object removal
without explicit text cues to insert a replacement or with the text of “background”, these models may
inadvertently hallucinate the removed object, substituting it instead of erasing it entirely. This issue
contrasts with user expectations, as users typically anticipate the erased portion to be seamlessly filled
with the background. For example, when removing a person on a surfboard (Figure 1, second row), a
diffusion model might insert another person, given the context that surfboards often have people on
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Figure 1: Diffusion-based inpainting methods often struggle with object removal tasks. Instead
of seamlessly filling the erased area with background elements, diffusion models may unintentionally
replace the removed object with another or add irrelevant objects. This outcome diverges from the
user’s intention, which is typically to restore the area with the background alone, without introducing
new elements. Our method, CLIPAway, aims at amending this deficiency by precisely focusing on
maintaining the integrity of the background, ensuring that the space is filled as intended by the user.

them. Similarly, when removing a plane from an image of an airport field (Figure 1, fourth row), a
model might insert another plane due to the presence of other planes in the background. Alternatively,
a model might introduce shoes on the floor (Figure 1, first row) when the user’s intention was to fill
the space with background elements. In this paper, to address this issue, we propose a novel approach
called CLIPAway that leverages AlphaCLIP [25] embeddings to distinguish between foreground (the
object to be removed) and background regions. Our method aims to identify an embedding for the
inpainted region that focuses on the background while excluding the foreground content, thereby
enhancing the quality and accuracy of the inpainting process.

Recent advancements in diffusion-based inpainting for object removal have yielded notable works
such as InstInpaint [31], MagicBrush [34], InstructPix2Pix [3], and concurrently ObjectDrop [27].
These methods introduce training datasets with varying approaches: Some generate targets through
existing inpainting methods [31], resulting in imperfect targets, while others rely on synthetically
generated pairs [3] that may contain annotation errors. Certain methods resort to costly manual
annotations [34] or require extensive data collection setups where images of scenes before and after
object removal are captured [27]. Furthermore, these techniques typically involve either training a
model from scratch or fine-tuning existing models specifically for the removal task. In contrast, our
model, CLIPAway, distinguishes itself by its lack of dependency on a specialized training set. It
offers a plug-and-play solution compatible with various diffusion-based inpainting methods, ensuring
seamless object removal without the need for costly or complex data preparation.

Our contributions can be summarized as follows:

• We introduce CLIPAway, a method that utilizes AlphaCLIP embeddings to effectively
differentiate between foreground and background regions for superior object removal.

• Our approach offers a simple plug-and-play solution that does not require specialized
training datasets, making it adaptable to various diffusion-based inpainting methods.

• By focusing on background regions, CLIPAway significantly improves the quality and
accuracy of inpainting results, avoiding the common issue of object hallucination.

• We provide comprehensive evaluations on a standard dataset, demonstrating consistent
improvements over state-of-the-art methods.
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2 Related Work

Image inpainting involves replacing missing pixels in an image with new ones that blend seamlessly
with the surrounding content. Historically, Generative Adversarial Networks (GANs) have dominated
this �eld where they demonstrated signi�cant success across various image domains [21, 17, 33, 12,
16, 32]. However, GAN-based models are typically trained separately for speci�c image domains,
such as face inpainting using training datasets like FFHQ [10] or scenery inpainting using datasets
like Places [37]. This domain-speci�c training restricts their ability to generalize to diverse scenes,
thereby limiting their versatility.

Recently, diffusion-based models have made strides, showing promising results [18, 24]. For in-
stance, the Repaint model [18] employs a pretrained unconditional diffusion model to perform image
inpainting by conditioning the generation on the unerased parts of the image. Despite its effective-
ness, Repaint operates on the image space, thus computationally demanding and slow. Alternative
approaches that work in the latent space, e.g. SD-Inpaint [24] and Blended Latent Diffusion [1],
adapt the Stable Diffusion (SD) model by adding a mask channel to the latent inputs. These methods,
however, often introduce new objects into the scene based on context rather than removing existing
ones, con�icting with the user's intention of background restoration. Other diffusion-based methods,
such as GLIDE [20] and SmartBrush [28], are designed to add objects rather than remove them.

There has been growing interest in instruction-based inpainting methods for object removal, such as
Instruct-Pix2Pix [3] and Inst-Inpaint [31], which use prompts instead of masks for object removal.
These methods require datasets speci�cally tailored for this task. For example, Instruct-Pix2Pix
generates paired datasets using the GPT-3 language model [4] and the text-to-image Stable Diffusion
model [24], incorporating prompt-to-prompt techniques [6]. While capable of object removal,
Instruct-Pix2Pix performs this task with limited precision, possibly due to the synthetic data's lack of
diversity or inaccurate annotations. Inst-Inpaint, on the other hand, is trained with paired data where
targets are inpainted images generated with GAN-based models. Hence, it inherits the artifacts of
these GAN models.

Other works have relied on manual annotation efforts [34], or extensive data collection setups
involving scenes captured with and without the object [27]. However, the high cost of manual
annotations limits the scale of these datasets. In contrast, our method, CLIPAway, sets itself apart
by eliminating the need for specialized training sets. It offers a �exible, plug-and-play solution
compatible with various diffusion-based inpainting methods, ensuring seamless object removal
without the necessity for costly or complex data preparation.

3 Method

3.1 Preliminaries

Our framework leverages pretrained diffusion models, particularly the latent diffusion model [24],
chosen for its computational ef�ciency. This model includes an encoder (E ) and a decoder (D ). The
encoder compresses images into a lower-dimensional latent space while the decoder reconstructs
images from these latent codes. These components function similarly to a variational autoencoder
and are trained separately from the diffusion process.

The diffusion process, as described by [8], operates on latent codes, denoted asz0 = E(x), wherex
is the input image. Noise is gradually added toz0 over a series of time stepst until, afterT steps,zT
approximates a normal distribution with zero mean and an identity covariance matrix.

Diffusion models act as denoising autoencoders, trained to reverse the noise addition process. They
aim to predict a denoised version of their input,zt , wherezt is a noisy version ofz0. The objective
function for this denoising task on the latent codes is de�ned as follows:

L LDM := EE (x ) ;� � N (0 ;1) ;t [k� � � � (zt ; t)k] (1)
Here,t is sampled from the range1 to T, and� � (zt ; t) represents a neural network, speci�cally a
UNet that predicts the noise added tozt , conditioned on the time stept. We speci�cally employ
models �ne-tuned for inpainting tasks. These methods involve adding a single-channel mask, which
is downsampled to �t the latent space, to the denoising UNet. The diffusion models are commonly
trained using text-image pairs, where the text information is extracted from a frozen CLIP text
encoder [23]. This encoded text data is then integrated into the UNet via attention layers.
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Figure 2:Limitations of IP-Adapter [ 30] for Inpainting . Direct use of the IP-Adapter with the
input image as the image prompt is ineffective for inpainting, as it predictably �lls the erased area
with the original object. In addition, directly giving the prompt “background” is also problematic as
the background can also contain instances of the images that we want to remove, resulting in a direct
replacement of the foreground object. On the other hand, using an erased image as the prompt results
in the generation of black artifacts.

3.2 CLIPAway

Our objective is to seamlessly remove objects while maintaining the integrity of the background.
Unlike conventional inpainting methods that ignore the pixels from the erased area, our approach
utilizes these pixels to guide the model on what not to �ll in. This distinguishes our method
signi�cantly from others. To achieve this, we exploit the detailed pixel-level information available
from both the regions to be erased and the unerased regions of the image. While popular Stable-
Diffusion models typically rely solely on text conditioning, we explore conditioning the inpainting
process on embeddings derived from image pixels.

Recent advancements have introduced additional control signals via adapters, addressing the limi-
tations of text in fully expressing desired outcomes. In some cases, edge maps, poses, or reference
images are necessary to effectively control the generation process [35, 36, 19]. The CLIP model
utilized for text embedding is originally trained with a contrastive objective jointly with a CLIP image
encoder. Adapters have demonstrated that rather than training an image encoder from scratch for
reference image-based control, the existing CLIP image encoder can be utilized. UniControl [36]
and T2IAdapter [19] extract features from the CLIP image encoder, map them to new features via
a trainable network, and concatenate them with text features. These merged features are then fed
into the UNet of the diffusion model to guide the image generation process. IP-Adapter [30] further
shows that instead of merging image and text features in the cross-attention layer, the features can
pass through a small trainable projection network, which are then fed into the UNet via a decoupled
attention layer. Our implementation is based on IP-Adapter but can be used with others as well
[36, 19].

Our goal is to achieve inpainting by focusing on the background. However, directly using the IP-
Adapter with the input image proves ineffective. Using the entire image as the reference (prompt
image), the method predictably �lls the erased area with the original object (Figure 2, left pane).
Conversely, erasing the input image results in black pixels in the masked area, leading to black
artifacts in the �lled regions (Figure 2, middle pane). Lastly, providing a text prompt as "background",
also does not help in removing the object (Figure 2, right pane). Therefore, we need an embedding
that solely focuses on the background. To address this, we explore AlphaCLIP [25], which achieves
region focus without altering the original image by incorporating regions of interest through an
additional alpha channel input. Although it is initialized with the CLIP [22] model, its training
requires a substantial set of region-text paired data. By utilizing the Segment Anything Model (SAM)
[11] and multimodal large model BLIP-2 [13] for image captioning, millions of region-text pairs are
generated. AlphaCLIP model is pretrained on a mixture of region-text pairs and image-text pairs.
Their dataset has not been released; fortunately, our method does not require a specialized training
set. Instead, we leverage existing models and techniques to achieve our inpainting objectives.

We train a Multi-Layer Perceptron (MLP) model to adapt the publicly released AlphaCLIP image
encoder (CLIP-L/14) to the CLIP image encoder used in the IP-Adapter (OpenCLIP ViT-H/14).
The MLP consists of six blocks, each containing a linear layer, layer normalization, and GELU
activation. It begins with 768 features and outputs 1024 features, matching the output dimensions of
the CLIP-L/14 encoder and the OpenCLIP ViT-H/14 encoder, respectively. For this training, we use
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Figure 3:The overall framework of CLIPAway. Input images, comprising both foreground and
background elements, are embedded via AlphaCLIP. These embedded images are then processed
through an MLP trained to adapt features to the IPAdapter input space. Through vector arithmetic
on the features, a background embedding without foreground in�uence is achieved. SDInpaint is
depicted as if it is working on the image space for clarity; it works on the latent space.

the COCO image dataset with the alpha channel set to all 1s, corresponding to the full image rather
than focusing on a speci�c region for AlphaCLIP. This setup aligns with AlphaCLIP training, where
the authors occasionally set alpha channels to all 1s to indicate full images and sometimes to local
regions. In our training, the target is the OpenCLIP embeddings for a given image. This allows us to
train a projection layer so that AlphaCLIP outputs features that the rest of the IP-Adapter expects.
This part is shown in Figure 3 (Training). We show that AlphaCLIP can be aligned with other CLIP
Image encoders without a special dataset.

One of the promises of AlphaCLIP is its ability to focus on a speci�c region while maintaining
contextual awareness. For example, given an image and mask pointing to the background, it may
primarily focus on the background while still encoding the foreground, albeit with reduced emphasis.
This behavior is illustrated in Figure 4, where we use image prompts as input images with alpha
channels corresponding to the mask for foreground focus and the inverse of the mask for background
focus. The results shown incorporate our projection layer, which bridges the AlphaCLIP and IP-
Adapter. The �rst row displays the conditional image generations, while the second row shows the
inpainting results. When the foreground is focused, the foreground object appears more prominent.
Conversely, when the background is focused, the foreground object is present but receives less
attention. Therefore, even when the background is focused, the inpaintings still include the object one
aims to remove. To remove the foreground overall, we propose to subtract the foreground embedding
from the background via projection.

Given two vectorseb (background focused embedding) andef (foreground focused embedding), the
�nal embeddinge�nal can be calculated as the equation below:

e�nal = eb �
�

eb � ef

kef k

�
ef

kef k
(2)

whereeb � ef is the dot product ofeb andef , andkef k is the norm ofef . With this vector arithmetic,
we �nd the �nal embedding that is orthogonal to the foreground embedding. After performing
this subtraction, the embedding process predominantly focuses on the background, as illustrated in
Figure 4 in our results. This tendency is evident in conditional image generation, where the resulting
image predominantly exhibits the background style. Consequently, this translates into consistent
background �lling in the inpainting task for erased areas.
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