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Abstract

In ImageNet-condensation, the storage for auxiliary soft labels exceeds that of the
condensed dataset by over 30 times. However, are large-scale soft labels necessary
for large-scale dataset distillation? In this paper, we first discover that the high
within-class similarity in condensed datasets necessitates the use of large-scale
soft labels. This high within-class similarity can be attributed to the fact that
previous methods use samples from different classes to construct a single batch
for batch normalization (BN) matching. To reduce the within-class similarity, we
introduce class-wise supervision during the image synthesizing process by batching
the samples within classes, instead of across classes. As a result, we can increase
within-class diversity and reduce the size of required soft labels. A key benefit of
improved image diversity is that soft label compression can be achieved through
simple random pruning, eliminating the need for complex rule-based strategies.
Experiments validate our discoveries. For example, when condensing ImageNet-1K
to 200 images per class, our approach compresses the required soft labels from 113
GB to 2.8 GB (40× compression) with a 2.6% performance gain. Code is available
at: https://github.com/he-y/soft-label-pruning-for-dataset-distillation.

1 Introduction
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Figure 1: The relationship between performance and
total storage of auxiliary information needed. Our
method achieves SOTA performance with fewer soft
labels than images.

We are pacing into the era of ImageNet-level
condensation, and the previous works [1,
2, 3, 4, 5] fail in scaling up to large-scale
datasets due to extensive memory constraint.
Until recently, Yin et al.[6] decouple the tra-
ditional distillation scheme into three phases.
First, a teacher model is pretrained with full
datasets (squeeze phase). Second, images
are synthesized by matching the Batch Nor-
malization (BN) statistics from the teacher
and student models (recover phase). Third,
auxiliary data such as soft labels are pre-
generated from different image augmenta-
tions to create abundant supervision for post-
training (relabel phase).

However, the auxiliary data are 30× larger
than the distilled data in ImageNet-1K. To
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(a) SRe2L [6]. (b) Ours (IPC=10).

Figure 2: Visual comparison between SRe2L and the proposed method. The classes are hammer
shark (top), pineapple (middle), and pomegranate (bottom). Our method is more visually diverse.

attain correct and effective supervision, the exact augmentations and soft labels of every training
epoch are stored [6, 7, 8, 9, 10]. The required soft label storage is the colored circles in Fig. 1.

In this paper, we considerwhether large-scale soft labels are necessary, andwhat causes the excessive
requirement of these labels? To answer these questions, we provide an analysis of the distilled images
using SRe2L [7], and we �nd that within-class diversity is at stake as shown in Fig. 2. To be more
precise, we analyze the similarity using Feature Cosine Similarity and Maximum Mean Discrepancy
in Sec. 3.2. The high similarity of images within the same class requires extensive data augmentation
to provide different supervision.

To address this issue, we proposeLabel Pruning for Large-scale Distillation (LPLD) . Speci�cally,
we modi�ed the algorithms by batching images within the same class, leveraging the fact that
different classes are naturally independent. Furthermore, we introduce class-wise supervision to align
our changes. In addition, we have explored different label pruning metrics and found that simple
random pruning was performed on par with carefully selected labels. To further increase diversity,
we improve the label pool by introducing randomness in a �ner granularity (i.e., batch-level). Our
method effectively distills the images while requiring less label storage compared to image storage,
as shown in Fig. 1.

The key contributions of this work are: (1) To the best of our knowledge, it is the �rst work to
introduce label pruning to large-scale dataset distillation. (2) We discover that high within-class
diversity necessitates large-scale soft labels. (3) We re-batch images and introduce class-wise
supervision to improve data diversity, allowing random label pruning to be effective with an improved
label pool. (4) Our LPLD method achieves SOTA performance using a lot less label storage, and it is
validated with extensive experiments on various networks (e.g., ResNet, Ef�cientNet, MobileNet,
and Swin-V2) and datasets (e.g., Tiny-ImageNet, ImageNet-1K, and ImageNet-21K).

2 Related Works

Dataset Distillation. DD [1] �rst introduces dataset distillation, which aims to learn a synthetic
dataset that is equally effective but much smaller in size. The matching objectives include performance
matching [1, 11, 12, 13, 14], gradient matching [4, 15, 16, 17], distribution or feature matching [5, 2,
18], trajectory matching [3, 19, 20], representative matching [21, 22], loss-curvature matching [23],
and Batch-Norm matching[6, 7, 9, 10].

Dataset Distillation of Large-Scale Datasets.Large-scale datasets scale up in terms of image size
and the number of total images, incurring affordable memory consumption for most of the well-
designed matching objectives targeted for small datasets. MTT [3] is able to condense Tiny-ImageNet
(ImageNet-1K subsets with images downsampled to64� 64and 200 classes). IDC [24] conducts
experiments on ImageNet-10, which contains an image size of224� 224but has only 10 classes.
TESLA [20] manages to condense the full ImageNet-1K dataset by exactly computing the unrolled
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gradient with constant memory or complexity. SRe2L [6] decouples the bilevel optimization into
three phases: 1) squeezing, 2) recovering, and 3) relabeling. The proposed framework surpasses
TESLA [20] by a noticeable margin. CDA [7] improves the recovering phase by introducing
curriculum learning. RDED [8] replaces the recovering phase with an optimization-free approach by
concatenating selected image patches. SC-DD [10] uses self-supervised models as recovery models.
Existing methods [7, 8, 10] place high emphasis on improving the recovering phase; however, the
problem of the relabeling phase is overlooked:a large amount of storage is required for the relabeling
phase.

Label Compression. The problem of excessive storage seems to be �xed if the teacher model
generates soft labels immediately used by the student model on the �y. However, when considering
the actual use case of distilled datasets (i.e., Neural Architecture Search), using pre-generated labels
enjoys speeding up training and reduced memory cost. More importantly, the generated labels can be
repeatedly used. FKD [25] employs label quantization to store only the top-k logits. In contrast, our
method retains full logits, offering an orthogonal approach to quantization. A comparison to FKD
is provided in Appendix D.3. Unlike FerKD [26], which removes some unreliable soft labels, our
strategy targets higher pruning ratios.

Comparison with G-VBSM [9]. In one recent work, G-VBSM also mentioned re-batching the im-
ages within classes; however, the motivation is that having a single image in a class is insuf�cient [9].
It re-designed the loss by introducing a model pool, matching additional statistics from convolutional
layers, and updating the statistics of synthetic images using exponential moving averages (EMA).
Additionally, an ensemble of models is involved in both the data synthesis and relabel phase, requiring
a total ofN forward propagation fromN different models, whereN = 4 is used for ImageNet-1K
experiments. On the other hand, we aim to improve the within-class data diversity forreducing
soft label storage. Furthermore, to account for the re-batching operation, we introduce class-wise
supervision while all G-VBSM statistics remain global.

3 Method

3.1 Preliminaries

The conventional Batch Normalization (BN) transformation is de�ned as follows:

y = 

�

x � �
p

� 2 + �

�
+ �; (1)

where
 and� are parameters learned during training,� and� 2 are the mean and variance of the
input features, and� is a small constant to prevent division by zero. Additionally, the running mean
and running variance are maintained during network training and subsequently utilized as� (mean)
and� 2 (variance) during the inference phase, given that the true mean and variance of the test data
are not available.

The matching object of SRe2L [7] follows DeepInversion [27], which optimizes synthetic datasets by
matching the models' layer-wise BN statistics:
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where the BN's running meanBN RM
l and running varianceBN RV

l are used to approximate the
expected meanE (� l j T ) and expected varianceE

�
� 2

l j T
�

of the original datasetT , repsectively.
The BN loss matches BN for layersl , and� l (ex ) and� 2

l (ex ) are the mean and variance of the synthetic
imagesex .

The BN loss term is used as a regularization term applied to the classi�cation lossL CE . Therefore,
the matching objective is:

arg min
ex

` (� T (ex ) ; y )
| {z }

L CE

+ � � L BN (ex ) ; (3)

where� T is the model pretrained on the original datasetT . The symbol� is a small factor controlling
the regularization strength of BN loss.
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Table 1: The cosine similarity between image features. The
similarities are the average of 1K class on the synthetic ImageNet-
1K dataset. Features are extracted using pretrained ResNet-18.

IPC SRe2 L CDA Ours Full Dataset

50 0:841 � 0:023 0:816 � 0:026 0:796 � 0:029
0:695 � 0:045100 0:840 � 0:016 0:814 � 0:019 0:794 � 0:021

200 0:839 � 0:011 0:813 � 0:013 0:793 � 0:015

Figure 3: MMD visualization.

3.2 Diversity Analysis on Synthetic Dataset

3.2.1 Similarity within Synthetic Dataset: Feature Cosine Similarity

A critical aspect of image diversity is how similar or different the images are within the same class. To
quantify this, we utilize the feature cosine similarity measure de�ned above. Lower cosine similarity
values between images within the same class indicate greater diversity, as the images are less similar
to one another. This relationship is formally stated as follows:

Proposition 1. The lower feature cosine similarity of images indicates higher diversity because the
images are less similar to one another.

Feature Cosine similarity can be formally put as:

cos similarity :=
f ( ex c ) � f ( ex 0

c )
kf ( ex c )kkf ( ex 0

c )k
=

P n
i =1 f ( ex c;i ) f ( ex 0

c;i )p P n
i =1 f ( ex c;i )2

p P n
i =1 f ( ex 0

c;i )2
; (4)

whereex c and ex 0
c are two images from the same classc, f (�) are the features extracted from a

pretrained model, andn is the feature dimension.

3.2.2 Similarity between Synthetic and Original Dataset: Maximum Mean Discrepancy

The similarity between images is not the only determinant of diversity since images can be dissimilar
to each other yet not representative of the original dataset. Therefore, to further validate the diversity
of our synthetic dataset, we consider an additional metric: the Maximum Mean Discrepancy (MMD)
between synthetic datasets and original datasets. This measure helps evaluate how well the synthetic
data represents the original data distribution. The following proposition clari�es the relationship
between MMD and dataset diversity:

Proposition 2. A lower MMD suggests that the synthetic dataset captures a broader range of features
similar to the original dataset, indicating greater diversity.

The empirical approximation of MMD can be formally de�ned as [28, 29],

MMD 2 (P T ; P S ) = K̂T ;T + K̂S;S � 2K̂T ;S (5)

whereK̂X;Y = 1
jX j�j Y j

P jX j
i =1

P jY j
j =1 K (f (x i ) ; f (yj )) with f x i g

jX j
i � 1 � X; f yi g

jY j
i =1 � Y . T andS

denote real and synthetic datasets, respectively;K is the reproducing kernel (e.g., Gaussian kernel);
P is the feature (embedding) distribution, andf (�) is the feature representation extracted by model� ,
wheref (T ) � PT ; f (S) � PS .

3.3 Label Pruning for Large-scale Distillation (LPLD)

3.3.1 Diverse Sample Generation via Class-wise Supervision

The previous objective function follows Eq. 3; it uses a subset of classesBc to match the BN statistics
of the entire dataset, and images in the same class are independently generated, causing an low image
diversity within classes. However, inspired by Heet al.[30], images in the same class should work
collaboratively, and images that are optimized individually (see Baseline B in work [30]) do not lead
to the optimal performance when IPC (Images Per Class) gets larger.
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Figure 4: Illustration of existing methods (left, grey) and the proposed method (right, blue). Existing
methods (i.e., SRe2L, CDA) independently generate along the IPC (Image-Per-Class) dimension,
causing a high similarity between images of the same class. The proposed method allows images of
the same class to collaborate, leaving different classes naturally independent. In addition, synthetic
images are updated under class-wise supervision. The classi�cation loss is omitted for simplicity.

Step 1: Re-batching Images within Class.Subsequently, to obtain a collaborative effect among
different images of the same class, we sample images from the same class and provide the images
with class-wise supervision [4, 24]. Fig. 4 illustrates the changes.

Step 2: Introducing Class-wise Supervision.However, the running mean and variance approximate
the original dataset's expected mean and variance in a global aspect. The matching objective becomes
sub-optimal in class-wise matching situation. To this end, we propose to track BN statistics for each
class separately. Since we only track the running mean and variance, the extra storage is marginal
even when up to 1K classes in ImageNet-1K (see Appendix E.2 and E.4).

Step 3: Class-wise Objective Function.The new class-wise objective function is modi�ed from
Eq. 3, which has two loss functions. First, we compute the classi�cation loss (i.e., the Cross-Entropy
Loss) with BN layers using global statistics to ensure effective supervision. Second, we compute BN
loss by matching class-wise BN statistics. The modi�ed parts are highlighted in blue color, and the
objective function is formally put as,

arg min
ex c

 

Cross-Entropy Loss with Global BN Statistics
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i =1
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 � 2
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l;c








2

�

| {z }
Batch Norm Loss with Class-wise BN Statistics

!
(6)

We want to emphasize that even though we are adjusting the BN loss with class-wise statistics, the
global statistics of the dataset are still taken into account. The output logits for calculating CE loss
are produced using global statistics. This is because altering� and� without �ne-tuning 
 and�
could lead to a decline in model performance, resulting in less effective supervision.

Theoretical Number of Updates for Stable Class-wise BN Statistics.Traditional BN layers do not
compute class-wise statistics; therefore, we need to either keep track of the class-wise statistics while
training a model from scratch or compute these statistics using a pretrained model. We prefer the
latter as the former requires extensive computing resources. To understand how many BN statistics
updates are needed, we can �rst look at the update rules of BN running statistics for a classc:

BN RM
l;c  (1 � � ) � BN RM

l;c + � � � l (x c);

BN RV
l;c  (1 � � ) � BN RV

l;c + � � � 2
l (x c);

(7)
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Figure 5: Illustration of two random processes in label pruning with improved label pool. First, we
need a smaller soft label pool due to the storage budget. We can conduct pruning at two levels: (1)
epoch-level and (2) batch-level. Batch-level pruning can provide a more diverse label pool since
augmentations (e.g., Mixup or CutMix) are different across batches. The illustrated pruning ratio is
25%; the crossed-out labels denote the pruned labels, and the remaining form the label pool. Second,
we randomly sample soft labels for model training.

where� is the momentum. Since the momentum factor for the current batch statistics is usually set
to a small value (i.e.,� = 0 :1), we can theoretically compute existing running statistics that can be
statistically signi�cant after how many updates, assuming all other factors are �xed.

Since the running statistics are computed per class, we provide the theoretical number of updates
required to stabilize all class statistics (see Appendix A for the proof):

n � max

0

B
B
B
@

� 2 ln
�

T
2

�

� 2 min(qc)
| {z }
Chernoff Bound

;
ln

�
C
�

�

(1 � � )" min(qc)
| {z }

BN Convergence

1

C
C
C
A

: (8)

wheren is the number updates needed,qc is the probability that classc appears in a batch,T is a
probability threshold," is the momentum parameter in Batch Normalization,� is the acceptable
relative deviation (where0 � � � 1), C is some constant, and� is the desired convergence tolerance
for the BN statistics. How Eq. 8 guides our experiment design is detailed in Appendix E.3.

3.3.2 Random Label Pruning with Improved Label Pool

Excelling in Both Similarity Measures. By adopting the changes provided in Sec. 3.3.1, our
synthetic dataset is more diverse and representative than the existing methods. First, our dataset
exhibits smaller feature cosine similarity within classes compared to datasets produced by existing
methods, as shown in Table 1. This indicates that our synthetic images are less similar to each other
and, thus, more diverse. Second, our dataset exhibits a signi�cantly lower MMD shown in Fig 3
compared to datasets produced by existing methods. This suggests that our synthetic dataset better
captures the feature distribution of the original dataset. After obtaining a diverse dataset, the next
move is to address super�uous soft labels.

Random Label Pruning. Different from dataset pruning metrics, which many wield training
dynamics [31, 32], label pruning is inherently different since the labels in different epochs are
independently generated or evaluated. Subsequently, these methods do not directly apply, and we
modify these metrics to determine which epochs contain the most useful augmentations and soft
labels. Through empirical study, we �nd that using soft labels carefully pruned from different metrics
is no better than simple random pruning. As a result, we can discard complex rule-based pruning
metrics, attaining both simplicity and ef�ciency. After obtaining the soft label pool, we have to decide
which labels will be used. Following the previous random pruning scheme, we randomly sample the
labels for model training in order to ensure diversity and avoid any prior knowledge.

Improved Label Pool. Considering that random selection may be the most ef�cient choice, we
rethink the diversity of the label pool, as labels at the epoch-level are not the �nest elements.
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Table 2: Tiny-ImageNet label pruning results. The standard deviation is attained from three different
runs.y denotes the reported results.

(a) Comparison between SOTA methods.

1� 10� 20� 30� 40�
ResNet-18SRe2 L CDA Ours SRe2 L CDA Ours SRe2 L CDA Ours SRe2 L CDA Ours SRe2 L CDA Ours

IPC50 41.1y 48.7y 48.8� 0 : 4 40.3 45.0 46.7� 0 : 6 39.0 41.2 44.3� 0 : 5 34.6 35.8 40.2� 0 : 3 29.8 30.9 38.4� 1 : 3

IPC100 49.7y 53.2y 53.6� 0 : 3 48.3 50.7 52.2� 0 : 2 46.5 48.0 50.6� 0 : 2 43.0 44.2 47.6� 0 : 2 39.4 40.0 46.1� 0 : 2

(b) Experiments on larger networks.

1� 10� 20� 30� 40�
ResNet-50 ResNet-101ResNet-50 ResNet-101ResNet-50 ResNet-101ResNet-50 ResNet-101ResNet-50 ResNet-101

IPC50 49.0� 1 : 6 49.7� 0 : 9 48.6� 0 : 5 48.7� 0 : 5 47.2� 0 : 6 46.4� 0 : 6 43.4� 0 : 0 43.0� 0 : 9 42.3� 0 : 2 42.1� 1 : 2

IPC100 55.3� 0 : 2 55.4� 0 : 4 54.0� 0 : 3 54.1� 0 : 8 52.7� 0 : 3 53.7� 0 : 4 51.0� 0 : 5 51.1� 0 : 2 50.3� 0 : 5 48.7� 1 : 7

Table 3: ImageNet-1K label pruning result. Our method consistently shows a better performance
under various pruning ratios. The validation model is ResNet-18.y denotes the reported results.

1� 10� 20� 30� 40�
ResNet-18SRe2 L CDA Ours SRe2 L CDA Ours SRe2 L CDA Ours SRe2 L CDA Ours SRe2 L CDA Ours

IPC10 20.1 33.3 34.6� 0 : 9 18.9 28.4 32.7� 0 : 6 16.0 21.9 28.6� 0 : 4 14.1 14.2 23.1� 0 : 1 11.4 13.2 20.2� 0 : 3

IPC20 33.6 44.0 47.2� 0 : 5 31.1 39.7 44.7� 0 : 4 29.2 34.1 41.0� 0 : 3 24.5 27.5 35.9� 0 : 3 21.7 24.0 33.0� 0 : 6

IPC50 46.8y 53.5y 55.4� 0 : 3 44.1 50.3 54.4� 0 : 2 41.5 46.1 51.8� 0 : 2 37.2 41.8 48.6� 0 : 2 35.5 38.0 46.7� 0 : 3

IPC100 52.8y 58.0y 59.4� 0 : 2 51.1 55.1 58.8� 0 : 0 49.5 53.3 57.4� 0 : 0 46.7 49.7 55.2� 0 : 1 44.4 47.2 54.0� 0 : 8

IPC200 57.0y 63.3y 62.6� 0 : 3 56.5 59.4 62.4� 0 : 7 55.1 58.3 61.7� 0 : 7 52.9 56.0 60.1� 0 : 5 51.9 54.4 59.6� 0 : 6

The augmentations such as CutMix and Mixup are performed at the batch level, where the same
augmentations are applied to images within the same batch and are different across batches. Therefore,
we improve the label pool by allowing batches in different epochs to form a new epoch. The improved
label pool breaks the �xed batch orders and the �xed combination of augmentations within an epoch,
allowing a more diverse training process while reusing the labels. Our label pruning method is
illustrated in Fig. 5.

4 Experiments

4.1 Experiment Settings

Dataset details can be found in Appendix B and detailed settings are provided in Appendix C.
Computing resources used for experiments can be found in Appendix E.5.

Dataset. Our experiment results are evaluated on Tiny-ImageNet [33], ImageNet-1K [34], and
ImageNet-21K-P [35]. We follow the data pre-processing procedure of SRe2L [6] and CDA [7].

Squeeze.We modify the pretrained model by adding class-wise BN running mean and running
variance; since they are not involved in computing the BN statistics, they do not affect performance.
As mentioned in Sec. 3.3.1, we compute class-wise BN statistics by training for one epoch with
model parameters kept frozen.

Recover.We perform data synthesis following Eq. 6. The batch size for the recovery phase is the
same as the IPC. Besides, we adhere to the original setting in SRe2L.

Relabel.We use pretrained ResNet18 [36] for all experiments as the relabel model except otherwise
stated. For Tiny-ImageNet and ImageNet-1K, we use Pytorch pretrained model. For ImageNet-21K-P,
we use Timm pretrained model.

Validate. For validation, we adhere to the hyperparameter settings of CDA [7].

Pruning Setting. For label pruning, we exclude the last batch (usually with an incomplete batch size)
of each epoch from the label pool. There are two random processes: (1) Random candidate selection
from all batches. (2) Random reuse of candidate labels.
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Table 5: Comparison between different pruning metrics. Results are obtained from ImageNet-1K
IPC10 and validated using ResNet-18.

(a) Random pruning vs. Pruning metrics at 40� .

IPC10 correct diff diff_signed cut_ratio confidence

Hard 19.6 18.9 19.2 19.5 19.0
Easy 19.3 18.7 19.3 19.5 17.9
Uniform 20.0 18.5 20.1 19.7 19.2

Random 20.2

(b) Calibration of label pool.

Easy Hard 20� 30� 50� 100�

0 -90% 25.5 22.8 17.4 10.3
0 -50% 28.2 22.5 17.8 9.7

-10% -30% 28.3 22.6 17.1 8.7
-30% -5% 27.8 21.5 16.0 7.9
-90% 0 27.7 22.1 16.3 8.6

0 0 28.6 23.1 17.6 9.6

4.2 Primary Result

Tiny-ImageNet. Table 2a presents a comparison between the label pruning outcomes on Tiny-
ImageNet for our approach, SRe2L [6], and the subsequent work, CDA [7]. Our method not only
consistently surpasses SRe2L across identical pruning ratios but also achieves comparable results
to SRe2L while using 40� fewer labels. When compared to CDA, our method exhibits closely
matched performance, yet it demonstrates superior accuracy preservation. For instance, at a 40�
label reduction, our method secures a notable 7.5% increase in accuracy over CDA, even though the
improvement stands at a mere 0.1% at the 1� benchmark. Table 2b provides the pruning results on
ResNet50 and ResNet101. Although there are consistent improvements observed when compared to
ResNet18, scaling to large networks does not necessarily bring improvements.

ImageNet-1K.Table 3 compares the ImageNet-1K pruning results with SOTA methods on ResNet18.
Our method outperforms other SOTA methods at various pruning ratios and different IPCs. More
importantly, our method consistently exceeds the unpruned version of SRe2L with 30� less storage.
Such a result is not impressive at �rst glance; however, when considering the actual storage, the
storage is reduced from 29G to 0.87G. In addition, we notice the performance at 10� (or 90%)
pruning ratio degrades slightly, especially for large IPCs. For example, merely0:2% performance
degradation on IPC200 using ResNet18. Pruning results of larger IPCs can be found in Appendix D.2.

4.3 Analysis

Table 4: Ablation study of the proposed method.C
denotes using class-wise matching.CSdenotes suing
class-wise supervision.ILP denotes using an improved
label pool. (IPC50, ResNet18, ImageNet-1K).

+C +CS +ILP 1� 10� 20� 30� 50� 100�

- - - 52.0 49.4 46.4 41.1 34.8 25.4
X - - 54.7 51.9 48.5 42.9 37.7 22.6
X X - 55.3 53.2 49.9 45.7 39.7 29.1
X X X 55.4 54.4 51.8 48.6 43.1 33.7

Ablation Study. Table 4 presents the ab-
lation study of the proposed method.Row
1 is the implementation of SRe2L under
CDA's hyperparameter settings.Row 2 is
simply re-ordering the loops, and the per-
formance at 1� is improved; nevertheless,
when considering the extreme pruning ra-
tio (i.e., 100� ), it falls short of the existing
method.Row 3 computes class-wise BN
running statistics in the “squeeze” phase,
and these class-wise statistics are used as supervision in the “recover” phase. A steady improvement
is observed.Row 4allows pre-generated labels to be sampled at batch level from different epochs,
further boosting the performance. Refer to Appendix D.1 for an expanded version of ablation.

Label Pruning Metrics. From Table 5a, we empirically �nd that using different metrics explained
in Appendix E.1 isno better than random pruning. In addition, as mentioned in FerKD [25],
calibrating the searching space by discarding a portion of easy or hard images can be bene�cial. We
conduct a similar experiment to perform random pruning on a calibrated label pool, and the metric for
determining easy or hard images is “confidence ”. However, as shown in Table 5b, no such range
can consistently outperform the non-calibrated ones (last row). An interesting observation is that
the label pruning lawat large pruning ratio seems to coincide partially with data pruning, where
removing hard labels becomes bene�cial [37].

Generalization. Table 6a shows the performance under large compression rates. Smaller IPC
datasets suffer more from label pruning since it requires more augmentation and soft label pairs
to boost data diversity. Furthermore, label pruning results on ResNet50 are provided in Table 6b.
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Table 6: Additional ImageNet-1K label pruning results.

(a) Large pruning rate.

ResNet-18 50� 100�

IPC10 17.6 9.6
IPC20 30.0 17.9
IPC50 43.1 33.7
IPC100 52.0 44.7
IPC200 57.7 52.6

(b) Label pruning results on ResNet-50.

ResNet-50 1� 10� 20� 30� 50� 100�

IPC10 41.7 37.7 35.4 27.5 22.6 11.0
IPC20 54.4 52.3 48.9 45.4 39.5 24.0
IPC50 62.2 61.2 58.8 56.2 52.3 44.7
IPC100 65.7 65.1 63.9 62.0 59.8 54.2
IPC200 67.8 67.1 66.7 65.4 64.1 60.1

(c) Cross-architecture result. IPC50.

Model Size Full Acc 1� 10� 30�

ResNet-18 [36] 11.7M 69.76 55.44 54.45 48.62
ResNet-50 [36] 25.6M 76.13 62.24 61.22 56.24
Ef�cientNet-B0 [38] 5.3M 77.69 55.51 54.69 52.10
MobileNet-V2 [39] 3.5M 71.88 49.12 49.26 45.80
Swin-V2-Tiny [40] 28.4M 82.07 40.59 37.35 29.54

Table 7: Label pruning result on ImageNet-21K-
P, using ResNet-18.I denotes image storage.L
denotes label storage.y denotes reported results.

1� 10� 40�
IPC I L SRe2 L CDA Ours L Ours L Ours

IPC10 3G 643G 18.5y 22.6y 25.4 65G 24.1 16G 21.3
IPC20 5G 1285G 20.5y 26.4y 30.3 129G 31.3 32G 29.4

Table 8: Label pruning for optimization-free
method. “Ours” uses improved label pool.

10� 20� 30� 40�
ResNet-18 RDED Ours RDED Ours RDED Ours RDED Ours

IPC10 37.9 39.1 32.5 35.7 25.4 30.8 24.0 29.1
IPC20 45.8 48.1 41.2 44.3 36.2 39.5 32.9 38.4
IPC50 53.2 54.3 49.9 52.7 48.8 49.7 44.3 48.7
IPC100 57.3 57.8 55.3 57.1 55.2 55.3 51.4 54.2

Not only scaling to large networks of the same family (i.e., ResNet) but Table 6c also demonstrates
the generalization capability of the proposed method across different network architectures. An
analogous trend is evident in the context of label pruning: comparable performance is achieved with
10� fewer labels. This reinforces the statement that the necessity for extensive augmentations and
labels can be signi�cantly reduced if the dataset exhibits suf�cient diversity.

Large Dataset.ImageNet-21K-P has 10,450 classes, signi�cantly increasing the disk storage as each
soft label stores a probability of 10,450 classes. The IPC20 dataset leads to a 1.2 TB (i.e., 1285 GB)
label storage, making the existing framework less practical. However, with the help of our method, it
can surpass SRe2L [6] by a large margin despite using 40� less storage. For example, we attain an
8.9% accuracy improvement on IPC20 with label storage reduced from 1285 GB to 32 GB.

Pruning for Optimization-Free Approach. RDED [8] is an optimization-free approach during the
“recover” phase. However, extensive labels are still required for post-evaluation. To prune labels,
consistent improvements are observed using the improved label pool, as shown in Table 8.

Table 9: Compare with G-
VBSM [9]. “Ours+” uses en-
semble and MSE+GT loss.

IPC10 G-VBSM Ours Ours+

1� 31.4 35.7 39.0
10� 28.4 32.7 37.6
20� 26.5 28.6 34.8
30� 22.5 23.1 30.3
40� 18.8 20.2 27.9

Comparison with G-VBSM [9]. Compared to G-VBSM [9], which
uses an ensemble of 4 models to recover and relabel, our method
outperforms it at various pruning ratios with only a single model
(see Table 9). Furthermore, the techniques used for G-VBSM apply
to our method. By adopting label generation with ensemble and
a loss function of “MSE+0.1� GT” [9], our method can be fur-
ther improved by a large margin on IPC10 of ImageNet-1K, using
ResNet18. Implementation details can be found in Appendix C.4.

Visualization. Fig. 2b visualizes our method on three classes. More
visualizations are provided in Appendix F.

5 Conclusion

To answer the question“whether large-scale soft labels are necessary for large-scale dataset dis-
tillation?” , we conduct diversity analysis on synthetic datasets. The high within-class similarity is
observed and necessitates large-scale soft labels. Our LPLD method re-batches images within classes
and introduces class-wise BN supervision during the image synthesis phase to address this issue.
These changes improve data diversity, so that simple random label pruning can perform on par with
complex rule-based pruning metrics. Additionally, we randomly conduct pruning on an improved
label pool. Finally, LPLD is validated by extensive experiments, serving a strong baseline that takes
into account actual storage. Limitations and future works are provided in Appendix E.6. The ethics
statement and broader impacts can be found in Appendix E.7.
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A Proof

We aim to determine a lower bound on the number of batches (updates)n required to ensure that
the Batch Normalization (BN) statistics for each class in the ImageNet dataset converge within a
speci�ed tolerance� , with high probability. The dataset has a varying number of images per class,
affecting the probability of each class appearing in a batch during sampling.

A.1 Preliminary Analysis

De�ning Class Probabilities: Let pc denote the probability that a randomly selected image from the
dataset belongs to classc:

pc =
Number of images in classc

Total number of images in the dataset
:

Due to the unequal distribution of images across classes,pc varies among classes.

Probability of Class Appearance in a Batch:When sampling a batch of sizeB , the probability that
classc does not appear in the batch is(1 � pc)B . Therefore, the probability that classc appears in
the batch is:

qc = 1 � (1 � pc)B :

This represents the likelihood that at least one image from classc is included in a given batch.

Number of Batches:Let n be the total number of batches sampled during training.

We assume that batches are sampled independently with replacement from the dataset. Under this
assumption, each batch is an independent trial where classc appears with probabilityqc. Therefore,
the number of batchesM where classc appears follows a binomial distribution:

M � Binomial( n; qc):

Remark: In practice, batches are often sampled without replacement within an epoch, introducing
dependency between batches. However, for large datasets where the total number of imagesN is
signi�cantly larger than the batch sizeB and the number of batchesn, the dependence becomes
negligible. In such cases, the binomial distribution serves as a reasonable approximation.

The expected value ofM is:

E [M ] = nqc:

A.2 Chernoff Bound

To ensure thatM is not signi�cantly less than its expected valueE[M ], we apply the Chernoff bound:

Pr (M � (1 � � )E [M ]) � exp
�

�
� 2E[M ]

2

�
;

where� 2 (0; 1) represents the acceptable relative deviation from the expected value. This bound
provides a way to quantify the probability that a random variable deviates from its expected value,
which is crucial for making high-con�dence guarantees.

To ensure the probability thatM is less than(1 � � )E [M ] is at mostT1, we set:

exp
�

�
� 2nqc

2

�
� T1:

Solving forn:
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n �
� 2 ln(T1)

� 2qc
:

To ensure this condition holds for all classes, we use the minimum value ofqc:

n �
� 2 ln(T1)
� 2 min(qc)

:

A.3 BN Convergence

BN Statistics Update: Batch Normalization updates its running statistics using an exponential
moving average. The update rule for the BN statistics of classc at iterationt + 1 is:

BNt +1
c = (1 � " )BNt

c + "B̂N
t +1
c ;

where" is the momentum parameter, and̂BN
t +1
c is the BN statistics estimated from the current batch

for classc.

Since BN statistics for classc are updated only when classc appears in the batch, we consider only
the updates corresponding to those batches. AfterM such updates:

BNt + M
c = (1 � " )M BNt

c + "
MX

k=1

(1 � " )M � k B̂N
k
c ;

whereB̂N
k
c is the BN statistics estimated in thek-th batch containing classc.

AssumingB̂N
k
c is an unbiased estimator of the true BN statistics� c when classc appears, the expected

value is:

E [BNt + M
c ] = (1 � " )M BNt

c + � c
�
1 � (1 � " )M �

:

Convergence Within Tolerance:To ensure that the BN statistics converge within a tolerance� of
the true statistics� c:

�
�E [BNt + M

c ] � � c
�
� � �:

Since:

�
�E [BNt + M

c ] � � c
�
� = (1 � " )M

�
�BNt

c � � c
�
� ;

and assuming
�
�BNt

c � � c
�
� � C for some constantC, we have:

(1 � " )M C � �:

Taking natural logarithms:

M ln(1 � " ) + ln( C) � ln( � ):

Using the approximationln(1 � " ) � � " for small" :

� M" + ln( C) � ln( � ):

Solving forM :
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M � M 0 =
ln

�
C
�

�

"
:

Origin of M 0: Here,M 0 is derived from the BN convergence requirement that ensures:

(1 � " )M 0
�
�BNt

c � � c
�
� � �:

It represents the minimum number of updates required for the BN statistics of classc to converge
within the desired tolerance� .

A.4 Combining Bounds

Event De�nitions:

• Let E1 be the event that classc appears in suf�cient batches (as guaranteed by the Chernoff
bound).

• Let E2 be the event that the BN statistics for classc converge within the desired tolerance� .

Target Probability: We aim to ensure that both events occur simultaneously with high probability:

P(E1 \ E2) � 1 � T:

Union Bound Application: For any two events, the probability of their intersection satis�es:

P(E1 \ E2) = 1 � P(E1 \ E2)

= 1 � P(E1 [ E2)

� 1 � P(E1) � P(E2):

Error Probability Allocation: For simplicity, we allocate the total acceptable failure probabilityT
equally between the two events:

P(E1) �
T
2

(allocated to Chernoff bound);

P(E2) �
T
2

(allocated to BN convergence):

Chernoff Bound Analysis: For eventE1, we require that the probability of classc appearing in
fewer than the expected number of batches is at mostT

2 :

P (M � (1 � � )nqc) �
T
2

:

Applying the Chernoff bound:

exp
�

�
� 2nqc

2

�
�

T
2

:

Solving forn:

�
� 2nqc

2
� ln

�
T
2

�
;

n �
� 2 ln

�
T
2

�

� 2qc
:

BN Convergence Requirement:For eventE2, we require that the number of batchesM where class
c appears is suf�cient for BN convergence:

M � M 0 =
ln

�
C
�

�

"
:
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To ensure that this condition holds when eventE1 occurs, we use the fact that, with probability at
least1 � T

2 , we have:
M � (1 � � )nqc:

Therefore, to guaranteeM � M 0, we require:

(1 � � )nqc � M 0 =
ln

�
C
�

�

"
:

Solving forn:

n �
ln

�
C
�

�

(1 � � )"qc
:

Final Combined Bound: To ensure that both conditions hold for all classes, we usemin(qc):

n � max

0

B
B
B
@

� 2 ln
�

T
2

�

� 2 min(qc)
| {z }
Chernoff Bound

;
ln

�
C
�

�

(1 � � )" min(qc)
| {z }

BN Convergence

1

C
C
C
A

;

where� represents the acceptable relative deviation from the expected number of batches," is the
momentum parameter in BN updates,T denotes the acceptable total failure probability (T = T1 + T2),
� is the convergence threshold for BN statistics,C represents an upper bound on

�
�BNt

c � � c
�
� at

initialization, andmin(qc) represents the minimum probability that a class appears in a batch.

This bound ensures:

• With probability at least1 � T
2 , each classc appears in at least(1 � � )nqc batches (event

E1 occurs).
• With probability at least1 � T

2 , the BN statistics for each classc converge within tolerance
� (eventE2 occurs).

• By the union bound, both eventsE1 andE2 occur simultaneously with probability at least
1 � T.

B Dataset Details

We perform experiments on the following three datasets:

• Tiny-ImageNet [33] is the subset of ImageNet-1K containing 500 images per class of a total
of 200 classes, and spatial sizes of images are downsampled to64� 64.

• ImageNet-1K [34] contains 1,000 classes and 1,281,167 images in total. The image sizes
are resized to224� 224.

• ImageNet-21K-P [35] is the pruned version of ImageNet-21K, containing 10,450 classes
and 11,060,223 images in total. Images are sized to224� 224resolution.

C Hyperparameter Settings

C.1 ImageNet-1K

Table 10: Squeezing and class-wise BN statistics of ImageNet-1K.

Info Detail

Total Images 1,281,167
Batch Size 256
BN Updates 5005
Source https://github.com/pytorch/vision/tree/main/references/classi�cation
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Table 11: Data Synthesis of ImageNet-1K.

Con�g Value Detail

Iteration 4,000 -
Optimizer Adam � 1; � 2 = (0 :5; 0:9)
Image LR 0.25 -
Batch Size IPC-dependent e.g., 50 for IPC50
Initialization Random -
BN Loss(� ) 0.01 -

Table 12: Relabel and Validation of ImageNet-1K.

Con�g Value Detail

Epochs 300 -
Optimizer AdamW -
Model LR 0.001 -
Batch Size 128 -
Scheduler CosineAnnealing -
EMA Rate Not Used -

Augmentation
RandomResizedCrop scale ratio = (0.08, 1.0)

RandomHorizontalFlip probability = 0.5
CutMix -

We use Pytorch pretrained ResNet-18 [36], with a Top-1 accuracy of 69.76%, as both the recovery
and relabeling model. Class-wise BN statistics are computed using a modi�ed version of the training
script of the source provided in Table 10. The recovery, or data synthesis, phase is provided in
Table 11, which follows CDA [7] except by changing the batch size to an IPC-dependent size. Relabel
and validation processes share the same setting as provided in Table 12.

C.2 Tiny-ImageNet

Table 13: Squeezing and class-wise BN statistics of Tiny-Imagenet.

Info Detail

Total Images 100,000
Batch Size 256
BN Updates 391
Source https://github.com/zeyuanyin/tiny-imagenet

Table 14: Data Synthesis of Tiny-ImageNet.

Con�g Value Detail

Iteration 4,000 -
Optimizer Adam � 1; � 2 = (0 :5; 0:9)
Image LR 0.1 -
Batch Size IPC-dependent e.g., 50 for IPC50
Initialization Random -
BN Loss(� ) 0.05 -
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Table 15: Relabel and Validation of Tiny-ImageNet.

Con�g Value Detail

Epochs 100 -
Optimizer SGD � = 0 :9; � = 0 :0001
Model LR 0.2 -
Batch Size 64 -
Warm-up Scheduler Linear epoch = 5,� = 0.01
Scheduler CosineAnnealing -
EMA Rate Not Used -

Augmentation RandomResizedCrop scale ratio = (0.08, 1.0)
RandomHorizontalFlip probability = 0.5

Following SRe2L and CDA [7], we use a modi�ed version of ResNet-18 [41] for Tiny-ImageNet. We
modify the training script from Table 13 to compute class-wise BN statistics. The pretrained model
has a Top-1 accuracy of 59.47%, and the model is used for data synthesis and relabel/validation as
shown in Table 14 and Table 15, respectively. Note that for the validation phase, a warm-up of 5
epochs is added with a different learning rate scheduler (i.e., linear).

C.3 ImageNet-21K-P

Table 16: Squeezing and class-wise BN statistics of Imagenet-21K-P.

Info Detail

Total Images 11,060,223
Batch Size 1,024
BN Updates 10,801
Source https://github.com/Alibaba-MIIL/ImageNet21K

Table 17: Data Synthesis of ImageNet-21K-P.

Con�g Value Detail

Iteration 2,000 -
Optimizer Adam � 1; � 2 = (0 :5; 0:9)
Image LR 0.05 -
Batch Size IPC-dependent e.g., 20 for IPC20
Initialization Random -
BN Loss(� ) 0.25 -

Table 18: Relabel and Validation of ImageNet-21K-P.

Con�g Value Detail

Epochs 300 -
Optimizer AdamW decay= 0 :01
Model LR 0.002 -
Batch Size 32 -
Scheduler CosineAnnealing -
Label Smoothing 0.2 -
EMA Rate Not Used -

Augmentation RandomResizedCrop scale ratio = (0.08, 1.0)
CutOut -

Following CDA [7], we use ResNet-18 trained for 80 epochs initialized with well-trained ImageNet-
1K weight [35]. Class-wise BN statistics are computed using a modi�ed version of the training
script of the source provided in Table 16. The pretrained ResNet-18 on ImageNet-21K-P has a
Top-1 accuracy of 38.1%, and the model is used for data synthesis and relabel/validation as shown
in Table 17 and Table 18, respectively. Note that CutMix used in ImageNet-1K is replaced with
CutOut [42], and a relatively large label smooth of 0.2 is used during the ImageNet-21K-P pretraining
phase. We incorporate the same changes to the relabel/validation phase of the synthetic dataset.
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C.4 Implementation of Baselines

RDED. RDED [8] has several different changes to the SRe2L settings. (1) The batch size is adjusted
according to the IPC size (i.e., 100 for IPC10 and 200 for IPC50). (2) It uses additional augmentation
(i.e., Shuf�ePatch to shuf�e the position of patches). Such augmentations are considered additional
storage since the exact order of patch shuf�ing needs to be stored. (3) Weaker augmentation (i.e., a
larger lower bound for the random area of the resized crop). (4) A smoothed learning rate scheduler.
We adhere to all the changes for experiments regarding RDED.

G-VBSM. In Table 9, we adopt the several techniques used for G-VBSM [9]. (1) Soft labels are
generated with an ensemble of models. Speci�cally, we use ResNet18 [36], MobileNetV2 [39],
Ef�cientNet-B0 [43], Shuf�eNetV2-0.5 [44]. (2) Logit Normalization is used to keep the same label
storage. (3) A different MSE+
 � GT loss replaces KL divergence, where
 = 0 :1.

D Additional Experiments

D.1 Ablation

Table 19: Ablation study of the proposed method.Cdenotes using class-wise matching.CSde-
notes suing class-wise supervision.ILP denotes using an improved label pool. (IPC50, ResNet18,
ImageNet-1K).

+C +CS +ILP 1� 10� 20� 30� 50� 100�

- - - 52.0 49.4 46.4 41.1 34.8 25.4
X - - 54.7 51.9 48.5 42.9 37.7 22.6
X - X 54.7 52.9 49.9 46.2 40.7 27.0
X X - 55.3 53.2 49.9 45.7 39.7 29.1
X X X 55.4 54.4 51.8 48.6 43.1 33.7

Table 19 presents an expanded version of Table 4. The row highlighted in grey outlines the ablation
study on class-wise supervision, demonstrating that theILP component (Improved Label Pool)
enhances performance independently of class-wise supervision.

D.2 Scaling on Large IPCs

Table 20: Experiment on the scalability of large IPCs.T denotes the total storage of images and
labels, and storage is measured in GB. The validation model is ResNet18.

1� T 30� T 40� T

IPC300 65.3 178 62.6 10 61.9 9
IPC400 67.4 237 65.2 13 64.6 12

ImageNet-1K 69.8 138 - - - -

Table 20 demonstrates that our method exhibits commendable scalability across large IPCs. We
observe non-marginal enhancements when deploying even larger IPCs, such as IPC300 and IPC400.
Moreover, our approach achieves nearly identical accuracy levels — speci�cally, 65.3% vs. 65.2%
— when comparing the use of IPC300 at 1� with IPC400 at30� less labels. Compared to the full
ImageNet-1K dataset, our method preserves a large portion of the accuracy with 10� less storage.
This performance is achieved despite the vastly different storage requirements of 178G and 13G,
respectively, indicating a higher �exibility of IPC choice with a �xed storage budget.

D.3 Comparison with Fast Knowledge Distillation [25]

The label quantization technique mentioned in Fast Knowledge Distillation (FKD) [25] is orthogonal
to the proposed method for several reasons. Firstly, as demonstrated in Table 21, there are six
components related to soft labels. FKD only compresses the prediction logits (component 6), while
the our method addresses all six components.
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Secondly, even for the overlapping storage component (component 6: prediction logits), the compres-
sion targets differ between FKD and our method, as shown in Table 22. The total stored prediction log-
its can be approximated by the formula: number_of_condensed_images� number_of_augmentations
� dimension_of_logits. FKD's label quantization focuses on compressing the dimension_of_logits,
whereas the proposed label pruning method focuses on compressing the number_of_augmentations.

Table 21: Different storage components between FKD and the proposed method. FKD, originally for
model distillation, requires storage only for components 1, 2, and 6. Adapting it to dataset distillation
requires additional storage for components 3, 4, and 5.

Components of Storage FKD Proposed Method

1. coordinates of crops � X
2. �ip status � X
3. index of cutmix images � X
4. strength of cutmix � X
5. coordinates of cutmix bounding box � X
6. prediction logits X X

Table 22: Breakdown explanation for component 6 (prediction logits) storage between FKD's label
quantization and the proposed label pruning. The number of condensed images is computed by N =
IPC � number_of_classes. FKD's compression target is dimension_of_logits, while the proposed
method's target is number_of_augmentations.

Method Number of Dimension of Total Storage for
Augmentations per Image Logits per Augmentation Prediction Logits

Baseline (no compression) 300 1,000 N� 300� 1000
Label Quantization (FKD) 300 10 N� 300� 10
Label Pruning (Proposed) 3 1,000 N� 3 � 1000

Although FKD's approach is orthogonal to our method, a comparative analysis was conducted to
better understand their relative performance. Table 23 presents a detailed comparison between FKD's
two label quantization strategies (Marginal Smoothing and Marginal Re-Norm) and the proposed
method. It is important to note that FKD only compresses component 6, with the compression rate
related to hyper-parameterK . Components 1-5 remain uncompressed (1� rate) in FKD. Additionally,
FKD's quantized logits store both values and indices, so their actual storage is doubled, and their
compression rate is halved.

This analysis has yielded two key observations. First, our method demonstrates higher accuracy at
comparable compression rates. For IPC10, our method achieves 32.70% accuracy at 10� compres-
sion, while FKD only reaches 18.10% at 8.2� compression. Second, our method exhibits better
compression at similar accuracy levels. On IPC10, our method attains 20.20% accuracy at 40�
compression, whereas FKD achieves 19.04% at just 4.5x compression.

Table 23: Comparison between FKD's two label quantization strategies (Marginal Smoothing and
Marginal Re-Norm) and ours.

Method Compression Rate of Full Accuracy (%)
Component 1-5 Component 6 Compression Rate on IPC10

Baseline (no compression) 1� 1� 1� 34.60

FKD (Smoothing, K=100) 1� (10/2)=5� 4.5� 18.70
FKD (Smoothing, K=50) 1� (20/2)=10� 8.2� 15.53
FKD (Smoothing, K=10) 1� (100/2)=50� 23.0� 9.20
FKD (Re-Norm, K=100) 1� (10/2)=5� 4.5� 19.04
FKD (Re-Norm, K=50) 1� (20/2)=10� 8.2� 18.10
FKD (Re-Norm, K=10) 1� (100/2)=50� 23.0� 15.52

Ours (10� ) 10� 10� 10� 32.70
Ours (20� ) 20� 20� 20� 28.60
Ours (40� ) 40� 40� 40� 20.20
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E Additional Information

E.1 Label Pruning Metrics

We determine labels according to the statistics of the auxiliary information:

1. correct : the number of correctly classi�ed images [31]

2. diff : the absolute difference between the Top-2 outputs

3. signed_diff : the signed difference between Top-2 output [45]

4. cut_ratio : the cut-mix ratio

5. confidence : the value of the largest output [26].

These metrics serve for the baselines compared to random label pruning in Table 5 After knowing
the metric, knowing which data type to prune (i.e., “easy”, “hard”, or “uniform") is important.
Additionally, FerKD [26] argues the reliability of generated soft labels and proposes to use neither
too easy nor too hard samples.

E.2 Image and Label Storage

Table 24: Image and label storage.I denotes image storage.L denotes label storage. “Ratio” is
label-to-image ratio.

ImageNet-1K (GB)

Storage I L Ratio

IPC10 0.15 5.67 37.0
IPC20 0.30 11.33 37.6
IPC50 0.75 28.33 37.9
IPC100 1.49 56.66 38.0
IPC200 2.98 113.33 38.0
IPC300 4.76 172.63 36.3
IPC400 6.33 229.80 36.3

Tiny-ImageNet (MB)

Storage I L Ratio

IPC50 21 449 21.4
IPC100 40 898 22.5

ImageNet-21K-P (GB)

Storage I L Ratio

IPC10 3 643 214.3
IPC20 5 1285 257.1

Table. 24 shows that stored labels are more than10� , 30� , and200� sized of the image storage,
depending on the number of classes of the dataset.

E.3 Theoretical Analysis on the Number of Updates

Our experiments are grounded in a careful analysis of the number of updates required for stable Batch
Normalization (BN) statistics. We begin by examining the derived bound from Eq. 8:

n � max

0

B
B
B
@

� 2 ln
�

T
2

�

� 2 min(qc)
| {z }
Chernoff Bound

;
ln

�
C
�

�

(1 � � )" min(qc)
| {z }

BN Convergence

1

C
C
C
A

:

To evaluate this bound, we substitute the following values:

• T = 0 :05 (acceptable total failure probability, corresponding to 95% con�dence)

• � = 0 :2 (acceptable relative deviation from the expected number of batches)

• " = 0 :1 (momentum parameter in BN)

• min(pc) =
732

1; 281; 167
� 0:0005711(ratio of the least number of images in a class to total

images)

• B = 256 (batch size)

• min(qc) = 1 � (1 � min(pc))B (minimum probability that any class appears in a batch)
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First, we computemin(qc):

min(qc) = 1 � (1 � min(pc))B

= 1 � (1 � 0:0005711)256

= 1 � (0:9994289)256

� 1 � e� 256� 0:0005711 (sincemin(pc) is small)

= 1 � e� 0:1462

� 1 � 0:8639 = 0:1361:

Thus,min(qc) � 0:1361.

Next, we compute the two parts of the bound separately.

From Chernoff Bound Term: Given that we allocate the total failure probabilityT equally between
the two events, we haveT=2 = 0:025.

n �
� 2 ln

�
T
2

�

� 2 min(qc)

=
� 2 ln(0:025)

(0:2)2 � 0:1361

=
� 2 � (� 3:6889)
0:04� 0:1361

(sinceln(0:025) = � 3:6889)

=
7:3778

0:005444
� 1; 355:2:

From BN Convergence Term:We need to specifyC and� . Let's assume:

• C = 1 (an upper bound on
�
�BNt

c � � c
�
� at initialization, as the running mean is typically

initialized to zero)

• � = 0 :01 (desired convergence tolerance)

Compute the numerator:

ln
�

C
�

�
= ln

�
1

0:01

�
= ln(100) = 4 :6052:

Now, compute the denominator:

(1 � � )" min(qc) = (1 � 0:2) � 0:1 � 0:1361 = 0:8 � 0:1 � 0:1361 = 0:010888:

Compute the second part:

n �
ln

�
C
�

�

(1 � � )" min(qc)

=
4:6052

0:010888
� 423:08:

Final Bound:

n � max (1; 355:2; 423:08) = 1; 355:2 � 1; 356 (rounding up to the nearest whole number):
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This theoretical result indicates that approximately1; 356batches are needed for stable BN statistics
with the speci�ed parameters.

Practical Implications: This observation leads to a key insight: pretrained models have already
undergone suf�cient updates to achieve stable BN statistics. Speci�cally, in the context of ImageNet-
1K:

Updates per epoch=
1; 281; 167

256
� 5; 005updates> 1; 356:

Since one epoch consists of approximately5; 005 updates, which is substantially more than the
theoretical requirement of1; 356batches, we can con�rm that a single epoch of training is suf�cient
for the BN statistics of each class to converge within the desired tolerance with high probability.

E.4 Class-wise Statistics Storage

Table 25: Additional storage required for class-wise statistics. The model is ResNet-18, and storage
is measured in MB.

Tiny-ImageNet ImageNet-1K ImageNet-21K-P

Original 43.06 44.66 247.20
+ Class Stats 50.41 81.30 445.87

Diff. 7.35 36.64 198.67

The additional storage allocation for class-speci�c statistics is detailed in Table 25. It is observed
that this storage requirement escalates with an increase in the number of classes. However, this
is a one-time necessity during the recovery phase and becomes redundant once the synthetic data
generation is completed.

E.5 Computing Resources

Experiments are performed on 4 A100 80G GPU cards. We notice that for Tiny-ImageNet, there
is a slight performance drop when multiple GPU cards are used withDataParallel in PyTorch.
Therefore, we use 4 GPU cards for ImageNet-1K and ImageNet-21K-P experiments and 1 GPU card
for all Tiny-ImageNet experiments.

E.6 Limitation and Future Work

We recognize that there are several limitations and potential areas for further investigation. Firstly,
while our work signi�cantly reduces the required storage, the process for generating the soft labels is
still necessary, as we randomly select from this label space. Secondly, reducing the required labels
may not directly lead to a reduced training speed, as the total training epochs remain the same in
order to achieve the best performance. Future work is warranted to reduce label storage as well as the
required training budget simultaneously.

E.7 Ethics Statement and Broader Impacts

Our research study focuses on dataset distillation, which aims to preserve data privacy and reduce
computing costs by generating small synthetic datasets that have no direct connection to real datasets.
However, this approach does not usually generate datasets with the same level of accuracy as the full
datasets.

In addition, our work in reducing the size of soft labels and enhancing image diversity can have a
positive impact on the �eld by making large-scale dataset distillation more ef�cient, thereby reducing
storage and computational requirements. This ef�ciency can facilitate broader access to advanced
machine learning techniques, potentially fostering innovation across diverse sectors.
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