
Fast and Memory-Efficient Video Diffusion Using
Streamlined Inference

Zheng Zhan1∗ Yushu Wu1∗ Yifan Gong1 Zichong Meng1 Zhenglun Kong12
Changdi Yang1 Geng Yuan3 Pu Zhao1† Wei Niu3 Yanzhi Wang1
1Northeastern University 2Harvard University 3University of Georgia

a full-sized man rides a comically small motorcycle through a residential neighborhood

Animatediff

Peak Mem: 29.7G

Latency: 16.9s

Ours

Peak Mem:

9.08G
Latency:

10.7s

(3.3× less)

(1.6× less)

512×768 resolution

Figure 1: Our Streamlined Inference is a training-free inference framework for video diffusion models
that can reduce the computation and peak memory cost without sacrificing the quality.

Abstract

The rapid progress in artificial intelligence-generated content (AIGC), especially
with diffusion models, has significantly advanced development of high-quality
video generation. However, current video diffusion models exhibit demanding
computational requirements and high peak memory usage, especially for generating
longer and higher-resolution videos. These limitations greatly hinder the practical
application of video diffusion models on standard hardware platforms. To tackle
this issue, we present a novel, training-free framework named Streamlined Infer-
ence, which leverages the temporal and spatial properties of video diffusion models.
Our approach integrates three core components: Feature Slicer, Operator Grouping,
and Step Rehash. Specifically, Feature Slicer effectively partitions input features
into sub-features and Operator Grouping processes each sub-feature with a group of
consecutive operators, resulting in significant memory reduction without sacrificing
the quality or speed. Step Rehash further exploits the similarity between adjacent
steps in diffusion, and accelerates inference through skipping unnecessary steps.
Extensive experiments demonstrate that our approach significantly reduces peak
memory and computational overhead, making it feasible to generate high-quality
videos on a single consumer GPU (e.g., reducing peak memory of AnimateDiff
from 42GB to 11GB, featuring faster inference on 2080Ti)1.

1 Introduction

Recent years have witnessed continual progress and advancements in artificial intelligence-generated
content (AIGC). Among them, diffusion models allow artists and amateurs to create visual content

∗Equal contributions.
†Corresponding author
1Code available at: https://github.com/wuyushuwys/FMEDiffusion

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/wuyushuwys/FMEDiffusion

Figure 2: Comparison on Animatediff and SVD inference using our Streamlined Inference. Memory
requirement is crucial as“Out of Memory” errors prevent the GPU from performing inference.

with text prompts, advancing the development of image and video generation in both academia and
industry. For video diffusion models, the latest works such as SVD-XT [3], Gen2 [29], Pika [20],
and notably the more advanced Sora [28], demonstrate impressive capabilities in producing visually
striking and artistically effective videos. Despite their great performance, video diffusion models also
exhibit high computational requirements and substantial peak memory, particularly when generating
longer videos with higher resolutions. For instance, SVD-XT generates 25 frames simultaneously
with a resolution of576� 1024, while Sora expands these capabilities by supporting the generation
of longer videos (over a minute) at a higher resolution of1080� 1920. Given the trends of generating
longer videos with higher quality, the escalating memory and computation demands have impeded
practical applications of these large-scale video diffusion models on various platforms.

Existing model compression methods to reduce peak memory and latency, such as weight pruning [38,
12, 35, 6, 48, 23, 42, 44, 47], quantization [37, 22, 32], and distillation [18, 10, 43, 39], typically
require substantial retraining or �ne-tuning of the compressed model to recover performance. This
process is costly, time-consuming, and may raise data privacy concerns. Applying these methods in
zero-shot avoids the expensive retraining, but leads to severe performance degradation. Furthermore,
the variety and complexity of video diffusion architectures further complicate the model optimization.
Therefore, it is challenging yet crucial to develop an effective and ef�cient video diffusion framework
with reduced computations, smaller peak memory and less data (no re-training) requirements for its
wide applications.

To address the above challenges, we �rst identify the sources of thehigh computation and memory
cost, which scale up with the iterative denoising process and the simultaneous processing of multiple
frames. We further observe that the feature maps of certain layers may exhibit high similarity
between multiple consecutive denoising steps due to the temporal property of videos, enabling
further optimizations for acceleration. Based on that, we propose a training-free framework named
Streamlined Inference, by leveraging the temporal and spatial characteristics of video diffusion models
to effectively reduce peak memory and computational demands. Our framework contains three core
components: Feature Slicer, Operator Grouping, and Step Rehash, which work together closely and
comprehensively with different focuses on peak memory reduction or inference acceleration.

Our Feature Slicer performs lossless feature slicing in both temporal and spatial layers, raising the
possibility of peak memory reduction through processing smaller features. However, the feature
slicer alone is not able to decrease peak memory as we still need to store all intermediate results of
one layer for all sliced features to form a complete intermediate feature map for the next layer. To
reduce peak memory practically, we further propose Operator Grouping to group homogeneous and
consecutive operators in the computational graph. Within each operator group, the intermediate result
of one sliced feature can be directly sent to the next operator/layer without waiting for aggregation
with all other intermediate results, achieving the full potential of Feature Slicer to reduce the peak
memory. Furthermore, a pipeline technique is proposed to accelerate the computations of the same
operator group for multiple sliced feature inputs, with improved parallelism.

Moreover, observing the high similarity of certain features between multiple consecutive denoising
steps, we propose Step Rehash to reuse the generated features for a few following steps due to their
high similarity, skipping the exact expansive and repetitive generation of similar features and thereby
accelerating the video diffusion signi�cantly. With this framework, we can generate high-quality

2

videos in a fast and memory-ef�cient manner on a single consumer GPU, as shown in Fig. 2. For
example, the peak memory of AnimateDiff [11] can be reduced signi�cantly from 41.7GB to 11GB,
featuring inference on a typical consumer GPU 2080Ti. We summarize our contributions as follows:

• We propose a novel training-free framework that can signi�cantly reduce the peak memory
and computation cost for the inference of video diffusion models by leveraging the spatial
and temporal characteristics of video diffusion models.

• Our approach can be seamlessly integrated into existing video diffusion models. Our
extensive experiments on SVD, SVD-XT, and AnimateDiff demonstrate our effectiveness to
reduce peak memory and accelerate inference without sacri�cing quality.

• Our approach offers a new research perspective for fast and memory-ef�cient video diffusion,
enabling the generation of higher quality and longer videos on consumer-grade GPUs.

2 Related Work

Video Diffuison Models. For video generation, various approaches have been proposed, with
VDM [17] as a leading example. VDM transforms the conventional U-Net [30] architecture of image
diffusion models into a 3D U-Net structure, employing joint training on both images and videos.
MagicVideo [49] is the �rst work that introduces Latent Diffusion Model (LDM) for text-to-video
(T2V) generation in latent space. LVDM [13] introduces a mask sampling technique that enhances
its longer video generation capability. ModelScope [36] incorporates spatial-temporal convolution
and attention into LDM. Video LDM [4] trains a T2V network composed of three training stages,
enabling higher quality and longer video generation. Show-1 [45] �rst introduces the fusion of
pixel-based and latent-based diffusion models for T2V generation. Recently, Stable Video Diffusion
(SVD) [3] identi�es three key stages for training video LDMs: text-to-image (T2I) pretraining, video
pretraining, and high-quality video �netuning.

Architectural Ef�ciency of Video Diffusion Models. There are various research efforts exploring
either architectural ef�ciency or model compression techniques for image/video generation. For
example, ED-T2V [24] freezes parameters to reduce training costs and proposes a attention mecha-
nism to ensure temporal coherence. SimDA [40] devises a parameter-ef�cient training approach by
maintaining the parameter of the T2I model and uses two adapters to train it. For model compression,
Diff-pruning [6] employs structural pruning techniques to reduce inference time at each sampling
step. Additionally, the work [22] implements quantization on diffusion models using low-precision
data types. However, these methods take substantial efforts to retrain or �netune the diffusion model
to recover performance, which is costly, time-consuming, and may raise data privacy concerns.
Furthermore, applying post-training compression techniques in one-shot [8, 7, 34] may save the
retraining/�ne-tuning efforts, but suffers from signi�cant performance degradation.

Sample-Ef�cient Video Diffusion Models. To address the iterative denoising process in diffusion
models and improve the sampling ef�ciency, two approaches are proposed. The �rst approach [2,
19, 5, 25] focuses on creating rapid solvers to resolve the differential equation associated with the
denoising process more effectively. The works [31, 27, 21] utilize knowledge distillation methods to
compress and simplify the sampling trajectory ef�ciently, thereby enhancing overall performance.
Imagen video [15] is one of the �rst methods to apply progressive distillation on video diffusion
models, incorporating guidance and stochastic samplers. Recent work Deepcache [26] proposes a
novel training-free paradigm that accelerates diffusion models by reusing the high-level features.

3 Motivation

Peak memory and computation analysis. Existing open-source video diffusion models [11, 3,
36, 46] typically adopt a pretrained T2I 2D-UNet as backbone. Their temporal layers are seamlessly
integrated into the backbone 2D-UNet, positioned after every spatial layer. Here, we use SVD as
an example to demonstrate how peak memory and computational overhead scale with the number
of frames. The SVD model is trained with two distinct con�gurations: regular SVD is designed to
generate 14 frames, while SVD-XT is tailored to produce 25 frames. To generate 14 or 25 video
frames concurrently with SVD, its latent features require massive GPU memory and computation
consumption, estimated to be approximately 14� or 25� higher than its base T2I model. This

3

Figure 3: The quality results of our method and naïve slicing. Note that naïve slicing will incur
unpleasant artifacts due to lack of temporal correction by fewer frames.

estimate does not even account for the additional memory required by SVD's extra-temporal layers.
More speci�cally, the SVD consumes 39.49G of peak memory for576� 1024resolution output,
whereas its image generation counterpart only requires 6.33G of memory at the same resolution.
Furthermore, incorporating the classi�er-free guidance [16] substantially enhances the generation
quality but doubles the peak memory required during inference.

Consequently, video diffusion is computationally demanding, but the challenge of memory con-
sumption is more critical and demands immediate attention. Most consumer-grade GPUs do not
have enough memory for video diffusion models and, therefore, suffer from the“Out of Memory”
error, which prevents the GPU from generating high-quality videos. There is no workaround without
switching GPUs. Most users have to endure generating short and low-resolution videos.

Naïve Slicing. A Naïve approach to reduce peak memory is to execute the video diffusion inference
clip-by-clip. However, this strategy is hindered by the temporal layers, which are essential for
maintaining temporal correlation in video diffusion models. Forcibly implementing this approach
can generate random artifacts and cause motion vanishing in the output video, as detailed in Fig. 3.
Therefore, designing a memory-ef�cient inference framework is a challenging and non-trivial task.

4 Streamlined Inference Framework

To address the above massive peak memory and computation costs, in this section, we propose a
training-free framework named Streamlined Inference, which is composed of three core components:
Feature Slicer, Operator Grouping, and Step Rehash. First, we discuss Feature Slicer, designed
to partition input features of spatial and temporal layers, and enable the potential of massive peak
memory reduction. Next, we introduce our Operator Grouping technique to aggregate homogeneous
and consecutive operators into the same group, achieving the full potential of Feature Slicer to reduce
peak memory through reusing the memory of intermediate result from previous sliced feature. Finally,
we discuss our Step Rehash method to reuse the same feature for a few consecutive steps due to their
high similarity. It accelerates the inference without increasing peak memory overhead as it skips
certain denoising steps with less computations.

4.1 Feature Slicer

Video diffusion models contain spatial and temporal layers which extract the corresponding infor-
mation from their speci�c domains. On this basis, we propose a feature slicer that consists of two
components: Spatial-layer slicer and Temporal-layer slicer, to divide the feature map into multiple
batches/sub-features, ensuring accurate computation without introducing additional operations. The
slicer is further utilized for Operator Grouping to reduce peak memory cost.

Spatial layers slicer. Based on our pro�ling (more details can be found in Appendix A) for memory
allocation of various video diffusion models, we �nd that performing slices at spatial layers can
greatly reduce the memory footprint. The 5-D feature in the spatial layerX 2 RB � T � C � H � W

can be reshaped to a 4-D featureX 2 R(B � T) � C � H � W , whereB; T; C; H; W are the batch size,
number of frames, channels, height, and width, respectively. Thus, we slice it intok sub-features,
�

X i 2 Rn i � C � H � W
	 k

i =1 , whereni = dB � T=kewith d�edenoting the least integer greater than
or equal to the input. IfdB � T=ke 6= B � T=k, the dimension of the last sub-featurenk is different

4

Figure 4: Overview of Operator Grouping with Pipeline in our framework.

from others. The spatial layer slicer is applicable for most operations in spatial layers such asConv2D,
GroupNorm, LayerNorm, Attention , andLinear .

Temporal layers slicer. The input of the temporal layer is a 5-D feature map with dimensions
{ batch, channels, frames, height, width}. 3-D operations such asConv3Dare employed to extract
temporal information from the 5-D feature. Differing from spatial layers, slicing along the temporal
dimension may disrupt the extraction and processing of temporal information. Therefore, we keep
the temporal dimension untouched while slicing over other dimensions. Speci�cally, the 5-D feature
X 2 RB � T � C � H � W can be sliced tokh � kw sub-features

�
X ij 2 RB � T � C � h i � w j

	 i = kh ;j = kw

i =1 ;j =1 ,
wherehi = dH=kh eandwj = dW=kw e. After detailed pro�ling different con�gurations for temporal
layer slicer, we discover that the con�guration withkh = max (H; 16) and kw = max (W; 16) can
result in promising peak memory reduction.

4.2 Operator Grouping

AlthoughFeature Slicer converts the original feature map into multiple smaller sub-features with
reduced memory footprint, the peak memory can not be reduced since the intermediate results of
multiple sliced features require re-consolidation to send to the next layer/operator as inputs. It still
needs to store all intermediate outputs of sliced features to form the united/unsliced intermediate
feature map without actual peak memory reduction. Therefore, to address this problem, we propose
Operator Grouping to group the operators accordingly in the computational graph, achieving
the full potential ofFeature Slicer with effective peak memory reduction due to less memory
reserved for intermediate results. Furthermore, a pipeline technique is proposed to optimize the
inference of operator groups with improved parallelism and practical acceleration.

4.2.1 Grouping Operators for Peak Memory Reduction

Operator Grouping directly re-uses existing operators by aggregating consecutive homogeneous
operators into the same group. Homogeneous operators indicate these operators extract features from
coherent domains and dimensions. In video diffusion models, different operators can be grouped
into GroupOPt (temporal operator groups) andGroupOPs (spatial operators groups) to ensure
the well-preserved semantics of sliced sub-features within each group. For example, in the SVD
Model [3], consecutiveGroupNorm, Conv2D, SiLU, andUp/DownSampleoperators in theSpatial
ResBlockcan be aggregated to one group, as these operators all extract features from spatial domain
and are deemed homogeneous. As shown in Fig. 4, when computing the output featureX o for an
operator group (GroupOP), the input featureX is sliced into multiple sub-featuresX 1; X 2; : : : ; X k
with Feature Slicer. Each sub-featureX i goes through the operator group and their outputs are
concatenated after all outputs are available, as shown in Eq. (1),

X o = Concat (GroupOP(X 1); GroupOP(X 2); : : : ; GroupOP(X k)) (1)

wherek is the number of slices, andConcat is the concatenation operation.

Reducing peak memory cost. As shown in Fig. 4, the peak memory with the operator group is
determined by the memory footprint of the input feature, the output feature, and the intermediate

5

results. Without operator grouping, all intermediate results of all operators for sliced sub-features
will allocate their own memory, hence failing to reduce memory consumption. Compared with the
case above, grouped operators only need to allocate memory for intermediate results of a single
sliced sub-feature and the �nal outputs, without the necessity to allocate full intermediate features
corresponding to the original unsliced input feature, as shown in Fig. 4 (a) and (b). Operator Grouping
can effectively reduce peak memory cost, enabling successful inference of video diffusion models on
one single consumer or commercial GPU with low or moderate available memory, as shown in Tab. 1.

Mitigating I/O intensity. As the original feature map is sliced into multiple sub-features to reduce
peak memory cost, the computation may slow down due to multiple iterations corresponding to multi-
ple inputs. However, we surprisingly observe that even with the naive basic for-loop implementation
for each sub-feature as shown in Fig. 4 (b), the overall runtime with Operator Grouping is around 10%
slower than that of the original unsliced version. The marginal increase in runtime can be attributed
to the memory bound of the GPU for video diffusion inference. Speci�cally, current video diffusion
model inference suffers from the memory bound, where the I/O overhead of intermediate results is
more notorious than their computation workload. The slicer provides a solution to mitigate the I/O
burden, thus balancing the computation and memory read/write to fully utilize the GPU capacity.

4.2.2 Pipelining with Improved Parallelism and Practical Acceleration.

With the proposedFeature Slicer andOperator Grouping , the peak memory will decrease
signi�cantly with a marginal increase for the computation runtime (based on the basic for-loop
implementation). With a deeper investigation for the computation patterns, we �nd that thefor-loop
implementationcannot maximize GPU parallelism, and further employ the pipelining technique to
optimize thefor-loop implementationfor faster inference without additional memory cost.

With Operator Grouping , there are multiple operators in one group to process one sliced sub-
feature sequentially. With the naivefor-loop implementation, before feeding each sliced sub-feature
into another operator group, it needs to wait until the last sub-feature �nishes its computation within
the group. The parallelism can be further improved with the proposed pipeline method. Speci�cally,
in an operator group, after a sliced feature map is computed by the out-of-place computation
operator (e.g.,Conv, GroupNorm, Attention , etc.) and sent to the next operator, its previous
allocated memory is no longer required, but it is still reserved during inference, leading to resource
waste. We can pipeline all operators in the same group to mitigate this issue. As shown in Fig. 4(c),
once theConvoperator completes processing a sliced featureX i as described in Eq. (1) and its
outputs are sent to the next operatorNorm, the subsequent sliced featureX i +1 is immediately piped
into the sameConvoperator, reusing the reserved memory ofX i . In this way, multiple operators are
executed simultaneously with improved parallelism. No additional memory is required, as we only
make use of previously reserved memory.

Acceleration performance.With the naivefor-loop implementation, only one operator in an operator
group is executed at a time. However, our pipeline method can simultaneously execute multiple
operators (such asConv, Norm, andActivation as depicted in Fig. 4 (c)) without incurring additional
memory. Consequently, the inference speed can be further improved. Accordingly, integrating the
pipeline within Operator Grouping can mitigate 10% speed degradation caused by feature slicing.

4.3 Step Rehash

In this section, we further introduce our step rehash method to optimize the iterative denoising steps
for effective acceleration in video diffusion generation. Capitalized on the high similarity between
adjacent steps, our approach accelerates the video generation, while ensuring both high quality and
temporal consistency across video frames, without extra memory cost. Next we �rst discuss our
observations for the high feature similarity and then explain details of our step rehash.

4.3.1 Similarity of Temporal Features between Steps

Similarity visualization. The denoising process of U-Net in diffusion models requires multiple
steps and the features of different steps may share certain similarities with minor differences [26].
To explore this, we analyze the feature maps averaged over multiple images at different parts of the
model and plot the similarity between features of different steps, with an example shown in Fig. 5
(and more results and details demonstrated in Appendix C). We �nd two key insights below:

6

• The similarity between adjacent steps signi�cantly depends on certain blocks and layers,
and it may change sharply after speci�c operations in video diffusion. The features do not
always show high similarity. For example, neither deeper layers within the same block nor
those in middle blocks consistently show higher similarity between adjacent steps.

• The features between adjacent steps following the temporal layers and spatial layers in video
diffusion usually exhibit remarkably higher similarity compared to outputs of other layers.

(a) SVD (b) AnimateDiff

Figure 5: The high similarity of output features after
temporal layers inU3 between each timestep.

High similarity after temporal layers. Ex-
isting video diffusion models typically em-
ploy pretrained image diffusion models as
their backbone. While these image mod-
els are trained to produce a variety of im-
ages, the addition of temporal layers is de-
signed to improve the temporal continuity
of latent features. This enhancement signif-
icantly strengthens their correlation, thereby
increasing similarity among the features.

Motivation and challenges for step rehash.
Due to the high similarity between features of different steps, we propose the step rehash method to
skip the computation of certain features by reusing previous generated features. However, we need to
address the challenges of when and where to skip. Speci�cally, based on the above insights, simply
reusing features from deeper layers does not guarantee better results since deeper layers may not
show high similarity. We need to carefully choose what layers or blocks can be skipped(where to
skip) to make use of high similarities without signi�cantly downgrading the generation performance.
As shown in �g. 5, it exhibits high similarity between adjacent time steps, but the similarity pattern
differs between video diffusion models. Thus, we need to determine which steps can use skip strategy
(when to skip), and the remaining steps that require full computation arefull computation steps.

4.3.2 Step Rehash

Figure 6: Illustration of Step Rehash.
Computation in grey areas are skipped.

Here we specify the details of our step rehash. The video
diffusion models typically use a U-Net architecture with 4
down-sampling and 4 up-sampling blocks, and their output
features can be represented byD s

0� 3 andUs
0� 3, respectively,

with s denoting the current step number as shown in Fig. 6.
Typically, Us

b is obtained by feedingD s
b andUs

b� 1 into the
bth (b > 0) up-sampling block, andUs

3 is the �nal output
of the sth step. Based on similarity analysis, in the next
steps + 1 , we can directly reuse the output features of the
temporal layer from the previous steps without actual exact
computations. Our insights into the similarity indicate that
deeper and middle blocks do not consistently demonstrate
high similarity. Reusing their features results in signi�cant degradation of generation quality. There-
fore, we rehash features of the temporal layer in the �nal up-sampling block. Speci�cally, to obtain
Us+1

3 for steps + 1 , we feed the output features of the temporal layer fromUs
3 (currentfull compu-

tation step) into the �nal up-sampling block. Note that we only compute part ofUs+1
3 and do not

need to computeD s+1
3 for concatenation, since our reused temporal layer is deeper than theconcat

operator for features fromD s+1
3 , as shown in Fig. 6. We further propose a step search algorithm to

solve thewhen to skipproblem, algorithm details can be found in Appendix B.

5 Experimental results

5.1 Models, Datasets and Evaluation Metrics

We conduct the experiments on representative video diffusion models, including SVD [3], SVD-XT
[3], and AnimateDiff [11]. For evaluation, we use the following evaluation protocols: The �rst
frame of the video clips are extracted as the image condition for image-to-video generation and their
captions are considered as the prompts. All experiments are conducted on a NVIDIA A100 GPU.

7

Table 1: Comparison of our Streamlined Inference with baseline methods in video visual quality (on
UCF101), PM (Peak Memory), and latency (measured with 50 runs with the average value).

Model Method FVD# CLIP-Score"
512� 512 576� 1024

PM Latency PM Latency

SVD
#F=14

Original 307.7 29.25 20.91G 10.23s 39.49G 23.29s
Naïve Slicing 1127.5 26.32 8.12G 31.85s 10.72G 65.56s

Ours 340.6 28.98 13.67G 7.36s 23.42G 14.24s

SVD-XT
#F=25

Original 387.9 28.18 31.97G 17.05s 61.17G 40.77s
Naïve Slicing 2180.0 24.42 8.12G 59.86s 10.72G 121.82s

Ours 424.7 27.94 19.37G 12.10s 36.32G 25.47s

AnimateDiff
#F=16

Original 758.7 28.89 21.83G 9.65s 41.71G 24.38s
Naïve Slicing 2403.9 26.63 7.22G 19.98s 9.92G 38.69s

Ours 784.5 28.71 7.51G 7.08s 11.07G 15.15s

Zero-shot UCF-101 [33]: We sample clips from each categories of UCF-101 dataset, and gather a
subset with 1,000 video clips for evaluation. Their action categories are considered as their captions.
For SVD and SVD-XT, our samples are generated at a resolution of576� 1024(14 frames for SVD
and 25 frames for SVD-XT) and then resize to240� 320. For AnimateDiff, we generate samples
with resolution512� 512(16 frames).

Zero-shot MSR-VTT [41]: We generated a video sample for each of the 9,940 development prompts.
The samples are at resolution320� 576 then resized to240� 426 for all models with different
number of generated frames.

Metrics: We compute the FVD as outlined in [9] and CLIP-Score [14] using TorchMetrics [1] to
measure the performance of generated samples.

Baseline:We use pretained weight for SVD (I2V) and AnimateDiff (T2V). We compare the pro-
posed Streamlined Inference (use 13full computation steps) with the original inference (use 25
full computation steps) and naïve slicing inference as mentioned in Sec.3. More speci�cally, for
image-conditioned SVD model, we set each naïve slice with a frame size of 2 and use the last frames
of each generated slice as the image condition for the next slice. For AnimateDiff, we evenly generate
4 slices with a frame size of 4, then combine them into a full video clip.

5.2 Quantitative Evaluation

The results from Table 1 demonstrate the effectiveness of our proposed method in managing memory,
computational resources, and performance. Our method signi�cantly reduced peak memory and
latency while maintaining competitive FVD and CLIP-Score values across all three models and
resolutions compared to the original method. For SVD, our method achieved a notable reduction in
peak memory and latency while maintaining competitive FVD and CLIP-Score, unlike Naïve Slicing,
which increased FVD and latency. For SVD-XT, our method improved over Naïve Slicing and
balanced resource usage and performance. For AnimateDiff, our method signi�cantly outperformed
Naïve Slicing in FVD and latency, achieving nearly the same performance as the original method but
with smaller latency and around a 70% reduction in peak memory.

5.3 Ablation Study

Our ablation study in Table 2 demonstrates that our Step Rehash method consistently outperforms
DeepCache with the same number offull computation steps. Step Rehash skips more computa-
tions than DeepCache. For the SVD model, our method maintains competitive CLIP-Scores while
slightly increasing FVD compared to the original method (FVD of 307.7 and CLIP-Score of 29.25
on UCF101). DeepCache performs poorly, increasing FVD and reducing video quality. For the
AnimateDiff model, our method maintains stable FVD (603.9 vs. 607.13) and CLIP-Score (29.29 vs.
29.40) on MSR-VTT compared to the original method. DeepCache shows the worst performance
on UCF101, with higher FVD and lower CLIP-Scores. Visual comparisons of our method with
DeepCache are provided in Appendix D.

8

Table 2: Ablation study of our proposed method compared with DeepCache in video visual quality.
Both our Step Rehash and DeepCache involve 13full computation steps.

Model Method
UCF101 MSR-VTT

FVD# CLIP-Score" FVD# CLIP-Score"

SVD
Original 307.7 29.25 373.6 26.06

DeepCache 394.0 28.57 463.6 25.30
Step Rehash 340.6 28.98 402.1 25.86

AnimateDiff
Original 758.7 28.89 607.1 29.40

DeepCache 840.2 28.15 615.8 29.06
Step Rehash 784.5 28.71 603.9 29.29

Figure 7: Quality evaluation of using our method on baseline models. The results show that our
method can be generally applied to various video diffusion models and achieve competitive results.

5.4 Quality results

In Fig. 7 and Appendix E, we present qualitative results comparing our method to the original model
without using Streamlined Inference.We can see that our method produces vivid and high-quality
samples aligned with the text descriptions. More importantly, these results demonstrate that our
method can signi�cantly reduce peak memory and computation without sacri�cing quality.

6 Conclusion and Limitation

In this paper, we propose a novel training-free framework that signi�cantly reduces peak memory and
computation costs for video diffusion model inference by leveraging its spatial and temporal charac-
teristics. Our approach can be seamlessly integrated into existing models. Extensive experiments on

9

SVD, SVD-XT, and AnimateDiff demonstrate our method's effectiveness in reducing peak memory
and accelerating inference without sacri�cing quality. Our approach offers a new perspective for fast,
memory-ef�cient video diffusion, enabling the generation of higher quality and longer videos on
consumer-grade GPUs. Though our method is general, the ef�ciency is limited by baseline model
architecture design.

Acknowledgments and Disclosure of Funding

This work is supported by National Science Foundation CNS-2312158. We would like to express our
sincere gratitude to the reviewers for their invaluable feedback and constructive comments to improve
the paper.

References

[1] Torchmetrics, https://lightning.ai/docs/torchmetrics/stable/multimodal/
clip_score.html ,.

[2] Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the
optimal reverse variance in diffusion probabilistic models.arXiv preprint arXiv:2201.06503,
2022.

[3] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Do-
minik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion:
Scaling latent video diffusion models to large datasets.arXiv preprint arXiv:2311.15127, 2023.

[4] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja
Fidler, and Karsten Kreis. Align your latents: High-resolution video synthesis with latent
diffusion models. InProceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 22563–22575, 2023.

[5] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Genie: Higher-order denoising diffusion
solvers.Advances in Neural Information Processing Systems, 35:30150–30166, 2022.

[6] Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. In
Advances in Neural Information Processing Systems, 2023.

[7] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. InInternational Conference on Machine Learning, pages 10323–10337. PMLR,
2023.

[8] Elias Frantar, Saleh Ashkboos, Torsten Hoe�er, and Dan Alistarh. Gptq: Accurate post-training
compression for generative pretrained transformers.arXiv preprint arXiv:2210.17323, 1, 2022.

[9] Songwei Ge, Aniruddha Mahapatra, Gaurav Parmar, Jun-Yan Zhu, and Jia-Bin Huang. On
the content bias in fréchet video distance. InProceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2024.

[10] Yifan Gong, Zheng Zhan, Qing Jin, Yanyu Li, Yerlan Idelbayev, Xian Liu, Andrey Zharkov,
K�r Aberman, Sergey Tulyakov, Yanzhi Wang, et al. E2gan: Ef�cient training of ef�cient gans
for image-to-image translation.arXiv preprint arXiv:2401.06127, 2024.

[11] Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, and Bo Dai. Ani-
matediff: Animate your personalized text-to-image diffusion models without speci�c tuning.
arXiv preprint arXiv:2307.04725, 2023.

[12] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median
for deep convolutional neural networks acceleration. InProceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[13] Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and Qifeng Chen. Latent video diffusion
models for high-�delity long video generation.arXiv preprint arXiv:2211.13221, 2022.

10

[14] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. InProceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pages 7514–7528, 2021.

[15] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko,
Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High
de�nition video generation with diffusion models.arXiv preprint arXiv:2210.02303, 2022.

[16] Jonathan Ho and Tim Salimans. Classi�er-free diffusion guidance. InNeurIPS 2021 Workshop
on Deep Generative Models and Downstream Applications, 2021.

[17] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and
David J Fleet. Video diffusion models.Advances in Neural Information Processing Systems,
35:8633–8646, 2022.

[18] Minguk Kang, Richard Zhang, Connelly Barnes, Sylvain Paris, Suha Kwak, Jaesik Park, Eli
Shechtman, Jun-Yan Zhu, and Taesung Park. Distilling diffusion models into conditional gans.
arXiv preprint arXiv:2405.05967, 2024.

[19] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space
of diffusion-based generative models.Advances in Neural Information Processing Systems,
35:26565–26577, 2022.

[20] Pika Labs. Pika labs ai text to video generator, 2023.

[21] Muyang Li, Ji Lin, Chenlin Meng, Stefano Ermon, Song Han, and Jun-Yan Zhu. Ef�-
cient spatially sparse inference for conditional gans and diffusion models.arXiv preprint
arXiv:2211.02048, 2022.

[22] Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang,
and Kurt Keutzer. Q-diffusion: Quantizing diffusion models. InProceedings of the IEEE/CVF
International Conference on Computer Vision, pages 17535–17545, 2023.

[23] Yanyu Li, Pu Zhao, Geng Yuan, Xue Lin, Yanzhi Wang, and Xin Chen. Pruning-as-search:
Ef�cient neural architecture search via channel pruning and structural reparameterization.arXiv
preprint arXiv:2206.01198, 2022.

[24] Jiawei Liu, Weining Wang, Wei Liu, Qian He, and Jing Liu. Ed-t2v: An ef�cient training
framework for diffusion-based text-to-video generation. In2023 International Joint Conference
on Neural Networks (IJCNN), pages 1–8, 2023.

[25] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver:
A fast ode solver for diffusion probabilistic model sampling in around 10 steps.Advances in
Neural Information Processing Systems, 35:5775–5787, 2022.

[26] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for
free. InThe IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

[27] Chenlin Meng, Ruiqi Gao, Diederik P Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans.
On distillation of guided diffusion models.arXiv preprint arXiv:2210.03142, 2022.

[28] OpenAI. Creating video from text, 2024.

[29] Runway Research. Gen-2: The next step forward for generative ai, 2023.

[30] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. InProceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[31] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
arXiv preprint arXiv:2202.00512, 2022.

[32] Xuan Shen, Zhenglun Kong, Changdi Yang, Zhaoyang Han, Lei Lu, Peiyan Dong, et al. Edgeqat:
Entropy and distribution guided quantization-aware training for the acceleration of lightweight
llms on the edge.arXiv preprint arXiv:2402.10787, 2024.

11

[33] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human
actions classes from videos in the wild.arXiv preprint arXiv:1212.0402, 2012.

[34] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning
approach for large language models.arXiv preprint arXiv:2306.11695, 2023.

[35] Haotao Wang, Shupeng Gui, Haichuan Yang, Ji Liu, and Zhangyang Wang. Gan slimming:
All-in-one gan compression by a uni�ed optimization framework. InComputer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16,
pages 54–73. Springer, 2020.

[36] Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang.
Modelscope text-to-video technical report.arXiv preprint arXiv:2308.06571, 2023.

[37] Peiqi Wang, Dongsheng Wang, Yu Ji, Xinfeng Xie, Haoxuan Song, XuXin Liu, Yongqiang
Lyu, and Yuan Xie. Qgan: Quantized generative adversarial networks.arXiv preprint
arXiv:1901.08263, 2019.

[38] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity
in deep neural networks. InAdvances in neural information processing systems (NeurIPS),
pages 2074–2082, 2016.

[39] Yushu Wu, Yifan Gong, Pu Zhao, Yanyu Li, Zheng Zhan, Wei Niu, Hao Tang, Minghai Qin,
Bin Ren, and Yanzhi Wang. Compiler-aware neural architecture search for on-mobile real-time
super-resolution. InEuropean Conference on Computer Vision, pages 92–111. Springer, 2022.

[40] Zhen Xing, Qi Dai, Han Hu, Zuxuan Wu, and Yu-Gang Jiang. Simda: Simple diffusion adapter
for ef�cient video generation.arXiv preprint arXiv:2308.09710, 2023.

[41] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description dataset for
bridging video and language. In2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5288–5296, 2016.

[42] Changdi Yang, Pu Zhao, Yanyu Li, Wei Niu, Jiexiong Guan, Hao Tang, Minghai Qin, Bin Ren,
Xue Lin, and Yanzhi Wang. Pruning parameterization with bi-level optimization for ef�cient
semantic segmentation on the edge. InProceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15402–15412, 2023.

[43] Zheng Zhan, Yifan Gong, Pu Zhao, Geng Yuan, Wei Niu, Yushu Wu, Tianyun Zhang, Malith
Jayaweera, David Kaeli, Bin Ren, et al. Achieving on-mobile real-time super-resolution
with neural architecture and pruning search. InProceedings of the IEEE/CVF international
conference on computer vision, pages 4821–4831, 2021.

[44] Zheng Zhan, Zhenglun Kong, Yifan Gong, Yushu Wu, Zichong Meng, Hangyu Zheng, Xuan
Shen, Stratis Ioannidis, Wei Niu, Pu Zhao, and Yanzhi Wang. Exploring token pruning in vision
state space models.arXiv preprint arXiv:2409.18962, 2024.

[45] David Junhao Zhang, Jay Zhangjie Wu, Jia-Wei Liu, Rui Zhao, Lingmin Ran, Yuchao Gu,
Difei Gao, and Mike Zheng Shou. Show-1: Marrying pixel and latent diffusion models for
text-to-video generation.arXiv preprint arXiv:2309.15818, 2023.

[46] Shiwei Zhang, Jiayu Wang, Yingya Zhang, Kang Zhao, Hangjie Yuan, Zhiwu Qin, Xiang Wang,
Deli Zhao, and Jingren Zhou. I2vgen-xl: High-quality image-to-video synthesis via cascaded
diffusion models.arXiv preprint arXiv:2311.04145, 2023.

[47] Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tianlong Chen, Mingyi Hong, Yanzhi
Wang, and Sijia Liu. Advancing model pruning via bi-level optimization.Advances in Neural
Information Processing Systems, 35:18309–18326, 2022.

[48] Pu Zhao, Fei Sun, Xuan Shen, Pinrui Yu, Zhenglun Kong, Yanzhi Wang, and Xue Lin. Pruning
foundation models for high accuracy without retraining.arXiv preprint arXiv:2410.15567,
2024.

[49] Daquan Zhou, Weimin Wang, Hanshu Yan, Weiwei Lv, Yizhe Zhu, and Jiashi Feng. Magicvideo:
Ef�cient video generation with latent diffusion models.arXiv preprint arXiv:2211.11018, 2022.

12

Appendix

A Memory Snapshot during inference

(a) w/o our method (b) w/ our method

Figure A1: GPU memory snapshot of active cached segment timeline for Stable Video Diffusion with
14 frames512� 512
We provide memory snapshots under different con�gurations during inference, demonstrating the
effectiveness of memory reduction. An example is shown in Fig.A1. This example shows the memory
reduction of our method on SVD with512� 512resolution. The snapshot is collected following the
tutorial2.

B Key Step Search for Step Rehash

Example of Step Rehash.For steps + 1 , we only conduct part of the computations in the �nal
up-sampling block, skipping most of the computations in the U-net. Similarly, we can skip multiple
steps. For example, if we skip both steps + 1 ands + 2 , to obtain the outputUs+2

3 for steps + 2 ,
we feed the output featuresUs+1

3 into the �nal up-sampling block of steps + 2 , whereUs+1
3 is also

obtained fromUs
3 following the above reusing and skipping method.

Similarity patterns. The feature similarity between different steps exhibits certain patterns. As
shown in Fig. 5a, at initial steps, the similarity is high (above 97%) across multiple steps such as
from step 0 to step 13. In the middle steps, the high similarity only appears within a small step range.
For example, the similarity between step 17 and step 19 is lower than 93%. In the �nal steps, the
high similarity appears in a slightly larger step range, such as from step 20 to step 22, with above
93% similarity. Algorithm 1 Key step search in step re-

hash
Require: The similarity mapS, the sim-

ilarity threshold , the maxi-
mum step numberK

Ensure: The set of key stepsG
i 0, j 0, G fg , G Gki
while i < K do

if Sij � then
i i + 1

else
G Gki
j i

G GkK � 1
return G

We address the where-to-skip problem with a �xed strategy
to skip the computations from the speci�c blocks. Next,
we address the when skip problem to choose what steps
can be skipped based on the similarity map. Given the
similarity map as shown in Fig. 5a, the similarity value
between stepi andj can be represented bySij as shown
in the similarity map. We develop a search method to �nd
the key steps with feature rehash and skip the other steps.

The algorithm is shown in Algorithm 1. We use a thresh-
old to select the key steps. If the similarity of multiple
consecutive steps is above the threshold, we only select
the start and end steps as key steps, and the middle steps
can be skipped. Typically, a larger threshold leads to more
key steps with high generation performance close to the
original one, and a smaller threshold leads to skipping more steps and, thus, computations with faster
generation.

2https://pytorch.org/blog/understanding-gpu-memory-1/

13

(a)up_blocks.0.resnets.0 (b) up_blocks.0.resnets.1 (c) up_blocks.0.resnets.2

Figure A2: Similarity maps of different temporal layers inup_blocks.0.resnets .

We provide sample PyTorch snippets for operation grouping and Step Rehash. The sample code
effectively reduces the peak memory and accelerates the inference speed. However, the pipeline is
not released because it requires speci�c compilation support.

C Similarity map of middle layers

We illustrate the similarity map of several layers closer to themid-blockof the UNet, showing that
the similarity of these layers is relatively low compared to the results in Fig. 5.

D Visual comparison with DeepCache

We provide visual comparison of our method with DeepCache in here. As we can see, our method
produces more vivid and detailed sample than DeepCache.

Figure A3: Visual comparison of our method with DeepCache.

14

E More quality results

Figure A4: Quality evaluation of using our method on baseline models.

15

	Introduction
	Related Work
	Motivation
	Streamlined Inference Framework
	Feature Slicer
	Operator Grouping
	Grouping Operators for Peak Memory Reduction
	Pipelining with Improved Parallelism and Practical Acceleration.

	Step Rehash
	Similarity of Temporal Features between Steps
	Step Rehash

	Experimental results
	Models, Datasets and Evaluation Metrics
	Quantitative Evaluation
	Ablation Study
	Quality results

	Conclusion and Limitation
	Memory Snapshot during inference
	Key Step Search for Step Rehash
	Similarity map of middle layers
	Visual comparison with DeepCache
	More quality results

