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Figure 1: Invertible Consistency Distillation (iCD) enables both fast image editing and strong
generation performance in a few model evaluations.

Abstract

Diffusion distillation represents a highly promising direction for achieving faith-
ful text-to-image generation in a few sampling steps. However, despite recent
successes, existing distilled models still do not provide the full spectrum of dif-
fusion abilities, such as real image inversion, which enables many precise image
manipulation methods. This work aims to enrich distilled text-to-image diffusion
models with the ability to effectively encode real images into their latent space.
To this end, we introduce invertible Consistency Distillation (iCD), a generalized
consistency distillation framework that facilitates both high-quality image synthesis
and accurate image encoding in only 3−4 inference steps. Though the inversion
problem for text-to-image diffusion models gets exacerbated by high classifier-free
guidance scales, we notice that dynamic guidance significantly reduces recon-
struction errors without noticeable degradation in generation performance. As a
result, we demonstrate that iCD equipped with dynamic guidance may serve as a
highly effective tool for zero-shot text-guided image editing, competing with more
expensive state-of-the-art alternatives.
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1 Introduction

Recently, text-to-image diffusion models [1, 2, 3, 4, 5, 6] have become a dominant paradigm in image
generation based on user-provided textual prompts. The exceptional quality of these models makes
them a valuable tool for graphics editors, especially for various image manipulation tasks [7, 8, 9].
In practice, however, the applicability of diffusion models is often hindered by their slow inference,
which stems from a sequential sampling procedure, gradually recovering images from pure noise.

To speed-up the inference, many recent works aim to reduce the number of diffusion steps via
diffusion distillation [10, 11, 12, 13, 14, 15, 16, 17] that has provided signi�cant progress in high-
quality generation in1� 4 steps and has already been successfully scaled to the state-of-the-art text-
to-image diffusion models [18, 19, 20, 21, 22, 23, 24]. Though the existing distillation approaches
still often trade either mode coverage or image quality for few-step inference, the proposed models
can already be feasible for practical applications, such as text-driven image editing [25, 26, 27].

The most effective diffusion-based editing methods typically require encoding real images into the
latent space of a diffusion model. For “undistilled” models, this encoding is possible by virtue
of the connection of diffusion modeling [28] with denoising score matching [29] through SDE
and probability �ow ODE (PF ODE) [30]. The ODE perspective of diffusion models reveals their
reversibility, i.e., the ability to encode a real image into the model latent space and closely reconstruct
it with minimal changes. This ability is successfully exploited in various applications, such as
text-driven image editing [31, 32, 33], domain translation [34, 9], style transfer [35].

Nevertheless, it remains unclear if distilled models can be enriched with such reversibility since
existing diffusion distillation methods primarily focus on achieving ef�cient generation. This work
positively answers this question by proposinginvertible Consistency Distillation(iCD), a generalized
consistency modeling framework [10, 12, 13] enabling both high-quality image generation and
accurate inversion in a few sampling steps.

In practice, text-to-image models leverage classi�er-free guidance (CFG) [36], which is crucial
for high-�delity text-to-image generation [1, 3] and text-guided editing [32, 33]. However, the
guided diffusion processes yield signi�cant challenges for inversion-based editing methods [32].
Previous approaches [32, 37, 38, 39, 40, 41, 42, 27, 25, 26, 43, 44] have extensively addressed
these challenges but often necessitate high computational budget to achieve both strong image
manipulations and faithful content preservation. While some of these techniques are applicable to
the distilled models [25, 26, 27], they still dilute the primary advantage of distilled diffusion models:
ef�cient inference.

One of the main ingredients of the iCD framework is how it operates with guided diffusion processes.
Recently, dynamic guidance has been proposed to improve distribution diversity without noticeable
loss in image quality [45, 46]. The key idea is to deactivate CFG for high diffusion noise levels
to stimulate exploration at earlier sampling steps. In this work, we notice that dynamic CFG can
facilitate image inversion while preserving the editability of the text-to-image diffusion models.
Notably, dynamic CFG yields no computational overhead, entirely leveraging the ef�ciency gains
from diffusion distillation. In our experiments, we demonstrate that invertible distilled models
equipped with dynamic guidance are a highly effective inversion-based image editing tool.

To sum up, our contributions can be formulated as follows:

• We propose a generalized consistency distillation framework, invertible Consistency Dis-
tillation (iCD), enabling both high-�delity text-to-image generation and accurate image
encoding in around3� 4 sampling steps.

• We investigate dynamic classi�er-free guidance in the context of image inversion and text-
guided editing. We demonstrate that it preserves editability of the text-to-image diffusion
models while signi�cantly increasing the inversion quality for free.

• We apply iCD to large-scale text-to-image models such Stable Diffusion 1.5 [4] and XL [1]
and extensively evaluate them for image editing problems. According to automated and
human studies, we con�rm that iCD unlocks faithful text-guided image editing for6� 8
steps and is comparable to state-of-the-art text-driven image manipulation methods while
being multiple times faster.
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2 Background

Diffusion probabilistic models DPMs [29, 28, 47] are a class of generative models producing
samples from a simple, typically standard normal, distribution by solving the underlying Probability
Flow ODE [30, 48], involving iterativescore functionestimation. DPMs are trained to approximate
the score function and employ dedicated diffusion ODE solvers [49, 50, 48] for sampling. DDIM [49]
is a simple yet effective solver, widely used in text-to-image models and operating in around50steps.
A single DDIM step fromx t to x s can be formulated as follows:

x w
s = DDIM(x t ; t; s; c; w) =
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where� s, � t are de�ned according to the diffusion schedule [47], and� w
� (x t ; t; c) = � � (x t ; t; � ) +

w(� � (x t ; t; c) � � � (x t ; t; � )) is a linear combination of conditional and unconditional noise predic-
tions called as Classi�er-Free Guidance (CFG) [51], used to improve the image quality and context
alignment in conditional generation. In the following, we omit the conditionc for simplicity.

Due to reversibility, the PF ODE can be solved in both directions: encoding data into the noise space
and decoding it back without additional optimization procedures. We refer to this process asinver-
sion[32] where encoding and decoding correspond toforward andreverseprocesses, respectively.

Consistency Distillation CD [10, 12, 13] is the recent state-of-the-art diffusion distillation approach
for few-step image generation, which learns to integrate the PF ODE induced with a pretrained
diffusion model. In more detail, the modelf � is trained to satisfy the self-consistency property:
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wheretn 2 f t0; :::; tN g is a discrete time step,d(�; �) denotes a distance function andx w
t n � 1

is
obtained with a single step of the DDIM solver fromtn to tn � 1 using the teacher diffusion model.
The optimum of (2) is de�ned by the boundary condition,f � (x t 0 ; t0) = x t 0 . Therefore, consistency
models (CMs) learn the transition from any trajectory point to the starting one:f � (x t n ; tn ) =
x t 0 ; 8 tn 2 f t0; :::; tN g. Consequently, CMs imply a single step generation. However, approximating
the entire trajectory using only one step remains highly challenging, leading to unsatisfactory results
in practice. To address this, [10] proposes stochasticmultistep consistency samplingthat iteratively
predictsx t 0 usingf � and goes back to the intermediate points using the forward diffusion process.

The competitive performance of consistency models has stimulated their rapid adoption for text-to-
image generation [52, 18, 53]. Nevertheless, we believe that CMs have not yet fully realized their
potential in downstream applications, where DPMs excel. One of the reasons is that, unlike DPMs,
CMs do not support the inversion process. This work aims to unlock this ability for CMs.

Figure 2: Dynamic CFG strategies.

Dynamic guidance State-of-the-art text-to-
image models employ large CFG scales to
achieve high image quality and textual align-
ment. However, it often leads to the reduced
diversity of generated images. To address this,
dynamic classi�er-free guidance[45, 46, 54] has
recently been proposed to improve distribution
diversity without noticeable loss in generative
performance. CADS [45] gradually increases
the guidance scale from zero to the initial high
value over the sampling process, Figure 2a. Al-
ternatively, [46] proposes deactivating the guid-
ance for low and high noise levels and using it
only on the middle time step interval, Figure 2b. Both strategies suggest that the unguided process
at high noise levels is responsible for better distribution diversity without compromising sampling
quality. In addition, the authors [46] demonstrate that guidance at low noise levels has a minor effect
on the performance and can be omitted to avoid extra model evaluations for guidance calculation.
Both dynamic techniques are controlled by two hyperparameters:� 1 and� 2, which are responsible
for the value of dynamic CFGw(t). In our work, we focus on the CADS formulation.
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3 Method

Figure 3: The proposed invertible Consistency Dis-
tillation framework consists of two models: the
forward m-boundary model, fCDm , and the re-
verse model, CDm . (a) Form = 1 , the reverse
model corresponds to CD. More boundary points
unlock the deterministic multistep inversion, e.g.,
(b) shows the case form = 2 .

This section introduces the invertible Consis-
tency Distillation (iCD) framework, which com-
prises forward and reverse consistency models.
First, we formulate the forward CD procedure
that encodes images into latent noise. Then,
we describe multi-boundary generalization of
iCD to enable deterministic multistep inversion.
Finally, we investigate thedynamic guidance
technique from the inversion perspective.

3.1 Forward Consistency Distillation

Forward Consistency Distillation (fCD) works
in the opposite way to CD. That is, it aims to
map any point on the PF ODE trajectory to the
latent noise (the last trajectory point).

The transition from CD to the forward counter-
part is quite straightforward: the only thing that
should be modi�ed is the boundary condition.
Precisely, the forward consistency model is con-
strained to be an identity function for the last tra-
jectory point:f � (x t N ; tN ) = x t N . Thus, fCD
inherits the same consistency distillation loss (2)
without incurring extra training costs. This way,
the distilled model can transform any trajectory point to the last one:f � (x t n ; tn ) = x t N ; 8 tn .
To perform inversion, �rst, fCD encodes an image into noise and then CD decodes it back. The
comparison between CD and fCD is shown in Figure 3a.

3.2 Multi-boundary Consistency Distillation

In practice, the encoding with fCD faces two challenges. Firstly, like in CD, a single-step prediction
with fCD can be highly inaccurate. However, this cannot be easily addressed since the multistep
consistency sampling [10] is not applicable to fCD. Concretely, intermediate points cannot be obtained
from the latent noise using the forward diffusion process. Secondly, even if fCD is accurate, the
multistep sampling is not suitable for decoding, as its stochastic nature prevents the reconstruction of
real images. So, to improve the prediction accuracy of fCD and reduce the reconstruction error of
CD, it is necessary to formulate a deterministic multistep procedure for both models.

Recent approaches [53, 13] generalize the CD framework to a multistep regime and allow approxi-
mating arbitrary trajectory intervals in the reverse direction. However, these methods focus solely on
the generation quality, without supporting the inversion. Thus, inspired by these works, we propose
a multi-boundary CD, that unlocks deterministic multistep inversion with the distilled models and
carries similar training costs as the classical CD methods.

Speci�cally, we divide the solution interval,f t0; :::; tN g, into m segments and perform the distillation
on each of these segments separately. This way, we obtain a set of single-step consistency models
operating on different intervals and boundary points. This formulation is valid for both CD and fCD
and hence can enable deterministic multistep inversion. We provide an illustration of2-boundary CD
and fCD in Figure 3b. We denote the multi-boundary reverse and forward models as CDm and fCDm .

Formally, we consider CDm and fCDm using the following parametrization, inspired by [53, 13].
x sm

t
= f m

� (x t ; t; sm
t ; w) = DDIM(x t ; t; sm

t ; w); (3)
wheresm

t is the boundary time step depending on the number of boundaries,m, and the current time
stept. For instance, letm = 1 , thens1

t = t0 for CD1 ands1
t = tN for fCD1. Note that we learn

a single model, the multistep sampling is achieved by varyingsm
t during inference. The training

objective remains the same as (2), avoiding additional training costs compared to CD. The only
limitation is that the number of segments and the corresponding boundary time steps must be set
before the training.
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3.3 Training fCDm and CDm

We train fCDm and CDm separately, initializing both with the same teacher model. We use the same
loss with a difference only in boundary time steps. However, a notable difference is the CFG scale,w.
For CDm , we preliminarily embed the model on guidance, following [20], to use variousw during
sampling and avoid extra model evaluations. For fCDm , we consider an unguided model with a
constantw = 1 . The reason is that the guided encoding (w > 1) leads to out-of-distribution latent
noise [32], and as a result, to poor image reconstruction. We con�rm this intuition in Section 3.4.
Finally, we �nd thatm=3 � 4 provides competitive generation and inversion quality for large-scale
text-to-image models [4, 1].

Preservation lossesThe procedure described above already provides decent inversion quality but
still does not match the teacher inversion performance. To reduce the gap between them, we propose
the forward and reverse preservation losses aimed at making CDm and fCDm more consistent with
each other and improve the inversion accuracy. These losses can additionally be turned on during
training. Below, we denote the parameters of CDm , fCDm as� + ; � � , respectively.

The forward preservation loss modi�es only fCDm and is described as follows:

L f(�
� ; � + ) = E

�
d

�
f m

� � (f m
� + (x sm

t
)) ; x sm

t

��
! min

� �
; (4)

For simplicity, we omit some notation. In a nutshell, we sample a noisy imagex sm
t

for a boundary
time stepsm

t , then make a prediction using CDm and force fCDm to predict the samex sm
t

. This
approach encourages CDm and fCDm to be consistent with each other.

The reverse preservation loss provides the same intuition but with a difference in the optimized model
(CDm instead of fCDm ) and prediction sequence. That is, we �rst make a prediction using fCDm

and then use CDm . We denote it asL r(�
� ; � + ). In our experiments, we calculate the preservation

losses only for the unguided reverse process (w = 1 ).

Putting it all together We present our �nal pipeline for the case where fCDm and CDm are trained
jointly starting from the pretrained diffusion model. However, it is possible to learn them by one or
take an already pretrained consistency model and learn the rest one. The �nal objective consists of
two consistency losses with the proposed multi-boundary modi�cation and two preservation losses:

L iCD(� + ; � � ) = L CD(� + ) + L CD(� � ) + � fL f(�
� ; � + ) + � rL r(�

+ ; � � ) (5)

In this way, the proposed approach can compete with the state-of-the-art inversion methods using
heavyweight diffusion models. We present technical details about the training in Appendix A.

3.4 Dynamic Classi�er-Free Guidance Facilitates Inversion

As previously discussed, dynamic guidance [45, 46] provides promising results for both faithful
and diverse text-to-image generation. In this work, we reveal that dynamic CFG is also an effective
technique for improving inversion accuracy as shown in Figure 4b. Below, we delve into the questions
when and why dynamic guidance might facilitate image inversion while preserving the generative
performance. To answer these questions, we conduct experiments using Stable Diffusion 1.5 with
DDIM solver for50steps and maximum CFG scale set to8:0.

Dynamic guidance for decodingWe start with the dynamic CFG analysis at the decoding stage
using the unguided encoding process following the prior work [32]. First, we wonder at which time
steps the guidance has the most signi�cant impact on reconstruction quality. To this end, we evaluate
MSE between real and reconstructed images for different CFG turn-on thresholdsT . If t > T , we
setw = 1 :0, otherwise, the CFG scale is set to its initial value8:0. In Figure 4a, we observe an
exponential decrease in reconstruction error, implying that the absence of CFG at higher noise levels
is essential for achieving more accurate inversion. Figure 4b con�rms this intuition qualitatively.
These results are consistent with [45, 46], which also suggest turning off the guidance at high noise
levels but motivating this from the perspective of diversity improvement.

Then, we investigate the in�uence of various� 1; � 2 from the CADS dynamic (Figure 2a) on the
inversion and generation performance. We aim to identify an operating point providing both strong
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(a) (b)

Figure 4: (a) Reconstruction error of the decoding process for different CFG turn-on thresholds.
(b) Image inversion examples for different CFG turn-on thresholdsT . Guidance at high noise levels
(T = 1 :0) drastically degrades the inversion quality.

(a) (b)

Figure 5: (a) Trade-off between generation performance (IR) and reconstruction quality (MSE) pro-
vided by different� 1; � 2. (b) Generation examples for dynamic and constant CFG scales. The points
around� 1 = � 2 = 0 :8 provide preferable trade-off between generation and inversion performance.

Enc, No CFG Enc, d.CFG,� =0 :6 Enc, d.CFG,� =0 :8 Enc, CFG

Dec. No CFG 11:0 36:6 63:4 100:5
Dec. d.CFG� =0 :6 11:4 23:5 67:8 102:6
Dec. d.CFG� =0 :8 15:0 14:6 52:2 108:5
Dec. CFG 19:0 19:2 19:0 102:1

Latent NLL,# 1:401 1:409 1:415 1:428

Table 1: FID-5k for SD1.5 starting from the noise latents obtained using different encoding strategies,
and NLL for these latents. Though encoding with dynamic CFG produces consistently more plausible
latents than constant CFG, the unguided encoding remains preferable.

generation performance and faithful image inversion. Thus, we evaluate generation performance using
the ImageReward [55] (IR) on top of randomly generated samples for1000COCO2014 prompts [56].
The inversion accuracy is estimated in terms of MSE between original and reconstructed samples.
Figure 5a presents the results for varying� 1 and� 2. It can be seen that several points for� 1 � 0:7
offer slightly lower text-to-image performance but exhibit signi�cantly better reconstruction quality
compared to the constant CFG scale,8:0. Moreover, we notice that the settings where� 1 = � 2
perform similarly to those where� 1 < � 2. Consequently, in all our experiments, we consider a single
� representing the case where� 1 = � 2 and use� = 0 :7 and� = 0 :8. This means that CDm follows
unguided sampling fort > � and sets the initial CFG scale fort � � .

Note that the setting with� = � 1= � 2 corresponds to a step CFG functionw(t), which yields a distinct
advantage for distilled models. The linearly changing CFG scales are not applicable to the processes
with large discretization steps, typical for distilled diffusion models. Therefore, such a CFG schedule
needs to be distilled into the model during training, making it less �exible for different generation
and editing settings. In contrast, the step CFG function enables dynamic CFG for already pretrained
distilled models, operating with different constant CFG scales.
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Figure 6: Few examples of text-to-image generation using the iCD-XL model for 4 steps.

Dynamic guidance for encodingNext, we investigate the guidance role in tackling the encoding
problem. In Table 1, we compare noise latents encoded using various guidance strategies. The quality
of the noise latents is estimated by evaluating the generation performance starting from these latents
with a �xed CFG scale of8:0. As the performance measure, we calculate FID for5000image-text
pairs from COCO [56].

We observe that the latents obtained with a consistently high CFG scale exhibit the worst generative
performance, indicating their out-of-domain nature. While dynamic guidance produces signi�cantly
more plausible latents, it still falls short of the unguided encoding in most cases. To further validate
these results, we estimate the negative log-likelihood (NLL) of the encoded latents under different
CFG settings in Table 1 (Bottom). NLL is calculated with respect to the standard normal distribution.
While NLL decreases for dynamic CFG with lower� , the encoding without guidance (w=1 ) provides
the highest likelihood value. Therefore, in all our experiments, we maintainw=1 for the encoding
and train the forward distilled models (fCD) on the unguided teacher process.

4 Experiments

In the following experiments, we apply our approach to text-to-image diffusion models of different
scales: SD1.5 [57] and SDXL [1], and denote them iCD-SD1.5 and iCD-XL, respectively. We
provide the training details in Appendix A.

Initially, we illustrate the inversion capability of the proposed framework. Then, we consider the
text-guided image editing problem and demonstrate that our approach outperforms or is comparable
to signi�cantly more expensive baselines.

Before diving into the main experiments, we present a few generated samples using iCD-XL for 4
steps in Figure 6. Additional quantitative and qualitative results are provided in Appendix B. The
results con�rm that the distilled model demonstrates strong text-to-image generation performance.

4.1 Inversion quality of iCD

Here, we analyze the reconstruction capabilities of iCD-SD1.5 under various con�gurations. Speci�-
cally, we explore the contribution of the different pipeline components, such as the number of steps,
preservation losses, and dynamic CFG, to inversion performance. Our forward model is run without
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Con�guration LPIPS# DinoV2 " PSNR"

Unguided decoding setting

fDDIM 50 j DDIM50 0:167 0:834 22:98

A fCD2 j CD2 0:332 0:632 17:75
B fCD3 j CD3 0:317 0:649 18:42
C fCD4 j CD4 0:276 0:715 19:19

E � � �fCD4 + L f j CD4 0:484 0:554 16:40
F fCD4 + L f j CD4 0:248 0:728 20:01
G fCD4 + L f j CD4 + L r 0:198 0:837 22:27

Guided decoding setting, w = 8

fDDIM 50 j DDIM50 0:479 0:534 14:12
fDDIM 50 j DDIM50 + d.CFG 0:279 0:726 19:58

H fCD4 j CD4 0:476 0:550 13:87
I fCD4 j CD4 + d.CFG 0:370 0:650 16:72
J fCD4 + L f j CD4 + d.CFG 0:317 0:698 17:98
K fCD4 + L f j CD4 + L r + d.CFG 0:273 0:749 19:66

Table 2: Exploration of iCD-SD1.5 con�gurations
in terms of image inversion performance.

Figure 7: In�uence of the dynamic guidance and
preservation losses on image inversion with iCD.

CFG (w = 1 ), while for the reverse model, we consider two settings: unguided (w = 1 ) and guided
(w = 8 ), both of which are important in practice.

Con�guration To evaluate the inversion quality, we consider5K images and the corresponding
prompts from the MS-COCO dataset [56]. We measure the reconstruction quality using LPIPS [58],
PSNR and cosine distance in the DinoV2 [59] feature space. As for the reference, the teacher
inversion with a disabled CFG scale is considered. For the dynamic guidance, we use� = 0 :7. The
coef�cients for the preservation losses are equal to� f = 1 :5 and� r = 1 :5.

Results The results are presented in Table 2. First, con�gurations (A-C) evaluate the number of the
forward and inverse models inference steps. We observe that the reconstruction quality improves as
the number of steps increases. In our main experiments, we consider3 and4 steps.

Then, (E-G) examine the preservation losses. In (E), we learn the forward model in the encoder [60]
regime using the forward preservation loss only. This experiment reveals that the consistency loss
contributes signi�cantly to inversion performance. (F, G) show that both losses improve the inversion,
with the latter approaching the quality of the teacher model.

Finally, we explore the dynamic CFG and preservation losses under the guided decoding setting
(I -K) and compare them to the setting (H), which does not employ any boosting techniques. From
the con�gurations (I , J, K), we can see that all techniques provide signi�cant contribution to the
reconstruction quality. In Figure 7, we visualize their in�uence on inversion. It can be seen that
the dynamic CFG (I ) is rather responsible for global object preservation, while the preservation
losses (J,K) rather improve �ne-grained details. We note that the �nal con�guration (K) provides
comparable inversion quality to the unguided process while preserving the editing capabilities due to
the activated guidance. More visual examples of inversion and quantitative results are in Appendix C.

4.2 Text-guided image editing

In this section, we apply the proposed iCD to the text-guided image editing problem. For the
SD1.5 model, we use the Prompt-to-Prompt (P2P) method [61]. We vary two hyperparameters: the
cross-attention and self-attention steps balancing between editing strength and preservation of the
reference image. We also apply our approach to MasaCTRL [62] in Appendix D. For the SDXL
model, we follow the ReNoise [25] evaluation setting and just change the source prompt during
decoding according to [63].

Metrics We measure editing performance using both automatic metrics and human-study. The
former uses two metrics: 1) to estimate the preservation of the reference image, we calculate the
cosine distance between images in the DinoV2 feature space; 2) as an editing quality measure, we use
the CLIP score between the edited image and the target prompt. For human evaluation, we employ
professional assessors who successfully completed assessment tasks. We show them the source and
target prompts, reference image and two images produced with the methods under the comparison
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