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Abstract

Due to the heterogeneous architectures and class skew, the global representation
models training in resource-adaptive federated self-supervised learning face with
tricky challenges: deviated representation abilities and inconsistent representation
spaces. In this work, we are the first to propose a multi-teacher knowledge distil-
lation framework, namely FedMKD, to learn global representations with whole
class knowledge from heterogeneous clients even under extreme class skew. Firstly,
the adaptive knowledge integration mechanism is designed to learn better repre-
sentations from all heterogeneous models with deviated representation abilities.
Then the weighted combination of the self-supervised loss and the distillation
loss can support the global model to encode all classes from clients into a unified
space. Besides, the global knowledge anchored alignment module can make the
local representation spaces close to the global spaces, which further improves the
representation abilities of local ones. Finally, extensive experiments conducted
on two datasets demonstrate the effectiveness of FedMKD which outperforms
state-of-the-art baselines 4.78% under linear evaluation on average.

1 Introduction

The federated self-supervised learning (Fed-SSL) has emerged as a highly promising paradigm due
to the extremely limited labeled data in real-world scenarios [4, 25, 30]. The Fed-SSL mechanism
can learn common representations collaboratively across all the clients without labeled data [7, 8],
which could enable the aggregation of knowledge from diverse unlabeled data sources and overcome
the limitations caused by the high cost and scarcity of labeled data [24, 28, 31].

Traditional Fed-SSL methods usually assume that each client should train the identical architecture
model, such as FedU [33], FedEMA [34], FedCA [30]. But it would not be easy in resource-limited
scenarios, especially for the existing arsing large-scale models [1, 26]. As shown in Fig.1, client A,
client B and client C might train heterogeneous representation models due to the varying system
resources. In addition, real-world data often exhibits skewed class distributions across clients.
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Therefore, how to learn global class representations under the heterogeneous architectures and class
skew in resource-aware Fed-SSL paradigm is challenging, particularly comparing with existing
FedU2 [17], FedX[5] with identical architectures.

Although bothHetero-SSFL[20] andFedFoA[19] consider the heterogeneous client models, they
can not learn a global representation model. In order to aggregate the knowledge from the clients to
form global class representations, some tricky challenges arise. (1)Deviated representation abilities.
Even for the same data samples, the different models might encode them into different latent spaces
with deviated representation abilities. For example,client Aandclient Ball have images withdog,
cat, tiger, butclient model Acan encodecat, tigerwell into different clusters,client model Bcan only
learn better representations ofdog. Sohow could global representation models take advantage of the
best of both client models? (2)Inconsistent representation spaces.The skewed class distributions
across clients lead to inconsistent representation spaces. For example in Fig. 1, comparing with
client A, client Chas different kinds of images withdog, cat, airplane. Thushow to make global
representation models encode the whole classes from all the clients well in a uni�ed space? Therefore,
different from the existing works, our goal is to break the gaps caused by the hybrid heterogeneity,
which can learn the high-quality global representation model in federated self-supervised learning.

Figure 1: Illustrations of main challenges in
resource-aware Fed-SSL.

Along this line, we proposeFedMKD, a multi-
teacher knowledge distillation based resource-
adaptive Fed-SSL framework, which can learn
global representations over all classes from het-
erogeneous clients. First, an adaptive knowl-
edge integration module is introduced to learn
high-quality representations from all the het-
erogeneous models with deviated representa-
tion abilities. Then in order to encode all
classes from clients in a uni�ed space, the global
model uses the weighted combination of self-
supervised loss and distillation loss to update.
Besides, the global knowledge anchored align-
ment module is applied within the server to elim-
inate the inconsistency in representation spaces
and reduce the burden on the clients. It uses
global knowledge to additionally update the lo-
cal models, which can not only make the lo-
cal representation spaces close to the global
space but also improve the representation ca-
pability of both local models and the global
ones. Code is available athttps://github.
com/limee-sdu/FedMKD. The main contribu-
tions of this paper can be summarized as follows.

• In resource-aware Fed-SSL, we are the �rst to delve into global class representation learning
through revealing the deviated representation abilities and inconsistent representation spaces
caused by the heterogeneous architectures and class skew.

• We design a multi-teacher knowledge distillation framework, namelyFedMKD, to adaptively
aggregate positive knowledge from heterogeneous models with deviated representation
abilities. Through combining the self-supervised loss and the distillation loss,FedMKDcan
encode skewed classes into a uni�ed space.

• Extensive experiments conducted onCIFAR-10andCIFAR-100show the representation
abilities over all classes of theFedMKDperform better than state-of-the-art baselines. Our
algorithm can improve 4.22% and 5.31% separately on the two chosen datasets.

2 Related work

The federated self-supervised learning aims to learn high-quality representations from clients without
large labeled datasets [11]. From the beginning, several works [12, 23] simply combine federated
learning with self-supervised methods. Besides,FedU[33] designs a communication-ef�cient mech-
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Table 1: Comparison of federated self-supervised learning methods.

Method Global Global Model Deviated Inconsistent Theoretical
model model size Heterogeneity representation ability representation space Analysis

FedU [33] 3 = Client 7 7 7 7
FedEMA [34] 3 = Client 7 7 7 7
L-DAWA [21] 3 = Client 7 7 7 7

FedX [5] 3 = Client 7 7 7 7
FedCA [30] 3 = Client 7 7 3 7
FLPD [29] 3 = Client 3 7 7 7

FedU2 [17] 3 = Client 7 7 3 3
FedFoA [19] 7 - 3 7 3 7

Hetero-SSFL [20] 7 - 3 7 3 3
FedMKD(ours) 3 � Client 3 3 3 3

anism by only aggregating the online encoders under non-IID data.FedUTN[16] is proposed to use
the aggregated online networks for the target network updating in the self-supervised framework.
L-DAWA[21] proposes the layer-wise divergence aware weight aggregation to mitigate the in�uence
of client bias.FedEMA[34] considers the divergence-aware moving average updating in clients,
measuring the divergence between local models and global model.FedX[5] proposes a unsupervised
federated learning framework to learn representations through a two-sided distillation method. How-
ever, all the above works intuitively gain the global model through parameters average due to the
identical client models, which can not be applied in the heterogeneous clients setting directly. In
addition, althoughFedCA[30] address the misaligned and inconsistent representation challenges
by gathering features from clients, inducing potential privacy problems.FLPD [27, 29] introduces
distillation method based similarity between prototypes from a labeled public dataset to update the
local model.FedU2 [17] focuses on mitigating representation collapse entanglement and obtaining
uni�ed representation spaces.

Considering heterogeneous client models in federated self-supervised learning,Hetero-SSFL[6]
introduces linear-CKA to align lower-dimensional representations between the local model and
global model without architectural constraints.FedFoA[19] designs a factorization-based method
to extract the cross-feature relation matrix from the local representations for aggregation. However,
bothHetero-SSFLandFedFoAcan not learn a global representation model considering the hybrid
heterogeneity, which is the main focus of our work. The comparison details are shown in Table 1.

3 Preliminaries

The goal of federated unsupervised learning is to learn the generalized representation for some
downstream tasks from several distributed unlabeled data sources. A federated learning setting
consists of a central server andN clients. Each clientk contains a local unlabeled datasetDk , and
the server contains a public unlabeled datasetDpub . The local objective atk-th client is

min
� k

F (� k ) = E� k �D k [L k (� k ; � k )]; (1)

to minimize the expected local loss of clientk on local datasetDk and� k is the unlabeled data.
In traditional FL settings, it's assumed thatf � k g are identical and gain the global model using
� =

P N
k=1 pk � k , wherepk is the weight ofk-th client. But in real-world cross-device scenarios, each

client might have a unique model and the architecture of the model might be different, which means
that traditional aggregation methods are not available. We assume that� k is not similar to others, and
usef � k g to collaborate in training the larger global model� in server. Here we de�ne the global
update function is� t = G(� t � 1; � 1; � � � ; � N ). Our �nal aim is to optimize the global goal

min
�

Fglobal (� ) = E� �D global [L (�; � )]; (2)

whereL (�; � ) is global loss function in server and� is the unlabeled data sampled from global dataset.

4 Designed FedMKD Method

We propose a multi-teacher knowledge distillation based federated self-supervised learning framework
FedMKD, which is shown in Fig. 2. InFedMKD, besides the local self-supervised learning (Sec. 4.1),
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Figure 2: The overall framework ofFedMKD. Clients initialize the model architecture based on the
local resource, then self-supervised train the local model using unlabeled local data. The server uses
the multi-teacher adaptive knowledge integration distillation to aggregate positive local knowledge to
train the global model and then updates local models again according to the alignment module.

we design a multi-teacher adaptive knowledge integration distillation module to adaptive determine
the weight of the representations from heterogeneous local models with deviated representation
abilities. The distilled loss combined with the global self-supervised loss, we can gain the weighted
combined loss to update the global model, so that the global model can encode all classes from
clients in a uni�ed space (Sec. 4.2). And the global knowledge anchored alignment could improve
the representation capability of clients and further bene�t the global model training (Sec. 4.3). In
addition, we provide the theoretical analysis of our algorithm in Appendix B.

4.1 Self-supervised model training

Each client performs self-supervised contrastive learning using an asymmetric Siamese network,
inspired by BYOL [3]. The modelM comprises an online encoder� and a target encoder� , both
sharing the same architecture, with the online network incorporating an additional predictorp. That
is M = f p(� (�)) ; � (�)g. Given an unlabeled imagex, we can obtain two augmented views,v andv0,
serving as inputs to online and target networks, respectively. The loss function is de�ned as follows:

L self =






p(r )
kp(r )k

�
r 0

kr 0k






2

; (3)

wherer = � (v) andr 0 = � (v0). This loss encourages the online network to produce representation
p(r ) that is similar to the positive sample generated by the target networkr 0. We then exchange
the views, feedingv0 to the online network andv to the target network, to computeL 0

self . At each
training step, we use stochastic gradient descent to minimize~L self = L self + L 0

self to update the
online network� alone,

�  � � � r � ~L self : (4)
The target network helps to provide regression targets to train the online network. Choosing� 2 [0; 1]
as the target decay rate, we employ the exponential moving average (EMA) of the online network to
update� :

�  �� + (1 � � )�: (5)

Using this self-supervised training method, the model learns intricate representations from unlabeled
data, capturing high-level features and patterns inherent in the dataset.

4.2 Multi-teacher adaptive knowledge integration distillation.

In contrast to homogeneous federated learning, the presence of model heterogeneity poses a challenge:
direct aggregation of local models into a global model is not feasible. To overcome this, we design a
multi-teacher knowledge distillation mechanism to transfer local knowledge to the server.
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Given a batch of dataB, the representation from the teacher model is denoted asr t and that from the
student model asr s, the knowledge distillation loss is de�ned as follows:

L distill = � log
exp(sim(r s;i ; r t;i )=� )

exp(sim(r s;i ; r t;i )=� ) +
P

k2fB� i g
exp(sim(r s;i ; r s;k )=� )

; (6)

where� is the temperature parameter controlling entropy andsim(�) is the similarity function
between two representations.

Then we extend this knowledge distillation learning method to multi-teacher. Although the data is
heterogeneous, the knowledge of each local model is valuable, each local model captures the unique
characteristics of local data. Our goal is to integrate the positive knowledge of all clients to guide
the global model in learning a general representation of unlabeled data. We design a multi-teacher
adaptive knowledge integration distillation that can adaptively weigh the representations from clients.

Given a samplex i , representation from then-th local model isRn;i 2 Rd whered is the dimension
of the representation. Following [3], a fully connected layer is employed to project the representation
into a lower-dimensional space, enhancing the discriminate power of the learned representations. So,
we map the representation from the global modelRs;i into the same lower latent space, obtaining

r s;i = g(Rs;i ); r n;i = g(Rn;i ); (7)

wherer n;i ; r s;i 2 Rk , k is the dimension of the new latent space andg(�) is the projector.

In addition, we introduce an adapter module to learn instance-level teacher importance weights for
knowledge integration. After gettingr n;i , an attention block is used to generate the weighted sum
of them. In this context, representation from global modelr s;i is treated as thequery, while those
from local models~R = [ r 1;i ; r 2;i ; : : : ; rN;i ]T is treated as thekeyandvalue. Treating representations
from the global model asqueryensures consistency in knowledge transfer. The attention mechanism
computes attention scores to understand the relevance of each local model's representation to the
global model's query. The aggregated representation is:

�r i = Attn (r s;i ; ~R) = sof tmax (
r s;i � ~R

p
k

) ~R; (8)

where�r i means the aggregated representation, andAttn (�) denotes the attention block.

Returning to the knowledge distillation for unlabeled data proposed earlier, we treat the aggregate
representation as the positive sample, and the remaining samples in the batch as the negative sample.
The adaptive weight multi-teacher knowledge distillation loss function is expressed as follows:

L distill = � log
exp(sim(r s;i ; �r i )=� )

exp(sim(r s;i ; �r i )=� ) +
P

j 6= i
exp(sim(r s;i ; r s;j )=� )

: (9)

Above all, the weighted combined loss for the global model is presented as:

L server = L self + L distill ; (10)

where is a hyper-parameter controlling the weight of the distillation process.

4.3 Global knowledge anchored alignment

As we mentioned, the representations from different models are inconsistent and the representation
abilities of models are also deviated. So we introduce the global knowledge anchored alignment
mechanism that each local model uses the global model as an anchor. It ensures that the local
representation spaces are closer to the global ones.

Unlike methods such as FedX [5] and MOON [15], which align local models to the global model
locally, our approach aims to train a better global encoder tailored for resource-constrained federated
learning scenarios. Those methods are not available when clients cannot afford to store or infer the
global model locally. So we transfer this alignment process to the server.

After �nishing the global model training, we construct local twin models in the server to realize the
alignment under global view. Here, we use the global online network and local online network to
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(a) Standalone training
ResNet18 on Partial public
dataset.

(b) MOON on Partial pub-
lic datset.

(c) FedMKD on IID public
dataset

(d) FedMKD on Partial
public dataset

Figure 3: T-SNE visualizations of hidden vectors from different models on CIFAR-10, the data
distribution of clients is IID.

construct a new asymmetric siamese network called the twin of the original local model. The local
online network� n is the online model, and the global online network� s is the target model, that is,

f � 0
n ; � 0

n g  f � n ; � sg (11)

and ~M = f � 0
n ; � 0

n g. The training loss is updated to

L align = � log
exp(sim(� 0

n (i ); � 0
n (i ))=� )

P
i 2 B exp(sim(� 0

n (i ); � 0
n (i ))=� )

: (12)

According to the idea of contrastive learning, the representations learned by the online network
become more consistent with the knowledge captured by the target network. This global knowledge
anchored contrastive learning suggests that the global model's knowledge is used as a positive
example for the local model to train itself, thus making it more consistent with the target global
network. Aligning local models with the global view representation helps create a comprehensive
understanding of the overall data distribution. The process re�nes the knowledge acquired locally,
ensuring that it contributes meaningfully to the overall federated learning process. Then, we use
stochastic gradient descent to minimizeL align to update the� 0

n ,

� 0
n  � 0

n � � rL align : (13)

Once the global model anchored alignment is �nished, the server will send the online network of the
local twin network� 0 to the corresponding client to update the local model. The local online network
� n is replaced by the server-updated network� 0

n . The target network is not replaced to retain more
local knowledge and stabilize model training:

f � q;n ; � q;n g  f � 0
q� 1;n ; � q� 1;n g (14)

so that, the local model can bene�t from the alignment process and align to the representation under
global view, which can further use the local data to train the model.

5 Experiments

In this section, we evaluate the representations learned from our proposed global modelFedMKDon
CIFAR-10andCIFAR-100. We �rst describe the experimental setup and baselines, and then analyze
the performance in comparison to other methods. Due to the space limitation, further hyperparameter
analysis and communication cost analysis are represented in Appendix D.

5.1 Experimental setup

We useCIFAR-10andCIFAR-100[13] datasets to train all the models. Both of them contain 50,000
training images and 10,000 testing images. To construct the public dataset, we sample 4000 data
samples from the training set, then divide the remaining data intoN partitions to simulateN clients.
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Table 2: Top-1 accuracy comparison under linear probing on CIFAR datasets with best model
performance in bold and second-best results with underlines. '-' means this method is not suitable for
the experiment setting.

Method Pub. CIFAR-10 (%) CIFAR-100 (%)
Class Dir(� =0.5) IID Class Dir(� =0.5) IID

Std. ResNet18

IID

51:09� 0:04 25:35� 0:02
FedMD 45:28� 0:02 45:93� 0:02 46:21� 0:02 23:25� 0:05 22:46� 0:04 23:20� 0:03
FedDF 46:94� 0:04 48:04� 0:02 48:74� 0:08 23:07� 0:03 22:73� 0:03 21:57� 0:01
MOON-KL 44:93� 0:05 45:84� 0:03 46:51� 0:03 21:26� 0:03 21:34� 0:01 21:82� 0:02
MOON 53:35� 0:03 53:71� 0:04 55:14� 0:02 27:82� 0:01 26:84� 0:03 26:70� 0:03
FedET 56:42� 0:02 59:38� 0:03 61:43� 0:02 29:11� 0:03 26:98� 0:01 24:48� 0:02
FedU/FedEMA - - - - - -
Hetero-SSFL 59:13� 0:02 64:04� 0:04 65:61� 0:07 30:84� 0:10 29:63� 0:06 28:89� 0:06
FedMKD 64.81� 0.02 66.98� 0.06 69.07� 0.04 36.33� 0.01 35.59� 0.07 35.94� 0.02
Std. ResNet18

Par.

50:15� 0:02 24:97� 0:01
FedMD 47:16� 0:03 46:39� 0:02 45:93� 0:03 23:95� 0:05 23:14� 0:03 22:47� 0:01
FedDF 52:59� 0:05 53:50� 0:03 54:17� 0:05 27:21� 0:02 27:31� 0:04 27:05� 0:04
MOON-KL 46:41� 0:03 46:81� 0:03 45:89� 0:01 21:73� 0:01 20:97� 0:03 22:27� 0:04
MOON 54:31� 0:04 54:54� 0:02 52:94� 0:04 27:00� 0:04 27:27� 0:01 28:26� 0:02
FedET 57:75� 0:01 57:08� 0:01 58:59� 0:01 29:38� 0:01 28:12� 0:02 29:61� 0:01
FedU/FedEMA - - - - - -
Hetero-SSFL 63:20� 0:08 61:93� 0:04 61:15� 0:07 30:94� 0:05 29:92� 0:03 29:56� 0:03
FedMKD 66.39� 0.09 67.60� 0.04 65.88� 0.03 35.82� 0.02 35.55� 0.05 34.38� 0.02

To assess the validity of the public dataset, we use two sampling methods to construct it. First, we
use a random sampling method over all classes to generate public dataset 'IID'. And for the public
dataset 'Partial', data is selected randomly from 40% classes in two datasets.

We utilize three settings to simulate heterogeneous data distributions among all the clients. For the
IID setting, each client contains the same number of samples from all classes. For the class setting,
each client only has10=N and100=N classes on two datasets and the classes between clients have no
overlap. For the non-IID setting, data heterogeneity levels are described by the Dirichlet distribution
Dir(� ) [10], where smaller� represents stronger heterogeneity levels, here we choose� = 0 :5.

Regarding the self-supervised learning framework design within each client, we use ResNet18 [9]
and VGG9 [22] as the encoder network and Multi-Layer Perception (MLP) as the predictor. In order
to construct the model heterogeneous setting, 2 clients train the Resnet18 encoder while 3 clients use
the VGG9. And for the global representation model, Resnet18 is selected as the encoder in server.

5.2 Baselines and evaluation methods

Firstly, we select several federated knowledge distillation frameworksFedMD[14], FedDF [18],
FedET[2], MOON[15], MOON-KLthat use unlabeled public dataset for distillation. We then replaced
the local model with a self-supervised model to evaluate the process of knowledge distillation in our
method. And several federated self-supervised learning frameworksFedU[33], FedEMA[34], Hetero-
SSFL[20] are also chosen as baselines. To verify the client's knowledge can improve the global
model, we also train the global model separately on the public dataset, denoted asStd. ResNet18.
Following FedEMA[30], we evaluate the performance of learned representations using linear and
semi-supervised evaluation. Due to limited space, please refer to Appendix C for more details.

5.3 Performance Evaluation

Table 2 and 3 shows the linear evaluation results and semi-supervised evaluation results ofFedMKD
compared with all the baselines onCIFAR-10andCIFAR-100. We can gain the following observation.

On the whole, ourFedMKDoutperforms all baselines under different public dataset settings and
different data heterogeneity level settings on both two datasets. Compared to the second-best results,
FedMKDachieves signi�cant improvement. On average, our model improvesCIFAR-10by 4.22%
andCIFAR-100by 5.31% under linear evaluation and gain 3.66% and 2.07% improvement on two
dataset under semi-supervised evaluation.

The effectiveness of our multi-teacher adaptive knowledge integration distillation can be approved
when compared withFedMD, FedDF, MOON-KLandMOON. Although these methods all designed
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Table 3: Top-1 accuracy comparison on 1% of labeled data for semi-supervised learning on CIFAR
datasets with best model performance in bold and second-best results with underlines. '-' means this
method doesn't apply for the experiment setting.

Method Pub. CIFAR-10 (%) CIFAR-100 (%)
Class Dir(� =0.5) IID Class Dir(� =0.5) IID

Std. ResNet18

IID

46:84� 0:25 15:19� 0:20
FedMD 43:32� 0:22 44:20� 0:18 44:66� 0:20 15:88� 0:17 14:94� 0:19 15:34� 0:12
FedDF 43:60� 0:44 44:13� 0:16 44:80� 0:40 14:39� 0:20 13:06� 0:14 12:90� 0:07
MOON-KL 45:42� 0:26 46:61� 0:21 46:72� 0:15 16:25� 0:06 17:22� 0:25 16:07� 0:04
MOON 49:96� 0:24 50:21� 0:10 51:78� 0:28 19:23� 0:12 17:21� 0:13 17:07� 0:18
FedET 52:37� 0:24 56:57� 0:17 57:44� 0:13 19:70� 0:08 16:82� 0:20 15:68� 0:18
FedU/FedEMA - - - - - -
Hetero-SSFL 54:30� 0:15 58:73� 0:54 60:50� 0:12 20:04� 0:40 19:19� 0:17 18:82� 0:17
FedMKD 59.65� 0.28 61.78� 0.40 64.06� 0.32 22.57� 0.12 22.13� 0.11 22.07� 0.15
Std. ResNet18

Par.

46:42� 0:12 14:12� 0:09
FedMD 44:54� 0:26 43:61� 0:13 42:52� 0:19 17:32� 0:17 16:47� 0:14 16:31� 0:07
FedDF 48:14� 0:27 48:74� 0:12 48:56� 0:18 17:01� 0:04 17:14� 0:01 16:95� 0:01
MOON-KL 46:76� 0:05 46:92� 0:05 46:49� 0:22 16:21� 0:27 16:10� 0:12 16:94� 0:12
MOON 50:43� 0:18 51:99� 0:34 49:86� 0:19 18:64� 0:21 18:92� 0:25 19:29� 0:08
FedET 52:75� 0:07 52:61� 0:03 54:64� 0:14 18:49� 0:12 18:16� 0:13 18:01� 0:22
FedU/FedEMA - - - - - -
Hetero-SSFL 59:95� 0:34 58:31� 0:50 58:35� 0:20 20:72� 0:14 20:30� 0:32 19:62� 0:08
FedMKD 61.55� 0.19 63.10� 0.28 61.08� 0.19 22.44� 0.19 22.21� 0.17 20.94� 0.25

new federated knowledge distillation frameworks based on unlabeled public dataset, since the original
local model is supervised, they prefer using the class information from logits to distill. When
observing the result ofFedET, we �nd that although it also designs a larger global model in server
which improves the model a lot, the �nal result is not satis�ed. This is also because it designs a
distillation method based on knowledge of probability distribution over classes. Next, compared
with the federated self-supervised method, ourFedMKDalso achieves better performance.FedUand
FedEMAare not applicable in model heterogeneity setting, so we cannot evaluate their effectiveness.
Hetero-SSFLgain the best performance among all baselines but is worse than ours. That's because it
aims to train personalised client models. Only the alignment module cannot hold the inconsistent
representation space perfectly. But our global model can directly generate representation from the
global model, it avoids using the representation from inconsistent clients.

Apart from the client data heterogeneity, we consider the in�uence of the public dataset distribution.
Here, we construct two public datasets, one is 'IID' to the whole data distribution and the other only
has partial classes. In both two settings, ourFedMKDalso gets the best performance. The overall
performance of 'IID' public dataset is better than 'Partial' setting. That's because the global model
adapts the self-supervised learning on public dataset, and the diversity of the sample is important,
which can help the model explore a wide range of features and patterns present in the data. And it's
observed that when the public dataset is 'IID', the performance increases with the decrease of the
data heterogeneity level forCIFAR-10, but it doesn't apply to theCIFAR-100. It's because there are
too many classes inCIFAR-100and the number of samples in each class is not ef�cient.

In order to evaluate the effectiveness ofFedMKD, we use the dimensionality reduction algorithm t-sne
to visualize the representation on the test dataset ofCIFAR-10from different encoders. As shown
in Fig. 3 (b)(c)(d), the global models inFedMKDtrained on both 'IID' and 'Partial' public datasets
both achieve better clustering results than Standalone training andMOON. These results further
verify our model can gain better generalized representations although the representation spaces of
clients are inconsistent. There's also an averaged global model inMOON, but it cannot tackle the
problem of inconsistent spaces well using the average method, so it only gains a poor clustering
performance. Additionally, the performance on 'IID' public dataset is better than 'paritial' ones from
the observation of cluster performance. This suggests that the number of classes seen by the global
model also affects how well the global model can encode all classes in a uni�ed space. Comparing
the class distributions in Fig. 3 (c) and (d), we can �nd that although these two global models are
trained on different public datasets, the �nal cluster layout is similar, which can further prove that our
global model can encode all classes from clients even if it never sees some classes during the training.
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Table 4: Experimental results on ablation studies of FedMKD with best model performance in bold.

Method CIFAR-10 (%) CIFAR-100 (%)
Class IID Class IID

Standalone training 51:09� 0:04 25:35� 0:02
FedMKDKL 43:88� 0:19 46:24� 0:08 19:56� 0:18 15:45� 0:05
FedMKDw=o adaptive 46:14� 0:05 47:29� 0:08 21:77� 0:02 22:76� 0:03
FedMKDw=o alignment 61:85� 0:04 62:34� 0:09 34:97� 0:04 29:91� 0:02
FedMKD 64.81� 0.02 69.07� 0.04 36.33� 0.01 35.94� 0.02

5.4 Improvement of clients

Figure 4: Improvement of clients after involving
our proposedFedMKD.

In FedMKD, the global knowledge anchored
alignment module is used to align the client
model in the server which can further transfer
the global knowledge to the client and incen-
tivize the clients to participate in the federated
learning. To evaluate the improvement of the
clients, the local models which are standalone
training locally are compared with our local
models. As shown in Fig. 4, the client perfor-
mance in ourFedMKDframework is better than
local standalone training, regardless of the archi-
tecture of the local model. Especially for clients with ResNet18, it improves 6.73% on average. It's
concluded that clients bene�t from federated training by contributing to global training.

5.5 Validation of inconsistent representation spaces

Figure 5: LDA visualizations of hidden vectors
from different models on CIFAR-10.

As we mentioned, the representation spaces be-
tween different clients are inconsistent because
of data heterogeneity. To validate this opinion,
we use Linear Discriminant Analysis (LDA) to
reduce dimensionality in order to visualize the
distribution of the representations. Here the data
distribution of clients is Class. In Fig. 5 left,
' � ' and '� ' denote representations of Client A
and Client B, respectively. And different colors
denote different classes. We can observe that
in Fig. 5 left the classes 'cat' and 'dog' almost
overlap while they are from different clients,
which veri�es that the inconsistent representa-
tion spaces did exactly exist. And Fig. 5 right
shows the visualization result of the represen-
tation from the global model. It's clear that the classes 'cat' and 'dog' are embedded in different
positions in global space, which proves that although the local representations are inconsistent, our
global model can learn a good representation.

5.6 Ablation experiment

In order to investigate the effectiveness of different parts ofFedMKD, we design these comparison
experiments:

• Standalone training: The global model is trained alone using the public dataset, without the
knowledge from client models.

• FedMKDKL : The global distillation function is replaced by the KL-divergence function to
measure the similarity of the aggregated representation�r and global representationr s.

• FedMKDw=o adaptive : The adaptive knowledge integration module is removed, each local
representation has the same weight to generate the aggregated representation.
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