
Reinforcement Learning with Adaptive
Regularization for Safe Control of Critical Systems

Haozhe Tian∗ Homayoun Hamedmoghadam Robert Shorten Pietro Ferraro
Dyson School of Design Engineering

Imperial College London
SW7 2AZ, London, UK

{haozhe.tian21, h.hamed, r.shorten, p.ferraro}@imperial.ac.uk

Abstract

Reinforcement Learning (RL) is a powerful method for controlling dynamic sys-
tems, but its learning mechanism can lead to unpredictable actions that undermine
the safety of critical systems. Here, we propose RL with Adaptive Regularization
(RL-AR), an algorithm that enables safe RL exploration by combining the RL pol-
icy with a policy regularizer that hard-codes the safety constraints. RL-AR per-
forms policy combination via a “focus module,” which determines the appropriate
combination depending on the state—relying more on the safe policy regularizer
for less-exploited states while allowing unbiased convergence for well-exploited
states. In a series of critical control applications, we demonstrate that RL-AR not
only ensures safety during training but also achieves a return competitive with the
standards of model-free RL that disregards safety.

1 Introduction

A wide array of control applications, ranging from medical to engineering, fundamentally deals
with critical systems, i.e., systems of vital importance where the control actions have to guarantee
no harm to the system functionality. Examples include managing nuclear fusion [Degrave et al.,
2022], performing robotic surgeries [Datta et al., 2021], and devising patient treatment strategies
[Komorowski et al., 2018]. Due to the critical nature of these systems, the optimal control policy
must be explored while ensuring the safety and reliability of the control algorithm.

Reinforcement Learning (RL) aims to identify the optimal policy by learning from an agent’s in-
teractions with the controlled environment. RL has been widely used to control complex systems
[Silver et al., 2016, Ouyang et al., 2022]; however, the learning of an RL agent involves trial and
error, which can violate safety constraints in critical system applications [Henderson et al., 2018,
Recht, 2019, Cheng et al., 2019b]. To date, developing reliable and efficient RL-based algorithms
for real-world “single-life” applications, where the control must avoid unsafety from the first trial
[Chen et al., 2022], remains a challenge. The existing safe RL algorithms either fail to ensure safety
during the training phase [Achiam et al., 2017, Yu et al., 2022a] or require significant computational
overhead for action verification [Cheng et al., 2019a, Anderson et al., 2020]. As a result, classic
control methods are often favored in critical applications, even though their performance heavily
relies on the existence of an accurate model of the environment.

Here, we address the safety issue of RL in scenarios where “estimated” environment models are
available (or can be built) to derive sub-optimal control policy priors. These scenarios are representa-
tive of many real-world critical applications [Hovorka et al., 2002, Liepe et al., 2014, Hippisley-Cox
et al., 2017, Rathi et al., 2021]. Consider the example of devising a control policy that prescribes the

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

optimal drug dosages for regulating a patient’s health status. This is a single-life setting where no
harm to the patient is tolerated during policy exploration. From available records of other patients,
an estimated patient model can be built to predict the response to different drug dosages and ensure
adherence to the safety bounds (set based on clinical knowledge). However, a new patient’s response
can deviate from the estimated model, which poses a significant challenge in control adaptability and
patient treatment performance.

We propose a method, RL with Adaptive Regularization (RL-AR), that simultaneously shows the
safety and adaptability properties required for critical single-life applications. The method interacts
with the actual environment using two parallel agents. The first (safety regularizer) agent avoids
unsafe states by leveraging the forecasting ability of the estimated model. The second (adaptive)
agent is a model-free RL agent that promotes adaptability by learning from actual environment in-
teractions. Our method introduces a “focus module” that performs state-dependent combinations of
the two agents’ policies. This approach allows immediate safe deployment in the environment by
initially prioritizing the safety regularizer across all states. The focus module gradually learns to ap-
ply appropriate policy combinations depending on the state—relying more on the safety regularizer
for less-exploited states while allowing unbiased convergence for well-exploited states.

We analytically demonstrate that: i) RL-AR regulates the harmful effects of overestimated RL poli-
cies, and ii) the learning of the state-dependent focus module does not prevent convergence to the
optimal RL policy. We simulate a series of safety-critical environments with practically obtainable
sub-optimal estimated models (e.g., from real-life sampled measurements). Our empirical results
show that even with more than 60% parameter mismatches between the actual environment model
and the estimated model, RL-AR ensures safety during training while converging to the control
performance standard of model-free RL approaches that prioritize return over safety.

2 Preliminaries

Through environment interactions, an RL agent learns a policy that maximizes the expected cumula-
tive future reward, i.e. the expected return. We formalize the environment as a Markov Decision Pro-
cess (MDP) M = (S,A, P, r, γ), where S is a finite set of states, A = {a ∈ Rk : a ≤ a ≤ a} is a
convex action-space, P : S×A → P(S) is the state transition function, r : S×A → [−Rmax, Rmax]
is the reward function, and γ ∈ (0, 1) is a discount factor. Let π denote a stochastic policy
π : S → P(A), the value function V π and the action-value function Qπ are:

V π(st) = Eat,st+1,...

[∞∑
i=0

γir(st+i, at+i)

]
, Qπ(st, at) = Est+1,...

[∞∑
i=0

γir(st+i, at+i)

]
, (1)

where at ∼ π(st), st+1 ∼ P (st, at) for t ≥ 0. The optimal policy π⋆ = argmaxπ V
π(s) maxi-

mizes the expected return for any state s. Both V π and Qπ satisfy the Bellman equation [Bellman,
1966]:

V π(s) = Ea,s′ [r(s, a) + γV π(s′)] , Qπ(s, a) = Es′
[
r(s, a) + γEa′∼π(s′) [Qπ(s′, a′)]

]
. (2)

For practical applications with complex S and A, Qπ and π are approximated with neural networks
Qϕ and πθ with learnable parameters ϕ and θ. To stabilize the training of Qϕ and πθ, they are
updated using samples B from a Replay Buffer D [Mnih et al., 2013], which stores each previous
environment transitions e = (s, a, s′, r, d), where d equals 1 for terminal states and 0 otherwise.

In this work, we are interested in acting on a safe regularized RL policy that can differ from the
raw RL policy. RL approaches that allow learning from a different acting policy are referred to
as “off-policy” RL. The RL agent in our proposed algorithm follows the state-of-the-art off-policy
RL algorithm: Soft Actor-Critic (SAC) [Haarnoja et al., 2018], which uses a multivariate Gaussian
policy to explore environmental uncertainties and prevent getting stuck in sub-optimal policies. For
Q-network updates, SAC mitigates the overestimation bias by using the clipped double Q-learning,
which updates the two Q-networks Qϕi , i = 1, 2 using gradient descent with the gradient:

∇ϕi

1

|B|
∑

(s,a,s′,r,d)∈B

(Qϕi
(s, a)− y)2, i = 1, 2,

y = r + γ(1− d)

(
min
i=1,2

Qϕtarg,i
(s′, a′)− α logPπθ

(a′ | s′)
)
, a′ ∼ πθ(s

′),

(3)

2

where the entropy regularization term logPπθ
(a′ | s′) encourages exploration, thus avoiding local

optima. Target Q-networks ϕtarg,i are used to reduce drastic changes in value estimates and stabilize
training. The target Q-network parameters are initialized with ϕtarg,i = ϕi, i = 1, 2. Each time ϕ1

and ϕ2 are updated, ϕtarg,1, ϕtarg,2 slowly track the update using τ ∈ (0, 1):

ϕtarg,i = τϕtarg,i + (1− τ)ϕi, i = 1, 2. (4)

For policy updates, the policy network πθ is updated using gradient ascent with the gradient:

∇θ
1

|B|
∑
s∈B

(
min
i=1,2

Qϕ,i(s, aθ(s))− α logPπθ
(a | s)

)
, aθ(s) ∼ πθ(s). (5)

3 Methodology

𝛽(𝑠) = argmax𝛽𝑄 𝑠, 𝑎𝛽(𝑠)

RL-AR

update

𝑎𝑒 = (𝑠, 𝑎, 𝑠′, 𝑟, 𝑑, 𝑎reg)

Safety regularizer 𝜋reg

Off-policy RL 𝜋rl

Environment

Focus module 𝛽
𝑎𝛽 𝑠 = 𝛽 𝑠 𝑎reg(𝑠) + 1 − 𝛽 𝑠 𝑎rl(𝑠)

{ 𝑠, 𝑎, 𝑠′, 𝑟, 𝑑 } update

{ 𝑠, 𝑎reg }

𝑎𝛽

Replay buffer 𝒟 = {𝑒}

𝑎reg(𝑠)

𝑎rl(𝑠)

Figure 1: Schematic overview of the proposed RL-AR algorithm. RL-AR integrates the policies
of the RL agent and the safety regularizer agent using a state-dependent focus module, which is
updated to maximize the expected return of the combined policy.

Here, we propose RL-AR, an algorithm for the safe training and deployment of RL in safety-critical
applications. A schematic view of the RL-AR procedures is shown in Fig. 1. RL-AR comprises two
parallel agents and a focus module: (i) The safety regularizer agent follows a deterministic policy
πreg : S → A proposed by a constrained model predictive controller (MPC); (ii) The off-policy RL
agent is an adaptive agent with πrl : S → P(A) that can learn from an acting policy that is different
from πrl; (iii) The focus module learns a state-dependent weight β : S → [0, 1] for combining the
deterministic areg(s) = πreg(s) and the stochastic arl(s) ∼ πrl(s). Among the components, the
safety regularizer has a built-in estimated environment model f̃ : S × A → S that is different from
the actual environment model, while the off-policy RL agent and focus module are dynamically
updated using observed interactions in the actual environment.

The RL-AR workflow is as follows: (i) πreg(s) generates areg(s), which hard-codes safety con-
straints in the optimization problem over a period forecasted by f̃ . The forecasting ability antic-
ipates and prevents running into unsafe states for the critical system; (ii) πrl(s) generates arl(s)
to allow stochastic exploration and adaptation to the actual environment; (iii) β(s) is initialized to
β(s) ≥ 1 − ϵ, ∀s ∈ S, hence prioritizing the safe πreg before πrl learns a viable policy. As more
interactions are observed for a state s and the expected return of πrl(s) improves, β(s) gradually
shifts the focus from the initially suboptimal πreg(s) to πrl(s).

3.1 The safety regularizer

The safety regularizer of RL-AR is a constrained MPC, which, at any state st, optimizes the N -
step system behavior forecasted using the estimated environment model f̃ by solving the following
constrained optimization problem:

min
at:t+N−1

t+N−1∑
k=t

Jk(sk, ak) + JN (st+N)

s.t. sk+1 = f̃(sk, ak), g(sk) ≥ 0, ak ∈ A,

(6)

where Jk(sk, ak) and JN (st+N) are the stage and terminal cost functions and g(sk) ≥ 0 is the
safety constraint. By hard-coding the safety constraints in the optimization (via g(sk) ≥ 0) over the

3

Algorithm 1 RL-AR

1: Initialization: empty replay buffer D; MPC controller with estimated environment model f̃ ;
policy network πθ; Q-networks Qϕi

and target Q-networks Qϕtarg,i
with ϕtarg,i = ϕi, i = 1, 2;

pretrained focus module βψ with βψ(s) ≥ 1− ϵ,∀s ∈ S; time step t = 0.
2: repeat
3: Observe state s
4: Take action a = βψ(s)areg(s) + (1− βψ(s))arl(s), areg(s) = πreg(s), arl(s) ∼ πθ(s)
5: Store transition e = (s, a, s′, r, d, areg) in D
6: if t > time to update then
7: Randomly sample a batch B of transitions from D
8: Update Qϕi

, i = 1, 2, by gradient descent with Eq. (3)
9: Update πθ by gradient ascent with Eq. (5)

10: Update βψ by gradient ascent with:

∇ψ
1

|B|
∑

(s,areg)∈B

min
i=1,2

Qϕi (s, βψ(s)areg + (1− βψ(s))arl(s)) , arl(s) ∼ πθ(s)

11: Update Qϕtarg,i
, i = 1, 2, using Eq. (4)

12: end if
13: t = t+ 1
14: until convergence is true

prediction horizon, MPC prevents failure events that are not tolerated in critical applications. MPC
iteratively solves for the N-step optimal actions in each time step and steers the environment to the
desired state. At any time step t, solving the optimization problem in Eq. (6) yields a sequence of N
actions at:t+N−1, with only the first action at in the sequence adopted for the current time step, i.e.,
areg(st) = πreg(st) = at. The system transitions from st to st+1 by taking the action areg(st), and
the optimization problem is solved again over {t+1 : t+1+N} to obtain areg(st+1). For practical
applications with continuous state space, the optimization problem in Eq. (6) is efficiently solved
using the Interior Point Optimizer [Andersson et al., 2019]. Since MPC solves similar problems
with slight variations at each time step, the computational complexity is further reduced by using
the solution from the previous step as the initial guess.

3.2 Policy regularization

The focus module in RL-AR combines the actions proposed by the safety regularizer agent and the
RL agent using a weighted sum. At state s, the combined policy πβ takes the following action aβ(s):

aβ(s) = β(s)areg(s) + (1− β(s))arl(s), areg(s) = πreg(s), arl(s) ∼ πrl(s). (7)

Lemma 1. (Policy Regularization) In any state s ∈ S , for a multivariate Gaussian RL policy πrl

with mean π̄rl(s) and covariance matrix Σ = diag(σ2
1(s), σ

2
2(s), . . . , σ

2
k(s)) ∈ Rk×k, the expecta-

tion of the combined action aβ(s) derived from Eq. (7) is the solution to the following regularized
optimization with regularization parameter λ = β(s)/(1− β(s)):

E [aβ(s)] = argmin
a

∥a− π̄rl(s)∥Σ +
β(s)

1− β(s)
∥a− areg(s)∥Σ . (8)

We provide the proof of Lemma 1 in Appendix A.1, which is a state-dependent extension of the
proof in [Cheng et al., 2019b]. Lemma 1 shows that the state-dependent β(s) offers a safety mech-
anism on top of the safety regularizer. Since β(s) is initialized close to 1 for ∀s ∈ S, a strong
regularization (λ → ∞) from the safety regularizer policy is applied at the early stages of training.
As learning progresses, the stochastic combined policy inevitably encounters rarely visited states,
where πrl is poor due to the overestimated Q. However, the regularization parameter λ remains
large for these states, thus preventing the combined policy from safety violations by regularizing its
deviation from the regularizer’s safe policy. This deviation is quantified in the following theorem.
Theorem 1. Assume the reward R and the transition probability P of the MDP M are Lipshitz con-
tinuous over A with Lipschitz constants LR and LP . For any state s ∈ S, the difference in expected

4

return between following the combined policy πβ and following the safety regularizer policy πreg,
i.e., |V πβ (s)− V πreg(s)|, has the upper-bound:

|V πβ (s)− V πreg(s)| ≤ (1− γ)|S|LR + γ|S|LPRmax

(1− γ)2
(1− β(s))∆a, (9)

where |S| is the cardinality of S, ∆a = |arl(s)− areg(s)| is the bounded action difference at s.

We provide the proof of Theorem 1 in Appendix A.2. Theorem 1 shows that when a state s has
not been sufficiently exploited and its corresponding β(s) updates have been limited accordingly,
the sub-optimality of the RL policy πrl has limited impact on the expected return of the combined
policy πβ , which is the actual acting policy. This is because 1 − β(s) remains close to zero at this
stage, leading to only minor expected return deviations from the safety regularizer’s policy πreg.

3.3 Updating the focus module

The focus module derives the policy combination (from the policies of safety regularizer and off-
policy RL agent) that maximizes the expected return. For any state s, the state-dependent focus
weight β(s) is learned through updates according to the following objective:

β′(s) = argmax
β∈[0,1]

E [Qπβ (s, βareg(s) + (1− β)arl(s))] , areg(s) = πreg(s), arl(s) ∼ πrl(s). (10)

Equation (10) is similar to the actor loss in actor-critic methods, however, instead of optimizing the
policy network, Eq. (10) optimizes β(s) for policy combination.

Compared to a scalar combination weight that applies the same policy combination across all states
(e.g., as in [Cheng et al., 2019b]), the updated state-dependent weight β′(s) in Eq. (10) guarantees
monotonic performance improvement at least in the tabular cases, i.e., the update β′(st) at a state st
results in V πβ′ (s) ≥ V πβ (s) for all states s ∈ S, where πβ′ is the combined policy proposed by β′.
This can be proved by observing that the update in Eq. (10) results in a non-negative advantage for
all states s, i.e., Qπβ (s, πβ′) ≥ Qπβ (s, πβ),∀s ∈ S , where (with slight abuse of notation) we use
Q(s, π) to denote Q(s, a) with a ∼ π(s). See Theorem 2 in Appendix A.3 for the detailed proof.
Lemma 2. (Combination Weight Convergence) For any state s, assume the RL policy πrl converges
to the optimum policy π⋆ that satisfies Q(s, π⋆) > Q(s, π),∀π ̸= π⋆, then β′(s) = 0 will be the
solution to Eq. (10) that achieves the optimal policy combination.

Lemma 2 follows as πreg ̸= π⋆ due to the sub-optimal model used to derive πreg. Let a⋆(s) ∼
π⋆(s) denote the optimum action at state s. If β(s) ̸= 0, then β(s)areg(s) + (1 − β(s))arl(s) =
β(s)areg(s) + (1− β(s))a⋆(s) ̸= a⋆(s). Therefore, the solution to Eq. (10), i.e., the updated focus
weight β′(s), can only be 0.
Theorem 3. (Policy Combination Bias) For any state s, the distance between the combined action
aβ(s) and the optimal action a⋆(s) has the following lower-bound:

|aβ(s)− a⋆(s)| ≥ |areg(s)− a⋆(s)| − (1− β(s))|areg(s)− arl(s)|. (11)

If a Gaussian RL policy πrl converges to the optimum policy π⋆(s) with Q(s, π⋆) > Q(s, π),∀π ̸=
π⋆, then the combined policy πβ(s) can have unbiased convergence to the optimum Gaussian policy
π⋆ with total variance distance DTV(πβ(s), π

⋆(s)) = 0.

The proof of Theorem 3 is given in Appendix A.5. Theorem 3 shows that by adaptively updating
β(s), the unbiased convergence of the combined policy can be achieved assuming i) a unique opti-
mum solution and ii) the convergence of the RL agent, where the former follows naturally for most
real-life control applications and the latter is well-established in the RL literature (the convergence
of the specific RL agent used in RL-AR was proved in [Haarnoja et al., 2018]).

Algorithm 1 shows the pseudo-code of RL-AR, where Q, πrl, and β are approximated with neural
networks for practical applications with large or continuous state space. Note that the policy reg-
ularization (Lemma 1) and the convergence of RL-AR to the optimum RL policy (Lemma 2 and
Theorem 3) still hold when using function approximation. For the RL agent, we take the standard
approach of approximating Qπ and π with neural networks Qϕ and πθ. The focus module β(s)
is approximated with a neural network βψ with outputs scaled to the range (0, 1). Before learning

5

begins, βψ is pretrained to output values close to 1 (e.g., βψ(s) ≥ 1−ϵ) for all states to prioritize the
safe πreg. While interacting with the environment, each transition e = (s, a, s′, r, d, areg) is stored
in a replay buffer D. Since πreg is deterministic and not subject to updates, by storing the action
term areg in D, the optimization problem in Eq. (6) needs to be solved only once for any state s,
significantly lowering the computational cost.

In Algorithm 1, details of Qϕi and πθ updates (lines 8-9) are omitted as they follow the standard
SAC [Haarnoja et al., 2018] paradigm elaborated in Section 2. After updating Qϕi and πθ, the focus
module βψ is updated using samples (s, areg) from replay buffer D. As shown in line 10, βψ is
updated using gradient ascent with the gradient:

∇ψ
1

|B|
∑

(s,areg)∈B

min
i=1,2

Qϕi
(s, βψ(s)areg + (1− βψ(s))arl(s)) , arl(s) ∼ πθ(s). (12)

Note that the updated Qϕi
, i = 1, 2, and πθ are used in Eq. (12) to allow quick response to new

information. The clipped double-Q learning (taking the minimum Qϕi
, i = 1, 2) mitigates the

overestimation error. Although exploitation level is not explicitly considered in Eq. (10), the use of
replay buffer and the gradient-based updates in Eq. (12) mean more frequently-visited states with
well-estimated Q values will affect βψ(s) more, whereas rarely-visited states with overestimated Q
values affect βψ(s) less.

4 Numerical Experiments

Here, RL-AR is validated in critical settings described in Section 1, where the actual environment
model P is unknown, but an estimated environment model f̃ is available (e.g., from previous obser-
vations in the system or a similar system)1. Four safety-critical environments are implemented:

• Glucose is the critical medical control problem of regulating blood glucose level against meal-
induced disturbances [Batmani, 2017]. The observations are denoted as (G, Ġ, t), where G is the
blood glucose level, Ġ = Gt − Gt−1, and t is the time passed after meal ingestion. The action
is insulin injection, denoted as aI . Crossing certain safe boundaries of G can lead to catastrophic
health consequences (hyperglycemia or hypoglycemia).

• BiGlucose is similar to the Glucose environment but capturing more complicated blood glucose
dynamics, with 12 internal states (11 unobservable), 2 actions with large delays, and nondifferen-
tiable piecewise dynamics. [Kalisvaart et al., 2023]. The observations are the same as Glucose.
The actions are insulin and glucagon injections, denoted as (aI , aN).

• CSTR is a continuous stirred tank reactor for regulating the concentration of a chemical CB
[Fiedler et al., 2023]. The observations are (CA, CB , TR, TK), where CA and CB are the con-
centrations of two chemicals; TR and TK are the temperatures of the reactor and the cooler,
respectively. The actions are the feed and the heat flow, denoted as (aF , aQ). Crossing safe
boundaries of CA, CB , and TR can lead to tank failure or even explosions.

• Cart Pole is a classic control problem of balancing an inverted pole on a cart by applying horizon-
tal force to the cart. The environment is adapted from the gymnasium environment [Towers et al.,
2023] with continuous action space. The observations are (x, ẋ, θ, θ̇), where x is the position of
the cart, θ is the angle of the pole, ẋ = xt−xt−1, and θ̇ = θt− θt−1. The action is the horizontal
force, denoted as af . The control fails if the cart reaches the end of its rail or the pole falls over.

All environments are simulated following widely accepted models and parameters [Sherr et al.,
2022, Yang and Zhou, 2023], which are assumed to be unknown to the control algorithm. The esti-
mated models and the actual environments are set to have different model parameters. For Glucose
and BiGlucose, the estimated model parameters are derived from real patient measurements [Hov-
orka et al., 2004, Zahedifar and Keymasi Khalaji, 2022]. The environment models, parameters, and
reward functions are detailed in Appendix B.

The baseline methods used in the experiments are: i) MPC [Fiedler et al., 2023], the primary method
for control applications with safety constraints [Hewing et al., 2020]; ii) SAC [Haarnoja et al., 2018],

1Code available at https://github.com/HaozheTian/RL-AR.

6

https://github.com/HaozheTian/RL-AR

a model-free RL that disregards safety during training, but achieves state-of-the-art normalized re-
turns; iii) Residual Policy Learning (RPL) [Silver et al., 2018], an RL method that improves a
sub-optimal MPC policy by directly applying a residual policy action; iv) Constrained Policy Opti-
mization (CPO) [Achiam et al., 2017], a widely-used risk-aware safe RL benchmark based on the
trust region method; and v) SEditor [Yu et al., 2022b], a more recent, state-of-the-art safe RL method
that learns a safety editor for transforming potentially unsafe actions.

The proposed method, RL-AR, uses MPC as the safety regularizer agent and SAC as the off-policy
RL agent. The two agents in RL-AR each follow their respective baseline implementations. The
focus module in RL-AR has a [128, 32] hidden layer size with ReLU activation, and k outputs
scaled to (0, 1) by a shifted tanh. Additional detail and hyperparameters of the implementations are
provided in Appendix C. Our RL-AR implementation has an average decision and update time of
0.037 seconds per step on a laptop with a single GPU, meeting real-time control requirements across
all environments. In Appendix D we present ablation studies on the benefit of state-dependent focus
weight and the choice of SAC as the RL agent.

4.1 Safety of training

Table 1: The mean (± standard deviation) number of fail-
ures out of the first 100 training episodes, obtained over 5
runs with different random seeds.

Method Gluc. BiGl. CSTR Cart.
RL-AR 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

MPC 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

SAC 19.0 (15.2) 59.4 (31.1) 99.2 (0.4) 93.6 (7.3)

RPL 7.8 (6.4) 5.6 (3.9) 3.6 (1.5) 3.6 (2.2)

CPO 8.0 (2.1) 72.4 (6.7) 100.0 (0.0) 21.8 (3.7)

SEditor 6.8 (1.7) 74.6 (8.4) 97.2 (5.6) 17.4 (10.6)

We begin by evaluating training safety
in the actual environment by count-
ing the number of failed episodes out
of the first 100 training episodes. An
episode is considered a failure and ter-
minated immediately if a visited state
exceeds a predefined safety bound. As
shown in Table 1, only RL-AR com-
pletely avoids failure during training in
the actual environment. Although MPC
does not fail, it does not adapt or up-
date its policy in the actual environ-
ment. RPL is relatively safe by relying on a safe initial policy, but its un-regularized residual policy
action results in less stable combined action, leading to failures. Due to their model-free nature,
CPO and SEditor must observe failures in the actual environment before learning a safe policy, thus
failing many times during training. Note that SAC averages the largest number of failures over all
environments.

Next, since the estimated environment model f̃ is integrated into RL-AR, MPC, and RPL, for a fair
comparison we pretrain the model-free SAC, CPO, and SEditor using f̃ as an environment simulator;
this allows all methods to access the estimated model before training on the actual environment.
Figure 2 compares the normalized episodic return and the number of failures for different methods
over training episodes; the proposed method is compared with SAC and RPL in Fig. 2A, and with
MPC, CPO, and SEditor (safety-aware methods) in Fig. 2B. The mean (solid lines) and standard
deviation (shaded area) in Fig. 2 are obtained from 5 independent runs using different random seeds.
Episodes are terminated on failure, resulting in varying episode lengths, thus, the episodic returns
are normalized by episode lengths.

Two important insights can be drawn from Fig. 2. First, the normalized return curves show that RL-
AR consistently achieves higher returns faster than other methods across all environments. RL-AR
begins with a reliable initial policy derived from the safety regularizer and incrementally integrates a
learned policy, resulting in stable return improvements (as suggested by Lemma 1 and Theorem 1).
RL-AR shows a steady return improvement, except for some fluctuations in the CSTR environment
which the method quickly recovers from. In contrast, the baseline methods—SAC and RPL, which
apply drastic actions based on overestimated returns, or CPO and SEditor, which impose constraints
using biased cost estimates derived from simulations using f̃—exhibit significant return degradation
and even failures. Second, RL-AR effectively avoids failure during training (see the bottom rows in
Fig. 2A&B). Note that pertaining on f̃ leads to fewer failures in the actual environment for SAC,
CPO, and SEditor (compare with the results in Table 1). However, SAC, CPO, and SEditor continue
to fail despite the pretraining (the only exception is SEditor in the Glucose environment), indicating
that pretraining on estimated model is not an effective approach to achieve safety.

7

0.25

0.50

0.75

1.00

no
rm

al
iz

ed
 re

tu
rn

10*10*10*A Glucose

0 50 100 150 200 250 300
episode

0

3

6

9

12

nu
m

be
r o

f f
ai

lu
re

s

0.5

1.0

1.5

2.0

10*10*10* BiGlucose

0 25 50 75 100 125 150
episode

0

4

8

12

16

-0.8

0.2

1.2

2.2

10*10*10* CSTR

0 25 50 75 100 125 150
episode

0

2

4

6

8

1.1

0.6

0.1

-0.4

10*10*10* Cart Pole

0 30 60 90 120 150
episode

0

5

10

15

20 RL-AR
SAC-pt
RPL

0.25

0.50

0.75

1.00

no
rm

al
iz

ed
 re

tu
rn

10*10*10*B Glucose

0 50 100 150 200 250 300
episode

0

3

6

9

12

nu
m

be
r o

f f
ai

lu
re

s

0.5

1.0

1.5

2.0

10*10*10* BiGlucose

0 25 50 75 100 125 150
episode

0

4

8

12

16

-0.8

0.2

1.2

2.2

10*10*10* CSTR

0 25 50 75 100 125 150
episode

0

2

4

6

8

1.1

0.6

0.1

-0.4

10*10*10* Cart Pole

0 30 60 90 120 150
episode

0

5

10

15

20 RL-AR
MPC
CPO-pt
SEditor-pt

Figure 2: The normalized return curves and the number of failures during training (standard devi-
ations are shown in the shaded areas). SAC, CPO, and SEditor are pretrained using the estimated
model f̃ as a simulator (as indicated by “-pt”) to ensure a fair comparison, given that RL-AR, MPC,
and RPL inherently incorporate the estimated model. This pretraining allows SAC, CPO, and SEdi-
tor to leverage the estimated model, resulting in more competitive performance in the comparison.

In CSTR and Cart Pole environments, and only in a limited number of episodes during the early
stages of training, the proposed RL-AR policy’s normalized return falls below that of the static MPC
policy. This can occur due to RL-AR reaching insufficiently learned states (with overestimated Q
values). Nevertheless, since β(s) is close to 1 for these insufficiently learned states, the dominance
of the safety regularizer agent allows RL-AR to converge to high returns without compromising the
safety (as shown in Theorem 1).

4.2 Achieved return after convergence

Besides ensuring safer training, RL-AR theoretically enables unbiased convergence to the optimal
RL policy (as shown in Theorem 2). We validate this by testing whether RL-AR matches the return
of SAC. SAC is shown to consistently converge to well-performing control policies, competitive
if not better than other state-of-the-art RL algorithms [Raffin et al., 2021, Huang et al., 2022]. In
Fig. 3, we compare the control trajectories of RL-AR, SAC, and MPC and the returns of their con-
verged policies after training; we run the converged policies without stochastic exploration. RL-AR
significantly outperforms MPC, achieving faster regulation, reduced oscillation, and smaller steady-

8

0 200 400 600 800 1000
time (min)

100

200

300

400

st
at

e
G

 (m
g/

dL
)

desired state range

Glucose
normalized

return
-1.37
-1.51
-4.55

0 200 400 600 800 1000
time (min)

100

200

300

400

st
at

e
G

 (m
g/

dL
)

desired state range

BiGlucose
normalized

return
-3.60
-7.43
-7.60

0 3 6 9 12 15
time (h)

0.50

0.55

0.60

0.65

st
at

e
C

B
 (m

ol
/L

)

desired state range

CSTR
normalized

return
-0.10
-1.74
-8.78

0 1 2 3 4 5
time (s)

-3

0

+3

+6

st
at

e
 (

)

desired state range

Cart Pole
normalized

return
-0.27
-0.24
-1.54

RL-AR (without failure during training) SAC (with failures during training) MPC

Figure 3: Comparison of the converged trajectories and their corresponding normalized return. In
the upper row, the agents try to retain the desired state under time-varying disturbances; in the lower
row, the agents try to steer the system to a desired state. Although SAC fails before converging,
here we compare with the converged SAC results to show that RL-AR can achieve the performance
standard of model-free RL that prioritizes return and disregards safety.

state error. Furthermore, in terms of normalized return, RL-AR is competitive with SAC in the
Cart Pole environment and outperforms SAC in the other three environments. The results demon-
strate that RL-AR not only effectively ensures safety during training, but also finds control policies
competitive with the state-of-the-art model-free RL.

4.3 Sensitivity to parameter discrepancies

1/16 2/16 3/16 4/16 5/16 6/16

32/8 0 0 0 0 0 0 0 0 0 0 0 0

 n/n
64/16

0

 4/8

 3/8

 2/8

 1/8

 p
2/p

2 0 0 0 0 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0 0 0 0

100 100 100 100 4 1 0 0 0 0 0 0

100 100 100 100 100 100 100 100 99 87 10 0

0

0

0

0

Figure 4: Number of failed training episodes out
of the first 100 in Glucose environment with dif-
ferent degrees of parameter discrepancy.

Inherently, RL-AR’s training safety relies on
the effectiveness of the safety regularizer,
which depends on the quality of the estimated
model f̃ . Thus, a large discrepancy between f̃
and the actual environment might compromise
the training safety of RL-AR. We empirically
quantify this effect by deploying RL-AR in dis-
crepant Glucose environments created by vary-
ing the environment model parameters n and
p2 (values chosen based on ñ and p̃2 in f̃) to
mimic deviating characteristics of new patients,
and counting the number of failed episodes out
of the first 100 episodes in Fig. 4. Lower p2/p̃2
and n/ñ makes the environment more suscep-
tible to failure; see Appendix B.1. The results
show that RL-AR can withstand reasonable dis-
crepancies between f̃ and the actual environment. Failures only occur when the actual environment
deviates significantly from f̃ with p2 ≤ 3

8 p̃2 and n ≤ 6
16 ñ. All failures are caused by the safety

regularizer due to its misleading estimated model with largely discrepant parameters. When RL
adapts (by updating πθ and βψ) sufficiently to correct the misleading regularizer action, the com-
bined agents effectively recover from failure. Here in our tests in the Glucose environment, even
with large model discrepancies, RL-AR is shown to be as safe as the classic MPC. Appendix Fig. 7
provides insights into the adaptation of the focus module by showing the progression of βψ in the
learning process.

5 Related Works

The existing safe RL works can be roughly divided into two categories [Garcıa and Fernández,
2015]. The first category does not require knowledge of the system dynamics. These methods
often rely on probabilistic approaches [Geibel and Wysotzki, 2005, Liu et al., 2022] or constrained

9

MDP [Achiam et al., 2017, Yang et al., 2020]. More recent methods use learned models to filter
out unsafe actions [Bharadhwaj et al., 2020]. However, these methods need to observe failures to
estimate the safety cost, thus do not ensure safety during training. This category of methods does
not apply to the single-life setting in this work, i.e., no failure is tolerated in the actual environment.
Nevertheless, in Fig. 2 we evaluate pertaining CPO [Achiam et al., 2017] and SEditor [Yu et al.,
2022b] using simulation with the estimated model to obtain risk estimation before training in the
actual environment.

The second category relies on an estimated model of the system dynamics. Some methods enforce
safety constraints using Control Barrier Function (CBF) [Cheng et al., 2019a]. However, CBF min-
imizes the control effort without directly optimizing the system performance. In contrast, the MPC
regularizer used in RL-AR enforces safety constraints while optimizing the predicted performance,
resulting in high performance during training. Some methods compute a model-based projection
to verify the safety of actions [Bastani, 2021, Kochdumper et al., 2023, Fulton and Platzer, 2018].
However, the scalability of verification-based methods for complex control applications is an issue.
Anderson et al. [2020] propose using neurosymbolic representations to reduce verification complex-
ity, but the computational cost remains to be high. On the other hand, the average time for RL-AR
to take a step (including the environment interaction and network updates) in the four environments
in Section 4 is 0.037 s, which is practical for real-time control.

Gros and Zanon [2019] and Zanon et al. [2020] use MPC as the policy generator and use RL to
dynamically tune the MPC parameters in the cost functions and the estimated environment model.
Assuming discrepancies between the estimated model parameters and the actual environment param-
eters, the tuning increases the MPC’s performance. However, this is a strong assumption since there
are other discrepancies, such as neglected dynamics and discretization errors. However, the RL-AR
proposed in this work can theoretically converge to the optimal policy by utilizing the model-free
RL agent.

It is important to note that although the MPC regularizer accelerates the learning of the RL agent,
RL-AR is not a special case of transferring a learned policy. The MPC regularizer used in our
proposed algorithm forecasts the system behavior and hard-codes safety constraints in the optimiza-
tion. The main role of the MPC is to keep the RL-AR actions safe in the actual environment—not
transferring knowledge. Transfer learning in RL studies the effective reuse of knowledge, especially
across different tasks [Taylor and Stone, 2009, Glatt et al., 2020]. By reusing prior knowledge, trans-
ferred RL agents skip the initial random trial-and-error and drastically increase sampling efficiency
[Karimpanal et al., 2020, Da Silva and Costa, 2019]. However, transferred RL agents are not inher-
ently risk-aware, and thus can still steer the actual environment into unsafe states. For this reason,
transferred RL is not generally considered effective for ensuring safety.

6 Conclusion and Future Works

Controlling critical systems, where unsafe control actions can have catastrophic consequences, has
significant applications in various disciplines from engineering to medicine. Here, we demon-
strate that the appropriate combination of a control regularizer can facilitate safe RL. The proposed
method, RL-AR, learns a focus module that relies on the safe control regularizer for less-exploited
states and simultaneously allows unbiased convergence for well-exploited states. Numerical experi-
ments in critical applications revealed that RL-AR is safe during training, given a control regularizer
with reasonable safety performance. Furthermore, RL-AR effectively learns from interactions and
converges to the performance standard of model-free RL that disregards safety.

One limitation of our setting is the assumption that the estimated model has reasonable accuracy
for deriving a viable control regularizer. Although this assumption is common in the control and
safe RL literature, one possible direction for future work is to design more robust algorithms against
inaccurate estimated models of the actual environment. A potential approach is to update the esti-
mated model using observed transitions in the actual environment. However, the practical challenge
is to adequately adjust all model parameters even with a small number of transitions observed in the
actual environment. In addition, for such an approach, managing controllability, convergence, and
safety requires careful design and tuning.

10

Acknowledgments and Disclosure of Funding

This project is partly supported by UK Research and Innovation (UKRI) under the UK government’s
Horizon Europe funding guarantee [grant number 101084642].

References
Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In International

Conference on Machine Learning, pages 22–31. PMLR, 2017.

Greg Anderson, Abhinav Verma, Isil Dillig, and Swarat Chaudhuri. Neurosymbolic reinforcement learning
with formally verified exploration. Advances in Neural Information Processing Systems, 33:6172–6183,
2020.

Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl. CasADi – A software
framework for nonlinear optimization and optimal control. Mathematical Programming Computation, 11
(1):1–36, 2019.

Osbert Bastani. Safe reinforcement learning with nonlinear dynamics via model predictive shielding. In 2021
American Control Conference, pages 3488–3494. IEEE, 2021.

Yazdan Batmani. Blood glucose concentration control for type 1 diabetic patients: a non-linear suboptimal
approach. IET Systems Biology, 11(4):119–125, 2017.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and Animesh Garg.
Conservative safety critics for exploration. arXiv preprint arXiv:2010.14497, 2020.

Annie Chen, Archit Sharma, Sergey Levine, and Chelsea Finn. You only live once: Single-life reinforcement
learning. Advances in Neural Information Processing Systems, 35:14784–14797, 2022.

Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. End-to-end safe reinforcement learning
through barrier functions for safety-critical continuous control tasks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 3387–3395, 2019a.

Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, and Joel Burdick. Control reg-
ularization for reduced variance reinforcement learning. In International Conference on Machine Learning,
pages 1141–1150. PMLR, 2019b.

Felipe Leno Da Silva and Anna Helena Reali Costa. A survey on transfer learning for multiagent reinforcement
learning systems. Journal of Artificial Intelligence Research, 64:645–703, 2019.

Shounak Datta, Yanjun Li, Matthew M Ruppert, Yuanfang Ren, Benjamin Shickel, Tezcan Ozrazgat-Baslanti,
Parisa Rashidi, and Azra Bihorac. Reinforcement learning in surgery. Surgery, 170(1):329–332, 2021.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese, Timo
Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Magnetic control of tokamak
plasmas through deep reinforcement learning. Nature, 602(7897):414–419, 2022.

Felix Fiedler, Benjamin Karg, Lukas Lüken, Dean Brandner, Moritz Heinlein, Felix Brabender, and Sergio
Lucia. do-mpc: Towards fair nonlinear and robust model predictive control. Control Engineering Practice,
140:105676, 2023.

Ian Fox, Joyce Lee, Rodica Pop-Busui, and Jenna Wiens. Deep reinforcement learning for closed-loop blood
glucose control. In Machine Learning for Healthcare Conference, pages 508–536. PMLR, 2020.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic meth-
ods. In International Conference on Machine Learning, pages 1587–1596. PMLR, 2018.

Nathan Fulton and André Platzer. Safe reinforcement learning via formal methods: Toward safe control through
proof and learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning. Journal of
Machine Learning Research, 16(1):1437–1480, 2015.

Peter Geibel and Fritz Wysotzki. Risk-sensitive reinforcement learning applied to control under constraints.
Journal of Artificial Intelligence Research, 24:81–108, 2005.

11

Ruben Glatt, Felipe Leno Da Silva, Reinaldo Augusto da Costa Bianchi, and Anna Helena Reali Costa. Decaf:
deep case-based policy inference for knowledge transfer in reinforcement learning. Expert Systems with
Applications, 156:113420, 2020.

Sébastien Gros and Mario Zanon. Data-driven economic nmpc using reinforcement learning. IEEE Transac-
tions on Automatic Control, 65(2):636–648, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum en-
tropy deep reinforcement learning with a stochastic actor. In International Conference on Machine Learning,
pages 1861–1870. PMLR, 2018.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep rein-
forcement learning that matters. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

Pau Herrero, Pantelis Georgiou, Nick Oliver, Monika Reddy, Desmond Johnston, and Christofer Toumazou.
A composite model of glucagon-glucose dynamics for in silico testing of bihormonal glucose controllers.
Journal of Diabetes Science and Technology, 7(4):941–951, 2013.

Lukas Hewing, Kim P Wabersich, Marcel Menner, and Melanie N Zeilinger. Learning-based model predictive
control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems, 3
(1):269–296, 2020.

Julia Hippisley-Cox, Carol Coupland, and Peter Brindle. Development and validation of qrisk3 risk predic-
tion algorithms to estimate future risk of cardiovascular disease: prospective cohort study. British Medical
Journal, 357, 2017.

Roman Hovorka, Fariba Shojaee-Moradie, Paul V Carroll, Ludovic J Chassin, Ian J Gowrie, Nicola C Jackson,
Romulus S Tudor, A Margot Umpleby, and Richard H Jones. Partitioning glucose distribution/transport,
disposal, and endogenous production during ivgtt. American Journal of Physiology-Endocrinology and
Metabolism, 282(5):E992–E1007, 2002.

Roman Hovorka, Valentina Canonico, Ludovic J Chassin, Ulrich Haueter, Massimo Massi-Benedetti,
Marco Orsini Federici, Thomas R Pieber, Helga C Schaller, Lukas Schaupp, Thomas Vering, et al. Non-
linear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiological
Measurement, 25(4):905, 2004.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal Mehta,
and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep reinforcement learning
algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In Proceedings
of the Nineteenth International Conference on Machine Learning, pages 267–274, 2002.

Dylan Kalisvaart, Jorge Bonekamp, and Sergio Grammatico. Bi-hormonal linear time-varying model predictive
control for blood glucose regulation in type 1 diabetes patients. In 2023 IEEE Conference on Control
Technology and Applications, pages 552–558. IEEE, 2023.

Thommen George Karimpanal, Santu Rana, Sunil Gupta, Truyen Tran, and Svetha Venkatesh. Learning trans-
ferable domain priors for safe exploration in reinforcement learning. In 2020 International Joint Conference
on Neural Networks, pages 1–10. IEEE, 2020.

Niklas Kochdumper, Hanna Krasowski, Xiao Wang, Stanley Bak, and Matthias Althoff. Provably safe rein-
forcement learning via action projection using reachability analysis and polynomial zonotopes. IEEE Open
Journal of Control Systems, 2:79–92, 2023.

Matthieu Komorowski, Leo A Celi, Omar Badawi, Anthony C Gordon, and A Aldo Faisal. The artificial
intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nature Medicine, 24
(11):1716–1720, 2018.

Juliane Liepe, Paul Kirk, Sarah Filippi, Tina Toni, Chris P Barnes, and Michael PH Stumpf. A framework
for parameter estimation and model selection from experimental data in systems biology using approximate
bayesian computation. Nature Protocols, 9(2):439–456, 2014.

Zuxin Liu, Zhepeng Cen, Vladislav Isenbaev, Wei Liu, Steven Wu, Bo Li, and Ding Zhao. Constrained varia-
tional policy optimization for safe reinforcement learning. In International Conference on Machine Learn-
ing, pages 13644–13668. PMLR, 2022.

12

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in Neural Information Processing Systems, 35:27730–27744, 2022.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning Re-
search, 22(268):1–8, 2021.

Meghana Rathi, Pietro Ferraro, and Giovanni Russo. Driving reinforcement learning with models. In Intelligent
Systems and Applications: Proceedings of the 2020 Intelligent Systems Conference Volume 1, pages 70–85.
Springer, 2021.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement learning.
arXiv preprint arXiv:1910.01708, 7(1):2, 2019.

Benjamin Recht. A tour of reinforcement learning: The view from continuous control. Annual Review of
Control, Robotics, and Autonomous Systems, 2:253–279, 2019.

Jennifer L Sherr, Melissa Schoelwer, Tiago Jeronimo Dos Santos, Leenatha Reddy, Torben Biester, Alfonso
Galderisi, Jacobus Cornelius van Dyk, Marisa E Hilliard, Cari Berget, and Linda A DiMeglio. Ispad clinical
practice consensus guidelines 2022: diabetes technologies: insulin delivery. Pediatric Diabetes, 23(8):
1406–1431, 2022.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic
policy gradient algorithms. In International Conference on Machine Learning, pages 387–395. Pmlr, 2014.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Tom Silver, Kelsey Allen, Josh Tenenbaum, and Leslie Kaelbling. Residual policy learning. arXiv preprint
arXiv:1812.06298, 2018.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey. Journal
of Machine Learning Research, 10(7), 2009.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu, Manuel
Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea Pierré, Sander
Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium, March 2023. URL https:
//zenodo.org/record/8127025.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based constrained
policy optimization. arXiv preprint arXiv:2010.03152, 2020.

Xiong Yang and Yingjiang Zhou. Optimal tracking neuro-control of continuous stirred tank reactor systems: A
dynamic event-driven approach. IEEE Transactions on Artificial Intelligence, 2023.

Dongjie Yu, Haitong Ma, Shengbo Li, and Jianyu Chen. Reachability constrained reinforcement learning. In
International Conference on Machine Learning, pages 25636–25655. PMLR, 2022a.

Haonan Yu, Wei Xu, and Haichao Zhang. Towards safe reinforcement learning with a safety editor policy.
Advances in Neural Information Processing Systems, 35:2608–2621, 2022b.

Rasoul Zahedifar and Ali Keymasi Khalaji. Control of blood glucose induced by meals for type-1 diabetics
using an adaptive backstepping algorithm. Scientific Reports, 12(1):12228, 2022.

Mario Zanon, Vyacheslav Kungurtsev, and Sébastien Gros. Reinforcement learning based on real-time iteration
nmpc. IFAC-PapersOnLine, 53(2):5213–5218, 2020.

13

https://zenodo.org/record/8127025
https://zenodo.org/record/8127025

Appendix

Table of Content
A Theoretical analysis . 14
B Environments for validations . 17
C Implementation details . 21
D Additional experiment results . 22

A Theoretical analysis

A.1 Policy combination as regularization

Lemma 1. (Policy Regularization) In any state s ∈ S , for a multivariate Gaussian RL policy πrl

with mean π̄rl(s) and covariance matrix Σ = diag(σ2
1(s), σ

2
2(s), . . . , σ

2
k(s)) ∈ Rk×k, the expecta-

tion of the combined action aβ(s) derived from Eq. (7) is the solution to the following regularized
optimization with regularization parameter λ = β(s)/(1− β(s)):

E [aβ(s)] = argmin
a

∥a− π̄rl(s)∥Σ +
β(s)

1− β(s)
∥a− areg(s)∥Σ . (13)

Proof. For state s ∈ S, the focus module outputs a fixed β = β(s). For the fixed β, the proof
of Lemma 1 is similar to the proof by Cheng et al. [2019b]. Since the RL policy is a Gaussian
distributed policy N (π̄rl(s),Σ) with the mean action π̄rl(s) and an exploration noise with covariance
Σ = diag(σ2

1 , σ
2
2 , . . .), the combined action aβ(s) also follows a Gaussian distribution:

aβ(s) ∼ N
(
βareg(s) + (1− β)π̄rl(s), (1− β)2Σ

)
. (14)

Let f(µ,Σ) be the probability density function (PDF) of N (µ,Σ). The product of two multivariate
Gaussian PDFs is proportional to another multivariate Gaussian PDF with the following mean and
covariance:

f (µ1,Σ1) · f (µ2,Σ2) = cf
(
(Σ−1

1 +Σ−1
2)−1(Σ−1

1 µ1 +Σ−1
2 µ2), (Σ

−1
1 +Σ−1

2)−1
)
. (15)

The mean of aβ(s), βareg(s) + (1− β)π̄rl(s), can be expressed in the following form:

βareg(s) + (1− β)π̄rl(s) = βΣ−1Σareg(s) + (1− β)Σ−1Σπ̄rl(s)

= Σ

((
1

β
Σ

)−1

areg(s) +

(
1

1− β
Σ

)−1

π̄rl(s)

)
.

(16)

The covariance matrix Σ can be expanded into the following form:

Σ =

((
1

β
Σ

)−1

+

(
1

1− β
Σ

)−1
)−1

. (17)

Using Eq. (15), the PDF of aβ(s) can be expressed as the multiplication of two PDFs, as shown
below:

f(βareg(s) + (1− β)π̄rl(s), (1− β)2Σ) = c0f

(
areg(s),

1

β
Σ

)
· f
(
π̄rl(s),

1

1− β
Σ

)
. (18)

With the definition ∥x∥Σ = xTΣ−1x, the PDF of aβ(s) can be written as:

f(aβ(s)) =c0c1 exp

(
−β

2
∥a− areg(s)∥Σ

)
× c2 exp

(
−1− β

2
∥a− π̄rl(s)∥Σ

)
=c exp

(
1− β

2

(
−∥a− π̄rl(s)∥Σ − β

1− β
∥a− areg(s)∥Σ

))
,

(19)

14

where the constant c is as follows:

c =
c0

(2π)kβk/2(1− β)k/2|Σ|
. (20)

Since β is in the range (0, 1), f(aβ(s)) monotonically decreases as ∥a − π̄rl(s)∥Σ + β
1−β ∥a −

areg(s)∥Σ increases. Therefore, the probability of π(s) is maximized when the term is minimized,
leading to the following optimization problem:

E [aβ(s)] = argmin
a

∥a− π̄rl(s)∥Σ +
β(s)

1− β(s)
∥a− areg(s)∥Σ . (21)

Assuming the RL policy πrl converges to argmaxπ Q(s, π(s)), Eq. (21) can be written as:

E [aβ(s)] = argmin
a

∥∥∥∥a− E
[
argmax

π
Q(s, π(s))

]∥∥∥∥
Σ

+
β(s)

1− β(s)
∥a− areg(s)∥Σ . (22)

A.2 Deviation of combined policy from safety regularizer

Theorem 1. Assume the reward R and the transition probability P of the MDP M are Lipshitz con-
tinuous over A with Lipschitz constants LR and LP . For any state s ∈ S, the difference in expected
return between following the combined policy πβ and following the safety regularizer policy πreg,
i.e., |V πβ (s)− V πreg(s)|, has the upper-bound:

|V πβ (s)− V πreg(s)| ≤ (1− γ)|S|LR + γ|S|LPRmax

(1− γ)2
(1− β(s))∆a, (23)

where |S| is the cardinality of S, and ∆a = |arl(s)− areg(s)| is the bounded action difference at s.

Proof. Let us define value function vectors vβ and vreg in R|S|×1, for which the s-th entries are
[vβ]s = V πβ (s) and [vreg]s = V πreg(s). Also, let us by rβ and rreg denote reward vectors
in R|S|×1, with the s-th entries of the reward vectors being [rβ]s = r(s, aβ(s)) and [rreg]s =

r(s, areg(s)). We define state-transition matrices Pβ and Preg in R|S|×|S|, with (s, s′)-th entries
as [Pβ]s,s′ = P (s, aβ(s)) and [Preg]s,s′ = P (s, areg(s)). According to the vectorized Bellman
equation, the difference between vβ and vreg satisfies the following relationship:

vβ − vreg = rβ + γPβvβ − rreg − γPregvreg

= rβ − rreg + γPβvβ − γPβvreg + γPβvreg − γPregvreg

= rβ − rreg + γPβ(vβ − vreg) + γ(Pβ −Preg)vreg

= (I− γPβ)
−1(rβ − rreg + γ(Pβ −Preg)vreg)

(24)

Let dTβ,s be the s-th row of (I − γPβ)
−1 and dTreg,s be the s-th row of (I − γPreg)

−1. Since
(I − γPβ)

−1 can be expanded as a Neumann series I + γPβ + γ2P 2
β · · · , the upper-bound for

the elements of dβ,s and dreg,s is 1/(1 − γ), i.e., ∥dβ,s∥∞ and ∥dreg,s∥∞ are less than or equal
to 1/(1 − γ). From Eq. (24), the value functions V πβ (s) and V πreg(s) for a specific state s ∈ S
satisfies:

|V πβ (s)− V πreg(s)| ≤ |dTβ,s(rβ − rreg)|︸ ︷︷ ︸
(a)

+ γ|dTreg,s(Pβ −Preg)vreg|︸ ︷︷ ︸
(b)

,
(25)

First, we consider part (a) of Eq. (25). Assuming R(s, a) is Lipschitz continuous over A with
Lipschitz constant LR, we have:

∥rβ − rreg∥1 = |S||R(s, aβ(s))−R(s, areg(st))|
(Lipschitz) ≤ |S|LR(1− β(s))|arl(s)− areg(s)|

≤ |S|LR(1− β(s))∆a

(26)

15

Using the Holder’s inequality, part (a) of Eq. (25) has the following upper-bound:

|dTβ,s(rβ − rreg)| ≤ ∥dβ,s∥∞∥rβ − rreg∥1 ≤ |S|LR
1− γ

(1− β(s))∆a (27)

Second, we consider part (b) of Eq. (25). For each state s ∈ S , define the s-th rows of Pβ and Preg

as pTβ,s and pTreg,s. The vectors pβ,s and preg,s each represents a discrete probability distribution.
Because we assume P (s, a) is Lipschitz continuous over A with Lipschitz constant LP , the upper-
bound on each item in vector (Pβ −Preg)vreg is derived below:

|(pβ,s − preg,s)
Tvreg| ≤ ∥pβ,s − preg,s∥1∥vreg∥∞

≤ Rmax

1− γ
∥P (s, aβ(s))− P (s, areg(s))∥1

(Lipschitz) ≤ LPRmax

1− γ
(1− β(s))|arl(s)− areg(s)|

≤ LPRmax

1− γ
(1− β(s))∆a

(28)

Therefore, part (b) of Eq. (25) has the following upper-bound:

γ|dTreg,s(Pβ −Preg)vreg| ≤ ∥dreg,s∥∞∥(Pβ −Preg)vreg∥1 ≤ γ|S|LPRmax

(1− γ)2
(1− β(s))∆a (29)

The proof is complete by substituting Eq. (27) and Eq. (29), respectively, into parts (a) and (b) of
Eq. (25).

A.3 Performance improvement of focus module update

Theorem 2. (Focus Module Performance Improvement) The focus weight β′(s) updated by Eq. (10)
satisfies V πβ′ (s) ≥ V πβ (s),∀s ∈ S, i.e., the expected return monotonically improves.

Proof. According to the performance difference lemma in [Kakade and Langford, 2002], in all states
s ∈ S, the expected return difference between the two policies satisfies:

V π′
(s)− V π(s) =

1

1− γ
Es′∼dπ′,s [Aπ(s′, π′)], ∀π, π′ (30)

where Aπ(s, π′) = Qπ(s, π′) − Qπ(s, π) is the advantage function, dπ
′,s is the normalized dis-

counted occupancy induced by policy π′ from the starting state s. The update in Eq. (10) results in
Qπβ (s, πβ′) ≥ Qπβ (s, πβ),∀s ∈ S. Thus β′(s) satisfies:

Aπβ (s, πβ′) = Qπβ (s, πβ′)−Qπβ (s, πβ) ≥ 0. (31)

Using the above in Eq. (30), and combined with the fact that the discount factor γ is in range (0, 1),
we can rewrite Eq. (30) as V πβ′ (s) ≥ V πβ (s),∀s ∈ S.

A.4 Convergence of combination weight

Lemma 2. (Combination Weight Convergence) For any state s, assume the RL policy πrl converges
to the optimum policy π⋆ that satisfies Q(s, π⋆) > Q(s, π),∀π ̸= π⋆, then β′(s) = 0 will be the
solution to Eq. (10) that achieves the optimal policy combination.

Proof. Since a sub-optimal model is used to derive πreg, πreg ̸= π⋆. Let a⋆(s) ∼ π⋆(s) denote the
optimum action at state s. If β(s) ̸= 0, then β(s)areg(s) + (1− β(s))arl(s) = β(s)areg(s) + (1−
β(s))a⋆(s) ̸= a⋆(s). Therefore, the solution to Eq. (10), i.e., the updated focus weight β′(s), can
only be 0.

16

A.5 Convergence to the RL policy

Theorem 3. (Policy Combination Bias) For any state s, the distance between the combined action
aβ(s) and the optimal action a⋆(s) has the following lower-bound:

|aβ(s)− a⋆(s)| ≥ |areg(s)− a⋆(s)| − (1− β(s))|areg(s)− arl(s)|. (32)

If a Gaussian RL policy πrl converges to the optimum policy π⋆(s) with Q(s, π⋆) > Q(s, π),∀π ̸=
π⋆, then the combined policy πβ(s) can have unbiased convergence to the optimum Gaussian policy
π⋆ with total variance distance DTV(πβ(s), π

⋆(s)) = 0.

Proof. First, we prove the lower-bound for |aβ(s) − a⋆(s)|. The proof of lower-bound is similar
to [Cheng et al., 2019b]. We expand the distance between the safety regularizer action areg and the
combined action aβ as follows:

|areg(s)− aβ(s)| = |areg(s)− β(s)areg(s)− (1− β(s))arl(s)|
= (1− β(s))|areg(s)− arl(s)|.

(33)

Following triangle inequality, the distance between the combined action and the optimum action is
as follows:

|aβ(s)− a⋆(s)| ≥ |areg(s)− a⋆(s)| − |areg(s)− aβ(s)|
= |areg(s)− a⋆(s)| − (1− β(s))|areg(s)− arl(s)|.

(34)

To prove the convergence of πβ , we first examine the convergence of β(s). According to Lemma 2,
β(s) converges to 0 under the assumption that the RL policy πrl converges to π⋆(s) with Q(s, π⋆) >
Q(s, π),∀π ̸= π⋆. Because β(s) = 0, the combined policy has variance equal to πθ. According to
Lemma 1, the following holds for any state s:

E[aβ(s)] = argmin
a

∥a− argmax
arl(s)

Q(s, arl(s))∥Σ +
β(s)

1− β(s)
∥a− areg(s)∥Σ

= argmin
a

∥a− argmax
arl(s)

Q(s, arl(s))∥Σ = π̄RL(s).
(35)

Thus the the converged combined policy πβ(s) = πrl(s) = π⋆(s) with total variance distance
DTV(πβ(s), π

⋆(s)) = 0.

B Environments for validations

In this section, we introduce the four environments (Glucose, BiGlucose, CSTR, and Cart Pole) used
in Section 4, with detailed environment models, parameters, and reward functions. MPC minimizes
the stage cost Jk and terminal cost JN , while RL maximizes rewards r, for consistency, we set the
MPC costs to Jk = JN = −r when validating the MPC in the environments.

B.1 Glucose

Table 2: Glucose parameters for the estimated model and the actual environment

Parameters Unit Estimated Model Actual Environment

Gb mg/dL 138 138
Ib µU/mL 7 7
n min−1 0.2814 0.2
p1 min−1 0 0.
p2 min−1 0.0142 0.005
p3 min−1 15e-6 5e-6
D0 - 4 4
dt min 10 10

The Glucose environment simulates blood glucose level, denoted as G, against meal-induced
disturbances which elevate G and cause hyperglycemia. The observations are (G, Ġ, t), where

17

Ġ = Gt − Gt−1 and t is the total time passed after meal ingestion. The action is the injection
of insulin aI , which gradually lowers G but with a large delay. Excessive injection of insulin can
cause life-threatening hypoglycemia. Safety constraints are imposed on the blood glucose level G,
as both the elevated and reduced G result in severe health risks (hyperglycemia and hypoglycemia,
respectively). The blood glucose model contains 3 state variables regulated by the ordinary differ-
ential equations (ODEs) given below:

Ġ = −p1(G−Gb)−GX +Dt

Ẋ = −p2X + p3(I − Ib)

İ = −n(I − Ib) + aI ,

(36)

among which only G can be observed. Because not all states are observed, the closed loop is
maintained only for the observed G for MPC and RL-AR. The term Dt represents the time-varying
disturbance caused by the meal disturbance:

Dt = D0 exp(−0.01t). (37)

The model parameters adopted by the estimated model and the actual environment are given by
Table 2. The initial states are determined by setting the left-hand side of Eq. (36) to zeros and
solving the steady-state equations. The reward function for Glucose is the Magni risk function [Fox
et al., 2020], which gives stronger penalties for low blood glucose levels to prevent hypoglycemia:

r =

{
−
(
3.35506× ((lnG)0.8353 − 3.7932)

)2
, 10 ≤ G ≤ 1000

−1e5, otherwise
. (38)

B.2 BiGlucose

Table 3: BiGlucose parameters for the estimated model and the actual environment

Parameter Unit Estimated Model Actual Environment

DG kg 0.08 0.08
VG L/kg 0.14 0.18
k12 min−1 0.0968 0.0343
F01 mmol/(kg min) 0.0199 0.0121
EGP0 mmol/(kg min) 0.0213 0.0148
Ag - 0.8 0.8
tmax,G min 40 40
tmax,I min 55 55
VI L kg−1 0.12 0.12
ke min−1 0.138 0.138
ka1 min−1 0.0088 0.0031
ka2 min−1 0.0302 0.0752
ka3 min−1 0.0118 0.0472
kb1 L/(min2 mU) 7.58e-5 9.11e-6
kb2 L/(min2 mU) 1.42e-5 6.77e-6
kb3 L/(min mU) 8.5e-4 1.89e-3
tmax,N min 20.59 32.46
kN min−1 0.735 0.620
VN mL kg−1 23.46 16.06
p min−1 0.074 0.016
SN · 10−4 mL/pg min−1 1.98 1.96
Mg g/mol 180.16 180.16
BW kg 68.5 68.5
Nb pg/mL 48.13 48.13
dt min 10 10

The BiGlucose environment simulates blood glucose level G against meal-induced disturbances,
which elevate G and cause hyperglycemia. The observations are (G, Ġ, t), where Ġ = Gt − Gt−1

18

and t is the total time passed after meal ingestion. The actions are insulin and glucagon injections
(aI , aN). Insulin injection aI lowers G but causes hypoglycemia when overdosed. Glucagon in-
jection aN elevates G and thus can be used to mitigate the hypoglycemia caused by aI . Similar to
Glucose, safety constraints are imposed on G. The blood glucose model contains 12 internal states
(11 of them unobservable) and 2 actions with large delays, regulated by the ODEs given below:

Q̇1 = −F c01(G)− x1Q1 + k12Q2 − FR
+ (1− x3)EGP0 + cconvUG + Y Q1

Q̇2 = x1Q1 − (k12 + x2)Q2

ẋ1 = −ka1x1 + kb1I

ẋ2 = −ka2x2 + kb2I

ẋ3 = −ka3x3 + kb3I

Ṡ1 = aI −
S1

tmax,I

Ṡ2 =
S1

tmax,I
− S2

tmax,I

İ =
S2

VItmax,I
− keI

Ż1 = aN − Z1

tmax,N

Ż2 =
Z1

tmax,N
− Z2

tmax,N

Ṅ = −kN (N −Nb) +
Z2

VN tmax,N

Ẏ = −pY + pSN (N −Nb),

(39)

where the intermediate variables F c01 and FR are piecewise functions of the measurable blood glu-
cose mass G = 18×Q1/VG, as shown below:

F c01 =

{
F01, G ≥ 81mg/dL
F01G/81, otherwise

, (40)

FR =

{
0.003(G/18− 9)VG, G ≥ 152mg/dL
0, otherwise

. (41)

Since only G can be observed among the 12 states, the closed loop is maintained only for G in MPC
and RL-AR. The term UG represents the time-varying disturbance caused by the meal disturbance:

UG =
DGAG
t2max,G

· t · e−t/tmax,G . (42)

The model parameters adopted by the estimated model and the actual environment are given by
Table 3. This extended model proposed by Herrero et al. [2013] and Kalisvaart et al. [2023] captures
more complicated blood glucose dynamics, allowing the use of both insulin injection and glucagon
injection as actions. This leads to better regulation performance, but also drastically increases the
complexity of the problem due to its large number of unobservable states, delayed action responses,
and nondifferentiable piecewise dynamics [Kalisvaart et al., 2023].

The initial states are determined by setting the left-hand side of Eq. (39) to zeros and solving the
steady-state equations. The reward function for BiGlucose is the Magni risk function [Fox et al.,
2020], which gives stronger penalties for low blood glucose levels to prevent hypoglycemia:

r =

{
−10×

(
3.35506× ((lnG)0.8353 − 3.7932)

)2
, 10 ≤ G ≤ 1000

−1e5, otherwise
. (43)

19

Table 4: CSTR actual environment model parameters

Parameter Unit Actual Environment Parameter Unit Actual Environment

k0,ab h−1 1.287e12 ρ kg/L 0.9342
k0,bc h−1 1.287e12 Cp kJ/kg.K 3.01
k0,ad L/mol.h 9.043e9 Cp,k kJ/kg.K 2.0
Rgas kJ/mol.K 8.3144621e-3 AR m2 0.215
EA,ab kJ/mol 9758.3 VR L 10.01
EA,bc kJ/mol 9758.3 mk kg 5.0
EA,ad kJ/mol 8560.0 Tin

◦C 130.0
HR,ab kJ/mol 4.2 Kw kJ/h m2 K 4032.0
HR,bc kJ/mol -11.0 CA,0 mol/L 5.1
HR,ad kJ/mol -41.85 dt h 0.05

Table 5: CSTR different parameters for the estimated model and the actual environment

Parameter Estimated model Actual Environment

α 1 1.05
β 1 1.1

B.3 CSTR

The CSTR environment simulates the concentration of a target chemicals in a continuous stirred
tank reactor. The observations are (CA, CB , TR, TK), where CA and CB are the concentrations
of two chemicals, TR is the temperature of the reactor, and TK is the temperatures of the cooling
jacket. The actions are the feed and the heat flow (aF , aQ). Safety constraints are imposed on the
chemical concentrations and reactor temperature, as crossing the safe boundaries for any of them
can lead to tank failure or even explosions. This model contains four state variables regulated by the
ODEs given below:

ĊA = aF (CA,0 − CA)−K1CA −K3C
2
A

ĊB = −aFCB +K1CA −K2CB

ṪR =
K1CAHR,ab +K2CBHR,bc +K3C

2
AHR,ad

−ρCp
+

KwAR(TK − TR)

ρCpVR
+ aF (Tin − TR)

˙TK =
aQ +KwAR(TR − TK)

mkCp,k
,

(44)

where the intermediate variables are:

K1 = = βk0,ab exp(
−EA,ab

TR + 273.15
)

K2 = = k0,bc exp(
−EA,bc

TR + 273.15
)

K3 = = k0,ad exp(
−αEA,bc

TR + 273.15
).

(45)

The model parameters adopted by the estimated model and the actual environment are given by
Table 4 and Table 5. The initial concentration of the target chemical CB,0 is set to 0.5. The reward
function for CSTR is as follows:

r =

{
−(100× (CB − 0.6)2, 0.1≤CA≤2, 0.1≤CB≤2, 50≤TR≤200, 50≤TK≤150

−(100× (CB − 0.6)2 − 1e4, otherwise
. (46)

B.4 Cart Pole

The Cart Pole environment simulates an inverted pole on a cart. The environment is the continu-
ous action adaptation of the gymnasium environment [Towers et al., 2023]. The observations are

20

Table 6: Cart Pole parameters for the estimated model and the actual environment

PARAMETER UNIT ESTIMATED MODEL ACTUAL ENVIRONMENT

g m · s−2 9.8 9.8
mc kg 1.0 0.8
mp kg 0.1 0.3
l m 0.5 0.6
dt s 0.02 0.02

Table 7: RL-AR hyperparameters. The baseline methods utilized the same network structures and
training hyperparameters.

Parameter Value
Learning rate for Q network 1× 10−3

Learning rate for policy network 3× 10−4

Batch size |B| for updating 256
Start learning 256
Target Q network update factor τ 0.005
Forgetting factor γ 0.99
Frequency for updating policy network 2
Frequency for updating target network 1
Learning rate for the focus module 5× 10−6

focus module pretraining threshold 1− ϵ 0.999
Minimum log policy variance −5
Maximum log policy variance 2
Policy network hidden layers [256, 256]
Q Network hidden layers [256, 256]
focus module hidden layers [128, 32]
Glucose MPC horizon 100
Other envs MPC horizon 20

(x, ẋ, θ, θ̇), where x is the position of the cart and θ is the angle of the pole. The action is the hori-
zontal force af . Safety constraints are imposed on x and θ as the control fails if the cart reaches the
end of its rail or the pole falls over. This model contains four state variables regulated by the ODEs
given below:

θ̈ =
g sin θ − d cos θ

l(4/3−mp cos2 θ/(mp +mc))

ẍ = d− mplθ̈ cos θ

mp +mc

(47)

The intermediate variable d is:

d =
10× af +mplθ̇

2 sin θ

mp +mc
(48)

The model parameters adopted by the estimated model and the actual environment are given by
Table 6. The initial tilt of the pole is 6 degrees. The reward function for Cart Pole is as follows:

r =

{
−1000θ2 −max(0, |x| − 0.25), −2.4≤x≤2.4, −12π/360≤θ≤12π/360

−1000θ2 −max(0, |x| − 0.25)− 1e4, otherwise
. (49)

C Implementation details

Experiments are conducted using Python 3.12.5 on an Ubuntu 22.04 machine with 13th Gen Intel
Core i7-13850HX CPU, Nvidia RTX 3500 Ada GPU, and 32GB RAM. For RL-AR, the average time
for taking a step (interaction and network updates) is 0.0235 s for Glucose, 0.0667 s for BiGlucose,

21

0.0378 s for CSTR, and 0.0206 s for Cart Pole. The above decision times are practical for real-time
control in these environments.

The MPC and the safety regularizer in RL-AR are implemented using [Fiedler et al., 2023]. The
implementations for SAC and the RL agent in RL-AR are based on [Huang et al., 2022]. RPL,
CPO, and SEditor follow the implementations in [Silver et al., 2014], [Ray et al., 2019], and [Yu
et al., 2022b], respectively. The same hyperparameters are used by RL-AR for all experiments
in Section 4, which are listed in Table 7. The baseline methods’ network structure and training
parameters are set to be the same as RL-AR.

D Additional experiment results

D.1 State-dependent vs. scalar policy combination

0 50 100 150 200 250 300

episode

0.2

0.4

0.6

0.8

no
rm

al
iz

ed
 re

tu
rn

10*10*

0 5000 10000 15000 20000 25000 30000

step

0.0

0.2

0.4

0.6

0.8

1.0

po
lic

y
co

m
bi

na
tio

n
w

ei
gh

t

(s)
scalar

Figure 5: Comparing the state-dependent focus module βψ(s) with the scalar β by plotting the
normalized return curves (left) and focus weight curves (right) in the Glucose environment. Shaded
areas indicate standard deviations.

As discussed in Section 3 and Theorem 2, using a state-dependent focus module β(s) for policy
combination (compared to using a scalar weight β) offers the advantage of achieving monotonic
performance improvements at least in the tabular setting. Here, we empirically verify the advantage
of using the state-dependent βψ(s) versus a scalar weight β in Fig. 5 by analyzing the normalized
returns (left panel) and the focus weights (right panel) during training in the Glucose environment
(Fig. 5). The mean (solid lines) and standard deviation (shaded area) in Fig. 5 are obtained from 5
independent runs using different random seeds.

Practically, RL-AR with state-dependent βψ(s) does not show a strictly monotonic policy improve-
ment, which can be attributed to the neural network approximation. However, improvements in the
normalized return are significantly more steady when using βψ(s) rather than a scalar β, as shown
by the blue and red curves in the left panel of Fig. 5. The right panel of Fig. 5 shows the evolution
of the focus weights (used by RL-AR) versus the training steps. Although both βψ(s) and β con-
verge to zero after approximately the same number of steps, βψ(s) applies different focus weights
depending on specific states encountered as seen by the fluctuations in the blue curve in the right
panel of Fig. 5.

D.2 Entropy Regularization

We conduct an ablation study to compare using SAC as the RL agent in RL-AR with using an-
other state-of-the-art RL algorithm, TD3 [Fujimoto et al., 2018]. The key difference between SAC
and TD3 is that SAC incorporates the entropy regularization term, −α logPπθ

(a|s), in Eq. (3) and
Eq. (5). The normalized return curves, shown in Fig. 6, demonstrate that RL-AR with SAC as the RL
agent achieves a higher normalized return at a faster rate. While RL-AR promotes safety and stabil-
ity at the cost of reducing the exploration intensity of the combined policy (as proved in Lemma 1),
which could potentially slow down the discovery of the optimal policy, SAC’s entropy regularization

22

0 50 100 150 200 250 300

episode

0.2

0.3

0.4

0.5

0.6

0.7

no
rm

al
iz

ed
 re

tu
rn

10*10*

SAC as the RL module
TD3 as the RL module

Figure 6: Comparison of normalized return between using the SAC and using TD3 [Fujimoto et al.,
2018] as the RL agent in the Glucose environment (standard deviations are shown in the shaded
area). The main difference between SAC and TD3 is that SAC has the entropy regularization terms
in its objectives, which are intended to encourage diverse policies and stabilize training.

counteracts this by promoting the use of more diverse policies. A closer examination reveals that the
SAC curve locally exhibits more minor fluctuations than the TD3 curve, illustrating SAC’s ability
to use more diverse policies.

D.3 focus weight curves during training

0 2000 4000 6000 8000 10000

step

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

po
lic

y
co

m
bi

na
tio

n
w

ei
gh

t
(s

t)

MPC fails from the beginning

n = 3/16 n, p2 = 1/4 p2
n = 3/16 n, p2 = 1/2 p2
n = 3/16 n, p2 = 1 p2
n = 3/16 n, p2 = 2 p2

Figure 7: The focus weights when training with varying levels of discrepancies between the esti-
mated Glucose model (with parameters p̃2, ñ) and the actual Glucose environment (with parameters
p2, n).

In Fig. 7, we show several βψ(st) curves from training RL-AR in various Glucose environments,
created by varying the environment model parameters n and p2. Let ñ and p̃2 be the parameters of the
estimated model f̃ , the actual environment models have n = 3ñ/16 and p2 = p̃2/4, p̃2/2, 1p̃2, 2p̃2
to mimic deviating characteristics of new patients. When there are large discrepancies between the
environment and f̃ (e.g., n = 3ñ/16 and p2 = p̃2/4), the safety regularizer fails initially, but the
focus weight βψ(st) decreases rapidly, enabling RL-AR to recover from initial failures by rapidly
shifting from the sub-optimal safety regularizer policy to the stronger learned RL policy. Conversely,
βψ(st) converges more slowly to zero when the safety regularizer performs well in the actual en-
vironment, as it becomes more challenging to find an RL policy that significantly outperforms the
safety regularizer policy in such cases.

23

0 100 200 300 400 500 600 700 800

episode

-2.5

-2

-1.5
no

rm
al

iz
ed

 re
tu

rn

10*10*

0 100 200 300 400 500 600 700 800

episode

0

10

20

nu
m

be
r o

f f
ai

lu
re

s

RL-AR
MPC
SAC
(pretrained)

Figure 8: Normalized return (left) and the number of failures (right) during training in the Acrobot
environment (standard deviations are shown in the shaded area).

D.4 The Acrobot environment

In Section 4, we evaluate RL-AR in several widely recognized challenging safety-critical environ-
ments. For example, the BiGlucose environment (see Appendix B.2) involves 11 unobservable
states, two actions with significant delays, and complex, nondifferentiable piecewise dynamics.
Here, we provide further evidence of the effectiveness of RL-AR in the Acrobot environment, an
adaptation of the Gymnasium environment [Towers et al., 2023] with a continuous action space
(Fig. 8). The Acrobot environment simulates two links connected by a joint, with one end of the
connected links fixed. The links start facing downward. The objective is to swing the free end above
a given target height as quickly as possible by applying torque to the joint. Failure is defined as
the tip not reaching the target height in 400 time steps. For validation, we set the actual Acrobot
environment parameters l2 = 1.1l̃2,m2 = m̃2, where l̃2 = 1.0 is the lower link length parameter of
the estimated model f̃ , and m̃2 = 1.0 is the lower link weight parameter of the estimated model f̃ .

The Acrobot environment is particularly challenging for RL-AR’s policy regularizer due to: i) its
highly nonlinear, under-actuated dynamics, and ii) its definition of failure as not achieving the target
within a given time limit, which cannot be easily formalized as a constraint. As Fig. 8 shows, RL-
AR can swing up the tip in the first episode by initially relying on the viable safety regularizer
policy. Throughout training, RL-AR ensures safety while converging to a similar normalized return
as SAC, which focuses only on return and fails many times during training. This illustrates RL-AR’s
robustness in challenging tasks and its potential in applications where failures are defined in terms
of time limit and are hard to formalize as constraints.

E Impact statement

This paper presents work that aims to advance the field of Machine Learning. There are many poten-
tial societal consequences of our work, none of which, based on our judgment, must be specifically
highlighted here.

24

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims described in the abstract and introduction are: 1) safe during
training and 2) converging to the performance standard of model-free RL, given reasonable
model environment discrepancies.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6 identifies the requirement of reasonable model environment dis-
crepancies, which are further quantified using experiments in Fig. 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

25

Answer: [Yes]
Justification: The proofs for all theoretical results (Lemma 1, Theorem 1, Theorem 2,
Lemma 2, and Theorem 3) are provided in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 3, Section 4, and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

26

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code available at https://github.com/HaozheTian/RL-AR.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Described in Section 4, Appendix C, and the code at https://github.com/
HaozheTian/RL-AR.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Mean and std. included for the main results (Table 1 and Fig. 2), Fig. 5,
Fig. 6, and Fig. 8.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

27

https://github.com/HaozheTian/RL-AR
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://github.com/HaozheTian/RL-AR
https://github.com/HaozheTian/RL-AR

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms with the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

28

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Assets properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

29

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: Provided at https://github.com/HaozheTian/RL-AR.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human subjects involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or human subjects involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

30

https://github.com/HaozheTian/RL-AR

	Introduction
	Preliminaries
	Methodology
	The safety regularizer
	Policy regularization
	Updating the focus module

	Numerical Experiments
	Safety of training
	Achieved return after convergence
	Sensitivity to parameter discrepancies

	Related Works
	Conclusion and Future Works
	Theoretical analysis
	Policy combination as regularization
	Deviation of combined policy from safety regularizer
	Performance improvement of focus module update
	Convergence of combination weight
	Convergence to the RL policy

	Environments for validations
	Glucose
	BiGlucose
	CSTR
	Cart Pole

	Implementation details
	Additional experiment results
	State-dependent vs. scalar policy combination
	Entropy Regularization
	focus weight curves during training
	The Acrobot environment

	Impact statement

