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Abstract

Learners sharing similar implicit cognitive states often display comparable observ-
able problem-solving performances. Leveraging collaborative connections among
such similar learners proves valuable in comprehending human learning. Motivated
by the success of collaborative modeling in various domains, such as recommender
systems, we aim to investigate how collaborative signals among learners contribute
to the diagnosis of human cognitive states (i.e., knowledge proficiency) in the
context of intelligent education. The primary challenges lie in identifying implicit
collaborative connections and disentangling the entangled cognitive factors of learn-
ers for improved explainability and controllability in learner Cognitive Diagnosis
(CD). However, there has been no work on CD capable of simultaneously modeling
collaborative and disentangled cognitive states. To address this gap, we present
Coral, a Collaborative cognitive diagnosis model with disentangled representa-
tion learning. Specifically, Coral first introduces a disentangled state encoder to
achieve the initial disentanglement of learners’ states. Subsequently, a meticulously
designed collaborative representation learning procedure captures collaborative
signals. It dynamically constructs a collaborative graph of learners by iteratively
searching for optimal neighbors in a context-aware manner. Using the constructed
graph, collaborative information is extracted through node representation learning.
Finally, a decoding process aligns the initial cognitive states and collaborative states,
achieving co-disentanglement with practice performance reconstructions. Exten-
sive experiments demonstrate the superior performance of Coral, showcasing signif-
icant improvements over state-of-the-art methods across several real-world datasets.
Our code is available at https://github.com/bigdata-ustc/Coral.

1 Introduction
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Figure 1: An example of human learning, where
learners individually select questions to practice.
Each question tests at least one knowledge concept.

It is a common notion that individuals with sim-
ilar implicit states frequently exhibit similar ex-
plicit behaviors. Therefore, establishing inter-
connections among similar users is crucial for
understanding human behaviors. For instance,
social connections play a pivotal role in under-
standing current consumer preferences and pre-
dicting future behaviors [42]. Similarly, in the
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context of intelligent education, a better modeling of like-minded learners with similar learning expe-
riences, is essential for understanding the human learning process [31], analyzing their knowledge
proficiency and facilitating personalized tutoring tailored to individual needs [55].

As illustrated in Figure 1, we can infer Nancy is likely to answer the Cone-related question q5 correctly
according to the correct practice responses of Bob and Alice, who share similar learning behaviors
with Nancy. The underlying psychological assumption is that learners with similar experiences
generally possess similar cognitive states — how well the learner masters each knowledge concept,
influencing their subsequent responses. To gain a deeper understanding of the human learning process,
it is crucial to explicitly diagnose unobservable cognitive states. Existing Cognitive Diagnosis
(CD) methods seek to enhance diagnostic accuracy by fully utilizing the inner-learner information
(i.e., individual attributions [41] and explicit practice records) and question-side features (e.g.,
difficulty [16], textual content [26], and educational relations [12, 14]). However, the issue of
how similar (a.k.a. collaborative) connections among inter-learners with similar states facilitate
understanding of learners’ knowledge proficiency remains largely unexplored.

In this study, to efficiently harness collaborative information among similar learners and thereby
more accurately diagnose the cognitive states of each individual, we advocate for the incorporation
of inter-learner connections into the CD process. However, designing a collaborative CD model in
educational scenarios presents two distinct challenges due to the complexity of human learning.
• First, acquiring explicit collaborative connections among learners proves to be a formidable

challenge. On the one hand, unlike many well-defined social scenarios (e.g., Twitter.com), where
user preference similarities are manifested through explicit social actions such as following and
liking, the directly available social behaviors among learners in learning environments (e.g.,
LeetCode.com) cannot be used for diagnosis modeling since these social attributes cannot reflect
true cognitive-oriented connections. On the other hand, some related studies [28, 13] attempt to
design different similarity functions based on practice data to compute cognitive similarities among
learners. However, these approaches pose a significant challenge of manually selecting appropriate
metrics and corresponding thresholds, introducing additional inductive biases. Although various
methods for constructing user relationships have been proposed in other domains [22, 9], these
approaches do not consider the domain-specific attributes of students in learning scenarios and
cannot be directly applied in educational contexts.

• Second, an ideal collaborative diagnosis procedure requires disentangling and uncovering the
mixed explanatory latent factors hidden in the observed learning behaviors. The basic motivation is
that learners demonstrate complex and diverse patterns driven by entangled states across both inner-
and inter-learner perspectives. For instance, from an inner perspective, Nancy may not master
Cone since she does not practice Cone-related questions. However, based on inter-learner data,
one can infer a high probability that she has mastered Cone. Most prior attempts can not fulfill this
requirement since they learn representations in an entangled way. Although recent models [8, 50]
achieve a dimension-level disentanglement of cognitive states, they lack consideration of modeling
the influence of collaborative connections, ignoring the complex relations between inner- and
inter-learner connections of different individuals. Thereby, it needs to find a suitable way to achieve
the co-disentanglement from both the inner- and inter-learner views for cognitive representations
with higher interpretability and controllability.

To tackle the above challenges, we propose Coral, a Collaborative cognitive diagnosis model with
disentangled representation learning, to reveal learner cognitive states while simultaneously modeling
both inner- and inter-learner learning information. Specifically, our approach begins with the
disentangled cognitive representation encoding to establish initial disentangled learner states through
reconstructing their practice performance from the inner-learner perspective. Next, our focus shifts to
effectively learning collaborative cognitive representations from the inter-learner perspective. The
most significant point is to find the implicit collaborative relations between learners. To address this
challenge, we present a context-aware collaborative graph learning mechanism that automatically
explores all K-optimal neighbors for each learner given their basic cognitive states to facilitate the
explicit modeling of collaborative connections among learners. Based on the constructed graph,
collaborative information can be effectively fused into disentangled learner cognitive states through
learning collaborative node representations. Finally, a decoding and reconstruction process is
conducted to merge initial states and collaborative states so as to achieve co-disentanglement from
both the inner- and inter-learner perspectives. Extensive experiments demonstrate the superior
performance of Coral, showing significant improvements over SOTA methods across several datasets.
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2 Related Work

Cognitive Diagnosis As a fundamental task, cognitive diagnosis (CD) has been well-researched for
decades in educational psychology [25, 4, 53]. It aims to profile the implicit cognitive states (i.e.,
the proficiency of specific knowledge concepts) of learners by exploiting observed practice records
(e.g., correct or wrong). Existing research on CD assumes that learners’ knowledge proficiency is
proportional to their practice performance and thus can be diagnosed through predicting their practice
performance [12]. Since the diagnostic results can be applied to many intelligent applications, such
as exercise recommendation [18] and learning path suggestions [55], many CD models have been
proposed in recent years. The early works from psychology like IRT [16] and MIRT [1] focus on
modeling learners’ answering process by predicting the probability of a learner answering a question
correctly, which utilizes latent factors as the learner’s ability. These methods lack interpretability,
i.e., they are inability to output explicit multidimensional diagnostic results on each knowledge
concept. To achieve better interpretability, later diagnostic models focus on incorporating knowledge
concepts of questions to diagnose learners’ proficiency on all knowledge concepts [38, 45, 46, 32].
Representative NCDM [40] adopts neural networks to model non-linear interactions instead of
handcrafted interaction functions in previous works (e.g., IRT, and MIRT). In summary, existing CD
studies enhance diagnostic accuracy by fully utilizing the inner-learner information (i.e., individual
attributions and explicit practice records) [41, 50]and question-side features (e.g., difficulty [16, 38],
textual content [26], and educational relations [12, 14, 8]). However, to the best of our knowledge,
the problem of collaborative diagnostic modeling remains largely unexplored.

Collaborative modeling in Education Collaborative connections among learners in the education
context commonly refer to learners with similar explicit practice behaviors, testing scores and
implicit knowledge proficiency [28, 54, 44]. However, due to the complexity and implicitness of
the human learning process, these relations are commonly not explicitly and directly available.
Existing studies [28, 13] in AI Education have attempted to design different similarity functions
based on practice data to compute cognitive similarities among learners. However, these methods
pose a significant challenge of manually selecting appropriate metrics and corresponding thresholds,
introducing additional inductive biases.

Disentangled Representation Learning Disentangled Representation Learning (DRL)[3], which
aims to produce robust, controllable, and explainable representations, has become one of the core
problems in machine learning. Typical methods include variational method [20], weakly supervised
models [21], as well as the recent combination with the diffusion model [6]. DRL has a wide range
of applications in user modeling to disentangle attributes. For example, recommendation with several
aspects of users’ interests [24, 33], fair user representation to disentangle sensitive attributes [10].
In education, DCD [8] attempts to disentangle learners’ cognitive representations via variational
framework, which motivates us to conduct a further study on collaborative CD setups.

3 Coral
We first introduce the problem setup, followed by details on three core components of Coral: i)
Disentangled Cognitive Representation Encoding, ii) Collaborative Representation Learning and iii)
Decoding and Reconstruction. Figure 2 shows the framework. The algorithm is listed in Algorithm 1.

3.1 Problem Setup
Our setup considers the human learning dataset D including the practice records between M learners
and N questions. The practice records of each learner u is denoted by xu = {xu,i}, where xu,i
equals 1 or 0, representing that learner u answered question i correctly or not, respectively. Each
question is related to at least one knowledge concept. The association relations between N questions
and C knowledge concepts is represented by C = {ci}Ni=1, where ci ∈ RC and ci,c equals 1 or 0
denoting that question i is related to concept c or not. The practice records are regarded as the explicit
inner-learning information in our context.

Besides, we consider the collaborative connections among learners with similar cognitive states,
which provide the inter-learner information. We define collaborative connections as a graph structure
G = (V,E) which contains a set of nodes (i.e., learners) V and a set of edges E where (u, v) ∈ E or
(u, v) ∈ G indicates that the existence of a collaborative connection between learner u and v (i.e.,
u and v have similar latent cognitive states). Notably, the collaborative connections in educational
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Figure 2: The overall framework of Coral.

scenarios are generally not explicitly or directly available, and it needs to design an adaptive strategy
to automatically infer similar learners from observed learning data during the training process.

To achieve cognitive state disentanglement, we initially assign C factorized representations to each
learner, i.e., zu = [z

(1)
u ; z

(2)
u ; . . . ; z

(C)
u ] ∈ Rd×C with Gaussian Mixture initialization since the

Gaussian distribution has long been recognized as a proper statistic model for the cognitive states
of learners in educational psychology [4]. The component z(c)u is expected to capture the learner
u’s cognitive state over knowledge concept c. We denote Θ as the set of trainable parameters
for the proposed model. Based on the above setups, the goal of Coral is to learn co-disentangled
representations Z̃ = {z̃u}Mu=1 for the M learners from both the inner-learner practice perspective
and inter-learner collaborative perspective.

3.2 Disentangled Cognitive Representation Encoding

The practice response xu of each learner u provides valuable inner-learner insights regarding his/her
proficiency since learners’ performance on each question is assumed to be proportional to their
cognitive proficiency on question-related knowledge concepts [8]. Therefore, we implement an
encoder for encoding the disentangled cognitive state zu of each learner u by reconstructing their
practice responses. For a learner u, we assume that his/her practice performance on candidate
questions can be generated from the following distribution:

pΘ (xu) = Ep(C)

[∫
pΘ (xu | zu,C) pΘ(zu)dzu

]
, (1)

where p(C) = pD(C) and pΘ (xu | zu,C) is naturally a cognitive diagnosis procedure to predict
practice performance. The key point of this task is to learn an optimal encoder pΘ(zu) via practice
records xu to encode the cognitive state zu of each learner u. To optimize Θ, we introduce a
variational distribution qΘ (zu | xu) to approximate pΘ (zu), following the VAE literature [3], through
maximizing a lower bound of log pΘ (xu) based on the following property.

Property 1. max log pΘ (xu) is bounded as follows:

log pΘ (xu) ≥ Ep(C)qΘ(zu|Xu) [log pΘ (xu | zu)]− Ep(C) [DKL (qΘ (zu | xu) ∥ pΘ (zu))] . (2)

See the Appendix A for the proof.

In Property 1, the first term reconstructs the true practice performance xu of learner u and the varia-
tional encoder qΘ (zu | xu) in the second term approximates the true encoder pΘ (zu) by minimizing
the KL divergence DKL. The variational distribution qΘ (zu | xu) and the expectation EqΘ(zu|Xu)

are intractable, thus we employ the re-parameterization trick [20] for the model optimization.

Furthermore, the diagnosis procedure pΘ (xu | zu,C) is achieved by estimating how well a learner u
answers question i from both the perspectives of cognitive states and comprehensive abilities. From
the perspective of cognitive states, solving question i requires learner u to master all knowledge
concepts related to this question. Regarding comprehensive abilities, each learner possesses a latent
state reflecting their overall learning ability, which is shared when addressing different questions.
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Formally, this process can be described as:

pΘ (xu | zu,C) =
∏

xu,i∈xu

pΘ (xu,i | zu,C) ,

pΘ (xu,i | zu,C) =

C∑
c=1

ci,c · ϕΘ
(
θu · z(c)u − hi

)
, θu =

C∑
c=1

ψΘ

(
z(c)u

)
,

(3)

where ϕΘ(·) and ψΘ(·) : Rd → R+ are two shallow neural networks. ψΘ(·) estimates the compre-
hensive ability of the learner and ϕΘ(·) predicts the performance of a learner with a given cognitive
state z

(c)
u and a comprehensive ability θu over question i in terms of concept c. hi is a learnable

latent representation for question i. Besides, to ensure psychometric interpretability of prediction,
we set the weights of ϕΘ(·) are positive values, i.e., ∂ϕΘ(·)/∂zu > 0, assuming that the probability
of correctly answering the question monotonically increases with learners’ cognitive state. Please
note that we found that the mean operation here can also be replaced with a neural network (i.e.,
ϕ′Θ : RC → R+) with positive weights, formulated as ϕ′Θ

(
ci ·

(
θu · z(c)u − hi

))
, as in [40], without

affecting prediction performance. Particularly, in contrast to most methods that consider entangled
cognitive factors as input, our diagnosis model can better capture learners’ proficiency on each
knowledge concept by disentangling cognitive states under each concept.

Furthermore, inspired by the outstanding performance of β-TCVAE [7] in disentanglement, we
prompt statistical independence among its dimensions to obtain a better trade-off between the recon-
struction accuracy and the quality of disentangled representation through q(z(c)u ) =

∏d
j=1 qΘ

(
z
(c)
u,j

)
where qΘ(z

(c)
u ) is the aggregated posterior of zu, i.e., qΘ(z

(c)
u ) =

∫
qΘ(z

(c)
u | xu)p (xu) dxu where

p (xu) = pdata (xu). This setup is encouraged by the term DKL(·) in Eq. (2) based on Property 2.

Property 2. The DKL(·) in Eq. (2) can be rewritten as:

DKL (qΘ (zu | xu) ∥ pΘ (zu)) = I (zu,xu) +DKL (qΘ(zu) ∥ pΘ(zu)) . (4)

See Appendix A for the proof. On one hand, I (zu,xu) maximizes the mutual information (MI)
between zu and xu which obtains the useful information for the diagnosis task as much as possible
according to the information bottleneck theory [2]. On the other hand, given a Gaussian distribu-
tion pΘ(z

(c)
u ) =

∏d
j=1 pΘ

(
z
(c)
u,j

)
, the KL divergence term encourages independence among the

dimensions of z(c)u by preventing each latent variable from deviating too far from specified priors.
Compared to prior VAE-based CD models [50, 8], Coral additionally considers ability parameters
from psychology [16] to enhance the expressive power of disentangled cognitive states.

Overall, we penalize Eq. (2) by a Lagrange multiplier β resulting in the following objective:

log pΘ (xu) ≥ Ep(C)qΘ(zu|Xu) [log pΘ (xu | zu)]− β · Ep(C) [DKL (qΘ (zu | xu) ∥ pΘ (zu))] .
(5)

3.3 Collaborative Representation Learning

Collaborative information among similar learners provides an auxiliary inter-learner insight for
cognitive representation learning. However, collaborative connections among learners with similar
states are typically not readily accessible. To address this challenge, we design a context-aware
graph construction strategy that searches similar neighbors automatically via the initial disentangled
cognitive states. Based on the constructed collaborative graph, we can learn collaborative node
representations by aggregating collaborative signals to generate collaborative cognitive states.

3.3.1 Context-aware Collaborative Graph Learning

The core goal of constructing the collaborative graph is to find K optimal neighbors for each learner
node in V via their initial disentangled cognitive state {z(c)}Cc=1. For different knowledge concepts,
the cognitive connections between the same learner pair are typically different. Thereby, it needs to
search C groups of similar neighbors for each learner via each disentangled component z(c). This
means that we would generate C collaborative graphs, i.e., G = {G(c)}Cc=1. Each collaborative
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graph G(c) under concept c is expected to characterize the cognitive similarities of learners regarding
concept c. Formally, this task is defined as computing pΘ(G | V,Z) by identifying all the K similar
neighbors for each learner covering each concept c. Let N (c)

u denote the set of K similar neighbors
for the learner u, the task can be described as:

max log pΘ(G | V,Z) := max

C∑
c=1

E
pΘ

(
N (c)

u ,z
(c)
u

) [log pΘ (
N (c)

u | z(c)u

)]
= max

C∑
c=1

I
(
N (c);Z(c)

)
+

C∑
c=1

EpΘ(Z(c))

[
log pΘ

(
Z(c)

)]
≥ max

C∑
c=1

I
(
N (c);Z(c)

)
,

(6)

where N (c) and Z(c) = {z(c)u }Mu=1 are the neighbor set and feature set of all the learners regarding
knowledge concept c, respectively. The number of N (c)

u equals the combination of arbitrary K
neighbors from allM learners for each learner node u under each concept c, i.e.,

∣∣∣N (c)
u

∣∣∣ = M !
K!(M−K)! ,

thus Eq. (6) is computationally expensive especially for larger M and K. To facilitate computation,
we transform the Eq. (6) that requires global MI maximization to the task of maximizing MI locally
via locally available context information inspired by [22] and derive a lower bound of it as the
following Property 3.

Property 3. max log pΘ(G | V,Z) is bounded as follows:

max log pΘ(G | V,Z) ≥ −
C∑

c=1

M∑
u=1

K∑
k=1

L(c),k
u , where L(c),k

u = −
exp

(
f(c)

(
b
(c),k
u ; r

(c),k−1
u

))
∑

v∈V
(c)
u

exp
(
f(c)

(
v; r

(c),k−1
u

)) .
(7)

See the Appendix A for the proof. The Eq. (7) iteratively searches K neighbors for the learner u
under each knowledge concept c from step k = 1 to K. L(c),k

u is the well-known InfoNCE loss
function [36]. Let r(c),k−1

u denote the current context at step (k− 1) (i.e., the set of (k− 1) neighbors
selected from step 1 to (k − 1)). b(c),ku is the affinity candidate learner in the (M − k) nonneighbor
learners. Let V (c)

u denote the current set of nonneighbor learners, and we hence have b(c),ku ∈ V (c)
u .

f(c)

(
b
(c),k
u ; r

(c),k−1
u

)
is a matching function measuring the similarity between of nonneighbor b(c),ku

and the current context r(c),k−1
u , where the higher the scalar score means the higher likelihood of

b
(c),k
u is a new neighbor.

Furthermore, we have L(c),k
u ∝ f(c)

(
b
(c),k
u ; r

(c),k−1
u

)
. Thus, given the context of (k−1) neighboring

learners (i.e., we have found (k − 1) neighbors for the learner u) and matching function f(c)(·), our
goal following the Property 3 is to find a learner b(c),ku from nonneighbor set V (c)

u that can maximize
the matching score f(c)(·) as the k-th neighbor of u. In other words, p(G | V,Z) can be optimized
through maximizing the matching score f(c)(·) from k = 1 to K iteratively. Thereby, at each step k,
we sort the scores of the nonneighbor learners and select the learner with the highest score to label
as k-th neighbor b(c),ku , i.e., b(c),ku ← argmaxv f(c)(v; r

(c),k−1
u ), v ∈ V (c)

u . After obtaining the k-th
neighbor b(c),ku , the context r(c),k−1

u is updated to r(c),ku by absorbing b(c),ku .

The calculation of matching score f(c)(·) usually relies on the node representations (i.e., learner
cognitive states). However, the sub-optimal cognitive state learning during the initial training epochs
probably results in the matching function exhibiting biases. To enhance the stability of model
training, instead of directly aggregating node representations as the context r(c),k−1

u as many graph
learning works, we denote it using relative representations w.r.t. the learner u [22]. Without loss
of generality, we first establish relative collaborative coordinate systems with learner node u as
the origin, and process relationship measurements between node u and each of its neighbors v as
z
(c)
u,v = ∥z(c)u − z

(c)
v ∥2. Then the context-aware features can be generated by aggregating each node

in the context r(c),k−1
u , i.e., rc(c),k−1

u =
∑

v∈r
(c),k−1
u

z
(c)
u,v . Thereby, let vk denote b(c),ku with feature

z
(c)
vk , we have f(c),vk = f(c)

(
b
(c),k
u ; r

(c),k−1
u

)
= z

(c)
vk

T · rc(c),k−1
u .
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3.3.2 Collaborative Graph Modeling

After iteratively searching K neighbors under each concept, we can obtain C collaborative graphs
regarding each learner, i.e., {G(c)}Cc=1. Then, we consider collaborative modeling as a node repre-
sentation learning task within each collaborative graph G(c). It relies on a nonlinear kernel function
φΘ(·) to aggregate neighboring information and update each disentangled cognitive state, i.e.,
r
(c)
u = φΘ(z

(c)
u , {z(c)v : (u, v) ∈ G(c)}). Given the disentangled learner cognitive states generated

by the variational posterior distribution qΘ(zu|xu) from Property 1, φΘ(·) is naturally expected to
contain C channels to extract different concept features from similar learners, though projecting the
representation zu into different subspaces, i.e., ẑ(c)u = σ(W

T
(c)z

(c)
u + b(c))/∥σ(W

T
(c)z

(c)
u + b(c))∥2,

where W(c) ∈ Rd and b(c) ∈ Rd are learnable parameters of channel c and σ(·) is a nonlinear
activation function (e.g., Sigmoid), and ∥ · ∥2 is L2 normalization ensuring numerical stability. Then
the collaborative learner representation modeling in terms of concept c can be described as:

r(c)u =
1

|N (c)
u |

∑
v∈N (c)

u

s(c)u,v · ẑ(c)v , s(c)u,v =
ẑ
(c)
u

T · ẑ(c)v∑
j∈N (c)

u
ẑ
(c)
u

T · ẑ(c)j

+
f(c),v∑K

k=1 f(c),vk

, (8)

where s(c)u,v is the attention weight between u and v, considering both the collaborative aggregation (the
first term) commonly used in graph modeling works and the corresponding context-aware attention
(the second term) calculated in the iterative graph construction process in Eq. (7). When K is set
large in Eq. (7), there is a possibility of introducing non-collaborative noise. In such cases, s(c)u,v can
assign lower values to non-collaborative neighbors to mitigate the negative impact of noise, allowing
for the adaptive tuning of attention in graph modeling. During training, the channels will remain
changing because different subsets of the neighborhood will be searched for dynamically aggregating
neighbor information in different iterations.

With Gaussian Mixture initialization from the Disentangled Cognitive Representation Encoding
(section 3.2), we derive the theorem on convergence as:

Theorem 1. The Collaborative Representation Learning (section 3.3) procedure is equiva-
lent to an expectation-maximization (EM) algorithm [35] for the mixture model. In partic-
ular, it converges to a point estimate of {r(c)u }Cc=1 that maximizes the marginal likelihood

l

({
a
(c)
v : (u, v) ∈ G(c)

}C

c=1
; {r(c)u }Cc=1

)
, where a(c)u,v equals 1 or 0 denoting whether learner v

is a collaborative neighbor of learner u regarding concept c or not. See the Appendix A for the proof.

3.4 Decoding and Reconstruction
Given the initial disentangled encoding via inner-learner information (section 3.2) and the collab-
orative representation learning via inter-learner information (section 3.3), this part encourages an
alignment between the initial encode zu and collaborative state ru, formulating a co-disentangled
representation as z̃u = zu + ru. This operation is inspired by the residual block [17] to address
the second challenge, where ru can be treated as a disentangled auxiliary information of zu from
collaborative graphs.

The decoding process predicts the practice performance of each learner u on candidate ques-
tions, given her co-disentangled representation z̃u =

[
z̃
(1)
u , z̃

(2)
u , . . . , z̃

(C)
u

]
, i.e., pΘ (x̂u) =

EpΘ(C) [pΘ (x̂u | z̃u,C)], similar to the reconstruction procedure in Eq. (1). Thus, putting Eq. (5)
and Eq. (7) together, we have the overall training objective:

argminL =

M∑
u=1

[ ∑
xu,i∈xu

α ·BCE (xu,i, pΘ (xu,i | zu,C))− β ·Du
KL

+
∑

xu,i∈xu

BCE (xu,i, pΘ (x̂u,i))
]
,

s.t. argmax

C∑
c=1

K∑
k=1

L(c),k
u ,

(9)
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Datasets ASSIST Junyi NeurIPS2020EC

#students 1,256 1,400 1,000
#questions 16,818 674 919
#knowledge concepts 120 40 30
#concepts per exercise 1.21 1 4.02
#records 199,790 70,797 331,187
#records per student 159,07 50.67 331.19
#correct records / #incorrect records 67.08% 77.20% 53.87%

Table 1: The statistics of three datasets.

where BCE(·, ·) is the binary cross entropy loss function between ground-truth practice behaviors
xu and the reconstructed ones. α and β are hyper-parameters.

By optimizing with minimizing the above loss function Eq. (9), the cognitive state z̃u of each learner
u can be jointly refined serving as the diagnostic results. During the testing phase, we evaluate the
model performance by matching the difference between the predicted score pΘ (x̂u,i) and the true
score xu. Specifically, when a proficiency value is required instead of the vector z̃(c)u , we can obtain
it by averaging each dimension of z̃(c)u .

4 Experiments
We empirically evaluate the performances of the proposed Coral model over three real-world datasets
and conduct several experiments to prove its effectiveness.

4.1 Experimental Setup
Datasets We conduct experiments on three real-world datasets: ASSIST [11], Junyi [5] and
NeurIPS2020EC [43]. The statistics of datasets are listed in Table 1. The details about datasets and
preprocessing are depicted in the Appendix C.

Baselines The baselines include the matrix factorization-based model, i.e., PMF [34], the typical
latent factor models derived from educational psychology, including IRT [16], MIRT [1], and the
neural networks-based models, including NCDM [40], RCD [12], KaNCD [41] and DCD [8].

Evaluation Since cognitive states cannot be directly observed in practice, it is common to indirectly
evaluate CDMs through the student performance prediction task on test datasets [4]. To evaluate
prediction performance, we adopt ACC and AUC and F1-score as metrics from the perspective of
classification, using a threshold of 0.5, and RMSE as metrics from the perspective of regression,
following previous work [12, 23].

Settings We set the dimension size d as 20, the layer of graph modeling as 2, and the mini-batch
size as 512. In the training stage, we select the learning rate from {0.002, 0.005, 0.01, 0.02, 0.05},
select α from {0.05, 0.1, 0.5, 1} and β from {0.25, 0.5, 1}, and select neighboring number K from
{1, 2, 3, 4, 5, 10, 15, 20, 15, 30, 25, 40, 45, 50}. All network parameters are initialized with Xavier ini-
tialization [15]. Each model is implemented by PyTorch [37] and optimized by Adam optimizer [19].
Specially, for the implementation of baselines, we set the dimensional sizes of each representation in
PMF, NCDM, KaNCD, RCD and DCD as the number of knowledge concepts. All experiments are
conducted on a Linux server equipped with two 3.00GHz Intel Xeon Gold 5317 CPUs and two Tesla
A100 40G GPUs.

4.2 Experimental Results

Prediction Comparison We evaluate prediction performance of Coral against baselines under three
setups: normal, sparse, and cold-start scenarios.

Table 2 reports the performance comparison under normal settings for all the models across three
datasets on four evaluation metrics. In this setting, we split all the datasets with a 7:1:2 ratio into
training sets, validation sets, and test sets. The proposed Coral model significantly outperforms
most baselines. This demonstrates two key benefits of Coral. First, the iterative graph construction
process effectively generates collaborative connections for modeling. Second, the co-disentangled
representation learning successfully discovers disentangled cognitive states for each learner.

We extend our analysis to assess the performance of Coral in sparse scenarios. In order to simulate
varied sparse environments, we systematically discard 80%, 60%, 40%, and 20% of the training
data from the ASSIST dataset under the normal settings described above. The experimental results
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shown in Figure 3 (a) reveal that Coral consistently outperforms baselines across a range of sparse
environments. Moreover, our model exhibits robust performance consistently, demonstrating its
adaptability and effectiveness in diverse sparse scenarios.

Dataset Method Metric
ACC ↑ AUC ↑ F1-score ↑ RMSE ↓

ASSIST

IRT 69.36 69.81 78.14 45.61
MIRT 71.26 72.59 79.80 44.50
PMF 71.34 72.27 80.68 48.67

NCDM 72.27 74.27 79.97 48.67
KaNCD 72.43 75.38 80.22 48.67

RCD 72.04 73.14 80.60 43.74
DCD 70.33 73.98 79.09 43.94
Coral 71.53 74.72 81.16 43.66

Junyi

IRT 79.26 76.46 87.54 38.38
MIRT 77.74 74.46 86.05 40.29
PMF 79.65 77.17 88.18 44.10

NCDM 79.91 78.91 87.73 38.35
KaNCD 81.79 80.93 89.02 36.11

RCD 81.02 80.22 88.00 37.23
DCD 79.29 79.55 87.62 37.83
Coral 81.15 80.94 89.12 36.08

NeurIPS2020EC

IRT 70.11 75.60 71.59 44.68
MIRT 69.95 75.52 71.24 45.51
PMF 69.85 75.39 72.62 48.33

NCDM 71.66 78.57 71.36 43.21
KaNCD 71.28 77.60 72.50 43.71

RCD 70.43 77.25 72.64 44.01
DCD 71.53 75.63 71.13 45.60
Coral 71.72 78.88 72.82 43.20

Table 2: Performance comparison. The best per-
formance is highlighted in bold. ↑ (↓) means
the higher (lower) score the better (worse) per-
formance, the same as below.

Moreover, we conduct an analysis of Coral’s
performance in a cold-start environment. To
replicate this scenario, we retain solely the cold-
start response data for each learner in the test set
of Junyi, corresponding to the knowledge con-
cepts they had not previously practiced in the
training set. The Figure 3 (b) illustrates the ex-
perimental results, highlighting the exceptional
performance of the Coral model (with K = 10)
in a cold-start scenario.

Collaborate Graph Learning We investigate
the influence of the generated neighbor number
K on diagnostic performance. Figure 3 (c) dis-
plays the prediction performances for various
values of K on Junyi under the normal scenario.
The model performance exhibits improvement
as K increases, particularly noticeable when K
is small. This observation suggests that the inter-
learner information automatically retrieved by
Coral contributes positively to the model. How-
ever, once K surpasses a threshold, the perfor-
mance gain becomes less pronounced. This di-
minishing effect arises because users beyond the
threshold (i.e., K = 10 in this dataset) may lack
significant collaborative relationships, thus lim-
iting the useful clues they can offer. We observe
that when K exceeds the threshold, the model’s
performance remains acceptable, and even the performance improves after K exceeds 30. This
indicates that Coral effectively perceives the similarity functions of the scenario and collaborative
context. Consequently, it assigns lower similarity scores to non-collaborative neighbors, robustly
adjusting the attention weight in graph modeling.

To obtain a more intuitive insight into the iterative graph construction process, we randomly select
two learners (called target learners) from the Junyi dataset (with the normal setup) and visualize their
neighbor selection process. Initially, we utilize t-SNE [39] to present the aggregated cognitive vector
of each learner u, which can be obtained by aggregating each disentangled cognitive component
learned by Coral (settingK = 30), i.e.,

∑C
c=1 z̃

(c)
u . The embedding of the target learner is highlighted

in red, while the nodes representing neighboring learners are color-coded based on the selection steps,
with unselected points displayed in gray. The outcomes are illustrated in Figure 4 (a), showcasing
how Coral organizes neighbors according to cognitive states and exemplifying a compelling strategy
for neighbor selection that takes into account cognitive similarity.

Disentanglement We evaluate the disentanglement level achieved by assessing independence
of dimensions within zu. The independence level IL(u) of each zu is quantified as IL(u) =
1
C

∑C
c=1

2
d(d−1)

∑
1≤i,j≤d |z

(c)
u [i]− z(c)u [j]|, where z(c)u [i] represents the ith dimension of z(c)u , fol-

lowing a prior methodology [48, 42, 49]. In Figure 3 (d), we depict IL =
∑M

u=1 IL(u) and the
corresponding model performances at different training epochs on ASSIST (with the normal setup).
Notably, Coral (setting K = 10) gradually achieves a high degree of disentanglement during the
training process, and the model performances generally exhibit a positive correlation with the degree
of disentanglement. This observation reveals the effectiveness of the disentanglement process.

Additionally, we visualize the disentangled cognitive component representations (i.e., z̃(c)u ) of each
learner u learned by Coral. We treat each knowledge component in the representation as independent
points, with each component colored differently. For visual clarity, we randomly select 200 learners
and 5 knowledge concept components for display. The results in Figure 4 (b) uses t-SNE to visualize
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Figure 3: (a) Performance in sparse scenarios. (b) Performance under cold-start scenarios. (c) Perfor-
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Figure 4: (a) Selected neighbors of the target learner at different steps. (b) t-SNE visualizations of
learner representations colored based on knowledge concepts.

learners’ cognitive states, with each color representing a distinct category of knowledge-related
learner states. This illustrates Coral’s ability to achieve well-separated representations.

Explainability We further investigate the interpretability of the cognitive diagnosis outputs based on
Coral. We aim to explore whether Coral can provide reasonable predictions for knowledge concepts
that learners have not practiced in the training set during actual inference. Firstly, we randomly select
a target student u from the Junyi dataset and identify 5 knowledge concepts (denoted as A ∼ E)
that u has not learned in the training data. Subsequently, based on the refined model, we retrieve the
top 4 most similar neighboring learners (i.e., u1 ∼ u4) to the target student u. Figure 5 depicts the
assessed knowledge concepts (A ∼ E) and the corresponding mastery levels of selected neighbors
using a radar chart. Table 3 presents the diagnostic outputs for the proficiency of u, along with
5 questions related to knowledge A ∼ E, the predicted scores answering correctly and the actual
performances of u. We observe that, despite the cold-start nature of these knowledge concepts for
Coral, the model effectively outputs cognitive states that align with the true performance of u by
considering the mastery levels of collaborative learners with similar cognitive states. This sufficiently
demonstrates the interpretability of Coral’s diagnostic results.
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Figure 5: The example of diagnosis output.

Question id 237 213 302 577 620

Knowledge concept A B C D E

Proficiency (%) 67.2 68.1 48.3 52.3 52.6

Predicted score (%) 73.4 75.2 47.3 50.8 57.2

True performance ✓ ✓ × × ✓

Table 3: The comparison between the diagnostic results
of Coral and the true performance, where ✓ denotes an-
swering correctly and × denotes answering incorrectly.

5 Conclusion
We are pioneering the exploration of collaborative cognitive diagnosis by disentangling the implicit
cognitive representations of learners. Extensive experiments demonstrate the superior performance of
Coral, showcasing significant improvements over SOTA methods across several real-world datasets.
We believe this endeavor marks a crucial step towards collaborative modeling for “AI Education”.
Furthermore, this work offers valuable insights into conscious-aware learner modeling, under the
assumption that human learner proficiency can be effectively represented in a disentangled manner.
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A Proofs

Property 1. max log pΘ (xu) is bounded as follows:

log pΘ (xu) ≥ Ep(C)qΘ(zu|xu) [log pΘ (xu | zu)]− Ep(C) [DKL (qΘ (zu | xu) ∥ pΘ (zu))] . (10)

The proof is as follows.

Proof.

log pΘ (xu) = logEp(C) [pΘ (xu | zu,C) pΘ (zu)]

= Ep(C) [log pΘ (xu) qΘ (zu|xu)]

= Ep(C)qΘ(zu|Xu) [log pΘ (xu)]

= Ep(C)qΘ(zu|Xu)

[
log

pΘ (xu, zu)

pΘ (zu | xu)

]
= Ep(C)qΘ(zu|Xu)

[
log

pΘ (xu, zu)

pΘ (zu | xu)
· qΘ (zu | xu)

qΘ (zu | xu)

]
= Ep(C)qΘ(zu|Xu)

[
log

qΘ (zu | xu)

pΘ (zu | xu)

]
+ Ep(C)qΘ(zu|Xu)

[
log

pΘ (xu, zu)

qΘ (zu | xu)

]
= Ep(C) [DKL (qΘ (zu | xu) ∥ pΘ (zu | xu )) + Ep(C)qΘ(zu|Xu)

[
log

pΘ (xu | zu) pΘ (zu)

qΘ (zu | xu)

]
= Ep(C) [DKL (qΘ (zu | xu) ∥ pΘ (zu | xu))−DKL (qΘ (zu | xu) ∥ pΘ (zu))]

+ Ep(C)qΘ(zu|Xu) [log pΘ (xu | zu)]
≥ Ep(C)

[
EqΘ(zu|Xu) log pΘ (xu | zu)−DKL (qΘ (zu | xu) ∥ pΘ (zu))

]
,

(11)

which completes the proof.
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Property 2. The DKL(·) in Eq. (2) can be rewritten as:

DKL (qΘ (zu | xu) ∥ pΘ (zu))

= I (zu,xu) +DKL (qΘ(zu) ∥ pΘ(zu)) .
(12)

The proof is as follows.

Proof. Given that pΘ (xu) = pdata (xu) and qΘ (zu,xu) = qΘ (zu | xu) pΘ (xu), we then have

DKL (qΘ (zu | xu) ∥ pΘ (zu))

= EqΘ(zu|xu)

[
log

qΘ (zu | xu) · qΘ (zu)

pΘ (zu) · qΘ (zu)

]
= EqΘ(zu|xu)

[
log

qΘ (zu | xu)

qΘ (zu)

]
+ EqΘ(zu|xu)

[
qΘ (zu)

pΘ (zu)

]
= EqΘ(zu|xu)pdata(xu)

[
log

qΘ (zu | xu)

qΘ (zu)

]
+ EqΘ(zu|xu)pdata(xu)

[
qΘ (zu)

pΘ (zu)

]
= EqΘ(zu,xu)

[
log

qΘ (zu | xu)

qΘ (zu)

]
+ EqΘ(zu)

[
qΘ (zu)

pΘ (zu)

]
= I (zu;xu) +DKL (qΘ (zu) ∥ pΘ (zu)) ,

(13)

where I(A;B) calculates mutual information (MI) between A and B, i.e. I(A;B) =

Ep(a,b)[log
p(a|b)
p(a) ]. Therefore, the proof is completed.

Property 3. max log pΘ(G | V,Z) is bounded as follows:

max log pΘ(G | V,Z) ≥ −
C∑

c=1

M∑
u=1

K∑
k=1

L(c),k
u

where L(c),k
u = −

exp
(
f(c)

(
b
(c),k
u ; r

(c),k−1
u

))
∑

v∈V
(c)
u

exp
(
f(c)

(
v; r

(c),k−1
u

)) . (14)

The proof is as follows:

Proof. Given the following inequality,

max log pΘ(G | V,Z) : = max

C∑
c=1

E
pΘ

(
N (c)

u ,z
(c)
u

) [log pΘ (
N (c)

u | z(c)u

)]
= max

C∑
c=1

I
(
N (c);Z(c)

)
+

C∑
c=1

EpΘ(Z(c))

[
log pΘ

(
Z(c)

)]
≥ max

C∑
c=1

I
(
N (c);Z(c)

)
,

(15)

we further derive the term I
(
N (c);Z(c)

)
that search the combination of K similar neighbors from

the permutation perspective as follows:

I
(
N (c);Z(c)

)
= E

pΘ

(
N (c)

u ,z
(c)
u

) [log pΘ (
N (c)

u | z(c)u

)]
+H

(
N (c)

u

)
≥ E

p
(
R(c)

u ,z
(c)
u

) [log pΘ (
R(c)

u | z(c)u

)]
+H

(
N (c)

u

)
,

(16)

where H (A) = −
∑
p(a) · log p(a). R(c)

u denotes the permutation of neighbors representing routes
to N (c)

u in given orders, where
∣∣∣R(c)

u

∣∣∣ = M !
(M−K)! . However, the search space of R(c)

u is huge and
even prohibitive. Inspired by the equivalent task [22], we next present the Eq. (16) in a heuristic
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style by maximizing the MI between the context of selected similar learner neighbors and the next
neighbor iteratively.

Specifically, the core goal of Eq. (15) is to find all K neighbors N (c)
u for each learner u under a

specific concept the data at once, from the perspective of maximizing MI globally. However, this task
is challenging due to the especially large search spaces of N (c)

u andR(c)
u . Thereby, we decompose

the globally optimal task into an equivalent task in an iterative local optimal process. Concretely,
assume that we have found (k0 − 1) optimal neighbors for the learner u formulating a route r(c),k0−1

u

in a specific order from learner node 1 to (k0 − 1), we then search the k0-th neighbor b(c),k0
u equally

from the rest (M − k0 + 1) learners for the learner u, i.e., p
(
b
(c),k0
u

)
= 1

M−k0+1 .

Given arbitrary k0 optimal neighbors for learner u with a specific sub-route r(c),k0
u , we can derive

pΘ

(
R(c)

u , z
(c)
u

)
in Eq. (16) as follows:

pΘ

(
R(c)

u , z(c)u

)
= E

pΘ

(
R(c)

u

)
[
pΘ

(
r(c),k0
u

) K∏
i=k0+1

pΘ

(
b(c),iu | r(c),i−1

u

)]
. (17)

We can derive the log term log pΘ

(
R(c)

u | z(c)u

)
in Eq. (16) as follows:

log pΘ

(
R(c)

u | z(c)u

)
= E

pΘ

(
R(c)

u

)
[

K∑
k=1

log pΘ

(
b(c),ku | r(c),k−1

u

)]

= E
pΘ

(
R(c)

u

)
 K∑
k=1

log
pΘ

(
b
(c),k
u | r(c),k−1

u

)
· pΘ

(
b
(c),k
u

)
pΘ

(
b
(c),k
u

)


= E
pΘ

(
R(c)

u

)
 K∑
k=1

log
pΘ

(
b
(c),k
u | r(c),k−1

u

)
pΘ

(
b
(c),k
u

) +

K∑
k=1

log pΘ

(
b(c),ku

) .
(18)

With Eq. (17) and (18), we can derive the first term in Eq. (16) as follows:

E
pΘ

(
R(c)

u ,z
(c)
u

) [log pΘ (
R(c)

u | z(c)u

)]
=

M∑
u=1

E
pΘ

(
R(c)

u

)
pΘ (

r(c),k0
u

) K∏
i=k0+1

pΘ

(
b(c),iu | r(c),i−1

u

) K∑
k=1

log
pΘ

(
b
(c),k
u | r(c),k−1

u

)
pΘ

(
b
(c),k
u

)


+

M∑
u=1

E
pΘ

(
R(c)

u

)
[
pΘ

(
r(c),k0
u

) K∏
i=k0+1

pΘ

(
b(c),iu | r(c),i−1

u

) K∑
k=1

log pΘ

(
b(c),ku

)]

≈
M∑
u=1

E
pΘ

(
R(c)

u

)
{

K∑
k=1

[
I
(
b(c),ku ; r(c),k−1

u

) K∏
i=k

pΘ

(
b(c),iu | r(c),i−1

u

)]}
+ ϵ(M,K),

(19)

where ϵ(M,K) ≥ 0 is a constant term regarding M and K. Inspired by [36], we have the lower
bound of I

(
b
(c),k
u ; r

(c),k−1
u

)
as follows:

I
(
b(c),ku ; r(c),k−1

u

)
≥ logM − L(c),k

u ,

where L(c),k
u = −

exp
(
f(c)

(
b
(c),k
u ; r

(c),k−1
u

))
∑

v∈V
(c)
u

exp
(
f(c)

(
v; r

(c),k−1
u

)) . (20)

The Eq. (20) iteratively searches K neighbors for the learner u under each knowledge concept c
from step k = 1 to K. L(c),k

u is the well-known InfoNCE loss function [36]. Let r(c),k−1
u denote the
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current context at step (k−1) (i.e., the set of (k−1) neighbors selected from step 1 to (k−1)). b(c),ku

is the affinity candidate learner in the (M − k) nonneighbor learners. Let V (c)
u denote the current

set of nonneighbor learners, and we hence have b(c),ku ∈ V (c)
u . f(c)

(
b
(c),k
u ; r

(c),k−1
u

)
is a matching

function measuring the similarity between of nonneighbor b(c),ku and the current context r(c),k−1
u ,

where the higher the scalar score means the higher likelihood of b(c),ku is a new neighbor.

Furthermore, we have L(c),k
u ∝ f(c)

(
b
(c),k
u ; r

(c),k−1
u

)
. Thus, given the context of (k−1) neighboring

learners (i.e., we have found (k − 1) neighbors for the learner u) and matching function f(c)(·), our
goal following the Eq. (20) is to find a learner b(c),ku from nonneighbor set V (c)

u that can maximize
the matching score f(c)(·) as the k-th neighbor of u. In other words, p(G | V,Z) can be optimized
through maximizing the matching score f(c)(·) from k = 1 to K iteratively. Thereby, at each step k,
we sort the scores of the nonneighbor learners and select the learner with the highest score to label
as k-th neighbor b(c),ku , i.e., b(c),ku ← argmaxv f(c)(v; r

(c),k−1
u ), v ∈ V (c)

u . After obtaining the k-th
neighbor b(c),ku , the context r(c),k−1

u is updated to r(c),ku by absorbing b(c),ku .

Based on the Eq. (15), Eq. (16) and Eq. (20), we have

max log p(G | V,Z) ≥ −
C∑

c=1

M∑
u=1

K∑
k=1

L(c),k
u , (21)

which completes the proof.

Theorem 1. With Gaussian Mixture initialization from the Disentangled Cognitive Representa-
tion Encoding (section 3.2), the Collaborative Representation Learning (section 3.3) procedure
is equivalent to an expectation-maximization (EM) algorithm [35] for the mixture model. In
particular, it converges to a point estimate of {r(c)u }Cc=1 that maximizes the marginal likelihood

l

({
a
(c)
v : (u, v) ∈ G(c)

}C

c=1
; {r(c)u }Cc=1

)
, where a(c)u,v equals 1 or 0 denoting whether learner v is a

collaborative neighbor of learner u regarding concept c or not.

The proof is as follows.

Proof. The collaborative modeling process can be approximatively equivalent to an expectation-
maximization (EM) algorithm for the mixture model. Let A =

{
A(c)

}C

c=1
where A(c) ={

a
(c)
v : (u, v) ∈ G(c)

}
, where a(c)u,v equals 1 or 0 denoting whether learner v is a collaborative

neighbor of learner u regarding concept c or not, which is a type unknown factor in EM algo-
rithm. Given R =

{
r(c)

}C

c=1
and Z =

{
z(c)

}C

c=1
, the EM algorithm maximizes the likelihood

l (A;R) =
∑

A l (A,Z;R). Let q (A) is the distribution over A, we then have

log l (A;R) =
∑
A

q (A) · l (Z;R)

=
∑
A

q (A) · l (A,Z;R)

l (A | Z;R)

=
∑
A

q (A) · l (A,Z;R)

q (A)
+

∑
A

q (A) · q (A)

l (A | Z;R)
.

(22)

Let L (R, q(A)) denote
∑

A q (A) ·
l(A,Z;R)

q(A) , we can rewrite Eq. (22) as

log l (Z;R) = L (R, q(A)) +DKL (q (A) ∥ l (A | Z;R))

≤ L (R, q(A)) ,
(23)

where L (R, q(A)) is a lower bound of l (A;R) since the KL divergence from l (A | Z;R) towards
q(A) is non-negative.
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At every E-step, the EM algorithm aims to search the optimal q(A) that tightens the lower bound,
which q(A) is set to l (A | Z;R) since the KL divergence will become zero. Given that

l (A | Z;R) = log p(G | V,Z), (24)

and Property 3, the optimal q(A) that tightens the lower bound can be achieved through iteratively
maximizing the following objective as

max

C∑
c=1

M∑
u=1

K∑
k=1

exp
(
f(c)

(
b
(c),k
u ; r

(c),k−1
u

))
∑

v∈V
(c)
u

exp
(
f(c)

(
v; r

(c),k−1
u

)) , (25)

which performs the E-step.

After the E-step, an M-step is performed to maximize the lower bound L(R, q(A)) w.r.t. R with
q(A) fixed found in the E-step. Given that

r(c)u =
1

|N (c)
u |

∑
v∈N (c)

u

s(c)u,v · z(c)v , (26)

we optimize the r(c) upon ∂L(R,q(A))
∂r(c)

to zero, which is actually performing the M-step.

Let q(A)k and rk be the result of the k-th E-step and the k-th M-step, respectively, we then have

l
(
Ak;Rk−1

)
= l

(
Rk−1, q(A)k

)
+DKL

(
q (A)

k ∥ l
(
Ak | Z;Rk−1

))
= L

(
Rk−1, q(A)k

)
≤ L

(
Rk, q(A)k

)
≤ L

(
Rk, q(A)k

)
+DKL

(
q (A)

k ∥ l
(
A | Z;Rk

))
= l

(
Ak;Rk

)
.

(27)

Hence, this can prove that the likelihood will increase monotonically and be upper-bounded by zero
at the same time. Therefore, the algorithm converges, which completes the proof.

B Algorithm

To offer a more comprehensive description of Coral’s structure, we outline the algorithm (see
Algorithm 1) for the entire model, including four functions and a main function.

C Dataset Description and Preprocessing

We conduct experiments on three real-world datasets, i.e., ASSIST [11], Junyi [5] and
NeurIPS2020EC [43]. The statistics of these datasets are summarized in Table 1. For all datasets,
we preserve the first-time exercise-answering record for the same learner-question pairs to support
cognitive diagnosis aligning with common settings used in previous related studies [40]. The detailed
information on datasets and preprocessing method are depicted as follows:

• ASSIST (ASSISTments 2009-2010 “skill builder”) [11] This dataset is an open dataset
collected by the ASSISTments online tutoring systems2, which has become one of the
popular benchmark datasets for cognitive diagnosis. We preserve learners with more than 30
practice records for ASSIST to guarantee that each learner has enough data for diagnosis.

• Junyi [5] This dataset contains learner online learning logs collected from a Chinese online
educational platform called Junyi Academy3. Nowadays, Junyi is widely used in the
evaluation of online education tasks [47, 8]. We randomly select 1,400 learners with more
than 15 practice records from Junyi to guarantee that each learner has enough data for
diagnosis.

2https://sites.google.com/site/assistmentsdata/
3https://www.junyiacademy.org/
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Algorithm 1 Coral Model
1: Input: {c}Ni=1, practice logs {xu}Mu=1;
2: function DISENTANGLED_COGNITIVE_REPRESENTATION_ENCODING({c}Ni=1, xu)
3: // Gaussian Mixture initialization of learner u
4: zu ← [z

(1)
u ; z

(2)
u ; . . . ; z

(C)
u ]

5: // Calculate ability of learner u
6: θu ← ψΘ(z

(c)
u ), c = 1, 2, . . . , C

7: // Reconstruct practice performance of learner u
8: pΘ(xu,i | ·)← ci,c · ϕΘ(θu, z(c)u ), c = 1, 2, . . . , C
9: return BCE(xu,i, pΘ(xu,i | ·)), Du

KL, zu
10: end function

11: // Search K neighbors for learner u from all the learners V
12: function CONTEXT-AWARE_COLLABORATIVE_GRAPH_LEARNING(V , z(c)u )
13: for c = 1, 2, . . . , C do
14: // Let be the removing operation
15: V

(c)
u ← V \u

16: // Initial neighbor set of u, i.e., Ru

17: r
(c),k
u ← {u}, where k = 0

18: // Iteratively calculating the cognitive similarity scores between u and each learner in
V

(c)
u , the initial step corresponds to k = 0

19: for k = 1, . . . ,K do
20: for v ∈ V (c)

u do
21: Scoreu,v ← f(c)(v; r

(c),k−1
u )//Equation(7)

22: end for
23: // Select k-th neighbor for u, denoted as b(c),ku

24: b
(c),k
u ← argmax

v
Scoreu,v, v ∈ V (c)

u

25: // Update neighbors and non-neighbor learners
26: r

(c),k
u ← r

(c),k−1
u + {b(c),ku }

27: V
(c)
u ← V

(c)
u \b(c),ku

28: end for
29: end for
30: return {G(c)}Cc=1
31: end function

32: function COLLABORATIVE_GRAPH_MODELING({G(c)}Cc=1, zu)
33: for c = 1, 2, . . . , C do
34: ru ← φ(Z, G)
35: end for
36: return ru
37: end function

38: function DECODING_AND_RECONSTRUCTION({G(c)}Cc=1, zu, xu)
39: Calculate z̃u
40: return BCE(xu,i, pΘ(x̂u,i))
41: end function

42: BEGIN MAIN FUNCTION:
43: Initialize zu, learning rate lr, β, epoch← 0, TotalEpoch
44: repeat
45: for u = 1, 2, . . . ,M do
46: BCE(xu,i, pΘ(xu,i | ·)),Du

KL, zu ←Disentangled_Cognitive_Representation_Encoding(. . . )
// . . . denotes omitting parameters

47: {G(c)}Cc=1 ← Context-aware_Collaborative_Graph_Learning(. . . )
48: BCE(xu,i, pΘ(x̂u,i))← Decoding_and_Reconstruction(. . . )
49: Calculate argminL
50: Θ← argmaxΘ L by lr · ∇ΘL
51: epoch← epoch+ 1
52: end for
53: until epoch equals TotalEpoch
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• NeurIPS2020EC [43] This dataset is originated from NeurIPS 2020 Education Challenge,
which provides learners’ practice logs on mathematical questions from Eedi4. We randomly
select 1,000 learners with more than 15 practice records from NeurIPS2020EC to guarantee
that each learner has enough data for diagnosis.

D Additional Experimental Results

Method Metric
ACC ↑ AUC ↑ F1-score ↑ RMSE ↓

w/o KL 0.693156 0.659914 0.803728 0.452067
w/o collar 0.667321 0.606090 0.786824 0.465231

w/ knn 0.708520 0.721339 0.794198 0.440430
Coral 0.709710 0.721823 0.810755 0.437818

Table 4: Ablation study of Coral on ASSIST.

D.1 Ablation Study

We additionally perform ablation studies to assess the impact of key components within Coral. The
results in Table 4 depict the performances of Coral (setting K = 5) under various conditions: without
the KL term for encoding (w/o KL), without the collaborative aggregation during decoding (w/o
collar), and replacing the collaborative graph construction procedure using a knn-based methods
(w/ knn) used in [13] on the ASSIST dataset. These findings show the effectiveness of each key
component in enhancing the overall performance of Coral.

D.2 Efficiency Improvement

We additionally implement three efficiency optimization strategies to further reduce the complexity
of Coral. These strategies cannot theoretically guarantee optimal performance, but they can enhance
applicability and scalability of Coral through empirical balancing of efficiency and accuracy. We
refer them as Coral with n-sample, Coral with m-selections, and Coral with full-kit, as follows:

• Coral with n-sample: During the K iterations of searching for neighbors, randomly sam-
ple n subsets from all M learners to replace V in the original approach. This reduces
computational efficiency from M ×K to n×K, where n≪M .

• Coral with m-selections: Based on the basic Coral, replace selecting one neighbor per
iteration with selecting m neighbors. This decreases computational efficiency from M ×K
to M×K

m , where m < K.
• Coral with full-kit: A combination of Coral with n-sample and Coral with m-selections,

further reducing computational efficiency fromM×K to n×K
m , where n≪M andm < K.

Following the three strategies outlined above, we conduct several experiments on the Junyi dataset,
with K = 40, to assess prediction performance. The results are summarized in the Figure 6.
These experimental results demonstrate Coral’s potential to improve computational efficiency while
maintaining acceptable performance, as evidenced by the varying levels of accuracy achieved with
different optimization strategies.

E Broader Impact and Limitation

This research delves into modeling human cognitive states within the realm of intelligent education.
The proposed Coral model significantly enhances the diagnostic accuracy of implicit learners’ knowl-
edge states. This improvement not only provides effective insights for online personalized tutoring
services, such as question recommendations but also lays the foundation for further research in this
area. Moreover, the automatic construction strategy for collaborative connections among learners

4https://eedi.com/
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Figure 6: The prediction performance of the improved model is illustrated, with the orange bar
representing the performance of the original Coral, which achieves the highest F1 score.

offers valuable insights that can contribute to subsequent investigations in this field. Lastly, we
anticipate that the proposed techniques can be extended to other domains, including but not limited to
user interest modeling and social network modeling. Although our method is effective both theoret-
ically and empirically, it suffers from computational inefficiencies. We have explored preliminary
optimization strategies in the Appendix D.2 and will focus on improving computational efficiency
in future research. In addition, future research plans to consider issues of fairness [51, 52] and
explore the integration of large language models and multi-modal knowledge to enhance interpretabil-
ity [27, 29, 30]. In essence, our work is dedicated to advancing intelligent education and deepening
the understanding of human cognitive proficiency. It cannot cause negative effects. We anticipate its
crucial role in fostering progress in both pertinent technologies and societal advancements.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction clearly claim our task (scope), contributions and
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Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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a complete (and correct) proof?
Answer: [Yes]

22



Justification: We provide all the proofs in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide our code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide a github repository to publish our work (https://github.com/bigdata-
ustc/Coral).
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In the experimental setup (Section 4.1), we provide all the setups.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: In our paper, we provide the average scores. Given the impending submission
deadline, we will provide error bars during the rebuttal phase by updating the README file
in the anonymous GitHub repository.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide these details in the implementation details (Section 4.1).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research conforms, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: These information is discussed in Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not Applicable.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers or website links about the dataset and open-source
codes.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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