How does PDE order affect the convergence of PINNs?
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Abstract

This paper analyzes the inverse relationship between the order of partial differential
equations (PDEs) and the convergence of gradient descent in physics-informed
neural networks (PINNs) with the power of ReLU activation. The integration of
the PDE into a loss function endows PINNs with a distinctive feature to require
computing derivatives of model up to the PDE order. Although it has been em-
pirically observed that PINNs encounter difficulties in convergence when dealing
with high-order or high-dimensional PDEs, a comprehensive theoretical under-
standing of this issue remains elusive. This paper offers theoretical support for this
pathological behavior by demonstrating that the gradient flow converges in a lower
probability when the PDE order is higher. In addition, we show that PINN s struggle
to address high-dimensional problems because the influence of dimensionality on
convergence is exacerbated with increasing PDE order. To address the pathology,
we use the insights garnered to consider variable splitting that decomposes the
high-order PDE into a system of lower-order PDEs. We prove that by reducing the
differential order, the gradient flow of variable splitting is more likely to converge
to the global optimum. Furthermore, we present numerical experiments in support
of our theoretical claims.

1 Introduction

Understanding of partial differential equations (PDEs) is fundamental in describing diverse phenom-
ena in science and engineering, including fluid dynamics [60, [17]], weather prediction [51]], disease
progression [3, 146]], and quantum mechanics [20, 8]]. This underscores the imperative necessity for
the effective acquisition of their solutions. Given that analytically solving PDE:s is often infeasible or
even impossible for numerous practical scenarios due to their complexity, numerical methodologies
play a pivotal role in approximating solutions to PDEs, enabling researchers and engineers to address
real-world problems effectively.

The advent of deep learning has led to a surge in attempts to leverage it to solve PDEs [59, 142} 30].
Among these, physics-informed neural networks (PINNs) [39} 21} 38 58] stand out as a prominent
methodology. Coupled with the automatic differentiation technique [7], they integrate the residuals
of PDEs and boundary conditions into the loss function, thereby enforcing the approximation of
solutions using artificial neural networks. This distinctive incorporation of PDEs into the loss
function introduces partial differential operators in calculating the loss, distinguishing PINNs from
conventional deep learning models. Renowned for their accessibility and versatility in being capable
of easily handling arbitrary PDEs and being mesh-free, PINNs have garnered significant attention
and demonstrated promising outcomes across various fields [[13 128} 12 [65]].
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Despite their potential, PINNs frequently encounter difficulties in accurately approximating solutions,
particularly when the governing PDE contains high-order derivatives [48] [33]. They also exhibit
sensitivity to increasing dimensions [33]]. These challenges impede the practicality of PINNs due to
the pervasiveness of high-order or high-dimensional PDEs in numerous physical and engineering
descriptions, such as control problems [22, |57], finance [5} [53]], phase separation [[12] 27], and
mechanical engineering [4} [32]. Several studies have indicated that neural network architectures
possess sufficient expressive power to approximate solutions [31,/41]. However, it has been purported
that the inferior performance may be attributed to the difficulty in optimizing PINNs, which arises
from including the PDE in the loss function [37, 161} 162]]. Despite the widespread use of PINNs, a
rigorous mathematical understanding of these pathological behaviors of PINNs has been lacking.

In this paper, we endeavor to provide a mathematical understanding of the pathological behaviors of
PINNS by analyzing the convergence of their gradient flow (GF), which reveals a profound sensitivity
of the GF convergence with respect to the PDE order and the power of the activation. Building upon
the work of Gao et al. [25], we extend the analysis of the GF of PINNs, composed of two-layer
multilayer perceptrons (MLPs), to general Kth-order PDEs and the p-th power of Rectified Linear
Unit (ReLU) activation function with general p. We achieve tighter bounds than those obtained by
Gao et al., shedding light on the underlying causes of the pathological behaviors of PINNs. Our
theoretical findings demonstrate that the width size of the network necessary for the convergence
of the GF increases exponentially with the power p of ReLUPactivation. Furthermore, our results
indicate that the optimal power p is determined by the order Kk of the governing PDE, specifically to
be k + 1. We also find that the PDE order impedes the convergence of GF, where this negative impact
of the PDE order stems from incorporating the PDE into the PINN loss function, which necessitates
network differentiation up to the order of the PDE. Moreover, our theoretical investigation unveils
that the GF convergence of PINNSs also deteriorates with increasing dimensions, and the differential
operators included in the PINN loss further exacerbate the sensitivity of PINNs to dimensionality.
This elucidates why PINNSs are relatively sensitive to dimensionality compared to conventional deep
learning models that do not involve differentiation in the loss function.

To address these challenges, we mathematically demonstrate the efficacy of a variable splitting
strategy [54, 55, 6], which represents derivatives of the solution as additional auxiliary variables.
The key point of variable splitting is that learning a high-order PDE boils down to learning a system
of lower-order PDEs. Reducing the order of derivatives included in the loss function, the strategy
alleviates the difficulties associated with the PDE order. It further enables to utilize more general
ReLUPactivation with lower power p than PINNs. The lower differential orders that the network
computes, the more likely it is that the GF will converge, so the most suitable one among the various
constructions of the variable splitting method is the finest splitting, which separates all the derivatives
into auxiliary variables and reformulates the PDE into a system of first-order PDEs. This strategy
results in a loss function comprising only first-order derivatives, and the efficacy of this finest variable
splitting would be magnified as the order of the governing PDE or dimension increases. Therefore,
the finest splitting approach would exhibit a pronounced discrepancy from the vanilla PINNs for
high-order PDEs. Moreover, a reduction in the differential orders enhances the resilience of the model
with respect to dimensionality. Finally, we present numerical experiments to verify our theoretical
findings and validate the effectiveness of the variable splitting.

1.1 Related Work

Characterization of Gradient Descent for PINNs As significant issues have been identified
within physics-informed machine learning, numerous mathematical studies have been conducted
to elucidate the behavior of PINNs. While studies have been mainly dedicated to examining the
generalization capacity of PINNs [[19]149,|23]], there has also been work on understanding the difficulty
of optimization, which is believed to be the primary source of failure for PINNs. Wang et al. [61]]
found that PINNs exhibit stiff gradient flow dynamics, resulting in imbalanced gradients during
training. Ryck et al. [[18] characterized the rate of convergence in terms of the conditioning of an
operator and suggested that the difficulty of training PINNSs is closely related to the conditioning
of the differential operators in the governing PDEs. Another work [[62] utilized the neural tangent
kernel (NTK) theory to indicate that spectral biases and discrepancies between convergence rates of
various loss components can lead to training instabilities. Global convergence properties of PINNs
for second-order linear PDEs have also been studied within the NTK regime [34] and using the
Rademacher complexity [47]. Most closely related to this paper, Gao et al. [25]] demonstrated the



convergence of the gradient descent for two-layer PINNs. However, their discussion is limited to
second-order linear PDEs. We extend the analysis to gekiralrder linear PDEs angith power of
activation functions and provide tighter bounds than Gao et al.. These advances allow us to observe
further the effect of the order and dimensionality of the PDE on the convergence.

Variable Splitting The method of separation of variables, which simpli es differential equations

by reformulating them into a more manageable system, is a classical method for solving differential
equations §]. In particular, it has been widely employed when dealing with high-order PDEs
as augmenting high-order derivatives as additional variables allows the governing equation to be
decoupled into a set of lower-order PDEs that are comparatively easy to $6\&6[63]. Recent
endeavors have explored the integration of separable variables within the PINN approach. In this
paper, we refer to this approach as variable splitting according®p, 56]. Augmented variables

have been introduced to represent vorticity in the Stokes equiicin¢ gradient of the solutions

for solving thep-Poisson equatiorbf], and the eikonal equatio®$]. Additionally, second-order
derivatives have been separately parameterized to solve bi-harmonic equations effetfjvalia¢
rationale for introducing auxiliary variables in previous works is to enhance the ef ciency and
accuracy of PINNs, but they lack a comprehensive theoretical elucidation of its effect. A recent study
[56] has theoretically analyzed variable splitting, demonstrating that while PINNs do not guarantee
convergence to the PDE solution even when the loss converges to zero, variable splitting does ensure
convergence to the solution for second-order linear PDEs. In this study, we analyze the impact of
variable splitting for PINNs with ReLBactivation in terms of the convergence of the GF.

1.2 Main Contributions
The contribution of the paper is summarized as follows.

* We analyze that the GF of PINNs wileLUWPactivation converges to the global minimum
for generakth-order linear PDEs. This extends the ndings of Gao et2f] fo encompass
a broader range of PDEs and activations and provides an even tighter bound.

» We demonstrate the inverse relation between PDE order and the GF convergence, unveiling
the adverse effect of the differentials included in the PINN loss on the GF convergence.

» We provide a theoretical understanding of the reasons why PINNs encounter dif culties in
addressing high-dimensional problems.

» We prove that the order reduction of variable splitting, which reformulates the PDEs into a
system of lower-order PDEs, results in the convergence enhancement of GF.

2 Mathematical Setup

Arbitrary Order Linear PDEs ~ We consider a general form &th-order linear partial differential
equations (PDEsjle ned on a bounded domain  RY (in which the temporal dimension could be
a subcomponent)

N [ul(x)=f (x); X2 ;

BUI(X)= g(x); X2@; @

P
whereN [u] = jjk@ @(@u is akth-order linear differential operator with coef cient functions

a I R for each multi-index 2 N¢, B[u] = jj18 @(@u represents the boundary
condition operator with coef cient functiors : @ ! R, which could re ect Dirichlet, Neumann,

and Robin conditiond, f : | Ris agiven source function, amgt @ ! R is a given boundary

function, andu : ! R is the unknown solution of interest.

2The boundary condition for high-order PDEs is typically given by multiple conditions of a higher order than
one. Our approach also encompasses such general boundary conditions by incorporating the residuals of each
boundary condition into the loss. The sole distinction is the utilization of induction not only on the derivative
matching losses but also on boundary losses to prove Proposition 2. For the sake of brevity, we assume that the
boundary condition is the most prevalent (weighted combination of) Dirichlet and Neumann conditions.



Physics-InformedNeural Networks Physics-informed neural networks (PINNSg[ aim to ap-
proximate the solutioru of the PDE by neural networks. Following the prior woilks], we
approximate the solution by a two-layer multi-layer perceptron: RY ! R of width m, de ned as

1 X N
(x;w;v) = P= v Wy 2

r=1

wherew, 2 R™2 v, 2 Rw = wj3; w3 2RM™¥) y= y2: v2 7~ 2R"y-=

x> 17 2 R™ and () is the activation function. For brief notations, we assume thist
bounded so thakyk, 1forx 2 . We consider the case wherés the ReL ¥ activation function
for an integemp, which is also known as Recti ed Power(RePU) activatian][0, 15]. As it will be
clear in the context, the powernecessitates surpassing the orklef the PDE(1) to ensure that
the loss function and gradient descent ow are well-de ned. Therefore, our analysis is focused on
scenarios wherp  k+1. PINNs learn the parameters oby minimizing a composite loss function,
comprising the residual of the PDE and the boundary conditiqa)pfvhich enforces the network's
compliance with the governing physics. For given the training thataf (xi)gi”:"1 R and
fx;00% )gj":"l @ R ofrespective sizes, 2 N andny 2 N, PINN loss function is given by

Lomn Wiv)= 3 ks (wiv)ke + kh (WK | ®
wheres (W; V) = [ sy (W;V) Sn, (W;V)]” andh (w;Vv) = [hy (w;V) hn, (W;V)]” with
si (w;v) = f nlo(N [ Gw;vI(xi)  f(xi); (4)
hj (w;v) = r njb(B[ GwivIOe)  9(x)); (5)

and > O0is aregularization parameter that relatively balances the two components of the loss.

Gradient Flow As the limiting dynamics of the gradient descent (GD) with in nitesimal step-sizes
[40], gradient ow (GF) is continuous time dynamics that starte/g0) andv (0) and evolves as

( =
dw, (t) _ @ (w;v) _ No o . @s(w;v) @h (w; V)
av () _ @PIN@N ‘(wiv) _ e 5 (i) @5t v) 1 wiv) @h@(w v> (6)
= = e TR o s (wiv) 2 h, (w; V)

Initial weights are supposed to follow the normal and uniform distributimné()) N (0;1m) and

v U(f 1;1g), respectively. GF can be regarded as a continuous-time analog of GD and is
frequently employed to comprehend the behavior of GD optimization algorithm in the limit. By the
chain rule in conjunction witli6), the following characterizes how the loss function evolves during
training by gradient descent:

d s(w(t);v(t)
dt h(w(t);v (1))

whereG andG are Gram matrices for the dynamics, de ned by

(Gu W V() + Gy WOV 1w Ddivid) @

h i

Gw (W;v)=DyDw;Dw = 28 (w;v) @af’(w v) Gh(w;v) @mb(w V)
h (8)

i
Gy (w;v)=DyDy;Dy = @s (w;v) @$° (w;v) €L (w;v) @@';”/b (w;v) :
)

We are interested in analyzing the effect of the PDE order on the convergence of the PINN loss, which
evolved in accordance with the dynamics (7), to the global minimum zero.

%Indeed, our analysis covers more general initialize distributions @&nlh our analysis, it is enough that a
probability density function ofv (0) is in Schwartz space, and thatwf0) is bounded and has zero expectation.



3 Impact of PDE Order on Convergence of PINNs

Despite the demonstrated promise and versatility of PINNs in addressing a wide range of problems
[29, 44, 36], they often encounter dif culties in constructing an accurate approximation to the desired
solution of PDEs, particularly with high-order PDEsS. Moreover, in contrast to the con rmed ef cacy

of neural networks in modeling high-dimensional data such as images and text, the exploration of
PINNs for high-dimensional PDEs has been apparently limited. While neural network architectures
possess suf cient expressive power to approximate solutibfis ipferior performance has been
attributed to the dif culty in optimization in practices[L, 62]. Additionally, it has been postulated

that the optimization dif culty may stem from the partial differential operators included in the loss
function [37, 48, 33]. Nevertheless, despite the signi cant challenge posed by these pathological
phenomena, there remains a paucity of theoretical understanding of them.

In this section, we theoretically elucidate these pathological phenomena by studying the convergence
condition of GF(7) of PINN loss(3). Speci cally, we provide a width condition fdi7) to converge

to global optimum in terms of ordds, dimensiond, and the powep of ReLU activation. Analyzing

how those factors are related to the convergence condition, we explain why optimizing PINNs is
harder when the order or degree is higher.

Following [24] and [25], we rst prove the positive de niteness of the limiting Gram matrix of PINNs
for generakth-order linear PDE ang without any further strict assumption other tham k.

Proposition 3.1 (Special Case) The limiting Gram matrixG\} = Ew.v [Gy (W;V)] is strictly
positive de nite and independent of.

This is a special case of the general state in Proposition C.3lwitlD, and the proof for the general
case is provided in Appendix C. We denote the smallest eigenvalGe oby > 0. The following
presents our main theorem in this section, the requisite widthnsifer the GF of PINN loss to
converge to the global minimum with high probability. The result demonstrates that the required
width grows exponentially as the PDE ordeand the dimension of the domadrincrease.

Theorem 3.2(Special Case)There exists a constaflt, independent od,, k, andp, such that for any
< 1,if

14 4p
m>C dz k p’k*4 250 |og md (10)

then with probability of at least over the initialization, we have
Leinn (W (1);v (1)) exp( ot)Lepinn (W (0);v(0)); 8t O (11)

It is a special case of Theorem 4.3 with= 0, the proof of which can be found in Appendix C.1.

It extends, inspired by2p], the convergence of the GF of PINNs of second-order linear PDEs to
kth-order linear PDEs and the geneapah power of ReLU. It states that even in these general settings,
the GF of PINNs converges to the global minimum with a high probability when the width of the

network is suf ciently large. Moreover, we obtain a polylogarithmic boutat 4p, which is much

tighter than polynomial bound 2 in [25] for p = 3. These improvements permit the derivation of
the following valuable explanations for the de ciencies observed when optimizing PINNS.

Optimal Power of ReLU Function in Training Theorem 3.2 sheds light on the suitable choice of
activation function for PINNs. In the training process, the activation function plays an important role.
However, there are no clues as to which activation function is favorable to the given optimization
process. Especially in the case of PINNSs, it depends heavily on the PDE at hand. Despite its pervasive
use in deep learning due to its numerous advantages and performance bene ts, the ReLU activation
function is not admissible in the PINN framework, which necessitates the activation function to
provide high-order derivatives for optimizing PDE-based constraints. Instead, PINNs harness the
p-th power of ReLU as the activation function. It is apparent thiatust satisfyp  k + 1 for the

PINN loss and gradient descent to be computed. Theorem 3.2 indicates that the pisatlee more

likely the gradient descent will converge; that is, it is most optfrbaladjustp to k + 1 regarding the
training process.

“In terms of approximating the solution of the PDE, a langenakes the network smoother and has better
expressive powerl[l]. However, it means that the set of networks covers broader function spagéscasases,



Understanding Dif culty in High-order PDEs A signi cant observation of Theorem 3.2 is that

it provides a theoretical understanding of why PINNs struggle with high-order PDEs. E@m

we can see that the bound increases exponentially with the order of the PDE. Moreover, for the
GF of PINNSs to converge with high probability, that is, 1, a small increment of the power

would contribute to non-negligible degradation in the convergence, which could ultimately prevent
the network from reaching a minimizer of the loss. Hence, givenklutermines the admissilpe

byp k+1,the ordek of PDE primarily in uences the convergence of PINNs and increasing the
exponential term in (10).

Understanding Dif culty in High-dimensional Problems  The above theorem, which shows that

the lower bound ofn depends on the exponential @f explains why PINNs cannot completely
combat the curse of dimensionality. As PINNs are regarded as a versatile method capable of being
mesh-free, they have been expected to be free from the curse of dimensida@litggwever, the GF

of PINNs becomes harder to convergeddacreases, requiring the network to be wider. Furthermore,

it can be observed that the magnitude of changkisnampli ed with respect to the exponent kf

This explains why PINNs are relatively sensitive to increasing dimensionality in comparison to other
deep learning models whose loss functions do not contain derivatives. In other words, the presence of
derivatives in the loss makes PINNSs sensitive to changes in dimensionality, and thé& legae

more dif cult PINNs are for high-dimensionality.

Combining all crucial observations from our main theorem, we believe that the impact of the PDE
order is one of the primary underlying reasons why PINNs often fail to minimize their loss. In light

of this theoretical evidence, the next section describes a variable splitting strategy that addresses these
pathologies by properly reducing the differential order in the PINN loss function.

4 Order Reduction through Variable Splitting

The previous section indicates that the PDE okdsigni cantly affects the width requirement for

the GF to converge. Concurrently, foth-order PDEs, it is necessary to increase the ReLU activation
to at least thé + 1 power in order to ensure a well-de ned GF for the PINN loss. Consequently,
lowering k could potentially lead to better convergence of the GF. In this section, we introduce
variable splitting strategy to decrease the differential order by reformulating the given PDE into a
system of lower-order PDEs. We then extend Theorem 3.2 to a more general form in Theorem 4.3.

4.1 Variable Splitting

The concept of variable splittindg4l, 55, 56] is to rewrite a higher-order PDE into a lower-order
system, after which the PINN approach is applied to the system. A crucial aspect of the success of
such methods is the reduction of the derivative order present in the training loss function.

Augment Variables ForL 0and increasing integefs= (< ;< < L+ = k variable
splitting augment the derivatives of the solut@% s @
1,11 L, respectively. For notational simplicity, we abbrewate the integef ket ; mg for
a positive integem by [m]. For® 2 [L], each term in&— corresponds toi@)ﬁdu for a
multi-index = ( 1;:::; 4) 2 N$ with the sizej | = .d_l i = n. Therefore, - is a vector-
valued function of siz¢l .| for the |ndex set de ned in (18). We denote the component of that

corresponds té— by ( ) .

Reformulate PDE into Lower-order System By replacing each of the differential terrd@—u
with the corresponding auxiliary variables, the differential operatd in (1) can be rewritten as:

X D i X X X -
N [u] = a %u: a.. @@

ik =0 g 41

() 12)

not that a network can be easily trained. Indeed, our result leads us to the opposite conclusion thailaide
be detrimental to convergence from the optimization perspective. In this paper, we refer to “optimal’ as the sense
of being likely trained under the mildest condition rather than approximating the solution with the smallest error.



for some coef cient functiong.. : ! Rand -= - - ;. Since - represents a function
that differentiates the PDE solution --times more than- 1, the components of two consecutive
variables - 1 and - are governed by

@
@(*1) =0, x); 205 21 13)
From thesse, the PDE (1) can be identically reformulated by the system of lower-order PDEs:

2N o 5 LlX)=1(x); X2
S () 0=() () x2 T2 20, 20 (14)
" B[ o](x)= g; X2@:

It is of paramount importance to note that the maximum differential order of this system of
PDEs is the highest difference of derivative order between consecutive auxiliary vajigbtes
maxf - : 2 [L +1]g, which is less thak. This aspect gives rise to notable rami cations in our
analysis of VS-PINNs, which will be discussed in the next subsection.

Variable Splitting for PINNs  In this paper, we consider the parameterization of all variables
with two-layer MLPs with ReLU activation function, in a manner analogous to that described in
Section 2 for PINNs. The weights in the rst and second layers-cdire denoted bw- andv-,

respectively.We us& = w3  w{ " andv = vi vp " to refer to the respective collections
of all weights. Similar to PINNsyariable Splitting for PINNs (VS-PINNgmploy the linear sum of

penalized residuals of each term of the induced system of PDEs (14) as the training loss:

Xo ,
Uit wiv)=5 oo N i) f(x)
0 =1
S S 2 (15)
+ — @ , | \ |
no‘:lj P . @& ( 1) (xi) () N (xi)

+ = (BLol0g) 90g)” ;
b

where; 1;:::; _ areregularization parameters. As the GEEpfyn is characterized by Gram
matricesG,, andG, induced from the gradients of the residuals of each terfijnthe GF of
LY is characterized by Gram matric€s, and®, , which is induced from the gradients of the
residuals of each term in (14). Appendix A gives more detail¥qrand®, .

Remarkd.1l In order for high-order PDEs witk > 2 to be well-posed, it is necessary to have more
boundary conditions than those de ned by the boundary opeBator(1). Although our analysis
concentrated oB that re ect only up to rst-order derivatives for the sake of simplicity, our theory
can also be applied to more general boundary conditions. Furthermore, the high-order boundary
conditionsB can also be reformulated using the auxiliary variables useff foin that case, relations

(13) should hold on the boundary2 @ . As the reduced syste(i4) with reformulated boundary
condition is equivalent tgl), instability issues were not observed in our numerical experiments
even in the absence of arti cial boundary conditions on the auxiliary variables unlike to grid-based
conventional numerical schemes.

4.2 Analysis

A key advantage of VS-PINNs is that the derivative order of the induced system of @BHs

i |, which is lower than that of the original POE). We prove its effectiveness in this section. As
analogous to PINNs, we begin by proving the positive de niteness of the limiting Gram matrix,
providing its proof in Appendix C. i
Proposition 4.2 (General Case)The limiting Gram matri>@$ = Ew.v a, (w;Vv) s strictly
positive de nite and independent of.

We denote the smallest eigenvalu@ by o > 0. We now present our main theorem, which

demonstrates the profound impact of order reduction in variable splitting. The proof of the following
theorem can be found in C.1.



Theorem 4.3(General Case)There exists a constaf, independent ad, k, j j, andp, such that
forany < 1,if

6 - ap
m>c 4TK AT g oM (16)
d d
then with probability of at least over the initialization, we have
Liin (W (®);v(®)  exp( ot)Lpin (W(0);v(0);8t O (17)

The right-hand-side dfL6) grows exponentially with respect th k, andp, thereby indicating the
substantial in uence of these factors on the convergence of VS-PINNS, including PINNs as a speci ¢
case [ = 0). This analysis reveals several signi cant advantages of VS-PINNSs:

Improved Convergence: VS-PINNs are more likely to converge to the global optimum than PINNs
due to the reduction in the derivative ordlgr< k . This also relaxes the condition pdiromp k+1

top j j+1. Aspreviously discussed in Section 3, the optimal valupisfj j + 1. Given that

6( j+1) is an exponent oog (1= ), the most dominant term, reducing the order froro j |

leads to an immense improvement. There is another noteworthy observation we can see here. Given a
kth-order PDE, there are numerous possible partitiotiat could be employed to decompose it to

a system of lower-order PDEs. Consequently, there are a many of potential VS-PINNSs that could
be constructed. The aforementioned result indicates which of these is the most effective. As the
convergence improves dramatically with a reduction in the derivative order, the optimal approach
for splitting variables among various ways is to separate the given PDE into a system of rst-order
PDEs by parameterizing all derivatives of the solution as auxiliary variables. In other words, the
nest splitting with ¢ =0, 1=1,..., ¢« 1 = k 21would be the most effective in terms of the
convergence of GF, as the differential orglgris reduced the most to 1. Taken all together, the most
optimal VS-PINNSs that reduce the PDE ordketo 1 will markedly enhance the convergence of GF.

Reduced Dimensional Impact: The reduction of orders in VS-PINNs enhances the resilience of
the model to high-dimensionality. From Theorem 3.2, we observed the effddiaihg exponentially
enlarged for the PDE ordérdue to thekth-order partial differential operators in the loss function. It

can be alleviated by VS-PINNs reducing the order, thereby easing the ampli ed scale to exponential
of j j. This indicates that VS-PINNs are more effective in combating the curse of dimensionality.
Since the curse of dimensionality is a serious issue that is prevalent in various elds, including
Hamilton-Jacobi-Bellman equation in control problems, Schrodinger equation in quantum physics,
and Black-Scholes equation in nance, it is evident that enhancements to the robustness of VS-PINNs
with respect to their dimensionality would facilitate considerable advancements in various elds.

Memory Ef ciency: VS-PINNs are memory-ef cient despite the presence of multiple auxiliary
networks. As the order of the derivative increases, the complexity in automatic differentiation in
modern deep-learning frameworks like PyTorch increases and it becomes computationally expensive
[7]. Adopting the order-reduced representation in the proposed variable splitting can overcome the
dif culty in calculating the high-order derivative via automatic differentiation. The loss function

for the nest VS-PINNs involves only rst-order derivatives, which reduces the memory usage and
computational requirements. Despite the increase in the number of networks, VS-PINNs exhibit
greater ef ciency because memory usage and computation scale linearly with the number of networks
in contrast to the exponential scaling with the order of derivatives. Table 3 in appendix demonstrates
the memory reduction of VS-PINNSs.

Remarkd.4. The current approach to parameterizing the¢h order differential operator on all axes
r ~ as an auxiliary variable may be suboptimal in certain cases. In a given PDE, if the order of
the derivative varies signi cantly along the axes, thatis,6 0 for only a few in (1), it may be
more ef cient to approximate the partial derivatives using auxiliary variables separately for each
axis. To illustrate, for the PDHy = Uxxxx , it iS more suitable to parameterize variablgs u,

1 (U;uy), 2 Ux,and 3 U , rather than approximating all tensmr%t;x), r (Zt;x), and

r (3t;x - The theoretical framework presented in this paper is capable of addressing this scenario by

constructing each- to replace@— for only part of withj j= -. However, we exclude it due to
the intricate nature of the states and the lack of a meaningful impact on the PDE order.



(a) Convergence behavior of PINNs on bi-harmonic equation

(b) Convergence behavior of PINNs on Poisson equation

Figure 1: Training losses of PINNs solving (a) bi-harmonic equation and (b) Poisson equation.

Remark4.5. Although the shaprness of the bound in Theorem 4.3 is open, it is important to note that
the leading term of the bound is based on conditions necessary for the Gram matrix to be positive
de nite, which is a crucial property of the Gram matrix for ensuring the convergence of the GF to a
global optimizer. Since the Gram matrix is de ned by the PDE loss and the network structure, we
believe it can still provide valuable insight into how order and power affect convergence.

5 Experiments

This section presents experimental results that validate the theory. Throughout numerical experiments,
two-layer MLPs withReLWPactivation function were utilized in order to align with our theoretical
framework. Throughout all experiments, the training collocation points consists of uniform grid
and regularization parameters are setfa::; | =1 and = 10. We implement all numerical
experiments on a single NVIDIA RTX 3090 GPU. Experimental details are provided in Appendix D.

Convergence behavior of PINNs To investigate the in uence of the activation orgeand the

PDE ordeik on the widthm required for convergence, we examined both the second-order Poisson
equation and the fourth-order bi-harmonic equation, both of which yield the same solution. We
trained networks with varying widths m, ranging frdr@? to 10°, for each combination gf andk

using GD optimization with a learning rate ®® 8. Figure 1 illustrates the training losses at the
initial stage on a logarithmic scale, supporting our theoretical ndings that a larger width is needed
for higher values op to ensure convergence. Moreover, we can observe that narrower networks tend
to converge more readily when solving lower-order PDEs (Poisson) compared to higher-order PDEs
(bi-harmonic). This observation aligns with Theorem 4.3 that higher-order PDEs necessitate larger
network widths for guaranteed convergence.

Validation on the effect ofp  To verify the in uence of the powep of the ReLU activation function,

we test PINNs with varying values betweeB and10. Since the training process became highly
unstable ap increases, we consider second-order heat equédd®)[14] to gain a more precise
investigation of the effect gb. The results are summarized in Figure 2 (a). We can see that the
convergence of loss is enhancedatecreases, which supports our theoretical nding.

Comparison between PINNs and VS-PINNs To validate the order reduction effect of VS-PINNSs,

we conducted an experiment comparing PINNs with VS-PINNs on the second-order heat equation.
Each model was run ve times with different random seeds, and Figure 2 depicts the training loss
for both PINNs and VS-PINNs along with their variance. The results show that the training loss for
VS-PINNs converges more effectively than that of PINNs. This indicates that VS-PINNs, which
optimize a loss function incorporating lower-order derivatives using networks with smpaléailitate
convergence of GD, consistent with the theoretical ndings in Section 4. Furthermore, we performed
a similar experiment on the convection-diffusion equatidhl) in the Appendix E and obtained
results that were consistent with those observed for the heat equation.

Effect of splitting level For higher-order PDEs, there are several ways to transform a given PDE into
a lower-order system through variable splitting. To investigate this effect, we conducted experiments
on the fourth-order elastic beam equat{®a0)[52] with two cases: (i) o U; 1 Ui 2 Ux



(a) Effect ofp (b) Effect of variable splitting

Figure 2: Loss curves of (a) effect of the povpeof ReLUWPand (b) comparison between PINNs with
VS-PINNSs.

withj j =2 andp =3 and (ii) the nestsplittingof ¢ U; 1 I U, 2 Ux; 3 Uxxx With

j 1 =1 andp = 2. In order to train PINNs for a fourth-order PDg should be at least ve, but
training such PINNs with GD does not proceed properly, as illustrated in Figure 1. Consequently, the
experiments were conducted using the Adam optimizer. In contrast to the underperforming PINNs,
VS-PINNSs are effectively trained even with GD, as illustrated in Figure 6 of the Appendix E. We
run each model ve times with different random seeds, and Figure 2 (b) depicts the training loss of
PINN and two VS-PINNs with variance. The results show that the model with a lower PDElkorder
and a smaller poweas of the activation exhibits a more pronounced reduction in the loss function, in
accordance with our theoretical ndings. Furthermore, it can be observed that the variance of the
training loss is signi cantly smaller for the models with smaller value& ehdp. This indicates that

the learning process is much more stable for a smhlerdp. We also conduct numerical studies

on the fourth-order bi-harmonic equati¢d08). However, the results exhibit a similar trend to that
observed in the beam equation and are therefore presented in Appendix E.

6 Conclusion

In this paper, we proved that the gradient ow of PINNs converges to a global minimum and provides
suf cient width for this convergence. It extends the results2f] o general PDEs and activation
functions and provides even tighter conditions on the width size. The main theorem demonstrates
that the PDE order or dimension exponentially increases the width requirement, theoretically indi-
cating that PINNs are challenging to optimize for high-order or high-dimensional PDEs. We also
substantiate that the PDE order ampli es the adverse effects of dimensionality, which explains why
PINNSs are more susceptible to dimensionality than other deep learning losses without differentiation.
Furthermore, We showed that the variable splitting strategy improves convergence by reducing the
differential order included in the training loss function.

It is acknowledged that we only provided suf cient conditions for convergence. To fully comprehend
the role of these factors in optimizing PINNS, it is also necessary to establish the necessary conditions
linking PDE order, dimension, and convergence. Given that the primary goal of PINNs is to
approximate the solution of PDEs, it could also be a limitation that all discussions were limited to
empirical losses with xed collocation points. It would therefore be a worthwhile future direction

to analyze the conditions under which the expected loss converges when training collocation points
are randomly sampled per epoch. Extending our theoretical framework to analyze the impact of the
variable splitting strategy on the generalization error of PINNs, as suggesd],iwmpuld also be

an interesting and important research direction. Moreover, as our analysis was con ned to continuous
time ows, a comprehensive understanding of gradient descent would necessitate the analysis of
discretized ows, since GF and GD have different dynami&§.[We expect that our theory could

be adapted to GD dynamics by using Theorem 3.%6f, jwhich treats GD as GF with a counter
term, but we leave it for future work. In a practical context, the convergence of PINNs for adaptive
optimizers, such as Adar3f] or L-BFGS [43], and other activation functions, including hyperbolic
tangent, remains an open question.
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A Mathematical Notations

We introduce the symbols and mathematical notations that are frequently used in this paper.

Symbol Description
No The set of non-negative integers
d2 N dimension of domain
Rd d-dimensional domain
;2 N3 multi-index of dimensior
k2N order of the governing PDE
N differential operator
N) Splitted differential operator
B boundary condition operator

integral partition of0; k]

f: 1 R source function
g:@ ! R boundary function
X (y) (augmented)point in
x (y) (augmented)point o@

neural network
Gw,Gy Gram matrices

0 The minimal eigenvalue d&

m2 N the number of the width of the network

activation function
p2N power of ReLU activation function
No;Np 2 N the number of collocation points sampled from the domai®
S residual of PDE loss

residual of gradient matching loss
h residual of boundary loss

For a positive integem, the sef1;  ;mgis abbreviated apgn]. The set of multi-indexes whose
size ism or is at mosi is referred by
( )
Im = =0 1300 d)ZNSJJ: pi=m
( " ) (18)
Im= =( i a2Ng:jj= i om

In this paper, we use two-layer MLPs. For gide2 N and a partitiorD = o< ;< < | <
L+1 = k,wedene - :R4! RI'Jofwidthm as

1 X 1
(x;weve) = Pﬁ (V‘)r (W‘)r;l (W‘)r;2 (W‘)r;d X+ Q(W\)r;dﬂ
r=1 (19)
1 _—
= pﬁ (V‘)r (W)r y ’
r=1
where weights in the rst and second layer are
(W‘)r = (W‘)r;l (W‘)r;z (W\)r:d ,%(W‘)r;d +1 g 2 R4 ; (20)
I'> L
), = (Ve (Vo Vejj 2RV (21)
andy = x~ % " 2 R%*1  Note that the output dimension of is RI' I because each component
of - (x;w-;Vv-) represents partial derivativ%u, foreach 21 .. Hence, even thougtv-),
is a attened vector, it is more convenientto us€ | . as an index of component ¢¥-),. For
example,ifd=2, 1 =1,and =(0;1)2 14, (v1),. =(V1), ©:1) refers a weight between the
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r-th hidden node and output that represe&e (x;y). Similarly, we use multi-index itself as an
index thatisrelatedtb.,1 ., orJ

Moreover, as each ) is differentiated by som&— for 21 . ,and 21 ., index we

use pair of multi-index ; ) to refer a component dg— ( *). . Sometimes, this indexing by
multi-index is used in conjunction with normal indexes, I(ke)(; )i for somei 2 [ng].

>

We denote the collection of weights of al's byw = w3; w> ~andv = v3; v
Similarly, is the collection of all .'s, = §; ; [ . With regularization parameters
; > O, residualss;, ( )i, andh; of variable splitting for each training sample

r

sWiv=  KLoGwova: o Gwovoln) f () 22
(o= g W) o gy | (23)
|
= e (D) (awe nve ) Gawev) T
and
|
Wi = (Bl Gweivol () 909) (25)

de ne thelossL ¥}y for the system,

LVs ; 26
PINRy (w;v) 1 (26)

1 R Xo X X X Xb
=@ swv)’+ () s W)+ by (wiv)®Ac (27)

i=1 i=1 =1 21 ., 2] . j=1

we de ne
. .0 L2 ; . . 2 J1;

Amax = Max ja (X)) 21 .: I2 J[né] [ Ja (X'j )i j2 [nt] ; (28)
max =Max(fl g[f -:" 2[L]g): (29)

B Calculations

The proof of the main theorem includes intricate calculations. To keep the proof clear, we separate
some tedious computations that are used frequently. As this section is a reference for the proofs, we
use some notation or symbols without any mention if they are de ned in the other part of the paper.

Sizes of index set, andJ,,. Forany 2 [L],

. d+ -~ 1 .. d+ - 1 .. . d+ -
jimi= ‘ o= ‘ I = o (30)

We boundl .j,j -jandJ . by

i d* 1] (31)

and
x o . d+k
| N B NPT q - (32)

-
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Partial derivative of 8, , andh. Note that2- (w-)]y;
in (35), (W), y;
(w+),, and(wy), of degreep, respectively.

Fori 2 [no], =0;1;:::;L,r2[m],and 21 .,
r

p . >
in (36), and & (wo); ¥

P p
SinE) & w0y

P in (37) are polynomial ofw-),, (W~ 1),,

@ 1 X @ @
S = — & — (X 33
& S e @ ™ (33)
T+l
r
_ 1 X @ s P
~ mng a;; & (W) yi . (34)
2] +1
Similarly, for> 2 [L],r2[m], 121 . ,, 221 . ,, 21 .,andi 2 [n,], we have
8
qg — p
<7 - @ Y v if .=
e ST & waiv] as e g
Qv 1)y, "0 otherwise.
For 2 [L],r2[m], 121 ., 221 . ,, 21 .,andi 2 [ne],
( \ . P
@ (L= e Wove T e (36)
av-), , L otherwise.
Forr 2 [m] andj 2 [ny],
RN wo), vy © 37)
@(VO)r;l . mny 23, @ oJr y-] +
Norms of partial derivative of §, ,andh. Notethatfor 2 [n,],” =0;1;:::;L,r 2 [m],
0 1
r
@sw;v) _ 1 @ @ * , @ Wy, wyy "t A
aw), , mn, @w), , L, = & o WY
+1 2
38
r o L (39
1 @ X X @ p
= = .= . e A
mno, @w-), 21 . 23 & @ v )r; Wy +
T4l 2
39
r 0 L 39)
1 X X @ @ p
= @ V). a. — w-)> A
mno " V) 2 To@w), @& Wy, i
(40)
r
1 X X @ @ > P
a V:),. — (W 41
mno max )l ( )r’ )3 . @(W)r @ ( )r y . 5 ( )
e X o -
——8max (V). pot T k(w), k; (42)
mn, ’
21 23 .,
r
l X . +1 p 1
= amax (V\ )r' J S+l p +1 k(W ) )r k2 (43)
mn, . ’
r q —
——amax 1K) K I P k(W) KT (44)
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for2[L],r2[m], 21. ,, 21 .,andi 2 [ne],

@) e e e
aw v, , @w 1), mn,& Ve Ui

= — (V' 1) @ Q (W 1)7
mn, Ynooo@we ), @& Rl

4 1
e (0 Tk )k

D (v 1)k, kW 1)K

mn,
@ ‘)(: )i (w;v) _ @ r ) . e P
aw), , @w), mn, M Wy
r
. @ N
e (e @wy, WL
mncP (V) ke K
r
ep(v:) K, k(W) K
@ )i(wiv)  _ oa s q.e
— 1 7 =0;if "6 1
@w-o), 2 |
and forr 2 [m] andj 2 [ny],
r_
@hw;v) _ @ X @ >, P
a@wo, ,  @wa, mm ,, %@ (o MOV
p— X p
pm:nbamax @Vf/@o) @g (VO)r;O (Wo)r> ¥ +
23 r
P X
Pm:nbamax p2 (VO)r;o k(WO)rkg !
2J1
r
i ama (d+ 1) P K(Vo) k, k(wo), K 7
@h(w;v) PN .
——= =0if V2 [L]:
@W\O)r;l , | [ ]

Similarly, for™ 2 [L],r 2 [m], andi 2 [n,], we have the following inequalities:
for 21 .,

r
@s(w; V) X @ . P
@V‘)r; MNo 23 . . @ ( )I’ yl +
r - +1
1 T4l p-
amax J -, P k(W‘)rk2’
r _°
@S(W;V) max q P j . p
av), , mamax | L P k(w )rkz
for 121 ., 221 . ,and 21
@ ),y WDV (D) '— o p
( 2; )‘,l =1 = ,q — — (W 1)r> Yi
Qv 1), , mn, @ +
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(45)

2
(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)



r
1f 1= 20 minop k(W 1)rkg

e v (W e
= g(éi );')(W 2 TP ke 2K

for 121 ., 221 . ,and 21

@)y W3V) T ey
@V‘)r; 1 s 1= 2t 9 mng (W)r Vi +
r
i = o g mn, k(W)rkg
r—
. e (wv A
a ), ‘),.( ) Lo gl jk(we), Kb
av-), , ™o
for' %6 > 1.7,
@ ) wiv) .
@V‘O)r 2 '
and
r_
@h(w;v) X @ >y "
@R, v) — a — (w
@Vo)r;o r mng . @ ( O)r yr.J +

max p.
mne (d+1) amax Pk(wo), K ;

@h(w;v)

— 2 ~0 .
s, 2_o|f 2 [L]:

Hoeffding's inequalities for si; , ( +). .. ,;,andhj, . Foreach 2 [no] andr 2 [m], let
o 7 1

r__
X X X
swiv= @ a2 A
Moo 21 23 " @
X 1
= sir (W;v)  p=f (xi);
r=1 Mo
where
) _ 1 X‘ X X @ S p
Siy (W;v) = pmino &, @& (V) (w)ry .
=0 21. 21 .,
Ass;, is ap-th degree polynomial ofw-), , we have
X X X
. . a @ > p
Jsi;l’ (W,V)J ﬁ% @7 (V‘)r; (W)r y
o . +
=0 21 . 23 .,
amax & X X \ o
pﬁ (V\)r; p . k(W)rk ;
[ 2N
=0 21 2

foralli 2 [ny] andr 2 [m].

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

Sincek(w-), (O)k, <R and (v:),, (0) 1forall’=0;:::;L, 21 .,andr 2 [m], we have

jsir (w(0);v(0))] Amax p “RP

T+l
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r

max - . i J p

mnoamax . ity J ., P'R (78)
r

max d+ k d+j J i ipp-

for all i 2h[n0] andr 2 [m].
i

UsingE (v-), =0, we attainE[si; (w (0);v (0))] =0, and Hoeffding's inequality gives

# 0 L2 1
x " 2 Pqs
P s WOVO) > p—  2ep® —q— L
r=1 ° m 2 meag Yh6 S pliRe
NG
w2 ’
2exp — ;o (81)
2 maxarznax dzk ? d+dJ ) 2p2j IR2p
forall" > 0.
Similarly, foreach 2 [L], 21 . ,, 21 .,andi 2 [ne],
r— @
(e oy wiv= = g () (awe v ) (Xwev) (82)
xXn
= (e (Wiv); (83)
r=1
where
r
. @ p p
(e W)= e o (g Wy (W) e WY
(84)
Then, we attain that
' X @ > p > p
( \)r;(; )i (W'V) mn, @7 (V‘ l)r; (W\ l)r yi . + (V\)r; + (W\)r yi .
(85)
r—
aio P KW G () L kW) K s (86)
and r
. max i .
( ‘)r;(; )i (W(O),V(O)) mino Fﬂj+1 RP: (87)
h i h i

E (v:), =0 impliesE ( «)r;(; )
sum over 2 [m] of variables

=0 and for each 2 [n,], Hoeffding's inequality with the

X X
Xei (W (0);v(0) = (e ys WOV O); (89)
210, 21 .
with
r P
Xei (W (@©);v@O)j 1., jI erT:) pl+1 RP (89)
r ..
o d;" d+d“ P+l RP (90)

20



gives

#
xn "
P ( ‘)r;( v )i (W (0) Y (O)) > p? (91)
r= o
0 L 1
p—
2expi q il 22 (92)
m #axod:‘k d+dJJ dj_'_l RP
I
n2
2exp — : (93)
. T2 AT g PR2
For eachj 2 [ny], let us denote
r—x r_
hy (w;v)= — & o(xXj;Wo;Vo)  —g(%j) (94)
Ny 23, Np
r
= hy ((Wo), ;(Vo),) Fbg(kj ); (95)
r=1
where r
= X @ .
hj;r (W!V) - minb . & @7 (VO)r;O (Wo)r y.] (96)
1
Itis clear thath;, is expressed asgth order polynomial ofw,), and we can deduce that
r
ihye (W (©)v O ama (d+1) PR; ©7)
forallj 2 [np] andr 2 [m].
Similar to the case ofi; and( -). . ,;,Hoeffding's inequality gives
" # !
" n2
P hi, (w();v(0) > p— 2ex : 98
M WO > e P w @R
Components ofQ- .-, Each component @., .-, is polynomial of ordep as follows:
QO;O i1 | | (99)
XX X ' '
- @ @, (100
=0 r=1 2| n h
0 10 1
1 XX X X @ P
= a. — (W) v, @ a. — (w)Yvy A
mno =0 r=1 2| 23 ., @ ( )r Yi 23 ., C ( )r Vi *
(101)
QO;‘ i (s )ii2) I | (102)
X X X ' '
= 7@\/% Si, 7@\/% ( ‘)(; Vi (103)
t0=Q r=1 021 r 0 ' r o '
X X @ ' @ '
= —— 5, ———( ). 104
o @V‘ 1)r; . | @V‘ l)r; 0( )(, )ii2 ( )
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n © () (105)
¥ Sia a@av-) .. G )iz
r=1 02] @(V‘)r 0 ' @(V‘)r 0 ( ) |
X X @ @
) av 0. av Lo 106
r=1 02] @v- l)r; '0 av- l)r; o( )(’I )iz ( )
B €6 i (107)
r=1 @V‘)T; + @V‘)r; + G
P o 00 y 0 1
: . o ) .
= o @@ a 1:: 07@@ 5 (W 1)r yi1 +A @g (W l)r yi2 . (108)
r=1 023 L .
X 0
© B o )y, A Wy, A (109)
02J ., @& * +
! !
X X X A
Lot T S j 110
Rott T a2 @;(V‘)r; @XIV‘)r; : (110)
T @vo). . @(Vo)r-lhj (111)
r= 1 : 1 |
r .
1 X X @ o X @ .
“m @ o1, — (Wo)y; A a — (Wo) ¥
m NoMp 1 @& + - @& i,
(112)
Q‘:\ (€ 13 1)ii1)s(C 25 2)ii2) | | (113)
X o X @ ’ @ ;
- v O u i gua ) o 114
g re1 21 @V\O)r; ( )( 15 1)l @(V‘o)r; ( )( 2 2)ii2 ( )
! I
- o C)von gGu ) o 115
=120 @v- 1)r; ( )( 15 1) Qv 1)r; ( )( 20 2)iia ( )
! I
X X @ ’ @ :
¥ avy Ccu e guy ) i 116
el o @V\)r; ( )( 15 1)l @V\)r; ( )( 2 2)ii2 ( )
X ' @ p r T @2 p
= W 1); yi, W 1)y, 1 .= e (117)
r=1 mno @ * ! + mny @ 2 1 . f g
Xt F— > P r— N o
+ B — W )eyi, | p— W7 Y, |, L uv = v g (118)
oo , o ) o
= @(@ - (W 1), Y, @@ - (W 1)y, i = L (119)
0r=1 * +
> p > p
+ (W)Y, . (W)r i, R IFTIPEIPR I (120)

Qs (ui il 2 i) (121)
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!
X X .

- @ @
) =0 r=1 21 W( s i @v-o),  *h ez (122)
! I
- @v-),. - JCaai avy * Vi 123
r=1 21 @V‘)r; ( )( 15 1) @V‘)r; 1 (5 2)iia ( )
XX ' T p r < @2 p
— Ny B 4L Vo i
) r=1 2| mne W ¥i, + b= mny, @ 2 W)r yi, + It = 59
(124)
p ] X N p @2 S p
= e W )eyi, | @ : W7 Y, At am e gl (125)
r=1
Qi (i | | (126)
Xox X ' :
- o DIEY _@ (127)
*0=0 r=1 02] 0 @V\O)r; 0 ' ’ @V‘O)r; 0
! ]
- @vo L6 g 128
r=1 @(Vo)r;l( G @vo)r., : ! ae
o T r X !
1 @ > p >
- @ Wolk Vi — & (Wo)y 1= 129
o1 mno @ ( O)r yl N mnb - ( O)r y’] | f 19 ( )
r .
1 X @ s » X @ N .
== Mol _, @ (Wo); Vi . ZJla & (Wo); ¥ liag (130)
QuirL+ s : | (131)
X X X @ A A .
- | | 132
=0 r=1 2| @(Y)r . @(:/)r e
S @ @ve,” 133
r=1 @Vo)r;l . @(VO)r;l b2 | ' ( )
S @ > P X @ > P
- e E @ Wok & — (Wo); ¥ 134
- mnp , o @ (Wo); ¥, . my ,, 0 @ ( ('))r ¥i. , (134
N T ol v, (135)
- & o Wol ¥, & — (Wo), ¥, 135
Mo, 23, @ ' + 23, @ ' +
The number of possible nonzero elements irQ- ., and 8,. There are possiblyn2,

| ., jI .jinZ, andnen, nonzero elements i@y, Qq-,
(1, 1)21., I ., there are at mogl
1+ 1= 2+ 5 and at mosil
Thus, there are at mo&tl .j pairs of( 2; 2) 2 1 . |
1= 2,andQ-.. haspossibly I . | jl .jno (2]l
elements. Similarly, each 1; 1) 2 1., |
there arel ., pairsof( 2; 2) 2 1. |
| N T R
number of nonzero elements@y_,; . ,; isnZ. After all, the

g

with

T+l

23

jpairsof( 2; 2) 2 1.
.j pairs of ( 2; 2) 2

. uniquely determines, =

nZ nonzero elementsQ, ,; hasjl

andQg, ., , respectively. For each
. | . such that
., | .suchthat ; = ».
I . with 1+ 1= 2+ sor
No)=2 | ., .j?n2 nonzero
1+ 121,
1+ 1. Hence,Q-.-,; has
.jNonp nonzero elements. The
number of nonzero elementﬁn, is

ji

2 =



Matrix | The number of nonzero elements

Qo0 n

QO;‘ I 1 Jl ]ng
QoL+ NoNp

Q- 21, jI j*n2
Q\§\+l |‘1 JI J I 41 n(2)
QL+ il .inony
Qs ng

Table 1: The number of nonzero elements in block& in

) .
atmostN, =7 4k 411 244 @1 non, + n2, because

d
the number of nonzero elements®f (136)
IXi-l
= the number of nonzero elementsn.. (137)
*=0
Xl
+2 the number of nonzero elements@n. (138)
=0 "0="+41
X 2
nZ + 21 . 1 j°nZ +n? (139)
=1
+2 Lo, 1 jnZ +neny+ Lol 1 o, n2 +jl ,jnony (140)
=1 T=1
o2 n
n2+2 d+d” | n2+n? (141)
( = )
d+..X_ d+..2X_ d+..
+2 d” . | ., N2+ nonp+ d“ . | ., nZ+ d“ NoNp
| (142)
d+jj d+k d+jj2d+k- d+jj
1+2 4 tr oy q n2+2 1+ g NoNp + N2
(143)
d+k d+jj? d+j |
7 d d nZ+4 g MM+ ni (144)
=Ny: (145)

Norms of partial derivative of Q. ..,. Foreachiy;i> 2 [no],r 2 [m],and” 2f0g[ [L], we have

QO;O i1 (146)
‘ 0 10
1 X X X X @ N p X @ N P
= &, — (W) y, A @ &, — (w)y, A
Mo 521 21 29 " @& r * 23 ., @ r *
(147)
@

——— Qpo . 148
@W‘)r Q0,0 152 5 ( )
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8 0 10
1 @ =X X @ S .
. &, — (W), A@ &, — (W) vy,
Mo @W-), © 5,y @ R 21 . @& ro
(149)
80 10 19
1 @ “g X @ S @ N
mng ) d Bmax aw),: @ W) yiy - W)y Vi, ;
(150)
1 L 2 i i+ 2p 1.
@ 19 P2 I* k(wo), K& T (151)
@ _
@), 200 i (152)
Foreach 2 [L], 21 . ,, 21 .,andii;iz 2 [ne],
Qor 130 )i2) 1 (153)
P— o X o p b
= @@ @y A @y
mno - DZJ ‘ a 1,, @ 0 (W 1)( y|1 " @ (W 1)r y|2 " (154)
0 1 1
X @’ -oP .o
@ a;; 0@ (W-); yi, +A (W), yi, +A; (155)
02‘] +1
@
Qo i e (156)
;@(w\ 1), Osll'((' yia) L 9
_ T @ Tk @ . —
- mnNng @W 1)r 03 a L 0@ (W l)r yi1 + @7 (W 1)r yiz +
2
(157)
P—
anaxjJ PP k(W 1) kG (158)
o
d+jj o 2p 1.
mzix max d pZJ e k(W‘ 1)rk2p ) (159)
and
@
——— Qo . (160)
W coin(Cs o )si2)
@p ) 00 2 1 1
e X @ > Pa . Pa
mng @w-), " &, & W)y, A W)y, | (161)
p— ?
cpdman 3 P kW) 6P (162)
. max d+jj 2j j+1 2p 1.
mno max d p k(W‘ )I’ k2 , (163)
@ 0~ 1.~
@w o), Qor iy yin = 9 it-"8 L (164)
_Q@_ Qo- =0; 8°2[L]: (165)
@v-o), <O i yi) T '
For each 2 [ng] andj 2 [ny],
QO;L+1 i (166)
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r 0 1
1 X X
@ a0;1;

1

= @g (Wo); Y, iA

m  nony _

_oe
@wo),

r < X
— @ @ B0t

m nghy, @wo), : .

2] 231

QO;L +1 isj

@

1

r d+

nony  d
max d+] ]
NoNp d
_@
@w-),
@
in;J

Yo(d+1) adap +*2 k(wo), kP 1

3k 3e

(d+1) a2, p 12 k(wo), K *;
QoL+ 45 = 0 8 60;

=0; 8"

Foreach‘Z[L], 1, 221 1 1 221
Q (1 i) 25 2)ii2)
xXn @1

mno @& :

(w- 1)r> Yi, i @(@22

(w-

=1

> p > p
+ (W)r yil . (W)r yiz + 1f 1+t 1= 2t

e
@aw- 1), b DR 2 2)i2)

@ @:

N p
=1 -
729 mno@we 1), @ -

(W 1) i, .

) . 2p 1
L = ,q—p° kw 1)k
fa zgmnop ( )r 2
i 2p 1.
1t = g2 I k(we q), k5P
f 1= 20 mnop ( )r 2

and

@

aw-), Qv (a0 2 i) X

@
Mno @(W‘)r
2p 1

2+ 2gm7nopk(w‘)rk2

— > P
=1 1+ 1= 2+ 20 (W)r Yi, .

1 1+ 1=

1f 1+ 1=

_@
@W‘o)r

max 2p 1.
2+ 29 mnopk(w‘)rkz )

Q\;\ =0

26

> p
(Wo)r yi +A

w);

o o Wo),

8¢ 1

X @
a PR
2J1 @

Y andil; ig 2 [no],

> p
1)r Yi, . 1 - 29

29

> p
(W\ 1)r yiz .

@2
@2

p
Yi, .

(Wo); ¥

(174)

(175)

(176)

(177)

2
(178)
(179)

(180)

(181)

(182)

(183)

(184)
(185)

(186)



Similarly, for each™ 2 f1; Lo1g, 121, 221, 121 .,221
i1;i2 2 [No],
Quat (1 i 2 2
_p T+l X > p @2 > p .
- mn, . (W)r yi1 . @ 2 (W)r yi2 + 1f 2= 1+ 10
@
w- Qo (13 i 25 2)ii2)
@ )r p 2
T+l .
Lt = .+ lgT:p a1 k(W*)rkgp 1
L UPN
@ — 20g -
@(W‘O)r Q Lo o1 i) 25 2)ii2) 0,876
@ — . a0
((ﬂV*o)r Q Lo 1 i) 20 2)iia) 08"
Foreach 2 [L], =1, 21 ,,i2[no]andj 2 [ny],
Quuvr (1 yig |
r !
1 @ . p X @ .
== = . = : Teoiq ot
m N, @ (Wo); Vi . 2J1& & (Wo); ¥y f=1g
@
@wo), Quist (5 yig )
B - T B
m"fom @wo), ., @ . Ta U

pP—
1

+ 2p 1
mamax (d+1)p **? k(WO)rkgp

— X amax (d+1) P2 k(wo), k5P *;

m" Nony

_@

Qw-),
@

@v-), Qurn i 0 8:

Quin i 0,8 60;

For eachj1;j2 2 [ny], the direct calculations lead to

X

Quais jyy, = mn,
r=

_@ 4
@(WO)r L+1;L+1 j1i2 ) mnp
@ e aen.
@w-), Quain j,y, =08 80;
@ NN
@), Qi gy, = 08

X
&

231

27

@‘@

(Wo)lr> Yi, .

———alay (d+1)° pPk(wo), K 1

p X
a @
23 @&

and

(187)

(188)

(189)

(190)

(191)

(192)

(193)
(194)
(195)

(196)

(197)
(198)
(199)
(200)
(201)
(202)

(203)

!
S p
(Wo)r y'IZ +
(204)

(205)
(206)

(207)



Hoeffding's inequalities for Q- .-,.

@

p o
a Wy, P kWK
@ > P i
@ (W 1)r yi + pl ]k(W\ 1)rk21
S p
W7y k(W) K
@ > i
@ (Wo); ¥y P ]k(WO)rkg3
Then, for eachiy;is 2 [Ng],
0 10
XX X D X
@ a. @ (W)r> Yi, A@ a, —
=021, 23 ., C * 23 ., &
0 10 1
X X X o o
@ amax P 1 k(w) KA @ amax P k(w+), kK5A
=0 21, 23 ., 20 .,
X X ) . .
J . Tapup? IR¥
=0 21 .
X + 0 2 .
i ) e R
‘o
d+k d+jj? -
L d T g R
By Hoeffding's inequality with
QO:O P | |
X X X @ ' @ '
= Si Sj
=m0 2. @V tooav), ¢
0 10
X X X X X
-2 & e (w); Yi, "A@ & @
Moo ra1 21 29 " @& ¥ 23 ., C
we have
h h i i 202
mn
P Qoo i13i2 E Qoo i1z >" < 2exp d+k 2 d+j | 2 2 D4
2 d d amaxp4] IR%P
forany" > 0.
Similarly, foreach 2 [L], 21 . ,, 2 -,andis;i2 2 [no],
0 1
X @’ -, Py @ _—
@OZJ \a‘ Lo oG W a)ryi, | @ W)y, |
0 1
X @’ . op -
@ a‘:; 0@ 0 (W)r Yi, +A (W)r Yi, +

For each 2 [no] andj 2 [ny], we have
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(208)

(209)

(210)

(211)

> p
(W\)r yiz +A

(212)

(213)

(214)

(215)

(216)

(217)

(218)

S p
(W\)r yiz +A

(219)

o (220)

(221)

(222)



d+

d+

amaxP k(W 1) K5 P Ik(we 1) KD+ 11 amaxP  K(w-), KD k(w-), K
(223)
d+dj PV opi+1 anmp IR (224)
By Hoeffding's inequality with
Qo . . . (225)
‘;)' i35 O)bz) 1
- X X @° p @ p
= @@ & 1. oo—s (W 1)y A = (w 1)y, 226
mno " L e W 2)r i, | & W) yi, | (226)
0 1 1
X @’ .P . oP
@ & o W Y A W)y, A (227)
02‘J +1
we have I
h h i i 202 '
mn
P . E o < 2ex — o
QO’ i (s )ii2) QO’ i (s )ii2) p 2. d+d]] 2 pj j +1 Za%laxpzj jR4p
(228)
forany" > 0.
For each 2 [no] andj 2 [ny],
0 1 |
X soPp X @ >
@ Qo:1; @ (Wo); Vi A & @& (Wo); ¥ (229)
23 ¥ 23
d+ +
" amaP tKWo) Ky T ama Pt k(Wo), K5 (230)
(d+1) d+d“ a2, p "L R (231)
By Hoeffding's inequality Witfb .
I
r !
1 xn X p X @ P
. L= == @ . — W Z v, A a —— W Z
Qo+ i m Moy ., 130,1, @& Wo): yi + - @ (Wo)r ¥
(232)
we have |
h h | | mnonbuZ )
P QoLu i E QoL+ i >" < 2exp 2 g 2 —
| | 2 (d+1)® YT e pA 2R
(233)
forany" > 0.
Foreach 2 [L], 1; 221 . ,, 1; 223 .,andis;iz 2 [ne],
1 P @> 5 p
@ 1 (W l)r> yil + @ B (W‘ l)r yi2 + 1f 1= 20 (234)
P P
+ (W)r> Yi, . (W)r> Yi, . 1 1t 1= 2t 20 (235)
pi o] sz2p1f 1= 29 + Rzplf 1t 1= 2% 20 (236)
pdi+1 R%: (237)
By Hoeffding's inequality with
Q. (238)

(C 25 2)501)5(C 25 2)i2)
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.U @Pl S p @?2 > p
= mno | @& (W 1), Yy, . @ - W 1), Yy, . L = 49 (239)
> p > p
+ (W‘)r yil + (W‘)r yiz + 1f 1+ 1= 2+ 20 ; (240)
we have |
h h i i 202 '
n mno
P Q (C 15 1)5i1)5(C 25 2)ii2) E Q (C 15 1)5i1)5(C 25 2)ii2) Z < 2exp 22 p2j i+1 2R4p
(241)
forany" > 0.
Foreach 2 [L], 121 . ,, 221 ., 121 ., 221 ., ,andii;iz 2 [ng],
p 2 p .
(W) i, . @& (W7 Vi, L L= v g P IR?P: (242)
By Hoeffding's inequality with
Qyn ( 15 250 25 2)ii2) (243)

P Xn
T p @2 p
- WY s WYL L e (249)
r=1
w?] have h . .
| | 2u2
n mnO .
ProQuut (v 2o B Q0o (i i ot i) < 2o Z(é ‘+)1 pd iR4 '
45
forany" > 0.
Foreach 21 . ,, 2J .,i2][ne],andj 2 [ny], |
@ . op X @’ —
= (Wo)r yi & o 0 (Wo)r y-] (246)
@ X " 0273, @ *
PIRP amp TRP (247)
023,
(d+1) amaxp 1" R?: (248)
By Hoeffding's inequality with
Ql;Lr+1 ;)i 0 | (249)
1 @ -, P X @ - P
= — = (Wo) Y, &o——= (Wo) ¥y . (250)
m  NoNp _, @& + 03, @ +
we have |
h h i [ n2 '
mnyny
P . . E . o >" < 2ex
Qui+ (GEBERE Qui+ (SR ERE P 2, (d+1)2a2maxpz,' j+2 R4p
(251)
forany" > 0.
Forji;j2 2 [ng], | |
X @ .o X @ .or
a @ (wo), ¥, . a & (wWo), ¥, . (d+1)2a§1axp2R29: (252)
231 2J1
By Hoeffding's inequality with | |
X X @ p X @ D

— > > .
QLirs ivie (Wo), ¥i. . a @(7 (Wo), Yi, . ]
231

a
Mo 5y, @&
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we have
h h i i

mn2"?2
P QL+1§L+1 itz E QL+1;L+1 i1z < 2exp 2 2(d+1)4aﬁqaxp4R4p )
(254)
forany" > 0.
C Proofs

This section proves the main theorem with some lemmas and propositions. Similar28]thves
rst prove that the Gram matri@i is independent ofn and strictly positive de nite, in Proposition
C.3. Second, a8, (w (0);v (OP is the sample mean, Proposition C.4 shows @k;ﬂ(w (0);v (0)
is close to its expected vah@v with a high probability, ifm is large enough. This implies that

a, (w (0) ;v (0)) is strictly positive de nite with high probability. Then, we show that the initial
loss is bounded with a high probabilitynt is large. This is because(0) has zero mean, which
hinders the output ah variables to diverge a® increases. Finally, we prove that the Gram matrix

a, (w (1) ;v (1)) remains within a small neighborhood of the initial point, where it maintains its
strict positive de niteness. The gradient ow converges within the neighborhood, as the smallest

eigenvalue o8, is distinct from zero, resulting in a rapid reduction of the loss.
Then, for eachi 2 [n], there existsv; such thatwvy; =0 if and only ifi = j.
Proof. Lety? = w2 R%:w”y; =0 . Sincey;=y; fori 6 j,y; \ y; is nowhere dense n’ .

Hence, nite union off jgiyj? is nowhere dense iy’ , and in particular, there existg; 2 y? such
thatw; 62 [jgiy; . O

Lemma C.2. Letn;d 2 N,and :RY%! R be ahomogeneous polynomial of degned-or any

is (n + i)-times continuously differentiable at somve 2 RY with (w )” y =0, then 0.

P
Proof. Without loss of the generality, we may assumeyhdé 0. Write (w) = 21, @ W

for coefcientsa 2 Randdene' (w)= (w) w’y '+ Forany 2 I, the assumption on
differentiability implies that@%q@v—' is continuous. Indeed, we havgw) =0 forw”>y 0, and
@ @ -
——' (W)= la yi; 255
@ @v (w) Y1 (255)
forw”y > 0. The continuity inducea =0 and thus Oforallw 2 RY. O

i
Proposition C.3. @\l, = Ew.v 6, (w;Vv) is strictly positive de nite and independent of.

Proof. Foriy;iz 2 [no],

QO;O i13io (256)
’ 0 10
1 X 1 X X X @ S p X @ > P
“m - @ & @ (W) i, A Q@ &, @& (W); i, A
r=1 " %°=0 21. 23 ., * 23 ., *
(257)
andm randomovarlables 10 1
1 X X X @ S p X @ S p
- @ & @& W)y, A@ & @ W)y, A
°=0 21. 23 ., * 23 ., *
(258)
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forr 2 [m], are independent and identically distributed. Therefore, the expected value of each
component of ., is independent afn, as the expected value of the sample mean of independent
and identically distributed random variables is independent of the number of samples. Similarly, each

component of3, (w;v) is the sarqple mean ofi independent and identic?lly distributed random
variables, and its expected valdh is independent ofn. To show thal@v is strictly positive

de nite, assume that there exists = (Zo), (zo)y, 2R"™,z=[2 an]> 2 R,
and
= (Z‘)(; B(21 21 Gizine)) 2RI I (259)
P . . .
for* 2 [L], suchthat = z3 2z 2z oz T 2R (It o)+ e gatis es

> I 2
@i z = 0. Since@i z=Eyy BD,0, z=0ifandonlyifEy, D,z , = 0, we show
2 N : . 1
thatEy ., D,z , = 0 impliesz = 0 and thereby is not an eigenvalue c@v .

Now assume that there exists? RY such thatd vZ = 0 for almost allw andv. SinceD v IS
continuous with respect tw andv, we havel) , z = 0 for all w andv. Hence, the functiof) , z of
w andv, which is identically zero, is smooth with respecttcandv .

In this proof, we denote an index for acomponenﬁqu by 2 [L],r2[m]and 21 .,because
each row ofd , corresponds to the partial derivatives with respe¢wtg, for” 2 [L],r 2 [m]

and 21 .. Forinstance, D,z 010 is the rst component of B,z . First, for' = L and any
r2[mjand 21  ,wehave -

D,z (260)
L;r; I '
Re @ ' Xo X X @ :
i=1 vy | ' ia 21 21 @vy),. LI (% )i
261
r 0 1 (261)
X @ X @ > p
= aL;; —_ (W|_)r Vi A (ZO)i (262)
mno ._ @ +
i=1 23 a
f—x X X wor v ") . 63
WL) Yi ZL) o yide = o gt
Mo _ o, N r . i

L 1 L

Fixi 2 [no], and by Lemma C.1, there exigis ), 2 RY such tha(wL)r> y; =0, (WL),> Yo 60
fori 6 i92 [no] and(wL)r> y; 60 forj 2 [ny]. As a function offw_),, B,z =0 implies that

0 1
X p
@ a;; @g (W), i +A (zo); (264)
23 L +1
p— X S
L (W), Y . (ZL)( o. i i = o g (265)
1, 21
0 1
X X o
- e T a2 woiy A, (266)
i%i 23
p__X X X S p
L (Wo)y Yi . (ZL)( o. i i = o g (267)
i%i 021 21
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S p L+l | X 3
is smooth afw ), = (w_),. Note that the coef cient of (w| ), v; in (266)is given by

a., (xi)(wo)t (wo)eg (Zo)is (268)

21 L+1

which is a homogeneous polynomialwi_ . Together with the fact that at least onefef.  (x;) is
nonzero, Lemma C.2 impligg); = 0. Similarly, for anyr 2 [m],
!

Xb @
D,z = ——h; 7 269
\ orr; 0 i1 @VO)r; 0 J ] ( )
r Xo X @ . b
= me,_ a (X“j)@i (Wo); ¥ . Fal (270)
j—l 231
F—xo X S Pi
= — a (X-] ) ZLJ (Wo)r;lj_ (Wo)r;g (Wo)r y-J (271)
Mb 5y, *

deduceg; =0 with w, instead ofw, , such tha(w,)” y; =0, (Wo)~ ¥jo 8=0 forj %6 j,and
(Wo)” y; 60 fori 2 [no]. Now suppose that we hage= 0 andz.o =0 for °=0;1;:::;> 1
forsome’ 1. Then,forany 2 [mland 21 .

171

Dvz (272)
™ I I
Xo @ ' Xo X X @
= =S (Zo) *+ C )0y @) oy
- av- 1), i [ o @v: 1), (% )i %)
| (273)
Xo X X @ '
* e 10y (210 (274)
i=1 %21 ., 21 ., av- 1, |( )
X e e @75)
= \ Doy (@) 275
=1 %21 ., 21 . av: 1y,
r —Xo X S p .
= ni (W\)r;l_‘]_ (W\)r;g{ (W\)r yi . (Z\)(; )i . (276)
Oi=1 21 .
P
Then the coef cient of (w«)r> Yi is a homogeneous polynomial
r— x
no (Z); gy W) (277)
° 21 .
Lemma C.2 shosz\)(; yi =0 forall ; . The induction concludes = 0. O

In the sequel, ¢ = min (@V) > 0is the minimal eigenvalue dﬁ\,. Furthermore, we assume

the occurrence of the following event: there exiRs> 1 such thatk(w-), (O)k, < R and

k(v-), (O)k, <R forall* =0;1;:::;L andr 2 [m]. This assumption is employed solely for the
purpose of simplifying propositions and their respective proofs. In the main theorem and its proof, we
use the following arguments with regard to the conditional probability of the aforementioned event.

Proposition C.4. Let > Oand

.. 2
P
C1= d+kk d-iFJ'JJ fax nio+ni-b 1+af, pPi+1l (278)
) ..
Ny=7 d;k d+d” nZ+4 d+d“ NoNp + NZ; (279)
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be constants. Ifn is large enough so that
32N;C?R*
2
0
then with the probability of at leadt  over the initialization, we have

log Ny ; (280)

B.(wO:vO) 8, < (281)

0,

7
1

Proof. We use Hoeffding's inequality to measure the error betvxléer(w; V) and@V , as Gram

matrix@\l, is the expectation of the sample mean. In the Hoeffding's inequa{R2@), (228), (233),
(241), (245), (251), and (254), we have

1 d+k 2 d+jj*,

n2 d d Amax p4j j Cf; (282)
[o]
d+ii 2 . 2 o
o g T o (282)
(o]
d+ i 2 .
e U el e (284)
(o]
2 . 2
> PP+l c? (285)
nO
— P (286)
o]
nolnb (d+1)%a3,p? 12 C% (287)
2
n—g(d+1)4a$axp4 ci: (288)

1
Consequently, all inequalities induce that each componer@@f @V is greater thari, with

a probability of at mos® exp 20”12‘% . Since there exists at moBt; nonzero elements in
68, 6, by(145),
8, wiv) &, (289)
holds componentwise, with the probability of at least
w2 N1 m"2
Then, we have . . D
8, (wiv) 8 8wv) 8 _ " N¢ (291)
Set" andm to satisfy" = Zplel o and2N exp W“I"RZT,, < . In other words, if
2C2R4P 2N,
o —log — (292)
32N, C2R*P 2N
= 17%1 log == ; (293)
1 . .
then 8, (w;v) @&, , 15 with probability of at least 1~ O

By the above proposition, the initial Gram matt, (w (0) ;v (0)) is likely to be strictly positive

de nite, and its smallest eigenvalue remains greater tfgnat the beginning of the ow. The
following lemma implies that at the early stage of the ow, for whighandv are not far from the

initial values, the positive de niteness is preserved, and its smallest eigenvalue remains distinct from
zero.
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Lemma C.5. Suppos&w: w- (O)k, Ry <R, for
|

. 1
P d+k d+jj 5.
Ry = ge% mac 1+ aa g pd L er)* 1 (294)
Then 1
8, (w;v) 6, (w(0);v(0) , 2 (295)

Proof. 1. Case 0fQ,.,: By the mean value theorem with (151), we can induce that

Qoo (W;¥) Qg0 (W (0);v(0)) iin (296)
Qoo (W:¥)i,i, QoW (0):¥), i, + Qoo(W;¥);i i, Qoo(W;V(0);, 4, (297)
- @@QO;O(W VO, W w() + @@QO;O(W(O);V Jui, (v V) (298)
XX @
o aw-), Qoo (W 5v(0);, 4, , k(w-), (w>), (O)k, (299)
1 2 2 j+1 X . . 2 2p 1
P i3t k) k), (W), Ok, i (300)
=0 r=1
for somew = (wg); (W), W), (W), " lies on a line between

w andw (0) and for somev lies on a line connecting- and v (0). Since (w.) ,
kw-), (w), (O)k, + k(w-), (O)k, Ry + R 2Rforeach’ 2f0g[ [L]andr 2 [m],

Qo0 (W;¥) Q.o (W(0);v(0)) iin

Bhax 2j j+1 oo 2 2p 1
o =0 r=1

Amax p2] j+1 d+ J ) j| ] (2R)2p 1 Rw

No d

=0
arznaxpzjj+1 d+k d+jj?

2p 1
N d d (2R) Rw

Therefore, we can attain that

Xo  Xo 5

Qoo (Wi¥) Qoo (W (©):v(0) © .

i1:l i2:l ) A (302)
d+ k d+jj -

a4 12 Ry D RE,

2. Case ofQ.- : Similar toQ.o, the mean value theorem with (159) and (163) gives

QO;\ (W,V’) QO;\ (W (0) WV (o)) ;i) (303)
p—— o XN
d+ -
T ) P ke ) kP Tkwe 1), (weo1), Ok, (304)
mn, d -
(0]
+k(w-), K Tk(w-), (W), (O)k, (305)
P— i
max e d+jj p2J j+1 2 (ZR)Zp 1 Ry, (306)
mne d r=1
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Pp—— .
_ max e d+dJ J p2j j+12(2R)2p 1Rw:

o]

Consequently, we have

Xo X X X )
QO;‘ (W,V‘) QO;‘ (W (0) WV (O)) i((; )i2)

iip=1 =1 21 ., 2I

2 d+ii 2 .. . Xo X X X

:czlx ﬁm dJ J p2@i i) 4(2R)2(2p 1) Rf\,
o iji2=1 =1 21 . 21 .

1

d+jj 2 i X _
-

j4(@R)**P VR2

2 .2 d+ k d+jj4

max ~'max d d

4(2R)%?P D R2:

3. Case 0fQ, ., : The mean value theorem with (171) induces
QoL+ (W;w) QoL+ (W (0);v(0)) i

pmax 2 d+jj 'j+2>(n 2p 1
P Amax (d+1) d p k(wo), k5" “k(wo), (Wo), (O)k,
ollb r=1
p L
praz, @+ TV 0 Ry tRy,
ollb
and hence
Xo Xb

Qorss (Wi¥) Qo (W(O)iv(0)

i=1 j=1

4 » d+jj? 2 +2) 2@2p 1) p2
max may (d+1) d pt 1™ (2R) Ry

4. Case ofQ- | -, : From the mean value theorem with (180) and (184), we attain
Qu (wiv) Qe WOEVOD (i 2 22

oooXn
SR L kv 1) K kW 1), (W), (00,
0 r=1
(0]
15 oz e Lo k(W) KEP Tk(we), (W), (O)k,
n (0]
TR 2 g @RP T s g @R Ry
and further induces
Xo X X X

(307)

(308)

(309)

(310)

(311)

(312)

(313)

(314)
(315)

(316)

(317)

Q\;\ (w; v) Q (w (0) ;v (0)) (2( 15 1)51)i(C 23 2)ii2)

i1;i2=1 "=1 1; 221 . IS 221

(318)

2 2(2j j+1) X_ X X X X n 2p 1
maxp 1f 1= 20 (ZR) (319)

=1 121 . 1 121 0 21 . 1 221
200 1°2 2
+1f 4 = L4 zg(2R) Ry (320)
o hs X X

2 p23 I G 0 DER* V@ j 1DER® ' (321)
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+4(2R)%?P D R2 (322)

i X_ X X 2(2 1
2 PPE I 4j1 j(2R)**P D RZ (323)
=1 12| 1 12|
i X_ . .2 2p 1
4 2, PP P ER)P TR (324)
-
.. 2
. + +
4 dgppeiin I oy e, (325)
(192) follows that
Qs (Wi¥)  Quut WO:VO) (1 i o rin) (326)
max j j+1 X 2p 1
i = 0 19 mnopl k(W)rkz k(W)r (W)r (O)kz (327)
r=1
It ,= o+ 19% | 71 2R)? TRy (328)
[o]
It deduces that
Xo X1 X X ,
Quar (W) Quat WOVOD (i i v
il;iz:l t=1 12| N 12|
22| N 22I Syl
(329)
R G ¢ X X X
2P 172 I ,= 4+ g (QR)*®P VR2 (330)
=1 12| Nt 12| N 22| B 22| S
X1 X X
Zax PP 172 I ., (R)**" YRZ (331)
=1 12|; 1 12|
IX 1
P+ . : 22p 1
= 2P0 g, (R)PP VR2 (332)
=1
. + K +ij?
Gapt 2 T S ogyeen g2 (339

In accordance with the de nition of the loss, itis clear thaQ- -, is identical to the zero matrix if
the difference between and’, is greater than 1. Consequently, together &5)and(333)we
have

s X X Xo 2
Qury WOV (i 2 2in) (334)
T172=1 15 221 15 221 L iggip=l
Xo X X X

- Qu Wi¥)  Qu WOV i s ari

(335)
Xo X1 X X ,
+2 Quar (W) Qo WOV (0 iy o 2y
il;izzl =1 12| C g 12|
221 . 221 .,
(336)
g 2 e AT K AY T oy 12 (337)

d d
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g2 Atk d+jj?

+2 Fap d 4 @R IRE
d+k d+jj 2., .
6 r%ax : dJ J p2(2' j+1) (ZR)Zp 1R5v:

5. Case ofQ-, ., : From (201), we have

Qv (W;¥) QL+ (w(0);v(0)) )i

X
P @+ P ko) K ko), (wa), Ok,
o]

r=1

P ey (d+1) P 12 (2R R,
(o]

(338)

(339)

(340)
(341)

(342)

By the de nition of the loss -, we haveQ-, ., is identical to the zero matrix for every> 1.

Therefore, we have

Xo Xbo X X 2
Qusa Wi¥)  Quiar WOV (4. iy,
i=1j=1 =1 21
Xo Xb X 2
= Qur+s (Wi¥) Qs (W(0);v(0) (@; i)
i=1j=1 21

jl 1j r%]axafnax (d+1)2p2(j i*+2) (2R)2(2p 1) Rf\,
2 2 d+jj 1

max ~"max HE
I

2
r2r1ax a%ax (d + 1)

(d+1)*p*0 1" (2R)**P DR,

d+ i .
dl J pz(J j+2) (ZR)Z(Zp 1) Rﬁ,i

6. Case ofQ ;. 41

From (205), we have

QL+1;L+1 (W;V') QL+1;L+1 (W(O);V(O))-

jiij2

2 (d+1)2 2 K K% 1k 0)k
mamax( ) p (Wo)r 2 (Wo)r (Wo)r( ) 2
r=1

e amac (d+1) 2p° (2R)*® 'Ry

It further follows that
Xbo  Xo 9
QLir+r (Wiw) QL+ (W(0);v(0) i1z
j1=1j2=1

2(2 .
2 @b (d+1)*p® (2R)%%P D R2:

Therefore, combining (302), (311), (313), (339), (347), and (351) concludes that

B, (wv) 8, (w(©)vO) |

2
8y (wiv) 8, (W(0);v(0) _
d+k 2 d+jj *

aﬁ]ax d d
va2 g2 d¥K d+jj *

max amax d d

p2(2j j+1) (2R)2(2p 1) R\%/

p2(2j j+1) (2R)2(2p 1) R\%/
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(343)

(344)

(345)

(346)

(347)

(348)
(349)

(350)

(351)

(352)

(353)

(354)
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d+jj 2,
+ e a4max (d+1)2 dJ J pZ(J j+2) (2R)2(2p 1) RSV (356)

d+k d+jj 2

+6 g I T 4 @TIRE (357)

2 22 44 1)2 d+jJ o+ oR)22P D R2 358

+ Radha (drD? T p0 2R) i (358)

+ 2@ (d+1)*p° (2R)?®P Y R2 (359)

d+k 2 d+jj * o,

8 20 1+ 8ha S @Ry VRS (360)
2

=_9: (361)
16

0

The preceding lemma indicates that the loss will decrease rapidly in caseswvigenet signi cantly
distant fromw (0). Indeed, the subsequent lemma and proposition demonstrate {hatemains
within the designated region for any given value of 0, provided suf ciently largem.

Proposition C.6. Set constant€, andCs as

p_—| d+k d+jj

p— .
C,= max (L+ arznax d d pl+1 ; (362)
1 Xe 1 Xe
Ca= — fx)’+ =  g05); (363)
No . Np .
i=1 =1
N, = d+k d+jj o+ g (364)

d d
ForanyC > Oand < 2N, exp TCCZ% , iIf m is large enough so that
2

2C? d+k d+jj
- 4+
2 C2 d d
then, with the probability of at leadt  over the initialization, we have

2 sw©):v) >
. B WO V) 0
pﬁ : < 6R P: (366)

L (W (0);v (0)
h (w (0) ;v (0))

2N

R log + CsR?* (365)

2

Proof. Since
2 L2
g O AT T e, (367)
d d
2 L. 2 o 2
R RIS T (368)
d d
max 84 (d+1)2p?  C3; (369)
we have
#
X0 " n2
P ) s (W(O);v(0) > p= 20p 2CIRE (370)
n r= #
)(n " n2
P ()i i WOiv(@) > pe= 2000 IR (371)

r=1
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X0 "
P hir (W(©Q);v(0)) > p—  2exp

s 2C2R?P

r=1
Hence, from
x d+k d+jj
Ng + ., jl ] ng+ny q d” No+ Ny No;
_—
with the probability of at least
w2 N2 n2
1 2 — 1 2N —
P ocIre P 2czRe

all the conditions

Se WOVO) P

r=1

X0
( ‘)r;(; )i (W (0)1V(0)) n71
r=1 o
e W©ivO) P

r=1
are satis ed. Then, the square of the initial loss is bounded as

b
ks (W (0);v (0))K3 + kh (W (0);v (O)K3 + Kk - (w (0);v (0))K}

-
Xo , X ,
= si(w(0);v(0)"+ hj (w (0);v (0))
i=1 j=1
Xo X X X )
+ (e yi (w(0);v(0)
i=1 =1 21. [ 21 .
1 Xe . . 1 X . . X .
e GRLEID) )i G TG ) S I LI b
0 =1 b= =1
1 Re _ _ 1 X _ d+k d+jj .
ST D2 = (g + 1w
No oy Nb i, d
0 1
.. Xo )Qb
4+ d+k d+] J ||2+2 @i f(Xi)2+ i g(X'J)ZA
d d No ._ Np . _
i=1 j=1
d+ k d+jj
4+ O S reeecs

For > OandC > O, if " andm satisfy the following inequalities,

n2
">Cg;
C? d+k d+jj
m —R¥® 4+ "24+2C
2 d d s
then for enough small such that
C2
< 2N ———
28XP 2czR®
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(372)

(373)

(374)

(375)

(376)

(377)

(378)

(379)

(380)

(381)

(382)

(383)

(384)

(385)
(386)

(387)

(388)



we have that with the probability of at lealt
|

1 s (w (0) ;v (0))K2 + kh (w (0) ;v (0))K2 + * k - (w(0) 'V(O))kzl (389)
m 3 2 1 2 ! 2

-
1 d+k d+jj
=~ 4+ q 4 2+2Cs (390)
Ci;RZP: (391)

In other words, if
2C? d+k d+jj
— +
2 C, 4 d d
with the probability of at least  , we have

s(w(0);v(0) >

2
1 1(W(0);v(0)
|e)ﬁ : < 2R P: (393)

L (W (0);v (0)
h (w (0) ;v (0))

2N,

R* log + C3R? (392)

2
O

Proposition C.7. Suppose the conditior§g281) holds andr,, are given as in Lemma C.5. For
p

P
Cs=6 1+ arznax max

drk dji [l
d d p 2 Ry’ (394)

if m is large enough so that
3
s(w (0);v(0)

2
1 1 (W (0);Vv (0)
P : é < 2R P (395)

. C4
L (w (0) ;v (0))

h(w();v(©) ,

then
k(w-), ()  (w-), (O)k, <Rw; (396)
k(v), (1) (v*), (O)k, <Rw; (397)
forallt> 0,r 2 [m]and” =0; ;L.

Proof. We begin the proof by de ning

T=sup t O:k(w) (1) (w) (0k, <Ry andk(v-) (t) (v'), 0k, <Ry;8 =0; ;L :
(398)
Since(w-), and(v-) are continuous, the above set in supremum is nonemptyt. Z¢0; T),

2 sw(t);vy S 2

q 1 (W (1) ;v (1)
— : (399)

d .
Y wmiv)
h(w(®);v(®) ,

2 s ) > 2 swy;v) >
L (D) v () LW (D)5 v ()
LW D)V (1) LW D)5V (1)
h(w (t) ;v (1)) hw (1) ;v (1))
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2 swy;v) S 2
1(w () ;v (1)
OE - % ; (401)

LW (D) v (1)
h(w(t);v(t) ,

where the last inequality comes from Lemma C.5 and the positive semi-de niten&ss.oT his
implies that

2

NI =

Zswiva) 2 sw(©;:v) >
1 (w () ;v (L) 1(w (0) ;v (0))

g : % exp 't g : % : (402)
L (w(t);v (1) L (w(0);v(0)
h(w(t);v(t) , h(w(@©);v(©) ,

Fort2 (0;T)and 2f0; ;Lg, fromk(w-), (O)k, Randk(v-), (O)k, j I .jand(398) we
have

k(w-), (Dk, k (w-), (1) (w-), (O)k, + k(w-), (O)k, (403)
<R, +R (404)
2R; (405)
k(v-), (Dk, k (v+), (1) (v), (O)k, + k(v-), (O)k, (406)
<Rw+jl ] (407)
R: (408)
From (44), (57), (52), and (48), we can attain
: r'— a_
@S(Vé(st?;:/(t)) 2 miloamax 1 . p i IRP: (409)
@h(w (t);Vv (1) max. 20p 1pp.
@wo), ; mnbamax (d+1) p°2° "R¥; (410)
@ ).y (wiv) ' max .
aw), , m,” (411)
@ ) i W) T 1,
aw o, w2 e

forallt 2 (0;T).
Therefore, we can induce that

2w o 2 s)
- Xl 5 (W (0);v (1) @W+i Oy SOV
+ii il 27(\01 : \0@ ‘O)(;C@%(:i\/v(yzr(t);\/(t)) (o) WD)V (D) 2 (415)
Xl @W s ;v ) (416)
Py OO )0 0) (@17)

=1 @(W)r 2
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TR L2 aw-), 2 ¢
" o X X @ w1y (W(D);v(L)
£'6 1
¢ i=1 21 21 ., aw), 2 P

The rstterm and second term are bounded by
X @s(w () ;v (1)
i=1 @w:), 2
Xo r q -

si (w(t) ;v (1))

T amax 1, PP IRP s (w (1) ;v (1))
i=1 mno
r
max . P+l 1 1 R .
= emax 10 p 2P SRP P jsi (w (t);v ()]
0|=1
r

max
m

amax 1 j 3 ., PIT2? IRP ks(w (t);V (t)k,;
and

X @p(w (1);Vv (1)

jhi (w (t);v (t)j
L@y, Moo
r 1 X
:‘;‘X amax (d+1) p*2° 'RP pﬁ ihy (w(t);v ()]
j=1
r

—y8max (d+1) P27 TRPKkh (w (1) ;v (1)K, ;

The third term is bounded by
R X X @)y (W(t)iv()

() (w®)iv(v)

i=1 21, 21 . aw), 2
e L R XX
mpzp RP ‘ ( ‘)(; yii (w(t);v (1)
=1 21 ., 21 .

1

q
%pr IRPT gk Ky

and the fourth term is
Xo X X @ i1y (W(D;VD)
N T+l
i=1 21, 21 ., aw:), 2 (
' maxpjj+12p 1RP Xe X X . (w (t);v (1)
mno i=1 21 . 21 e ,
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q
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X Amax d;k d+d” p it 2P IRP ks (w (1) ;v (t)k, (434)
p
+ 1i=0g ﬂg%amax (d+1) p?2° RPkh (w (t);V (1)K, (435)
r___S —
Pl AT g areic v )k, (436)
r S —
T A A ORI (437)
: D,
r . 1 (W Y
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L (W (t);v (1)
h(w (t); vgt)) 5 3
s WOV ©)
r . 1 (w v
3p 1+amax _max_ d+k d+J J pij+12p 1Rpexp 70t E : %
m d d 2 :
L (W (0);v(0)
h(w():v(©) ,
(439)
On the other hand,
Z T d 2 xd Z T d ! 2
— (W ) (s)ds = — (W‘)r.q (s) ds (440)
0 ; g1 o U8 ’ |
) Ziyd Z7 q T
o - o £(W‘)r;q (s) ds £(W‘)r;q (s) ds (441)
Z: Z+ g
. d—s(w\)r (s) ds 2 g(w«)(s) , ds (442)
Z 5 d Z 5 q
, £(W‘)r (s) ds i ﬁ(w«)(s) , ds; (443)
and hence
k(w-), (T)  (w-), (O)k, (444)
Z d
= —(w-), (s) ds (445)
o ds )
Zr g
—(w), (s) ds (446)
ds 5 )
s R (?&”?3%
r o Z 1 (w v
3p 1+ azmax max d‘; k d+dj J p| j*19p 1RP exp 78 ds E %
0
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r— o 1 (W "V
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0 m d d :
L (W (0);v(0))
h(w(@©);v(©) ,
If m is large enough to satisfy (395), we have
6p mp maxq dgk d+djj p’ j+12p 1 o 1
k(w+), (T)  (w), (O)k, - G < SRw <Ru:
(449)
Similarly, we obtain
d
GO (450)
Xo . Xo .
- swove SRR oo SR sy
Ro X X X @ o)y (w);v(t)
+ — ( o)y (wW(t);v (1)
i=10=1 21, 21 o av), G ,
(452)
Xo .
o) > 2 (453)
Xe . @ph(w (t);v (1)
+ 1o jhj (w (t) ;v (1)j (454)
=09 i=1 ! @V‘)r 2
Xe XX @ )y w(D);v(D)
+ 1 — () ya (w(t);v(t)
res i=1 21, 21 . @V‘)r 2 ¢
(455)
T O e W R A \ W (1);v (1) :
rere =1 21 21 ., av-), 2 e , .
(456)
The rst term and second term are bounded by
Re . @s(w (t);v (1)
i t);v(t —_— 457
B jsi (w (t) ;v ()] @v), , (457)
r S %
max k j i ° . .
—= Amax d"; d+d” ﬁ'(zR)pplnio' jsi (w (t) ;v (1)] (458)
r S . -
max Amax d+ k d+ J ) p| ](ZR)p kékz7 (459)
d d
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Xo . @h(w(t);v (1)
h; t);v(t 460
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i 1 X _
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The third term is bounded by

’:;‘X (d+1) amax P (2R)P khk, :

(462)
Ro X X @ )y (W(t);v(t)
- (e s WOV (1) (463)
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r S
d+k d+jj ° X
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moa g PleR” oy (469)
Therefore fot 2 (0;T)and = f0;:::;Lg,
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2
R
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As a consequence, we attain
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r .. Z T 1 w Vv
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h (w (0) ;v (0))
X (479)
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ek deii 1 (W (©);v (0)
=" Tvag, o Hopiery (480)
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L (W (0) v (0))
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Sincem is large enough to satisfy (395), we have
PP dvk d+jj
6 1+ a2 I pgiiogp
k(v-), (T)  (v*), (O)k, Bmax mex g g P C— = 1R, <R (481)
0 4 P
[
C.1 Proof of Theorem 4.3
Proof. ForR 2 R, r 2 [m], andq 2 [d], each(w"),., satis es
h i 1
P (w),, >R <exp ERZ ; (482)
lfweset ; =(L +1) mdexp 3R? ,then ; satises
1 (L+1) md 1
2 2 _ .
1 exp éR 1 (L+1) mdexp ER =1 g (483)
Hence, with probability of at leagt ;, we have (w\)r;q Rforall " = f0;1;:::;L +1g,
r 2 [m], andqg 2 [d].
Provided (W), Rforall" = f0;1;:::;L +1g, if
2p4p
732N121R log Ny ; (484)
0 2
where
d+k d+jj 2 1 1P
T A e
d+k d+jj 2 d+jj
Ny =7 O ] I n24g dJ NoNp + N: (486)
then by Proposition C.4, with probability of at ledst ,, we have
8, (w(©);v©) @6, <2 (487)

On the other hand, with the conditio(w«)r;q Rforall” = f0;1;:::;L+1g,r 2 [m], and
g 2 [d], Proposition C.6 shows that if

: -
Zhcar MO mmieg M2 yoRm s
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Ca= = f(x)*+ = g(x)%
No . Np .
i=1 j=1
S u— PP NI
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then, with the probability of at leadt 3, we have
2 3
s(w(0);v(0)

1 1 (W (0) ;v (0))
pﬁ : % < 2R P

L (W (0);v (0))
h (w (0) ;v (0))

Consequently, Proposition C.7 implies
k(W‘)r (1) (W)r (0)k2 <Rw;
k(v-), (1) (v), Ok, <Rw;

2

forallt 0. Then, we have
2 sw(n:v) sw (0);v(0) °

2
1 (W (t);v (1) 1 (w (0) ;v (0))
R T

L (w (1) (1) L (W (0);v ()
hw(®):v (1) h(w(©):v©) ,

from Lemam C.5.

Set 1= ,= 3= 1 andconsider all inequality conditions. First, far= % ,

R= logoL D md

satis es the condition (483). Then, (484) is satis ed if

32N;C2 6(L+1)md * 6N
1 log ( ) log —=
0
Similarly, if m is large enough so that
2 + +j + 2p
2C22C4 4+ d+k d+j]j log 6(L+1) md log 2N,
5 d d
2 p
N 2032(:4 log 6(L +1) md ;
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then (488) holds.
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Therefore, there exsitS8s = Cs (amax; max; No;Np; o) such that if

d+k ® d+jj @ md

7j j+4 ~6p et
C d d p 2°P log (504)
then with the probability of atlea$t  1)(1 2)(1 3) 1 (1+ 2+ 3)=1 ,we
have ) 3 2 3
s(w (t);v (1)) s(w (0) ;v (0))
1 (W (t);v (1) 1 (W (0) ;v (0))
: exp 70t : : (505)
L (w(t);v (1) L (W (0);v(0)
h(w(t);v(t) , h(w(@©);v(©) ,
O
D Experimental Details
D.1 Problem Formulations
Poisson equation
U + Uy = f1 x;y 2 (0; )
506
ux;0)=u(x; )=u(@y)=u(;y)=0 xy2I[0 ]; (506)
wheref ; : (0; )2 I Ris de ned so that the exact solution is given by
UGy)= g )Y ( y)*: (507)
Bi-harmonic equation
8
< Uxxxx +2Uxxyy + Uyyyy = fo Xy 2 (0; )

Su(x0)=u(x; )=u@y)=u(;y)=0 Xy 2 [0; ] (508)
L eux0)= gulx )= guOy)= gu(iy)=0 xy2(0; );

where the ux functionf, : (0; )2 I Ris set to ensure that it has a solution that is identical to that
of Poisson equation (507).

Heat equation 8
< Up = Uy x2( 1,1);t2(0;1)
u( D=u((t1l)=0 t2]01] (509)
" u((0;x)=sin( x) x2( 1;1);
Elastic beam equation
gut"'uxxxxzo x2(0; );t2(0;1)
Ut 0)=u(t )= U (50)=ux (t; )=0 t2]0;1] (510)
" u(0;x)=2sin(x) x2(0; ):

The exact solution is given by (t;x) = 2 e !sin(x).

Convection-diffusion equation
8

3 Ui+ U FUx =0 (tx)2 =(0 ;1) (0; );
u(0;x) =sin(x) x21[0; 1;
zu(to)= e Fsin (t) t2[0;1];
“u(t )=e #tsin( t) t2[01];

(511)

whose exact solution is(t;x) = e it sin(x t).
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Table 2: Experimental settings for each PDE

PDE width m  powerp optimizer(lr) No ny

Harmonic 1 16 5 8 GD(10 9 400 400
Bi-harmonic 1 16 5 8 GD(10 8) 400 400
Heat 10° 3 10 Adam(10 3) 300 300
Heat(PINNs) 108 3 GD@0 1) 300 300
Heat(VS-PINNs) 108 2 GD@0 1) 300 300
Beam (PINNSs) 10° 5 Adam(l0 2) 10,000 300
Beam (VS-PINNg j =2) 10° 3 Adam(L0 3) 10,000 300
Beam (VS-PINNS j = 1) 108 2 Adam(@o 3) 10,000 300
Convection-diffusion (PINNs) 10° 3 Adam(0 °)/GD(10 ?) 300 300
Convection-diffusion (VS-PINNs)  10° 2 Adam(@0 °)/GD(10 ') 300 300
Bi-harmonic (PINNs) 10° 5 Adam(L0 3) 10,000 400
Bi-harmonic (VS-PINNg j = 2) 10° 3 Adam(L0 3) 10,000 400
Bi-harmonic (VS-PINNg j = 1) 10° 2 Adam(l0 2) 10,000 400

Figure 3: Loss of convection-diffusion equation trained by GD.

D.2 Parameter settings for experiments

Convection-diffusion equation We conducted experiments on a convection-diffusion equation:
We train 100,000 epochs of PINNs with= 3 and VS-PINNs withp = 2, using the same settings as
represented for the heat equat{®d9). Figures 3 and 4 show that VS-PINNSs reach lower loss and
achieve more stable convergence for both GD and Adam.

Bi-harmonic equation Consider the bi-harmonic equation

2 2u(ey)= 1 (xy) Xy 2 [0; ]
U0 =u(x )=u@y)=u(;y)=0 Xy 2 [0; ] (512)
C@uU0)= gulx )= guOy)= gu(y)=0 xy210 I

wheref (x;y) are de ned so that the exact solution is givenfx;y) = = sin? (x) y2 ( y)z.
We setm = 1,000 n, = 10,000, n, = 400, and the training collocation points are xed once they
are randomly selected. We experiment VS-PINNs with two casesp(i) U, 1 (Uxx;Uyy)
with j j = 2 andp = 3 and (ii) the nest splitting of ¢ u 1 r u, 2 (Uxx 5 Uyy),

3 (Upx ; Uxxy 5 Uyyy ) Withj j =1 andp = 2. Regularization parameters are= ,= 3=1
for derivative matching loss and = 10 for boundary los$ . Figure 5 depicts the training loss of
PINN and two VS-PINNSs.

E Additional Experimental Results

Computational ef ciency of VS-PINNs Table 3 measures the GPU memory, running time, and
the number of model parameters corresponding to experiments on elastic beam and bi-harmonic
equations. Because VS-PINNs need as many networks as auxiliary variables, ner VS-PINN requires
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