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Abstract

This paper analyzes the inverse relationship between the order of partial differential
equations (PDEs) and the convergence of gradient descent in physics-informed
neural networks (PINNs) with the power of ReLU activation. The integration of
the PDE into a loss function endows PINNs with a distinctive feature to require
computing derivatives of model up to the PDE order. Although it has been em-
pirically observed that PINNs encounter difficulties in convergence when dealing
with high-order or high-dimensional PDEs, a comprehensive theoretical under-
standing of this issue remains elusive. This paper offers theoretical support for this
pathological behavior by demonstrating that the gradient flow converges in a lower
probability when the PDE order is higher. In addition, we show that PINNs struggle
to address high-dimensional problems because the influence of dimensionality on
convergence is exacerbated with increasing PDE order. To address the pathology,
we use the insights garnered to consider variable splitting that decomposes the
high-order PDE into a system of lower-order PDEs. We prove that by reducing the
differential order, the gradient flow of variable splitting is more likely to converge
to the global optimum. Furthermore, we present numerical experiments in support
of our theoretical claims.

1 Introduction

Understanding of partial differential equations (PDEs) is fundamental in describing diverse phenom-
ena in science and engineering, including fluid dynamics [60, 17], weather prediction [51], disease
progression [3, 46], and quantum mechanics [20, 8]. This underscores the imperative necessity for
the effective acquisition of their solutions. Given that analytically solving PDEs is often infeasible or
even impossible for numerous practical scenarios due to their complexity, numerical methodologies
play a pivotal role in approximating solutions to PDEs, enabling researchers and engineers to address
real-world problems effectively.

The advent of deep learning has led to a surge in attempts to leverage it to solve PDEs [59, 42, 30].
Among these, physics-informed neural networks (PINNs) [39, 21, 38, 58] stand out as a prominent
methodology. Coupled with the automatic differentiation technique [7], they integrate the residuals
of PDEs and boundary conditions into the loss function, thereby enforcing the approximation of
solutions using artificial neural networks. This distinctive incorporation of PDEs into the loss
function introduces partial differential operators in calculating the loss, distinguishing PINNs from
conventional deep learning models. Renowned for their accessibility and versatility in being capable
of easily handling arbitrary PDEs and being mesh-free, PINNs have garnered significant attention
and demonstrated promising outcomes across various fields [13, 28, 2, 65].
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Despite their potential, PINNs frequently encounter difficulties in accurately approximating solutions,
particularly when the governing PDE contains high-order derivatives [48, 33]. They also exhibit
sensitivity to increasing dimensions [33]. These challenges impede the practicality of PINNs due to
the pervasiveness of high-order or high-dimensional PDEs in numerous physical and engineering
descriptions, such as control problems [22, 57], finance [5, 53], phase separation [12, 27], and
mechanical engineering [4, 32]. Several studies have indicated that neural network architectures
possess sufficient expressive power to approximate solutions [31, 41]. However, it has been purported
that the inferior performance may be attributed to the difficulty in optimizing PINNs, which arises
from including the PDE in the loss function [37, 61, 62]. Despite the widespread use of PINNs, a
rigorous mathematical understanding of these pathological behaviors of PINNs has been lacking.

In this paper, we endeavor to provide a mathematical understanding of the pathological behaviors of
PINNs by analyzing the convergence of their gradient flow (GF), which reveals a profound sensitivity
of the GF convergence with respect to the PDE order and the power of the activation. Building upon
the work of Gao et al. [25], we extend the analysis of the GF of PINNs, composed of two-layer
multilayer perceptrons (MLPs), to general kth-order PDEs and the p-th power of Rectified Linear
Unit (ReLU) activation function with general p. We achieve tighter bounds than those obtained by
Gao et al., shedding light on the underlying causes of the pathological behaviors of PINNs. Our
theoretical findings demonstrate that the width size of the network necessary for the convergence
of the GF increases exponentially with the power p of ReLUpactivation. Furthermore, our results
indicate that the optimal power p is determined by the order k of the governing PDE, specifically to
be k+ 1. We also find that the PDE order impedes the convergence of GF, where this negative impact
of the PDE order stems from incorporating the PDE into the PINN loss function, which necessitates
network differentiation up to the order of the PDE. Moreover, our theoretical investigation unveils
that the GF convergence of PINNs also deteriorates with increasing dimensions, and the differential
operators included in the PINN loss further exacerbate the sensitivity of PINNs to dimensionality.
This elucidates why PINNs are relatively sensitive to dimensionality compared to conventional deep
learning models that do not involve differentiation in the loss function.

To address these challenges, we mathematically demonstrate the efficacy of a variable splitting
strategy [54, 55, 6], which represents derivatives of the solution as additional auxiliary variables.
The key point of variable splitting is that learning a high-order PDE boils down to learning a system
of lower-order PDEs. Reducing the order of derivatives included in the loss function, the strategy
alleviates the difficulties associated with the PDE order. It further enables to utilize more general
ReLUpactivation with lower power p than PINNs. The lower differential orders that the network
computes, the more likely it is that the GF will converge, so the most suitable one among the various
constructions of the variable splitting method is the finest splitting, which separates all the derivatives
into auxiliary variables and reformulates the PDE into a system of first-order PDEs. This strategy
results in a loss function comprising only first-order derivatives, and the efficacy of this finest variable
splitting would be magnified as the order of the governing PDE or dimension increases. Therefore,
the finest splitting approach would exhibit a pronounced discrepancy from the vanilla PINNs for
high-order PDEs. Moreover, a reduction in the differential orders enhances the resilience of the model
with respect to dimensionality. Finally, we present numerical experiments to verify our theoretical
findings and validate the effectiveness of the variable splitting.

1.1 Related Work

Characterization of Gradient Descent for PINNs As significant issues have been identified
within physics-informed machine learning, numerous mathematical studies have been conducted
to elucidate the behavior of PINNs. While studies have been mainly dedicated to examining the
generalization capacity of PINNs [19, 49, 23], there has also been work on understanding the difficulty
of optimization, which is believed to be the primary source of failure for PINNs. Wang et al. [61]
found that PINNs exhibit stiff gradient flow dynamics, resulting in imbalanced gradients during
training. Ryck et al. [18] characterized the rate of convergence in terms of the conditioning of an
operator and suggested that the difficulty of training PINNs is closely related to the conditioning
of the differential operators in the governing PDEs. Another work [62] utilized the neural tangent
kernel (NTK) theory to indicate that spectral biases and discrepancies between convergence rates of
various loss components can lead to training instabilities. Global convergence properties of PINNs
for second-order linear PDEs have also been studied within the NTK regime [34] and using the
Rademacher complexity [47]. Most closely related to this paper, Gao et al. [25] demonstrated the
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convergence of the gradient descent for two-layer PINNs. However, their discussion is limited to
second-order linear PDEs. We extend the analysis to generalkth-order linear PDEs andp-th power of
activation functions and provide tighter bounds than Gao et al.. These advances allow us to observe
further the effect of the order and dimensionality of the PDE on the convergence.

Variable Splitting The method of separation of variables, which simpli�es differential equations
by reformulating them into a more manageable system, is a classical method for solving differential
equations [9]. In particular, it has been widely employed when dealing with high-order PDEs
as augmenting high-order derivatives as additional variables allows the governing equation to be
decoupled into a set of lower-order PDEs that are comparatively easy to solve [16, 26, 63]. Recent
endeavors have explored the integration of separable variables within the PINN approach. In this
paper, we refer to this approach as variable splitting according to [54, 55, 56]. Augmented variables
have been introduced to represent vorticity in the Stokes equation [6], the gradient of the solutions
for solving thep-Poisson equation [54], and the eikonal equation [55]. Additionally, second-order
derivatives have been separately parameterized to solve bi-harmonic equations effectively [45]. The
rationale for introducing auxiliary variables in previous works is to enhance the ef�ciency and
accuracy of PINNs, but they lack a comprehensive theoretical elucidation of its effect. A recent study
[56] has theoretically analyzed variable splitting, demonstrating that while PINNs do not guarantee
convergence to the PDE solution even when the loss converges to zero, variable splitting does ensure
convergence to the solution for second-order linear PDEs. In this study, we analyze the impact of
variable splitting for PINNs with ReLUpactivation in terms of the convergence of the GF.

1.2 Main Contributions

The contribution of the paper is summarized as follows.

• We analyze that the GF of PINNs withReLUpactivation converges to the global minimum
for generalkth-order linear PDEs. This extends the �ndings of Gao et al. [25] to encompass
a broader range of PDEs and activations and provides an even tighter bound.

• We demonstrate the inverse relation between PDE order and the GF convergence, unveiling
the adverse effect of the differentials included in the PINN loss on the GF convergence.

• We provide a theoretical understanding of the reasons why PINNs encounter dif�culties in
addressing high-dimensional problems.

• We prove that the order reduction of variable splitting, which reformulates the PDEs into a
system of lower-order PDEs, results in the convergence enhancement of GF.

2 Mathematical Setup

Arbitrary Order Linear PDEs We consider a general form ofkth-order linear partial differential
equations (PDEs)de�ned on a bounded domain
 � Rd (in which the temporal dimension could be
a subcomponent)

�
N [u] (x ) = f (x ) ; x 2 
 ;
B [u] (x ) = g(x ) ; x 2 @
 ;

(1)

whereN [u] =
P

j � j� k a�
@�

@x � u is akth-order linear differential operator with coef�cient functions

a� : 
 ! R for each multi-index� 2 Nd
0, B [u] =

P
j � j� 1 ~a�

@�

@x � u represents the boundary
condition operator with coef�cient functions~a� : @
 ! R, which could re�ect Dirichlet, Neumann,
and Robin conditions2, f : 
 ! R is a given source function, andg : @
 ! R is a given boundary
function, andu : �
 ! R is the unknown solution of interest.

2The boundary condition for high-order PDEs is typically given by multiple conditions of a higher order than
one. Our approach also encompasses such general boundary conditions by incorporating the residuals of each
boundary condition into the loss. The sole distinction is the utilization of induction not only on the derivative
matching losses but also on boundary losses to prove Proposition 2. For the sake of brevity, we assume that the
boundary condition is the most prevalent (weighted combination of) Dirichlet and Neumann conditions.
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Physics-InformedNeural Networks Physics-informed neural networks (PINNs) [58] aim to ap-
proximate the solutionu of the PDE by neural networks. Following the prior work [25], we
approximate the solutionu by a two-layer multi-layer perceptron� : Rd ! R of width m, de�ned as

� (x ; w ; v) =
1

p
m

mX

r =1

vr � �
�
w >

r y
�

; (2)

wherew r 2 Rd+2 , vr 2 R, w =
�
w >

0 ; � � � w >
m

� >
2 Rm (d+2) v =

�
v>

0 ; � � � v>
m

� >
2 Rm , y =

�
x > 1

2

� >
2 Rd+1 , and� (�) is the activation function. For brief notations, we assume that
 is

bounded so thatkyk2 � 1 for x 2 
 . We consider the case where� is the ReLUp activation function
for an integerp, which is also known as Recti�ed Power(RePU) activation [1, 10, 15]. As it will be
clear in the context, the powerp necessitates surpassing the orderk of the PDE(1) to ensure that
the loss function and gradient descent �ow are well-de�ned. Therefore, our analysis is focused on
scenarios wherep � k +1 . PINNs learn the parameters of� by minimizing a composite loss function,
comprising the residual of the PDE and the boundary condition of(1), which enforces the network's
compliance with the governing physics. For given the training dataf x i ; f (x i )g

n o
i =1 � 
 � R and

f ~x j ; g (~x j )gn b

j =1 � @
 � R of respective sizesno 2 N andnb 2 N, PINN loss function is given by

L P INN (w ; v) =
1
2

�
ks (w ; v)k2 + kh (w ; v)k2

�
; (3)

wheres (w ; v) = [ s1 (w ; v) � � � sn o (w ; v)]> andh (w ; v) = [ h1 (w ; v) � � � hn b (w ; v)]> with

si (w ; v) =

r
1
no

(N [� (�; w ; v)] (x i ) � f (x i )) ; (4)

hj (w ; v) =
r

�
nb

(B [� (�; w ; v)] ( ~x j ) � g (~x j )) ; (5)

and� > 0 is a regularization parameter that relatively balances the two components of the loss.

Gradient Flow As the limiting dynamics of the gradient descent (GD) with in�nitesimal step-sizes
[40], gradient �ow (GF) is continuous time dynamics that starts atw (0) andv (0) and evolves as

(
dw r ( t )

dt = � @L P INN (w ;v )
@w r

= �
P n o

i =1 si (w ; v) � @si (w ;v )
@w r

�
P n b

j =1 hj (w ; v) � @hj (w ;v )
@w r

;
dv r ( t )

dt = � @L P INN (w ;v )
@vr

= �
P n o

i =1 si (w ; v) � @si (w ;v )
@vr

�
P n b

j =1 hj (w ; v) � @hj (w ;v )
@vr

:
(6)

Initial weights are supposed to follow the normal and uniform distributions,w (0) � N (0; I m ) and
v � U (f� 1; 1g), respectively3. GF can be regarded as a continuous-time analog of GD and is
frequently employed to comprehend the behavior of GD optimization algorithm in the limit. By the
chain rule in conjunction with(6), the following characterizes how the loss function evolves during
training by gradient descent:

d
dt

�
s (w (t) ; v (t))
h (w (t) ; v (t))

�
= � (Gw (w (t) ; v (t)) + G v (w (t) ; v (t)))

�
s (w (t) ; v (t))
h (w (t) ; v (t))

�
; (7)

whereG and ~G are Gram matrices for the dynamics, de�ned by

Gw (w ; v) = D >
w D w ; D w =

h
@s1
@w (w ; v) � � � @sn o

@w (w ; v) @h1
@w (w ; v) � � �

@hn b
@w (w ; v)

i

(8)

G v (w ; v) = D >
v D v ; D v =

h
@s1
@v (w ; v) � � � @sn o

@v (w ; v) @h1
@v (w ; v) � � �

@hn b
@v (w ; v)

i
:

(9)

We are interested in analyzing the effect of the PDE order on the convergence of the PINN loss, which
evolved in accordance with the dynamics (7), to the global minimum zero.

3Indeed, our analysis covers more general initialize distributions than [25]. In our analysis, it is enough that a
probability density function ofw (0) is in Schwartz space, and that ofv (0) is bounded and has zero expectation.
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3 Impact of PDE Order on Convergence of PINNs

Despite the demonstrated promise and versatility of PINNs in addressing a wide range of problems
[29, 44, 36], they often encounter dif�culties in constructing an accurate approximation to the desired
solution of PDEs, particularly with high-order PDEs. Moreover, in contrast to the con�rmed ef�cacy
of neural networks in modeling high-dimensional data such as images and text, the exploration of
PINNs for high-dimensional PDEs has been apparently limited. While neural network architectures
possess suf�cient expressive power to approximate solutions [11], inferior performance has been
attributed to the dif�culty in optimization in practice [61, 62]. Additionally, it has been postulated
that the optimization dif�culty may stem from the partial differential operators included in the loss
function [37, 48, 33]. Nevertheless, despite the signi�cant challenge posed by these pathological
phenomena, there remains a paucity of theoretical understanding of them.

In this section, we theoretically elucidate these pathological phenomena by studying the convergence
condition of GF(7) of PINN loss(3). Speci�cally, we provide a width condition for(7) to converge
to global optimum in terms of orderk, dimensiond, and the powerp of ReLU activation. Analyzing
how those factors are related to the convergence condition, we explain why optimizing PINNs is
harder when the order or degree is higher.

Following [24] and [25], we �rst prove the positive de�niteness of the limiting Gram matrix of PINNs
for generalkth-order linear PDE andp without any further strict assumption other thanp > k .
Proposition 3.1 (Special Case). The limiting Gram matrixG1

v = Ew ;v [G v (w ; v)] is strictly
positive de�nite and independent ofm.

This is a special case of the general state in Proposition C.3 withL = 0 , and the proof for the general
case is provided in Appendix C. We denote the smallest eigenvalue ofG1

v by � 0 > 0. The following
presents our main theorem in this section, the requisite width sizem for the GF of PINN loss to
converge to the global minimum with high probability. The result demonstrates that the required
width grows exponentially as the PDE orderk and the dimension of the domaind increase.
Theorem 3.2(Special Case). There exists a constantC, independent ofd, k, andp, such that for any
� << 1, if

m > C
�

d + k
d

� 14

p7k+4 26p
�

log
md
�

� 4p

(10)

then with probability of at least1 � � over the initialization, we have

L P INN (w (t) ; v (t)) � exp (� � 0t) L P INN (w (0) ; v (0)) ; 8t � 0: (11)

It is a special case of Theorem 4.3 withL = 0 , the proof of which can be found in Appendix C.1.
It extends, inspired by [25], the convergence of the GF of PINNs of second-order linear PDEs to
kth-order linear PDEs and the generalp-th power of ReLU. It states that even in these general settings,
the GF of PINNs converges to the global minimum with a high probability when the width of the
network is suf�ciently large. Moreover, we obtain a polylogarithmic bound

�
log 1

�

� 4p
, which is much

tighter than polynomial bound� � 3 in [25] for p = 3 . These improvements permit the derivation of
the following valuable explanations for the de�ciencies observed when optimizing PINNs.

Optimal Power of ReLU Function in Training Theorem 3.2 sheds light on the suitable choice of
activation function for PINNs. In the training process, the activation function plays an important role.
However, there are no clues as to which activation function is favorable to the given optimization
process. Especially in the case of PINNs, it depends heavily on the PDE at hand. Despite its pervasive
use in deep learning due to its numerous advantages and performance bene�ts, the ReLU activation
function is not admissible in the PINN framework, which necessitates the activation function to
provide high-order derivatives for optimizing PDE-based constraints. Instead, PINNs harness the
p-th power of ReLU as the activation function. It is apparent thatp must satisfyp � k + 1 for the
PINN loss and gradient descent to be computed. Theorem 3.2 indicates that the smallerp is, the more
likely the gradient descent will converge; that is, it is most optimal4 to adjustp to k + 1 regarding the
training process.

4In terms of approximating the solution of the PDE, a largerp makes the network smoother and has better
expressive power [11]. However, it means that the set of networks covers broader function spaces asp increases,
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Understanding Dif�culty in High-order PDEs A signi�cant observation of Theorem 3.2 is that
it provides a theoretical understanding of why PINNs struggle with high-order PDEs. From(10),
we can see that the bound increases exponentially with the order of the PDE. Moreover, for the
GF of PINNs to converge with high probability, that is,� � 1, a small increment of the powerp
would contribute to non-negligible degradation in the convergence, which could ultimately prevent
the network from reaching a minimizer of the loss. Hence, given thatk determines the admissiblep
by p � k + 1 , the orderk of PDE primarily in�uences the convergence of PINNs and increasing the
exponential term in (10).

Understanding Dif�culty in High-dimensional Problems The above theorem, which shows that
the lower bound ofm depends on the exponential ofd, explains why PINNs cannot completely
combat the curse of dimensionality. As PINNs are regarded as a versatile method capable of being
mesh-free, they have been expected to be free from the curse of dimensionality [58]. However, the GF
of PINNs becomes harder to converge asd increases, requiring the network to be wider. Furthermore,
it can be observed that the magnitude of change ind is ampli�ed with respect to the exponent ofk.
This explains why PINNs are relatively sensitive to increasing dimensionality in comparison to other
deep learning models whose loss functions do not contain derivatives. In other words, the presence of
derivatives in the loss makes PINNs sensitive to changes in dimensionality, and the largerk is, the
more dif�cult PINNs are for high-dimensionality.

Combining all crucial observations from our main theorem, we believe that the impact of the PDE
order is one of the primary underlying reasons why PINNs often fail to minimize their loss. In light
of this theoretical evidence, the next section describes a variable splitting strategy that addresses these
pathologies by properly reducing the differential order in the PINN loss function.

4 Order Reduction through Variable Splitting

The previous section indicates that the PDE orderk signi�cantly affects the width requirement for
the GF to converge. Concurrently, forkth-order PDEs, it is necessary to increase the ReLU activation
to at least thek + 1 power in order to ensure a well-de�ned GF for the PINN loss. Consequently,
lowering k could potentially lead to better convergence of the GF. In this section, we introduce
variable splitting strategy to decrease the differential order by reformulating the given PDE into a
system of lower-order PDEs. We then extend Theorem 3.2 to a more general form in Theorem 4.3.

4.1 Variable Splitting

The concept of variable splitting [54, 55, 56] is to rewrite a higher-order PDE into a lower-order
system, after which the PINN approach is applied to the system. A crucial aspect of the success of
such methods is the reduction of the derivative order present in the training loss function.

Augment Variables ForL � 0 and increasing integers0 = � 0 < � 1 < � � � < � L +1 = k, variable
splitting augment the derivatives of the solution@� 1

@x � 1
u; : : : ; @� L

@x � L
u as additional auxiliary variables

� 1; : : : ; � L , respectively. For notational simplicity, we abbreviate the integer setf 1; � � � ; mg for
a positive integerm by [m]. For ` 2 [L ], each term in @� `

@x � `
corresponds to @� `

@x� 1
1 ��� @x

� d
d

u for a

multi-index� = ( � 1; : : : ; � d) 2 Nd
0 with the sizej� j =

P d
i =1 � i = n. Therefore,� ` is a vector-

valued function of sizejI � ` j for the index setI de�ned in (18). We denote the component of� ` that
corresponds to@� `

@x � by (� ` ) � .

Reformulate PDE into Lower-order System By replacing each of the differential terms@
� `

@x � `
u

with the corresponding auxiliary variables� ` , the differential operatorN in (1) can be rewritten as:

N [u] =
X

j � j� k

a�
@j � j

@x � u =
LX

` =0

X

j � j� � `

X

j � j� � � ` +1

â`;�;�
@� � ` +1

@x � (� ` ) � ; (12)

not that a network can be easily trained. Indeed, our result leads us to the opposite conclusion that largep could
be detrimental to convergence from the optimization perspective. In this paper, we refer to `optimal' as the sense
of being likely trained under the mildest condition rather than approximating the solution with the smallest error.

6



for some coef�cient functionŝa`;�;� : 
 ! R and� � ` = � ` � � ` � 1. Since� ` represents a function
that differentiates the PDE solution� � ` -times more than� ` � 1, the components of two consecutive
variables� ` � 1 and� ` are governed by

@� � `

@x � (� ` � 1) � (x ) = ( � ` ) � + � (x ) ; � 2 I � ` � 1 ; � 2 I � � ` : (13)

From these, the PDE (1) can be identically reformulated by the system of lower-order PDEs:
8
><

>:

N̂ [� 0; � � � ; � L ] (x ) = f (x ) ; x 2 
 ;
@�

@x � (� ` � 1) � (x ) = ( � ` ) � + � (x ) ; x 2 
 ; ` 2 [L ] ; � 2 I � ` � 1 ; � 2 I � � ` ;
B [� 0] (x ) = g; x 2 @
 :

(14)

It is of paramount importance to note that the maximum differential order of this system of
PDEs is the highest difference of derivative order between consecutive auxiliary variablesj� j =
max f � � ` : ` 2 [L + 1]g, which is less thank. This aspect gives rise to notable rami�cations in our
analysis of VS-PINNs, which will be discussed in the next subsection.

Variable Splitting for PINNs In this paper, we consider the parameterization of all variables� `
with two-layer MLPs with ReLUp activation function, in a manner analogous to that described in
Section 2 for PINNs. The weights in the �rst and second layers of� ` are denoted byw ` andv ` ,
respectively.We usew =

�
w >

1 � � � w >
L

� >
andv =

�
v>

1 � � � v>
L

� >
to refer to the respective collections

of all weights. Similar to PINNs,Variable Splitting for PINNs (VS-PINNs)employ the linear sum of
penalized residuals of each term of the induced system of PDEs (14) as the training loss:

L V S
P INN (w ; v) =

1
2

 
1
no

n oX

i =1

�
N̂ [� 0; : : : ; � L ] (x i ) � f (x i )

� 2

+
� `

no

LX

` =1

X

j � j� � `

X

j � j� � � ` +1

�
@�

@x � (� ` � 1) � (x i ) � (� ` ) � + � (x i )
� 2

+
�
nb

(B [� 0] ( ~x j ) � g (~x j ))2
�

;

(15)

where�; � 1; : : : ; � L are regularization parameters. As the GF ofL P INN is characterized by Gram
matricesGw andG v induced from the gradients of the residuals of each term in(1), the GF of
L V S

P INN is characterized by Gram matricesbGw and bG v , which is induced from the gradients of the
residuals of each term in (14). Appendix A gives more details forbGw and bG v .
Remark4.1. In order for high-order PDEs withk > 2 to be well-posed, it is necessary to have more
boundary conditions than those de�ned by the boundary operatorB in (1). Although our analysis
concentrated onB that re�ect only up to �rst-order derivatives for the sake of simplicity, our theory
can also be applied to more general boundary conditions. Furthermore, the high-order boundary
conditionsB can also be reformulated using the auxiliary variables used forN̂ . In that case, relations
(13)should hold on the boundaryx 2 @
 . As the reduced system(14)with reformulated boundary
condition is equivalent to(1), instability issues were not observed in our numerical experiments
even in the absence of arti�cial boundary conditions on the auxiliary variables unlike to grid-based
conventional numerical schemes.

4.2 Analysis

A key advantage of VS-PINNs is that the derivative order of the induced system of PDEs(14) is
j� j, which is lower than that of the original PDE(1). We prove its effectiveness in this section. As
analogous to PINNs, we begin by proving the positive de�niteness of the limiting Gram matrix,
providing its proof in Appendix C.

Proposition 4.2(General Case). The limiting Gram matrixbG
1
v = Ew ;v

h
bG v (w ; v)

i
is strictly

positive de�nite and independent ofm.

We denote the smallest eigenvalue ofbG
1
v by � 0 > 0. We now present our main theorem, which

demonstrates the profound impact of order reduction in variable splitting. The proof of the following
theorem can be found in C.1.
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Theorem 4.3(General Case). There exists a constantC, independent ofd, k, j� j, andp, such that
for any� << 1, if

m > C
�

d + k
d

� 6�
d + j� j

d

� 8

p7j � j+4 26p
�

log
md
�

� 4p

; (16)

then with probability of at least1 � � over the initialization, we have

L V S
P INN (w (t) ; v (t)) � exp (� � 0t) L V S

P INN (w (0) ; v (0)) ; 8t � 0: (17)

The right-hand-side of(16)grows exponentially with respect tod, k, andp, thereby indicating the
substantial in�uence of these factors on the convergence of VS-PINNs, including PINNs as a speci�c
case (L = 0 ). This analysis reveals several signi�cant advantages of VS-PINNs:

Improved Convergence: VS-PINNs are more likely to converge to the global optimum than PINNs
due to the reduction in the derivative orderj� j < k . This also relaxes the condition onp from p � k+1
to p � j � j + 1 . As previously discussed in Section 3, the optimal value ofp is j� j + 1 . Given that
6 (j� j + 1) is an exponent oflog (1=� ), the most dominant term, reducing the order fromk to j� j
leads to an immense improvement. There is another noteworthy observation we can see here. Given a
kth-order PDE, there are numerous possible partitions� that could be employed to decompose it to
a system of lower-order PDEs. Consequently, there are a many of potential VS-PINNs that could
be constructed. The aforementioned result indicates which of these is the most effective. As the
convergence improves dramatically with a reduction in the derivative order, the optimal approach
for splitting variables among various ways is to separate the given PDE into a system of �rst-order
PDEs by parameterizing all derivatives of the solution as auxiliary variables. In other words, the
�nest splitting with � 0 = 0 , � 1 = 1 , . . . , � k � 1 = k � 1 would be the most effective in terms of the
convergence of GF, as the differential orderj� j is reduced the most to 1. Taken all together, the most
optimal VS-PINNs that reduce the PDE orderk to 1 will markedly enhance the convergence of GF.

Reduced Dimensional Impact: The reduction of orders in VS-PINNs enhances the resilience of
the model to high-dimensionality. From Theorem 3.2, we observed the effect ofd being exponentially
enlarged for the PDE orderk due to thekth-order partial differential operators in the loss function. It
can be alleviated by VS-PINNs reducing the order, thereby easing the ampli�ed scale to exponential
of j� j. This indicates that VS-PINNs are more effective in combating the curse of dimensionality.
Since the curse of dimensionality is a serious issue that is prevalent in various �elds, including
Hamilton-Jacobi-Bellman equation in control problems, Schrodinger equation in quantum physics,
and Black-Scholes equation in �nance, it is evident that enhancements to the robustness of VS-PINNs
with respect to their dimensionality would facilitate considerable advancements in various �elds.

Memory Ef�ciency: VS-PINNs are memory-ef�cient despite the presence of multiple auxiliary
networks. As the order of the derivative increases, the complexity in automatic differentiation in
modern deep-learning frameworks like PyTorch increases and it becomes computationally expensive
[7]. Adopting the order-reduced representation in the proposed variable splitting can overcome the
dif�culty in calculating the high-order derivative via automatic differentiation. The loss function
for the �nest VS-PINNs involves only �rst-order derivatives, which reduces the memory usage and
computational requirements. Despite the increase in the number of networks, VS-PINNs exhibit
greater ef�ciency because memory usage and computation scale linearly with the number of networks
in contrast to the exponential scaling with the order of derivatives. Table 3 in appendix demonstrates
the memory reduction of VS-PINNs.
Remark4.4. The current approach to parameterizing the� ` -th order differential operator on all axes
r � ` as an auxiliary variable may be suboptimal in certain cases. In a given PDE, if the order of
the derivative varies signi�cantly along the axes, that is,a� 6= 0 for only a few� in (1), it may be
more ef�cient to approximate the partial derivatives using auxiliary variables separately for each
axis. To illustrate, for the PDEutt = uxxxx , it is more suitable to parameterize variables� 0 � u,
� 1 � (ut ; ux ), � 2 � uxx , and� 3 � uxxx , rather than approximating all tensorsr 1

( t;x ) , r 2
( t;x ) , and

r 3
( t;x ) . The theoretical framework presented in this paper is capable of addressing this scenario by

constructing each� ` to replace@� `

@x � for only part of� with j� j = � ` . However, we exclude it due to
the intricate nature of the states and the lack of a meaningful impact on the PDE order.
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(a) Convergence behavior of PINNs on bi-harmonic equation

(b) Convergence behavior of PINNs on Poisson equation

Figure 1: Training losses of PINNs solving (a) bi-harmonic equation and (b) Poisson equation.

Remark4.5. Although the shaprness of the bound in Theorem 4.3 is open, it is important to note that
the leading term of the bound is based on conditions necessary for the Gram matrix to be positive
de�nite, which is a crucial property of the Gram matrix for ensuring the convergence of the GF to a
global optimizer. Since the Gram matrix is de�ned by the PDE loss and the network structure, we
believe it can still provide valuable insight into how order and power affect convergence.

5 Experiments

This section presents experimental results that validate the theory. Throughout numerical experiments,
two-layer MLPs withReLUpactivation function were utilized in order to align with our theoretical
framework. Throughout all experiments, the training collocation points consists of uniform grid
and regularization parameters are set to� 1; : : : ; � L = 1 and� = 10. We implement all numerical
experiments on a single NVIDIA RTX 3090 GPU. Experimental details are provided in Appendix D.

Convergence behavior of PINNs To investigate the in�uence of the activation orderp and the
PDE orderk on the widthm required for convergence, we examined both the second-order Poisson
equation and the fourth-order bi-harmonic equation, both of which yield the same solution. We
trained networks with varying widths m, ranging from102 to 106, for each combination ofp andk
using GD optimization with a learning rate of10� 8. Figure 1 illustrates the training losses at the
initial stage on a logarithmic scale, supporting our theoretical �ndings that a larger width is needed
for higher values ofp to ensure convergence. Moreover, we can observe that narrower networks tend
to converge more readily when solving lower-order PDEs (Poisson) compared to higher-order PDEs
(bi-harmonic). This observation aligns with Theorem 4.3 that higher-order PDEs necessitate larger
network widths for guaranteed convergence.

Validation on the effect ofp To verify the in�uence of the powerp of the ReLU activation function,
we test PINNs with varyingp values between3 and10. Since the training process became highly
unstable asp increases, we consider second-order heat equation(509)[14] to gain a more precise
investigation of the effect ofp. The results are summarized in Figure 2 (a). We can see that the
convergence of loss is enhanced asp decreases, which supports our theoretical �nding.

Comparison between PINNs and VS-PINNs To validate the order reduction effect of VS-PINNs,
we conducted an experiment comparing PINNs with VS-PINNs on the second-order heat equation.
Each model was run �ve times with different random seeds, and Figure 2 depicts the training loss
for both PINNs and VS-PINNs along with their variance. The results show that the training loss for
VS-PINNs converges more effectively than that of PINNs. This indicates that VS-PINNs, which
optimize a loss function incorporating lower-order derivatives using networks with smallerp, facilitate
convergence of GD, consistent with the theoretical �ndings in Section 4. Furthermore, we performed
a similar experiment on the convection-diffusion equation(511) in the Appendix E and obtained
results that were consistent with those observed for the heat equation.

Effect of splitting level For higher-order PDEs, there are several ways to transform a given PDE into
a lower-order system through variable splitting. To investigate this effect, we conducted experiments
on the fourth-order elastic beam equation(510)[52] with two cases: (i)� 0 � u; � 1 � ut ; � 2 � uxx

9



(a) Effect ofp (b) Effect of variable splitting

Figure 2: Loss curves of (a) effect of the powerp of ReLUpand (b) comparison between PINNs with
VS-PINNs.

with j� j = 2 andp = 3 and (ii) the �nest splitting of� 0 � u; � 1 � r u; � 2 � uxx ; � 3 � uxxx with
j� j = 1 andp = 2 . In order to train PINNs for a fourth-order PDE,p should be at least �ve, but
training such PINNs with GD does not proceed properly, as illustrated in Figure 1. Consequently, the
experiments were conducted using the Adam optimizer. In contrast to the underperforming PINNs,
VS-PINNs are effectively trained even with GD, as illustrated in Figure 6 of the Appendix E. We
run each model �ve times with different random seeds, and Figure 2 (b) depicts the training loss of
PINN and two VS-PINNs with variance. The results show that the model with a lower PDE orderk
and a smaller powerp of the activation exhibits a more pronounced reduction in the loss function, in
accordance with our theoretical �ndings. Furthermore, it can be observed that the variance of the
training loss is signi�cantly smaller for the models with smaller values ofk andp. This indicates that
the learning process is much more stable for a smallerk andp. We also conduct numerical studies
on the fourth-order bi-harmonic equation(508). However, the results exhibit a similar trend to that
observed in the beam equation and are therefore presented in Appendix E.

6 Conclusion

In this paper, we proved that the gradient �ow of PINNs converges to a global minimum and provides
suf�cient width for this convergence. It extends the results in [25] to general PDEs and activation
functions and provides even tighter conditions on the width size. The main theorem demonstrates
that the PDE order or dimension exponentially increases the width requirement, theoretically indi-
cating that PINNs are challenging to optimize for high-order or high-dimensional PDEs. We also
substantiate that the PDE order ampli�es the adverse effects of dimensionality, which explains why
PINNs are more susceptible to dimensionality than other deep learning losses without differentiation.
Furthermore, We showed that the variable splitting strategy improves convergence by reducing the
differential order included in the training loss function.

It is acknowledged that we only provided suf�cient conditions for convergence. To fully comprehend
the role of these factors in optimizing PINNs, it is also necessary to establish the necessary conditions
linking PDE order, dimension, and convergence. Given that the primary goal of PINNs is to
approximate the solution of PDEs, it could also be a limitation that all discussions were limited to
empirical losses with �xed collocation points. It would therefore be a worthwhile future direction
to analyze the conditions under which the expected loss converges when training collocation points
are randomly sampled per epoch. Extending our theoretical framework to analyze the impact of the
variable splitting strategy on the generalization error of PINNs, as suggested in [64], would also be
an interesting and important research direction. Moreover, as our analysis was con�ned to continuous
time �ows, a comprehensive understanding of gradient descent would necessitate the analysis of
discretized �ows, since GF and GD have different dynamics [50]. We expect that our theory could
be adapted to GD dynamics by using Theorem 3.3 of [50], which treats GD as GF with a counter
term, but we leave it for future work. In a practical context, the convergence of PINNs for adaptive
optimizers, such as Adam [35] or L-BFGS [43], and other activation functions, including hyperbolic
tangent, remains an open question.
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A Mathematical Notations

We introduce the symbols and mathematical notations that are frequently used in this paper.

Symbol Description

N0 The set of non-negative integers
d 2 N dimension of domain

 � Rd d-dimensional domain
�; � 2 Nd

0 multi-index of dimensiond
k 2 N order of the governing PDE
N differential operator
N̂ Splitted differential operator
B boundary condition operator
� integral partition of[0; k]
f : 
 ! R source function
g : @
 ! R boundary function
x (y ) (augmented)point in

~x (~y ) (augmented)point on@

� neural network
Gw , G v Gram matrices
� 0 The minimal eigenvalue ofG v
m 2 N the number of the width of the network
� activation function
p 2 N power of ReLU activation function
no; nb 2 N the number of collocation points sampled from the domain
 , @

s residual of PDE loss
� residual of gradient matching loss
h residual of boundary loss

For a positive integerm, the setf 1; � � � ; mg is abbreviated as[m]. The set of multi-indexes whose
size ism or is at mostm is referred by

I m =

(

� = ( � 1; : : : ; � d) 2 Nd
0 : j� j =

dX

i =1

� i = m

)

;

Jm =

(

� = ( � 1; : : : ; � d) 2 Nd
0 : j� j =

dX

i =1

� i � m

)

:

(18)

In this paper, we use two-layer MLPs. For givenk 2 N and a partition0 = � 0 < � 1 < � � � < � L <
� L +1 = k, we de�ne� ` : Rd ! RjI � ` j of width m as

� ` (x ; w ` ; v ` ) =
1

p
m

mX

r =1

(v ` )r �
�

�
(w ` )r; 1 (w ` )r; 2 � � � (w ` )r;d

�
x +

1
2

(w ` )r;d +1

�

=
1

p
m

mX

r =1

(v ` )r �
�

(w ` )
>
r y

�
;

(19)

where weights in the �rst and second layer are

(w ` )r =
�
(w ` )r; 1 (w ` )r; 2 � � � (w ` )r;d

1
2 (w ` )r;d +1

� >
2 R(d+1) ; (20)

(v ` )r =
h
(v ` )r; 1 (v ` )r; 2 � � � (v ` )r; jI � ` j

i >
2 RjI � ` j ; (21)

andy =
�
x > 1

2

� >
2 Rd+1 . Note that the output dimension of� ` is RjI � ` j because each component

of � ` (x ; w ` ; v ` ) represents partial derivative@
� `

@x � u, for each� 2 I � ` . Hence, even though(v ` )r
is a �attened vector, it is more convenient to use� 2 I � ` as an index of component of(v ` )r . For
example, ifd = 2 , � 1 = 1 , and� = (0 ; 1) 2 I 1, (v1)r;� = ( v1)r; (0 ;1) refers a weight between the
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r -th hidden node and output that represents@
@yu (x; y). Similarly, we use multi-index itself as an

index that is related toI � ` , I � � ` , or J � � ` .

Moreover, as each(� ` ) � is differentiated by some@
� � `

@x � for � 2 I � ` � 1 and� 2 I � � ` , index we

use pair of multi-index(�; � ) to refer a component of@
� � `

@x � (� ` )r;� . Sometimes, this indexing by
multi-index is used in conjunction with normal indexes, like(� ` )( �;� ) ;i for somei 2 [no].

We denote the collection of weights of all� ` 's by w =
�
w >

0 ; � � � w >
L

� >
andv =

�
v>

0 ; � � � v>
L

� >
.

Similarly, � is the collection of all� ` 's, � =
�
� >

0 ; � � � ; � >
L

�
. With regularization parameters

�; � ` > 0, residualssi , (� ` ) i , andhj of variable splitting for each training sample

si (w ; v) =

r
1
no

�
N̂ [� 0 (�; w 0; v0) ; � � � ; � L (�; w L ; vL )] (x i ) � f (x i )

�
(22)

(� ` ) i (w ; v) =
�
(� ` )( �;� ) ;i (w ; v)

�
� 2 I � ` � 1 ;� 2 I � � `

(23)

=
h

@�

@x � (� ` � 1) � (x i ; w ` � 1; v ` � 1) � � ` (x i ; w ` ; v ` ) � + �

i

� 2 I � ` � 1 ;� 2 I � � `

; (24)

and

hj (w ; v) =
r

�
nb

(B [� (�; w 0; v0)] ( ~x j ) � g (~x j )) (25)

de�ne the lossL V S
P INN for the system,

L V S
P INN (w ; v) (26)

=
1
2

0

@
n oX

i =1

si (w ; v)2 +
n oX

i =1

LX

` =1

X

� 2 I � ` � 1

X

� 2 J � � `

(� ` )( �;� ) ;i (w ; v)2 +
n bX

j =1

hj (w ; v)2

1

A : (27)

we de�ne

amax = max
��

jâ`;�;� (x i )j :
0 � ` � L; i 2 [no] ;
� 2 I � ` ; � 2 J � � `

�
[

�
j~a� (~x j )j :

� 2 J1;
j 2 [nb]

��
; (28)

� max = max ( f 1; � g [ f � ` : ` 2 [L ]g) : (29)

B Calculations

The proof of the main theorem includes intricate calculations. To keep the proof clear, we separate
some tedious computations that are used frequently. As this section is a reference for the proofs, we
use some notation or symbols without any mention if they are de�ned in the other part of the paper.

Sizes of index setI m and Jm . For any` 2 [L ],

jI � ` j =
�

d + � ` � 1
� `

�
; jI � � ` j =

�
d + � � ` � 1

� � `

�
; jJ � � ` j =

�
d + � � `

� � `

�
: (30)

We boundjI � ` j, j� � ` j andJ � � ` by

jI � � ` j � j J � � ` j �
�

d + j� j
d

�
; (31)

and
LX

` =0

jI � ` j � j J � L j � j Jk � 1j =
�

d + k
d

�
: (32)
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Partial derivative of ŝ, � , and h. Note that @�

@x �

�
(w ` )

>
r y i

� p

+
in (34), @�

@x �

�
(w ` � 1)>

r y i

� p

+

in (35),
�

(w ` )
>
r y i

� p

+
in (36), and @�

@x �

�
(w 0)>

r ~y j

� p

+
in (37) are polynomial of(w ` )r , (w ` � 1)r ,

(w ` )r , and(w 0)r of degreep, respectively.

For i 2 [no], ` = 0 ; 1; : : : ; L , r 2 [m], and� 2 I � ` ,

@
@(v ` )r;�

si =

r
1
no

X

� 2 J � � ` +1

â`;�;�
@�

@x �

@
@(v ` )r;�

� ` (x i ) (33)

=

r
1

mno

X

� 2 J � � ` +1

â`;�;�
@�

@x �

�
(w ` )

>
r y i

� p

+
: (34)

Similarly, for ` 2 [L ], r 2 [m], � 1 2 I � ` � 1 , � 2 2 I � ` � 1 , � 2 I � � ` , andi 2 [no], we have

@
@(v ` � 1)r;� 1

(� ` )( � 2 ;� ) ;i =

8
<

:

q
� `

mn o

�
@�

@x �

�
(w ` � 1)>

r y i

� p

+

�
if � 1 = � 2

0 otherwise.
(35)

For ` 2 [L ], r 2 [m], � 1 2 I � ` , � 2 2 I � ` � 1 , � 2 I � � ` , andi 2 [no],

@
@(v ` )r;� 1

(� ` )( � 2 ;� ) ;i =

(
�

q
� `

mn o

�
(w ` )

>
r y i

� p

+
if � 1 = � 2 + �;

0 otherwise.
(36)

For r 2 [m] andj 2 [nb],

@
@(v0)r; 1

hj =
r

�
mnb

X

� 2 J 1

~a�
@�

@x �

�
(w 0)>

r ~y j

� p

+
: (37)

Norms of partial derivative of ŝ, � , and h. Note that fori 2 [no], ` = 0 ; 1; : : : ; L , r 2 [m],






@si (w ; v)
@(w ` )r






2

=

r
1

mno








@
@(w ` )r

0

@
X

� 2 I � `

X

� 2 J � � ` +1

â`;�;�
@�

@x �

�
(v ` )r

�
(w ` )

>
r y

� p

+

�

�

1

A








2
(38)

=

r
1

mno








@
@(w ` )r

0

@
X

� 2 I � `

X

� 2 J � � ` +1

â`;�;�
@�

@x �

�
(v ` )r;�

�
(w ` )

>
r y

� p

+

�
1

A








2
(39)

=

r
1

mno








0

@
X

� 2 I � `

(v ` )r;�

X

� 2 J � � ` +1

â`;�;�
@

@(w ` )r

�
@�

@x �

�
(w ` )

>
r y

� p

+

�
1

A








2
(40)

�

r
1

mno
amax

X

� 2 I � `

�
�
�(v ` )r;�

�
�
�

X

� 2 J � � ` +1






@
@(w ` )r

�
@�

@x �

�
(w ` )

>
r y

� p

+

� 




2

(41)

�

r
1

mno
amax

X

� 2 I � `

�
�
�(v ` )r;�

�
�
�

X

� 2 J � � ` +1

p� � ` +1 +1 k(w ` )r kp� 1
2 (42)

=

r
1

mno
amax

X

� 2 I � `

�
�
�(v ` )r;�

�
�
�
�
�J � � ` +1

�
� p� � ` +1 +1 k(w ` )r kp� 1

2 (43)

�

r
1

mno
amax

q
jI � ` j k(v ` )r k2

�
�J � � ` +1

�
� p� � ` +1 +1 k(w ` )r kp� 1

2 ; (44)
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for ` 2 [L ], r 2 [m], � 2 I � ` � 1 , � 2 I � � ` , andi 2 [no],






@(� ` )( �;� ) ;i (w ; v)

@(w ` � 1)r







2

=






@
@(w ` � 1)r

� r
� `

mno

@�

@x �

�
(v ` � 1)r;�

�
(w ` � 1)>

r y i

� p

+

�� 




2

(45)

=
r

� `

mno

�
�
�(v ` � 1)r;�

�
�
�






@
@(w ` � 1)r

�
@�

@x �

� �
(w ` � 1)>

r y i

� p

+

�� 




2
(46)

�
r

� `

mno

�
�
�(v ` � 1)r;�

�
�
� p� � ` +1 k(w ` � 1)r kp� 1

2 (47)

�
r

� max

mno
pj � j+1 k(v ` � 1)r k2 k(w ` � 1)r kp� 1

2 ; (48)






@(� ` )( �;� ) ;i (w ; v)

@(w ` )r







2

=






@
@(w ` )r

� r
� `

mno

�
(v ` )r;�

�
(w ` )

>
r y i

� p

+

�� 




2

(49)

=
r

� `

mno




 (v ` )r;�

@
@(w ` )r

�
(w ` )

>
r y i

� p

+






2

(50)

�
r

� `

mno
p

�
�
�(v ` )r;�

�
�
� k(w ` )r kp� 1

2 (51)

�
r

� max

mno
pk(v ` )r k2 k(w ` )r kp� 1

2 ; (52)





@(� ` ) i (w ; v)
@(w ` 0)r






2

= 0 ; if `0 6= ` � 1; `; (53)

and forr 2 [m] andj 2 [nb],





@hj (w ; v)
@(w 0)r






2

=







@
@(w 0)r

 r
�

mnb

X

� 2 J 1

~a�
@�

@x �

�
(v0)r; 0 �

�
(w 0)>

r ~y j

� p

+

� ! 





2

(54)

�
p

�
p

mnb
amax

X

� 2 J 1






@
@(w 0)r

@�

@x �

�
(v0)r; 0 �

�
(w 0)>

r ~y j

� p

+

� 




2

(55)

�
p

�
p

mnb
amax

X

� 2 J 1

p2
�
�
�(v0)r; 0

�
�
� k(w 0)r kp� 1

2 (56)

�
r

� max

mnb
amax (d + 1) p2 k(v0)r k2 k(w 0)r kp� 1

2 ; (57)






@hj (w ; v)
@(w ` 0)r; 1







2

= 0 if `0 2 [L ] : (58)

Similarly, for ` 2 [L ], r 2 [m], andi 2 [no], we have the following inequalities:
for � 2 I � ` ,

�
�
�
�
�
@si (w ; v)
@(v ` )r;�

�
�
�
�
�

�

r
1

mno

X

� 2 J � � ` +1

�
�
�
� â`;�;�

@�

@x �

�
(w ` )

>
r y i

� p

+

�
�
�
� (59)

�

r
1

mno
amax

�
�J � � ` +1

�
� p� � ` +1 k(w ` )r kp

2 ; (60)





@si (w ; v)
@(v ` )r






2

�
r

� max

mno
amax

q
jI � ` j

�
�J � � ` +1

�
� pj � j k(w ` )r kp

2 (61)

for � 1 2 I � ` � 1 , � 2 2 I � ` � 1 , and� 2 I � � ` ,
�
�
�
�
�

@(� ` )( � 2 ;� ) ;i (w (t) ; v (t))

@(v ` � 1)r;� 1

�
�
�
�
�

= 1f � 1 = � 2 g �
r

� `

mno

�
�
�
�

@�

@x �

�
(w ` � 1)>

r y i

� p

+

�
�
�
� (62)
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� 1f � 1 = � 2 g �
r

� `

mno
p� � ` k(w ` � 1)r kp

2 (63)






@(� ` )( � 2 ;� ) ;i (w ; v)

@(v ` � 1)r







2

�
r

� `

mno
p� � `

q �
�I � ` � 1

�
� jI � � ` j k(w ` � 1)r kp

2 ; (64)

for � 1 2 I � ` , � 2 2 I � ` � 1 , and� 2 I � � ` ,
�
�
�
�
�

@(� ` )( � 2 ;� ) ;i (w ; v)

@(v ` )r;� 1

�
�
�
�
�

� 1f � 1 = � 2 + � g �
r

� `

mno

�
(w ` )

>
r y i

� p

+
(65)

� 1f � 1 = � 2 + � g �
r

� `

mno
k(w ` )r kp

2 (66)






@(� ` )( � 2 ;� ) ;i (w ; v)

@(v ` )r







2

�
r

� `

mno

q �
�I � ` � 1

�
� jI � � ` j k(w ` )r kp

2 ; (67)

for `0 6= ` � 1; `, 




@(� ` ) i (w ; v)
@(v ` 0)r






2

= 0 ; (68)

and �
�
�
�
�
@hj (w ; v)
@(v0)r; 0

�
�
�
�
�

�
r

�
mnb

X

� 2 J 1

�
�
�
�~a�

@�

@x �

� �
(w 0)>

r ~y j

� p

+

� �
�
�
� (69)

�
r

� max

mnb
(d + 1) amax pk(w 0)r kp

2 ; (70)





@hj (w ; v)
@(v ` 0)r






2

= 0 if `0 2 [L ] : (71)

Hoeffding's inequalities for si;r , (� ` )r; ( �;� ) ;i , and h j;r . For eachi 2 [no] andr 2 [m], let

si (w ; v) =

r
1
no

0

@
LX

` =0

X

� 2 I � `

X

� 2 J � � ` +1

â`;�;�
@�

@x � (� ` ) � � f (x i )

1

A (72)

=
mX

r =1

si;r (w ; v) �
1

p
no

f (x i ) ; (73)

where

si;r (w ; v) =
1

p
mno

LX

` =0

X

� 2 I � `

X

� 2 J � � ` +1

â`;�;�
@�

@x �

�
(v ` )r;�

�
(w ` )

>
r y

� p

+

�
: (74)

As si;r is ap-th degree polynomial of(w ` )r , we have

jsi;r (w ; v)j �
amaxp
mno

LX

` =0

X

� 2 I � `

X

� 2 J � � ` +1

�
�
�
�

@�

@x �

�
(v ` )r;�

�
(w ` )

>
r y

� p

+

� �
�
�
� (75)

�
amaxp
mno

LX

` =0

X

� 2 I � `

X

� 2 J � � ` +1

�
�
�(v ` )r;�

�
�
� p� � ` +1 k(w ` )r kp

2 ; (76)

for all i 2 [no] andr 2 [m].

Sincek(w ` )r (0)k2 < R and
�
�
�(v ` )r;� (0)

�
�
� � 1 for all ` = 0 ; : : : ; L , � 2 I � ` , andr 2 [m], we have

jsi;r (w (0) ; v (0)) j �

r
1

mno
amax

LX

` =0

X

� 2 I � `

X

� 2 J � � ` +1

p� � ` +1 Rp (77)
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�
r

� max

mno
amax

LX

` =0

jI � ` j �
�
�J � � ` +1

�
� � pj � j Rp (78)

�
r

� max

mno
amax

�
d + k

d

��
d + j� j

d

�
pj � j Rp; (79)

for all i 2 [no] andr 2 [m].

UsingE
h
(v ` )r;�

i
= 0 , we attainE [si;r (w (0) ; v (0))] = 0 , and Hoeffding's inequality gives

P

" �
�
�
�
�

mX

r =1

si;r (w (0) ; v (0))

�
�
�
�
�

>
"

p
no

#

� 2 exp

0

B
@�

2
�

"p
n o

� 2

m
�

2
q

� max
mn o

amax
� d+ k

d

�� d+ j � j
d

�
pj � j Rp

� 2

1

C
A

(80)

� 2 exp

 

�
"2

2� max a2
max

� d+ k
d

� 2� d+ j � j
d

� 2
p2j � j R2p

!

; (81)

for all " > 0.

Similarly, for each̀ 2 [L ], � 2 I � ` � 1 , � 2 I � � ` , andi 2 [no],

(� ` )( �;� ) ;i (w ; v) =
r

� `

no

�
@�

@x � (� ` � 1) � (x i ; w ` � 1; v ` � 1) � � ` (x i ; w ` ; v ` ) � + �

�
(82)

=
mX

r =1

(� ` )r; ( �;� ) ;i (w ; v) ; (83)

where

(� ` )r; ( �;� ) ;i (w ; v) =
r

� `

mno

�
@�

@x �

�
(v ` � 1)r;�

�
(w ` � 1)>

r y i

� p

+

�
� (v ` )r;� + �

�
(w ` )

>
r y i

� p

+

�
:

(84)

Then, we attain that
�
�
�(� ` )r; ( �;� ) ;i (w ; v)

�
�
� �

r
� `

mno

� �
�
�
�

@�

@x �

�
(v ` � 1)r;�

�
(w ` � 1)>

r y i

� p

+

� �
�
�
� +

�
�
�
�(v ` )r;� + �

�
(w ` )

>
r y i

� p

+

�
�
�
�

�

(85)

�
r

� `

mno

�
p� � `

�
�
�(v ` � 1)r;�

�
�
� k(w ` � 1)r kp

2 +
�
�
�(v ` )r;� + �

�
�
� k(w ` )r kp

2

�
; (86)

and �
�
�(� ` )r; ( �;� ) ;i (w (0) ; v (0))

�
�
� �

r
� max

mno

�
pj � j + 1

�
Rp: (87)

E
h
(v ` )r;�

i
= 0 impliesE

h
(� ` )r; ( �;� ) ;i

i
= 0 and for eachi 2 [no], Hoeffding's inequality with the

sum overr 2 [m] of variables

X r;i (w (0) ; v (0)) =
X

� 2 I � ` � 1

X

� 2 I � � `

(� ` )r; ( �;� ) ;i (w (0) ; v (0)) ; (88)

with

jX r;i (w (0) ; v (0)) j �
�
� I � ` � 1

�
� � j I � � ` j

r
� max

mno

�
pj � j + 1

�
Rp (89)

<
r

� max

mno

�
d + k

d

��
d + j� j

d

� �
pj � j + 1

�
Rp (90)
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gives

P

" �
�
�
�
�

mX

r =1

(� ` )r; ( �;� ) ;i (w (0) ; v (0))

�
�
�
�
�

>
"

p
no

#

(91)

� 2 exp

0

B
@�

2
�

"p
n o

� 2

m
� q

� max
mn o

� d+ k
d

�� d+ j � j
d

� �
pj � j + 1

�
Rp

� 2

1

C
A (92)

� 2 exp

 

�
"2

� max
� d+ k

d

� 2� d+ j � j
d

� 2 �
pj � j + 1

� 2
R2p

!

: (93)

For eachj 2 [nb], let us denote

hj (w ; v) =
r

�
nb

X

� 2 J 1

~a� � 0 (~x j ; w 0; v0) �
r

�
nb

g(~x j ) (94)

=
mX

r =1

hj;r ((w 0)r ; (v0)r ) �
r

�
nb

g(~x j ) ; (95)

where

hj;r (w ; v) =
r

�
mnb

X

� 2 J 1

~a�
@�

@x �

�
(v0)r; 0 �

�
(w 0)>

r ~y j

� p

+

�
: (96)

It is clear thathjr is expressed as ap-th order polynomial of(w 0)r and we can deduce that

jhj;r (w (0) ; v (0)) j �
r

� max

mnb
amax (d + 1) pRp; (97)

for all j 2 [nb] andr 2 [m].

Similar to the case ofsi;r and(� ` )r; ( �;� ) ;i , Hoeffding's inequality gives

P

" �
�
�
�
�

mX

r =1

hj;r (w (0) ; v (0))

�
�
�
�
�

>
"

p
nb

#

� 2 exp

 

�
"2

2� max a2
max (d + 1) 2 p2R2p

!

: (98)

Components ofQ ` 1 ;` 2
Each component ofQ ` 1 ;` 2

is polynomial of orderp as follows:
�
Q0;0

�
i 1 ;i 2

(99)

=
LX

` =0

mX

r =1

X

� 2 I � `

 
@

@(v ` )r;�
si 1

!  
@

@(v ` )r;�
si 2

!

(100)

=
1

mno

LX

` =0

mX

r =1

X

� 2 I � `

0

@
X

� 2 J � � ` +1

â`;�;�
@�

@x �

�
(w ` )

>
r y i 1

� p

+

1

A

0

@
X

� 2 J � � ` +1

â`;�;�
@�

@x �

�
(w ` )

>
r y i 2

� p

+

1

A :

(101)

�
Q0;`

�
i 1 ;(( �;� ) ;i 2 )

(102)

=
LX

` 0=0

mX

r =1

X

� 02 I � ` 0

 
@

@(v ` 0)r;� 0

si 1

!  
@

@(v ` 0)r;� 0

(� ` )( �;� ) ;i 2

!

(103)

=
mX

r =1

X

� 02 I � ` � 1

 
@

@(v ` � 1)r;� 0

si 1

!  
@

@(v ` � 1)r;� 0

(� ` )( �;� ) ;i 2

!

(104)
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+
mX

r =1

X

� 02 I � `

 
@

@(v ` )r;� 0

si 1

!  
@

@(v ` )r;� 0

(� ` )( �;� ) ;i 2

!

(105)

=
mX

r =1

X

� 02 I � ` � 1

 
@

@(v ` � 1)r;� 0

si 1

!  
@

@(v ` � 1)r;� 0

(� ` )( �;� ) ;i 2

!

(106)

+
mX

r =1

 
@

@(v ` )r;� + �
si 1

!  
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number of nonzero elements inQL +1 ;L +1 is n2
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Matrix The number of nonzero elements
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Table 1: The number of nonzero elements in blocks inG.
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â`;�;�
@�

@x �

�
(w ` )

>
r y i 2

� p

+

1

A

9
=

;








2
(149)

�
1

mno
jI � ` j a2

max








@
@(w ` )r

8
<

:

0

@
X

� 2 J � � ` +1

@�

@x �

�
(w ` )

>
r y i 1

� p

+

1

A

0

@
X

� 2 J � � ` +1

@�

@x �

�
(w ` )

>
r y i 2

� p

+

1

A

9
=

;








2
(150)

�
1

mno
a2

max jI � ` j
�
�J � � ` +1

�
�2

p2j � j+1 k(w ` )r k2p� 1
2 ; (151)

@
@(v ` )r

�
Q0;0

�
i 1 ;i 2

= 0: (152)

For each̀ 2 [L ], � 2 I � ` � 1 , � 2 I � � ` , andi 1; i 2 2 [no],

�
Q0;`

�
i 1 ;(( �;� ) ;i 2 )

(153)

=
p

� `

mno

mX

r =1

0

@

0

@
X

� 02 J � � `
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Hoeffding's inequalities for Q ` 1 ;` 2
. For eachi 2 [no] andj 2 [nb], we have
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for any" > 0.

Similarly, for each̀ 2 [L ], � 2 I � ` � 1 , � 2 � � ` , andi 1; i 2 2 [no],
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C Proofs

This section proves the main theorem with some lemmas and propositions. Similar to the [25], we
�rst prove that the Gram matrixbG

1
v is independent ofm and strictly positive de�nite, in Proposition

C.3. Second, asbG v (w (0) ; v (0)) is the sample mean, Proposition C.4 shows thatbG v (w (0) ; v (0))
is close to its expected valuebG

1
v with a high probability, ifm is large enough. This implies that

bG v (w (0) ; v (0)) is strictly positive de�nite with high probability. Then, we show that the initial
loss is bounded with a high probability ifm is large. This is becausev (0) has zero mean, which
hinders the output ofm variables to diverge asm increases. Finally, we prove that the Gram matrix
bG v (w (t) ; v (t)) remains within a small neighborhood of the initial point, where it maintains its
strict positive de�niteness. The gradient �ow converges within the neighborhood, as the smallest
eigenvalue ofbG v is distinct from zero, resulting in a rapid reduction of the loss.
Lemma C.1. Let d; n 2 N andy 1; : : : ; y n 2 Rd be vectors such thaty i ==y j if and only if i = j .
Then, for eachi 2 [n], there existsw i such thatw >

i y j = 0 if and only if i = j .

Proof. Let y ?
i =

�
w 2 Rd : w > y i = 0

	
. Sincey i ==y j for i 6= j , y i \ y j is nowhere dense iny ?

i .
Hence, �nite union of[ j 6= i y ?

j is nowhere dense iny ?
i , and in particular, there existsw i 2 y ?

i such
thatw i 62 [j 6= i y ?

j .

Lemma C.2. Let n; d 2 N, and : Rd ! R be a homogeneous polynomial of degreen. For any
i 2 N and nonzeroy = ( y1; : : : ; yd) 2 Rd, if a function (w )
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w > y

� i
+ of w = ( w1; : : : ; wd) 2 Rd

is (n + i )-times continuously differentiable at somew � 2 Rd with (w � )> y = 0 , then � 0.

Proof. Without loss of the generality, we may assume they1 6= 0 . Write  (w ) =
P

� 2 I n
a� w �

for coef�cientsa� 2 R and de�ne' (w ) =  (w )
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for w > y > 0. The continuity inducesa� = 0 and thus � 0 for all w 2 Rd.

Proposition C.3. bG
1
v = Ew ;v

h
bG v (w ; v)

i
is strictly positive de�nite and independent ofm.
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for r 2 [m], are independent and identically distributed. Therefore, the expected value of each
component ofQ0;0 is independent ofm, as the expected value of the sample mean of independent
and identically distributed random variables is independent of the number of samples. Similarly, each
component ofbG v (w ; v) is the sample mean ofm independent and identically distributed random
variables, and its expected valuebG

1
v is independent ofm. To show thatbG

1
v is strictly positive

de�nite, assume that there existsz0 =
�
(z0)1 � � � (z0)n o

�
2 Rn o , ~z = [ ~z1 � � � ~zn b ]> 2 Rn b ,
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= 0 impliesz = 0 and thereby0 is not an eigenvalue ofbG
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Now assume that there existsz 2 Rd such thatD̂ v z = 0 for almost allw andv. SinceD̂ v is
continuous with respect tow andv, we haveD̂ v z = 0 for all w andv. Hence, the function̂D v z of
w andv, which is identically zero, is smooth with respect tow andv.

In this proof, we denote an index for a component ofD̂ v z by ` 2 [L ], r 2 [m] and� 2 I � ` , because
each row ofD̂ v corresponds to the partial derivatives with respect to(v ` )r;� for ` 2 [L ], r 2 [m]
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(w L )>

r y i

� p

+
(zL )( � 0;� ) ;i 1f � = � 0+ � g: (263)

Fix i 2 [no], and by Lemma C.1, there exists(w �
L )r 2 Rd such that(w �

L )>
r y i = 0 , (w �

L )>
r y i 0 6= 0

for i 6= i 0 2 [no] and(w �
L )>

r ~y j 6= 0 for j 2 [nb]. As a function of(w L )r , D̂ v z = 0 implies that
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(w L )>

r y i
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(zL )( � 0;� ) ;i 1f � = � 0+ � g: (267)
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is smooth at(w L )r = ( w �
L )r . Note that the coef�cient of

�
(w L )>

r y i

� p� � � L +1

+
in (266)is given by

X

� 2 I � � L +1

âL;�;� (x i ) (w L ) � 1
r; 1 � � � (w L ) � d

r;d (z0) i ; (268)

which is a homogeneous polynomial ofw L . Together with the fact that at least one ofâL;�;� (x i ) is
nonzero, Lemma C.2 implies(z0) i = 0 . Similarly, for anyr 2 [m],
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=

n bX
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r ~y j

� p�j � j

+
(271)

deduces~zj = 0 with w �
0, instead ofw �

L , such that(w �
0)> ~y j = 0 , (w �

0)> ~y j 0 6== 0 for j 0 6= j , and

(w �
0)> y i 6= 0 for i 2 [no]. Now suppose that we have~z = 0 andz ` 0 = 0 for `0 = 0 ; 1; : : : ; ` � 1

for somè � 1. Then, for anyr 2 [m] and� 2 I � ` � 1 ,
�

D̂ v z
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=
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�
(w ` )

>
r y i
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+
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(z ` )( �;� ) ;i : (276)

Then the coef�cient of
�

(w ` )
>
r y i

� p� � � `

is a homogeneous polynomial
r

� `

no

X

� 2 I � � `

(z ` )( �;� ) ;i (w ` )
� d
r;d : (277)

Lemma C.2 shows(z ` )( �;� ) ;i = 0 for all �; � . The induction concludesz = 0 .

In the sequel,� 0 = � min ( bG v ) > 0 is the minimal eigenvalue ofbG v . Furthermore, we assume
the occurrence of the following event: there existsR > 1 such thatk(w ` )r (0)k2 < R and
k(v ` )r (0)k2 < R for all ` = 0 ; 1; : : : ; L andr 2 [m]. This assumption is employed solely for the
purpose of simplifying propositions and their respective proofs. In the main theorem and its proof, we
use the following arguments with regard to the conditional probability of the aforementioned event.
Proposition C.4. Let � > 0 and

C1 =
�

d + k
k

��
d + j� j

j� j

� 2

� 2
max

�
1
no

+
1
nb

� p
1 + a4

max

�
p2j � j + 1

�
; (278)

N1 = 7
�

d + k
d

��
d + j� j

d

� 2

n2
o + 4

�
d + j� j

d

�
nonb + n2

b; (279)
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be constants. Ifm is large enough so that

m �
32N1C2

1 R4p

� 2
0

log
�

2N1

�

�
; (280)

then with the probability of at least1 � � over the initialization, we have


 bG v (w (0) ; v (0)) � bG

1
v





2
<

� 0

4
: (281)

Proof. We use Hoeffding's inequality to measure the error betweenbG v (w ; v) and bG
1
v , as Gram

matrix bG
1
v is the expectation of the sample mean. In the Hoeffding's inequalities(220), (228), (233),

(241), (245), (251), and (254), we have

1
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�
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d

� 2�
d + j� j

d

� 4

a4
max p4j � j � C2

1 ; (282)
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�
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� 2
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1 ; (283)
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nonb

(d + 1) 2
�
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d
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a4
max p2j � j+2 � C2

1 ; (284)
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� 2
� C2

1 (285)

� ` � ` +1

n2
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1 ; (286)

� 1�
nonb

(d + 1) 2 a2
max p2j � j+2 � C2

1 ; (287)

� 2

n2
b

(d + 1) 4 a4
max p4 � C2

1 : (288)

Consequently, all inequalities induce that each component of
�
�
� bG v � bG

1
v

�
�
� is greater than" , with

a probability of at most2 exp
�

� m" 2

2C 2
1 R 4p

�
. Since there exists at mostN1 nonzero elements in

�
�
� bG v � bG

1
v

�
�
� by (145),

�
�
� bG v (w ; v) � bG

1
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�
� � " (289)

holds componentwise, with the probability of at least
�

1 � 2 exp
�

�
m" 2

2C2
1 R4p

�� N 1

� 1 � 2N1 exp
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�
m" 2
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1 R4p
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: (290)

Then, we have 

 bG v (w ; v) � bG

1
v





2
�



 bG v (w ; v) � bG

1
v





F
� "

p
N1: (291)

Set" andm to satisfy" = 1
4

p
N 1

� 0 and2N exp
�

� m" 2

2C 2
1 R 4p

�
< � . In other words, if

m �
2C2

1 R4p

"2 log
�

2N1

�

�
(292)

=
32N1C2

1 R4p

� 2
0

log
�

2N1

�

�
; (293)

then


 bG v (w ; v) � bG

1
v





2
� 1

4 � 0 with probability of at least 1-� .

By the above proposition, the initial Gram matrixbG v (w (0) ; v (0)) is likely to be strictly positive
de�nite, and its smallest eigenvalue remains greater than� 0

2 , at the beginning of the �ow. The
following lemma implies that at the early stage of the �ow, for whichw andv are not far from the
initial values, the positive de�niteness is preserved, and its smallest eigenvalue remains distinct from
zero.

34



Lemma C.5. Supposek ~w ` � w ` (0)k2 � Rw < R , for

Rw =
� 0

8
p

2
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p
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�
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d
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d + j� j

d
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: (294)

Then 

 bG v ( ~w ; ~v) � bG v (w (0) ; v (0))





2
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1
4

� 0: (295)

Proof. 1. Case ofQ0;0: By the mean value theorem with (151), we can induce that
�
Q0;0 ( ~w ; ~v) � Q0;0 (w (0) ; v (0))

�
i 1 ;i 2

(296)
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�
�
� (297)
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for somew � =
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Therefore, we can attain that
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2. Case ofQ0;` : Similar toQ0;0, the mean value theorem with (159) and (163) gives
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Consequently, we have
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3. Case ofQ0;L +1 : The mean value theorem with (171) induces
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4. Case ofQ ` 1 ;` 2
: From the mean value theorem with (180) and (184), we attain
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(192) follows that
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In accordance with the de�nition of the loss� ` , it is clear thatQ ` 1 ;` 2
is identical to the zero matrix if

the difference betweeǹ1 and`2 is greater than 1. Consequently, together with(325)and(333)we
have
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By the de�nition of the loss� ` , we haveQ `;L +1 is identical to the zero matrix for every` > 1.
Therefore, we have
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=
n oX

i =1

n bX

j =1

X

� 2 I � � 1
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6. Case ofQL +1 ;L +1 :

From (205), we have
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Therefore, combining (302), (311), (313), (339), (347), and (351) concludes that
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=
� 2

0

16
: (361)

The preceding lemma indicates that the loss will decrease rapidly in cases wherew is not signi�cantly
distant fromw (0). Indeed, the subsequent lemma and proposition demonstrate thatw (t) remains
within the designated region for any given value oft > 0, provided suf�ciently largem.

Proposition C.6. Set constantsC2 andC3 as
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�
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then, with the probability of at least1 � � over the initialization, we have
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are satis�ed. Then, the square of the initial loss is bounded as
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For � > 0 andC > 0, if " andm satisfy the following inequalities,
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we have that with the probability of at least1 � � ,
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with the probability of at least1 � � , we have
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Proposition C.7. Suppose the conditions(281)holds andRw are given as in Lemma C.5. For
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then
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Since(w ` )r and(v ` ) are continuous, the above set in supremum is nonempty. Fort 2 (0; T),
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where the last inequality comes from Lemma C.5 and the positive semi-de�niteness ofbGw . This
implies that
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For t 2 (0; T) and` 2 f 0; � � � ; Lg, from k(w ` )r (0)k2 � R andk(v ` )r (0)k2 � j I � ` j and(398), we
have

k(w ` )r (t)k2 � k (w ` )r (t) � (w ` )r (0)k2 + k(w ` )r (0)k2 (403)

< R w + R (404)
� 2R; (405)

k(v ` )r (t)k2 � k (v ` )r (t) � (v ` )r (0)k2 + k(v ` )r (0)k2 (406)

< R w + jI � ` j (407)
� R: (408)

From (44), (57), (52), and (48), we can attain
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for all t 2 (0; T).
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On the other hand,
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and hence
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If m is large enough to satisfy (395), we have

k(w ` )r (T) � (w ` )r (0)k2 �
6
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q � d+ k
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�� d+ j � j
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pj � j+1 2p� 1
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1
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(449)
Similarly, we obtain
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The �rst term and second term are bounded by
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Therefore, fort 2 (0; T) and` = f 0; : : : ; Lg,
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As a consequence, we attain

k(v ` )r (T) � (v ` )r (0)k2 (477)
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Sincem is large enough to satisfy (395), we have
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C.1 Proof of Theorem 4.3
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then by Proposition C.4, with probability of at least1 � � 2, we have
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Consequently, Proposition C.7 implies
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from Lemam C.5.
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then (488) holds.
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then with the probability of at least(1 � � 1) (1 � � 2) (1 � � 3) � 1 � (� 1 + � 2 + � 3) = 1 � � , we
have 
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D Experimental Details

D.1 Problem Formulations

Poisson equation
�

uxx + uyy = f 1 x; y 2 (0; � )
u (x; 0) = u (x; � ) = u (0; y) = u (�; y ) = 0 x; y 2 [0; � ] ;

(506)

wheref 1 : (0; � )2 ! R is de�ned so that the exact solution is given by

u (x; y) =
1
5

sin2 (x) y2 (� � y)2 : (507)

Bi-harmonic equation
8
<

:

uxxxx + 2uxxyy + uyyyy = f 2 x; y 2 (0; � )
u (x; 0) = u (x; � ) = u (0; y) = u (�; y ) = 0 x; y 2 [0; � ]
@

@n u (x; 0) = @
@n u (x; � ) = @

@n u (0; y) = @
@n u (�; y ) = 0 x; y 2 (0; � ) ;

(508)

where the �ux functionf 2 : (0; � )2 ! R is set to ensure that it has a solution that is identical to that
of Poisson equation (507).

Heat equation 8
<

:

ut = uxx x 2 (� 1; 1) ; t 2 (0; 1)
u (t; � 1) = u (t; 1) = 0 t 2 [0; 1]
u (0; x) = sin ( �x ) x 2 (� 1; 1) ;

(509)

Elastic beam equation
8
<

:

ut + uxxxx = 0 x 2 (0; � ) ; t 2 (0; 1)
u (t; 0) = u (t; � ) = uxx (t; 0) = uxx (t; � ) = 0 t 2 [0; 1]
u (0; x) = 2 sin ( x) x 2 (0; � ) :

(510)

The exact solution is given byu (t; x ) = 2 e� t sin (x).

Convection-diffusion equation
8
>>><

>>>:

ut + ux � 1
4 uxx = 0 ( t; x ) 2 
 = (0 ; 1) � (0; � ) ;

u (0; x) = sin ( x) x 2 [0; � ] ;
u (t; 0) = � e� 1

4 t sin (t) t 2 [0; 1] ;
u (t; � ) = e� 1

4 t sin (� � t) t 2 [0; 1] ;

(511)

whose exact solution isu (t; x ) = e� 1
4 t sin (x � t).
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Table 2: Experimental settings for each PDE
PDE width m power p optimizer(lr) no nb

Harmonic 102 � 106 5 � 8 GD(10� 8) 400 400
Bi-harmonic 102 � 106 5 � 8 GD(10� 8) 400 400

Heat 103 3 � 10 Adam(10� 3) 300 300
Heat(PINNs) 103 3 GD(10� 1) 300 300
Heat(VS-PINNs) 103 2 GD(10� 1) 300 300
Beam (PINNs) 103 5 Adam(10� 3) 10,000 300
Beam (VS-PINNsj� j = 2 ) 103 3 Adam(10� 3) 10,000 300
Beam (VS-PINNsj� j = 1 ) 103 2 Adam(10� 3) 10,000 300

Convection-diffusion (PINNs) 103 3 Adam(10� 3) / GD(10� 2) 300 300
Convection-diffusion (VS-PINNs) 103 2 Adam(10� 3) / GD(10� 1) 300 300
Bi-harmonic (PINNs) 103 5 Adam(10� 3) 10,000 400
Bi-harmonic (VS-PINNsj� j = 2 ) 103 3 Adam(10� 3) 10,000 400
Bi-harmonic (VS-PINNsj� j = 1 ) 103 2 Adam(10� 3) 10,000 400

Figure 3: Loss of convection-diffusion equation trained by GD.

D.2 Parameter settings for experiments

Convection-diffusion equation We conducted experiments on a convection-diffusion equation:
We train 100,000 epochs of PINNs withp = 3 and VS-PINNs withp = 2 , using the same settings as
represented for the heat equation(509). Figures 3 and 4 show that VS-PINNs reach lower loss and
achieve more stable convergence for both GD and Adam.

Bi-harmonic equation Consider the bi-harmonic equation
8
<

:

� 2u (x; y) = f (x; y) x; y 2 [0; � ]
u (x; 0) = u (x; � ) = u (0; y) = u (�; y ) = 0 x; y 2 [0; � ]
@

@n u (x; 0) = @
@n u (x; � ) = @

@n u (0; y) = @
@n u (�; y ) = 0 x; y 2 [0; � ] ;

(512)

wheref (x; y) are de�ned so that the exact solution is given byu (x; y) = 1
5 sin2 (x) y2 (� � y)2.

We setm = 1 ,000, no = 10 ,000, nb = 400, and the training collocation points are �xed once they
are randomly selected. We experiment VS-PINNs with two cases: (i)� 0 � u, � 1 � (uxx ; uyy )
with j� j = 2 and p = 3 and (ii) the �nest splitting of� 0 � u, � 1 � r u, � 2 � (uxx ; uyy ),
� 3 � (uxxx ; uxxy ; uyyy ) with j� j = 1 andp = 2 . Regularization parameters are� 1 = � 2 = � 3 = 1
for derivative matching loss� and� = 10 for boundary lossh. Figure 5 depicts the training loss of
PINN and two VS-PINNs.

E Additional Experimental Results

Computational ef�ciency of VS-PINNs Table 3 measures the GPU memory, running time, and
the number of model parameters corresponding to experiments on elastic beam and bi-harmonic
equations. Because VS-PINNs need as many networks as auxiliary variables, �ner VS-PINN requires
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