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A Propositions659

A.1 Parallel Scan for Convolutional Recurrences660

Proposition 1. Consider a convolutional recurrence as in (7) and define initial parallel scan elements661

ck = (ck,a, ck,b) := (A,B ∗ Uk). The binary operator ⊛, defined below, is associative.662

ci ⊛ cj := (cj,a ◦ ci,a, cj,a ∗ ci,b + cj,b), (14)

where ◦ denotes convolution of two kernels, ∗ denotes convolution between a kernel and input, and +663

is elementwise addition.664

Proof. Using that ◦ is associative and the companion operator of ∗, i.e. (d ◦ e) ∗ f = d ∗ (e ∗ f) (see665

Blelloch [61], Section 1.4), we have:666

(ci ⊛ cj)⊛ ck = (cj,a ◦ ci,a, cj,a ∗ ci,b + cj,b)⊛ (ck,a, ck,b) (15)

=

(

ck,a ◦ (cj,a ◦ ci,a), ck,a ∗ (cj,a ∗ ci,b + cj,b) + ck,b

)

(16)

=

(

(ck,a ◦ cj,a) ◦ ci,a, ck,a ∗ (cj,a ∗ ci,b) + ck,a ∗ cj,b + ck,b

)

(17)

=

(

(ck,a ◦ cj,a) ◦ ci,a, (ck,a ◦ cj,a) ∗ ci,b + ck,a ∗ cj,b + ck,b

)

(18)

= ci ⊛ (ck,a ◦ cj,a, ck,a ∗ cj,b + ck,b) (19)

= ci ⊛ (cj ⊛ ck) (20)

667

A.2 Computational Cost of Parallel Scan for Convolutional Recurrences668

Proposition 2. Given the effective inputs B ∗ U1:L ∈ R
L×H×W×P and a pointwise state kernel669

A ∈ R
P×P×1×1, the computational cost of computing the convolutional recurrence in Equation 7670

with a parallel scan is O
(

L(P 3 + P 2HW )
)

.671

Proof. Following Blelloch [61], given a single processor, the cost of computing the recurrence672

sequentially using the binary operator ⊛ defined in Proposition 1 is O
(

L(T◦ + T∗ + T+)
)

where T◦673

refers to the cost of convolving two kernels, T∗ is the cost of convolution between a kernel and input674

and T+ is the cost of elementwise addition. The cost of elementwise addition is T+ = O(PHW ).675

For state kernels with resolution kA, T◦ = O(P 3k4A) and T∗ = O(P 2k2AHW ). For pointwise676

convolutions this becomes T◦ = O(P 3) and T∗ = O(P 2HW ). Thus, the cost of computing the677

recurrence sequentially using ⊛ is O
(

L(P 3 + P 2HW )
)

. Since there are work-efficient algorithms678

for parallel scans [104], the overall cost of the parallel scan is also O
(

L(P 3 + P 2HW )
)

.679

Note that ConvS5’s diagonalized parameterization discussed in Section 3.4 and Appendix B leads to680

T◦ = O(P ) and T∗ = O(PHW ). Therefore the cost of applying the parallel scan with ConvS5 is681

O(LPHW ).682

A.3 Connection Between ConvSSMs and SSMs683

Proposition 3. Consider a ConvSSM state update as in (5) with pointwise state kernel A ∈684

R
P×P×1×1, input kernel B ∈ R

P×U×kB×kB , and input U(t) ∈ R
H′

×W ′
×U . Let Uim2col(t) ∈685

R
H×W×Uk2

B be the reshaped result of applying the Image to Column (im2col) [64, 65] operation on686

the input U(t). Then the dynamics of each state pixel of (5), X (t)i,j ∈ R
P , evolve according to the687

following differential equation688

X
′(t)i,j = ASSMX (t)i,j +BSSMUim2col(t)i,j (21)

where the state matrix, ASSM ∈ R
P×P , and input matrix, BSSM ∈ R

P×(Uk2

B
), can be formed by689

reshaping the state kernel, A, and input kernel, B, respectively.690
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Proof. Let Uim2col ∈ R
Uk2

b
×HW denote the result of performing the im2col operation on the input691

U(t) for convolution with the kernel B. Reshape this matrix into the tensor Uim2col(t) ∈ R
H×W×Uk2

b .692

Reshape Uim2col(t) once more into the tensor V(t) ∈ R
H×W×U×kB×kB .693

Now, we can write the evolution for the individual channels of each pixel, X ′(t)i,j,k, in (5) as694

X
′(t)i,j,k =

P−1
∑

l=0

Ak,l,0,0X (t)i,j,l +

U−1
∑

q=0

kB−1
∑

m=0

kB−1
∑

n=0

Bk,q,m,nV(t)i,j,q,m,n. (22)

Let ASSM ∈ R
P×P be a matrix with rows, ASSM,i ∈ R

P , corresponding to a flattened version of695

the output features of A, i.e. Ai ∈ R
P×1×1. Similarly, reshape B into a matrix BSSM ∈ R

P×(Uk2

B
)

696

where the rows, BSSM,i ∈ R
Uk2

B correspond to a flattened version of the output features of B, i.e.697

Bi ∈ R
U×kB×kB .698

Then we can rewrite (22) equivalently as699

X
′(t)i,j,k =

P−1
∑

l=0

Ak,l,0,0X (t)i,j,l +

U−1
∑

q=0

kB−1
∑

m=0

kB−1
∑

n=0

Bk,q,m,nV(t)i,j,q,m,n (23)

=

P−1
∑

l=0

ASSM,k,lX (t)i,j,l +

Uk2

B
−1

∑

v=0

BSSM,k,vUim2col(t)i,j,v (24)

= AT
SSM,kX (t)i,j +BT

SSM,kUim2col(t)i,j (25)

700
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B ConvS5 Details: Parameterization, Discretization, Initialization701

B.1 Background: S5702

S5 Parameterization and Discretization S5 [20] uses a diagonalized parameterization of the703

general SSM in (3).704

Let AS5 = VΛS5V
−1 ∈ R

P×P where ΛS5 ∈ C
P×P is a complex-valued diagonal matrix and705

V ∈ C
P×P corresponds to the eigenvectors. Defining x̃(t) = V−1x(t), B̃ = V−1B, and C̃ = CV706

we can reparameterize the SSM of (3) as the diagonalized system:707

dx̃(t)

dt
= ΛS5x̃(t) + B̃u(t), y(t) = C̃x̃(t) +Du(t). (26)

S5 uses learnable timescale parameters ∆ ∈ R
P and the following zero-order hold (ZOH) disretiza-708

tion:709

ΛS5 = DISCRETIZEA(ΛS5,∆) := eΛS5∆ (27)

BS5 = DISCRETIZEB(ΛS5, B̃,∆) := Λ−1
S5 (ΛS5 − I)B̃ (28)

S5 Initialization S5 initializes its state matrix by diagonalizing AS5 as defined here:710

AS5nk
= −







(n+ 1
2 )

1/2(k + 1
2 )

1/2, n > k
1
2 , n = k

(n+ 1
2 )

1/2(k + 1
2 )

1/2, n < k

. (29)

This matrix is the normal part of the normal plus low-rank HiPPO-LegS matrix from the HiPPO frame-711

work [53] for online function approximation. S4 originally initialized its single-input, single-output712

(SISO) SSMs with a representation of the full HiPPO-LegS matrix. This was shown to be approximat-713

ing long-range dependencies at initialization with respect to an infinitely long, exponentially-decaying714

measure [105]. Gupta et al. [41] empirically showed that the low-rank terms could be removed with-715

out impacting performance. Gu et al. [42] showed that in the limit of infinite state dimension, the716

linear, single-input ODE with this normal approximation to the HiPPO-LegS matrix produces the717

same dynamics as the linear, single-input ODE with the full HiPPO-LegS matrix. The S5 work718

extended these findings to the multi-input SSM setting [20].719

Importance of SSM Parameterization, Discretization and Initialization Prior research has720

highlighted the importance of parameterization, discretization and initialization choices of deep721

SSM methods through ablations and analysis [56, 19, 42, 20, 57]. Concurrent work from Orvieto722

et al. [57] provides particular insight into the favorable initial eigenvalue distributions provided by723

initializing with HiPPO-inspired matrices as well as an important normalization effect provided by the724

explicit discretization procedure. They also introduce a purely discrete-time parameterization that can725

perform similarly to the continuous-time discretization of S4 and S5. However, their parameterization726

practically ends up quite similar to the equations of (27-28). We choose to use the continuous-time727

parameterization of S5 for the implicit parameterization of ConvS5 since it can also be leveraged728

for zero-shot resolution changes [19, 20, 45] and processing irregularly sampled time-series in729

parallel [20]. However, due to Proposition 3, other long-range SSM parameterization strategies can730

also be used, such as in Orvieto et al. [57] or potential future innovations.731

B.2 ConvS5 Diagonalization732

We leverage S5’s diagonalized parameterization to reduce the cost of the parallel scan of ConvS5.733

Concretely, we initialize AS5 as in (29) and diagonalize as AS5 = VΛS5V
−1. To apply ConvS5,734

we compute ΛS5 and BS5 using (27-28), and then form the ConvS5 state and input kernels:735

ΛS5 ∈ R
P×P reshape

−−−−−→ AConvS5 ∈ R
P×P×1×1 (30)

BS5 ∈ R
P×(Uk2

B
) reshape
−−−−−→ BConvS5 ∈ R

P×U×kB×kB . (31)

See Listing 1 for an example of the core implementation. Note, the state kernel AConvS5 is "diagonal-736

ized" in the sense that all entries in the state kernel are zero except AConvS5,i,i = ΛS5,i,i ∀i ∈ [P ].737
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This means that the pointwise convolutions reduce to channel-wise multiplications. However, this738

does not reduce expressivity compared to a full pointwise convolution. This is because, given the739

ConvSSM to SSM equivalence of Proposition 3 and the use of complex-valued kernels, the diagonal-740

ization maintains expressivity since almost all SSMs are diagonalizable [41, 42], which follows from741

the well-known fact that almost all square matrices diagonalize over the complex plane.742
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1 import jax

2 import jax.numpy as np

3 from ConvSSM_helpers import discretize, Conv2D, ResNet_Block

4 parallel_scan = jax.lax.associative_scan

5

6 def apply_ConvS5_layer(A, B, B_shape, C_kernel, log_Delta, resnet_params, us, x0):

7 """Compute the outputs of ConvS5 layer given input sequence.

8 Args:

9 A (complex64): S5 state matrix (P,)

10 B (complex64): S5 input matrix (P,Uk_B^2)

11 B_shape (tuple): shape of B_kernel

12 C_kernel (complex64) output kernel (U,P,k_C,k_C)

13 log_Delta (float32): learnable timescale params (P,)

14 resnet_params (dict): ResNet block params

15 us (float32): input sequence of features (L,bsz,H,W,U)

16 x0 (complex64): initial state (bsz,H,W,P)

17 Returns:

18 outputs (float32): the ConvS5 layer outputs (L,bsz,H,W,U)

19 x_L (complex64): the last state of the ConvSSM (bsz,H,W,P)

20 """

21 # Discretize and reshape ConvS5 state and input kernels

22 P, U, k_B = B_shape

23 A_bar, B_bar = discretize(A, B, np.exp(log_Delta))

24 A_kernel = A_bar # already correct shape due to diagonalization

25 B_kernel = B_bar.reshape(P, U, k_B, k_B)

26

27 # Apply ConvS5

28 ys, xs = apply_ConvS5(A_kernel, B_kernel, C_kernel, us, x0)

29

30 # Apply ResNet activation function

31 outputs = jax.vmap(ResNet_Block, axis=(None,0))(resnet_params, ys)

32 return outputs, xs[-1]

33

34 def apply_ConvS5(A_kernel, B_kernel, C_kernel, us, x0):

35 """Compute the output sequence of the convolutional SSM

36 given the input sequence using a parallel scan.

37 Computes x_k = A * x_{k-1} + B * u_k

38 y_k = C * x_k

39 where * is a convolution operator.

40 Args:

41 A_kernel (complex64): state kernel (P,)

42 B_kernel (complex64): input kernel (P,U,k_B,k_B)

43 C_kernel (complex64): output kernel (U,P,k_C,k_C)

44 us (float32): input sequence (L,bsz,H,W,U)

45 x0 (complex64): initial state (bsz,H,W,P)

46 Returns:

47 ys (float32): the convS5 outputs (L,bsz,H,W,U)

48 x_L (complex64): the last state (bsz,H,W,P)

49 """

50 # Compute initial scan elements

51 As = np.repeat(A_kernel[None, ...], us.shape[0], axis=0)

52 Bus = jax.vmap(Conv2D)(B_kernel, np.complex64(us))

53 Bus = Bus.at[0].add(np.expand_dims(A_bar, (0, 1, 2)) * x0)

54

55 # Convolutional recurrence with parallel scan

56 _, xs = parallel_scan(conv_binary_operator, (As, Bus))

57

58 # Compute ConvS5 outputs

59 ys = jax.vmap(Conv2D)(C_kernel, xs).real

60 return ys, xs

61

62 def conv_binary_operator(q_i, q_j):

63 """Binary operator for convolutional recurrence

64 with "diagonalized" 1X1 state kernels.

65 Args:

66 q_i, q_j (tuples): scan elements q_i=(A_i, BU_i) where

67 A_i (complex64) is state kernel (P,)

68 BU_i (complex64) is effective input (bsz,H,W,P)

69 Returns:

70 output tuple q_i \circledast q_j

71 """

72 A_i, BU_i = q_i

73 A_j, BU_j = q_j

74 # Convolve "diagonal" 1X1 kernels

75 AA = A_j * A_i

76 # Convolve "diagonal" A_j with BU_i

77 A_jBU_i = np.expand_dims(A_j, (0, 1, 2)) * BU_i

78 return AA, A_jBU_i + BU_j

Listing 1: JAX implementation of core code to apply a single ConvS5 layer to a batch of spatiotem-
poral input sequences.
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C Supplementary Results743

We include expanded tables and sample trajectories from the experiments in the main paper. Sample744

videos can be found at the anonymized website:745

https://sites.google.com/view/convssm.746

C.1 Moving-MNIST747

Table 5: Full results on the Moving-Mnist dataset [54]. For the top table, all models are trained on
300 frames. For the bottom table, all models are trained on 600 frames. The evaluation task is to
condition on 100 frames, and then generate forward 400, 800 and 1200 frames. ConvSSM (ablation)
is performed by randomly initializing the state kernel (see Section 5.3 and Appendix D.4).

Trained on 300 frames

100 → 400 100 → 800 100 → 1200

Method Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Transformer 164M 73 ± 3 13.5 ± 0.1 0.669 ± 0.002 0.213 ± 0.003 159 ± 7 12.6 ± 0.1 0.609 ± 0.002 0.287 ± 0.001 265 ± 8 12.4 ± 0.1 0.591 ± 0.002 0.321 ± 0.002

ConvLSTM 43M 57 ± 3 16.9 ± 0.2 0.796 ± 0.004 0.113 ± 0.002 128 ± 4 15.0 ± 0.1 0.737 ± 0.003 0.169 ± 0.001 187 ± 6 14.1 ± 0.1 0.706 ± 0.003 0.203 ± 0.001

ConvSSM (ablation) 41M 67 ± 3 15.5 ± 0.1 0.742 ± 0.001 0.168 ± 0.001 287 ± 5 13.6 ± 0.1 0.577 ± 0.001 0.293 ± 0.001 511 ± 8 13.3 ± 0.1 0.515 ± 0.001 0.348 ± 0.001

ConvS5 41M 26 ± 1 18.1 ± 0.1 0.830 ± 0.003 0.094 ± 0.002 72 ± 3 16.0 ± 0.1 0.761 ± 0.005 0.156 ± 0.003 187 ± 5 14.5 ± 0.1 0.678 ± 0.003 0.230 ± 0.004

Trained on 600 frames

100 → 400 100 → 800 100 → 1200

Method Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Transformer 164M 21 ± 1 15.0 ± 0.1 0.741 ± 0.002 0.138 ± 0.001 42 ± 2 13.7 ± 0.1 0.672 ± 0.002 0.207 ± 0.003 91 ± 6 13.1 ± 0.1 0.631 ± 0.004 0.252 ± 0.002

ConvLSTM 43M 39 ± 5 17.3 ± 0.2 0.812 ± 0.005 0.100 ± 0.003 91 ± 7 15.5 ± 0.2 0.757 ± 0.005 0.149 ± 0.003 137 ± 9 14.6 ± 0.1 0.727 ± 0.004 0.180 ± 0.003

ConvSSM (ablation) 41M 81 ± 6 15.5 ± 0.1 0.743 ± 0.002 0.163 ± 0.003 145 ± 8 14.3 ± 0.1 0.696 ± 0.002 0.218 ± 0.002 215 ± 9 13.4 ± 0.1 0.614 ± 0.001 0.287 ± 0.001

ConvS5 41M 23 ± 3 18.1 ± 0.1 0.832 ± 0.003 0.092 ± 0.003 47 ± 7 16.4 ± 0.1 0.788 ± 0.002 0.134 ± 0.003 71 ± 9 15.6 ± 0.1 0.763 ± 0.002 0.162 ± 0.003

Table 6: Model runtime comparison for Moving-MNIST results in Table 5. ConvS5 can be parallelized
like a Transformer but maintains the constant cost-per-step autoregressive generation of ConvRNNs.

100 → 400 100 → 800 100 → 1200
Method Train Step Time (s) ↓ Sampling Speed (frames/s) ↑ Sampling Speed (frames/s) ↑ Sampling Speed (frames/s) ↑

Transformer 0.77 (1.0×) 1.1 (1.0×) 0.34 (1.0×) 0.21 (1.0×)
ConvLSTM 3.0 (3.9×) 117 (106×) 117 (345×) 117 (557×)
ConvS5 0.93 (1.2×) 90 (82×) 90 (265×) 90 (429×)

23



t=0 50 99 100 250 400 550 700 850 1000 1150 1299

Ground Truth

Transformer

ConvLSTM

ConvS5

          Condition                                                   Predicted Frames

(a) Example 1
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(c) Example 3

Figure 3: Moving-MNIST Samples: 1200 frames generated conditioned on 100.
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C.2 3D Environments748

Table 7: Full results for DMLab long-range benchmark dataset [13]. Results from Yan et al. [13] are
indicated with ∗. We separate out the methods trained using the TECO [13] training framework in
the bottom of the table. TECO-ConvSSM (ablation) refers to the ablation performed by randomly
initializing the state kernel (see Section 5.3 and Appendix D.5).

DMLab
Method Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

FitVid* 165M 176± 4.86 12.0± 0.013 0.356± 0.00171 0.491± 0.00108
CW-VAE* 111M 125± 7.95 12.6± 0.059 0.372± 0.00033 0.465± 0.00156
Perceiver AR* 30M 96.3± 3.64 11.2± 0.004 0.304± 0.00004 0.487± 0.00123
Latent FDM* 31M 181± 2.20 17.8± 0.111 0.588± 0.00453 0.222± 0.00493
Transformer 152M 97.0± 5.98 19.9± 0.108 0.619± 0.00506 0.123± 0.00191
S5 140M 221± 13.1 19.3± 0.128 0.641± 0.00400 0.162± 0.04510
ConvS5 101M 53.4± 4.51 23.6± 0.015 0.782± 0.01020 0.074± 0.00979

TECO-Transformer* 173M 27.5± 1.77 22.4± 0.368 0.709± 0.0119 0.155± 0.00958
TECO-Transformer (our run) 173M 28.2± 0.66 21.6± 0.079 0.696± 0.02640 0.082± 0.00119
TECO-S5 180M 34.6± 0.26 20.1± 0.037 0.687± 0.00132 0.143± 0.00049
TECO-ConvSSM (ablation) 175M 44.3± 2.69 21.0± 0.106 0.691± 0.00004 0.010± 0.00267
TECO-ConvS5 175M 31.2± 0.23 23.8± 0.056 0.803± 0.0020 0.085± 0.00179

Table 8: Full results on the Minecraft and Habitat long-range benchmark datasets [13]. Results from
Yan et al. [13] are indicated with ∗. Note that Yan et al. [13] did not evaluate FitVid or CW-VAE on
Habitat due to cost.

Minecraft
Method Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

FitVid* 176M 956± 15.8 13.0± 0.0089 0.343± 0.00380 0.519± 0.00367
CW-VAE* 140M 397± 15.5 13.4± 0.0610 0.338± 0.00274 0.441± 0.00367
Perceiver AR* 166M 76.3± 1.72 13.2± 0.0711 0.323± 0.00336 0.441± 0.00207
Latent FDM* 33M 167± 6.26 13.4± 0.0904 0.349± 0.00327 0.429± 0.00284
TECO-Transformer* 274M 116± 5.08 15.4± 0.0603 0.381± 0.00192 0.340± 0.00264
TECO-ConvS5 214M 70.7± 3.05 14.8± 0.0984 0.374± 0.00414 0.355± 0.00467

Habitat
Method Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Perceiver AR* 200M 164± 12.6 12.8± 0.0423 0.405± 0.00248 0.676± 0.00282
Latent FDM* 87M 433± 2.67 12.5± 0.0121 0.311± 0.00083 0.582± 0.00049
TECO-Transformer* 386M 76.3± 1.72 12.8± 0.0139 0.363± 0.00122 0.604± 0.00451
TECO-ConvS5 351M 95.1± 3.74 12.9± 0.212 0.390± 0.01238 0.632± 0.00823
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(a) 156 frames generated conditioned on 144 (action-conditioned).
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(b) 264 frames generated conditioned on 36 (no action-conditioning).

Figure 4: DMLab Samples
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(a) 156 frames generated conditioned on 144 (action-conditioned).
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(b) 264 frames generated conditioned on 36 (action-conditioned).

Figure 5: Minecraft Samples

t=0 73 143 144 163 182 202 221 240 260 279 299

Ground Truth

TECO-Transformer

TECO-ConvS5

          Condition                                                   Predicted Frames

(a) 156 frames generated conditioned on 144 (action-conditioned).
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(b) 264 frames generated conditioned on 36 (no action-conditioning).

Figure 6: Habitat Samples
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Table 9: Model runtime comparison for 3D Environment results in Tables 7-8. The implementations
of the baselines FitVid, CW-VAE, Perceiver AR and Latent FDM used in the TECO work [13] are not
publicly available in the TECO repository, so we were unable to include direct runtime comparisons
for those methods.

DMLab
Method Train Step Time (s) ↓ Sampling Speed (frames/s)

Transformer 1.25 (1.0×) 9.1 (1.0×)
S5 1.34 (1.1×) 28 (3.1×)
ConvS5 2.31 (1.8×) 56 (6.2×)

TECO-Transformer 0.75 (0.6×) 16 (1.8×)
TECO-S5 0.81 (0.7×) 21 (2.3×)
TECO-ConvS5 1.17 (0.9×) 18 (2.0×)

Minecraft
Method Train Step Time (s) ↓ Sampling Speed (frames/s)

TECO-Transformer 1.91 (1.0×) 8.1 (1.0×)
TECO-ConvS5 2.53 (1.3×) 14 (1.7×)

Habitat
Method Train Step Time (s) ↓ Sampling Speed (frames/s)

TECO-Transformer 2.71 (1.0×) 6.8 (1.0×)
TECO-ConvS5 3.10 (1.1×) 11 (1.6×)
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D Experiment Configurations749

Our codebase modifies the TECO codebase from Yan et al. [13] and we reuse their core Transformer750

and TECO framework implementations. More architectural details and dataset-specific details are751

described below.752

D.1 Spatiotemporal Sequence Model Architectures753

ConvS5, ConvLSTM and S5 models are formed by stacking multiple ConvS5, ConvLSTM or S5754

layers, respectively. For each of these models, layer normalization [106] with a post-norm setup is755

used along with residual connections. For the Transformer, we use the Transformer implementation756

from Yan et al. [13] which consists of a stack of multi-head attention layers.757

ConvS5 and ConvLSTM are applied directly to sequences of frames of shape [sequence length, latent758

height, latent width, latent features], where the original data has been convolved to a latent resolution759

and latent number of features. Since S5 and Transformer act on vector-valued sequences, these760

models require an additional downsampling convolution operation to project the latent frames into a761

token and an upsampling transposed convolution operation to project the Transformer output tokens762

back into latent frames. We use the same sequence of compression operations for this as in Yan et al.763

[13]. The Encoder and Decoder referred to for all models in the hyperparameter tables below consist764

of ResNet Blocks with 3× 3 kernels as implemented in Yan et al. [13].765

D.2 Evaluation Metrics766

We evaluate methods by computing Fréchet Video Distance (FVD) [107], peak signal-to-noise ratio767

(PSNR), structural similarity index measure [108] and Learned Perceptual Image Patch Similarity768

(LPIPS) [109] between sampled trajectories and ground truth trajectories.769

D.3 Compute770

All models were trained with 32GB NVIDIA V100 GPUs. For Moving-MNIST, models were trained771

with 8 V100s. For all other experiments, models were trained with 16 V100s. We list V100 days in772

the hyperparameters, which denotes the number of days it would take to train on a single V100.773

D.4 Moving-MNIST774

All models were trained to minimize L1+L2 loss over the frames directly in pixel space, as in Su et al.775

[85]. We trained models on 300 frames. We then repeated the experiment and trained models on 600776

frames. For ConvS5 and ConvLSTM, we fixed the hidden dimensions (layer input/output features)777

and state sizes to be 256, and we swept over the following learning rates [1 × 10−4, 5 × 10−4,778

1× 10−3] and chose the best model. For Transformer, we swept over model size, considering hidden779

dimensions of [512, 2014] and learning rates [1×10−4, 5×10−4, 1×10−3] and chose the best model.780

We also observed better performance for the Transformer by convolving frames down to an 8× 8781

latent resolution (rather than the 16× 16 used by ConvS5 and ConvLSTM) before downsampling to782

a token. All other relevant training parameters were kept the same between the three methods. See783

Tables 10-12 for detailed experiment configurations.784

Each model was evaluated by collecting 1024 trajectories using the following procedure: condition785

on 100 frames from the ground truth test set, then generate forward 1200 frames. These samples were786

compared with the ground truth to compute FVD, PSNR, SSIM and LPIPS.787

The ConvSSM ablation was performed using the exact settings as ConvS5, except the state kernel788

was initialized with a Gaussian and we swept over the following learning rates [1× 10−4, 5× 10−4,789

1× 10−3].790
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Table 10: Experiment Configuration for ConvS5 on Moving-MNIST experiments

Hyperparameters Moving-MNIST-300 Moving-MNIST-600

V100 Days 25 50
Params 41M 41M
Input Resolution 64× 64 64× 64
Latent Resolution 16× 16 16× 16
Batch Size 8 8
Sequence Length 300 600
LR 1× 10−3 1× 10−3

LR Schedule cosine cosine
Warmup Steps 5k 5k
Max Training Steps 300K 300K
Weight Decay 1× 10−5 1× 10−5

Encoder Depths 64, 128, 256 64, 128, 256
Blocks 1 1

Decoder Depths 64, 128, 256 64, 128, 256
Blocks 1 1

ConvS5

Hidden Dim (U ) 256 256
State Size (P ) 256 256
B Kernel Size 3× 3 3× 3
C Kernel Size 3× 3 3× 3
Layers 8 8
Dropout 0 0
Activation ResNet ResNet

Table 11: Experiment Configuration for ConvLSTM on Moving-MNIST experiments

Hyperparameters Moving-MNIST-300 Moving-MNIST-600

V100 Days 75 150
Params 43M 43M
Input Resolution 64× 64 64× 64
Latent Resolution 16× 16 16× 16
Batch Size 8 8
Sequence Length 300 600
LR 5× 10−4 5× 10−4

LR Schedule cosine cosine
Warmup Steps 5k 5k
Max Training Steps 300K 300K
Weight Decay 1× 10−5 1× 10−5

Encoder Depths 64, 128, 256 64, 128, 256
Blocks 1 1

Decoder Depths 64, 128, 256 64, 128, 256
Blocks 1 1

ConvLSTM

Hidden Dim 256 256
State Size 256 256
Kernel Size 3× 3 3× 3
Layers 8 8
Dropout 0 0
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Table 12: Experiment Configuration for Transformer on Moving-MNIST experiments

Hyperparameters Moving-MNIST-300 Moving-MNIST-600

V100 Days 25 50
Params 164M 164M
Input Resolution 64× 64 64× 64
Latent Resolution 8× 8 8× 8
Batch Size 8 8
Sequence Length 300 600
LR 5× 10−4 1× 10−4

LR Schedule cosine cosine
Warmup Steps 5k 5k
Max Training Steps 300K 300K
Weight Decay 1× 10−5 1× 10−5

Encoder Depths 64, 128, 256, 512 64, 128, 256, 512
Blocks 1 1

Decoder Depths 64, 128, 256, 512 64, 128, 256, 512
Blocks 1 1

Temporal
Transformer

Downsample Factor 8 8
Hidden Dim 1024 1024
Feedforward Dim 4096 4096
Heads 16 16
Layers 8 8
Dropout 0 0
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D.5 Long-Range 3D Environment Benchmarks791

We follow the procedures from Yan et al. [13] and train models on the same pre-trained vector-792

quantized (VQ) 16× 16 codes used by the baselines evaluated in that work. Models were trained793

to optimize a cross-entropy reconstruction loss between the predictions and true VQ codes. The794

evaluation of DMLab and Habitat involves both an action-conditioned and unconditioned setting.795

Therefore, as in Yan et al. [13], the actions were randomly dropped out half the time during training796

on these datasets.797

After training, we follow the procedure from Yan et al. [13] for evaluation in two different settings.798

The first setting involves computing PSNR, SSIM and LPIPS from 1024 samples generated by799

conditioning on the first 144 frames and then generating the next 156 frames while providing the800

model with past and future actions. The second setting does not provide actions as input (with the801

exception of Minecraft, which also provides actions in this setting). It involves computing FVD using802

1024 samples generated by conditioning on the first 36 frames and then predicting the remaining 264803

frames.804

All sequence models we trained used the same number of layers as the Transformer used in the805

TECO-Transformer trained by Yan et al. [13]. In addition, the TECO-Transformer, TECO-S5806

and TECO-ConvS5 models we trained used the exact encoder/decoder configuration and MaskGit807

configuration as in Yan et al. [13]. The Transformer, S5 and ConvS5 models we trained without808

the TECO framework were all trained using the same encoder/decoder configuration. See Tables809

13-19 for more detailed experimental configuration details. See dataset-specific paragraphs below for810

hyperparameter tuning information.811

TECO Training Framework Yan et al. [13] proposed the TECO training framework to train812

Transformers on long video data. For some of our experiments, we use ConvS5 layers and S5 layers813

as a drop-in replacement for the Transformer in this framework. We refer the reader to Yan et al. [13]814

for full details. Briefly, given the original VQ codes, TECO trains an additional encoder/decoder815

that compresses the frames to a lower latent resolution (e.g., from 16× 16 to 8× 8 ) by training an816

additional encoder/decoder with a codebook loss, LVQ. In addition, a MaskGit [98] dynamics prior817

loss, Lprior, is used for the latent transitions. The sequence model (e.g. Transformer, S5, ConvS5)818

takes the latent frames (compressed into tokens in the case of Transformer and S5) and produces an819

output which is used along with the latents by the decoder to produce predictions and a reconstruction820

loss, Lrecon. Models are trained to minimize the following total loss:821

LTECO = LVQ + Lrecon + Lprior. (32)

In addition, TECO includes the use of DropLoss [13], which drops out a percentage of random822

timesteps that are not decoded and therefore do not require computing the expensive Lrecon and823

Lprior terms.824

DMLab As mentioned above, the actions were randomly dropped out of sequences half the time825

(due to the two evaluation scenarios, action-conditioned and unconditioned). We observed that for826

DMLab, when provided past and future actions, models converged faster using the simple masking827

strategy discussed in Gu et al. [19] that masks the future inputs rather than feeding the predicted828

inputs (or true inputs during training) autoregressively. Therefore we trained all models (Transformer,829

S5, ConvS5, Teco-Transformer, TECO-S5, TECO-ConvS5) by using this strategy when the actions830

were provided, and using the autoregressive strategy when actions were not provided. We observed831

this significantly improved the LPIPS of the Transformer baselines. Note, for Minecraft and Habitat,832

we observed this strategy led to lower-quality frames and did not use it for the reported results for833

those datasets.834

We trained each model, Transformer, S5, ConvS5, Teco-Transformer, TECO-S5, TECO-ConvS5,835

with three different learning rates [1× 10−4, 5× 10−4, 1× 10−3] and selected the best run for each836

model. See Tables 13-18 for more experiment configuration details.837

The TECO-ConvSSM ablation used the exact same settings as TECO-ConvS5, except the state kernel838

was initialized with a random Gaussian and a lower learning rate of 1× 10−5 was required for stable839

training.840
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Table 13: Experiment Configuration for ConvS5 on DMLab

Hyperparameters DMLab

V100 Days 150
Params 101M
Input Resolution 64× 64
Latent Resolution 16× 16
Batch Size 16
Sequence Length 300
LR 5× 10−4

LR Schedule cosine
Warmup Steps 5k
Max Training Steps 500K
Weight Decay 1× 10−5

Encoder Depths 256
Blocks 1

Decoder Depths 256
Blocks 4

ConvS5

Hidden Dim (U ) 512
State Size (P ) 512
B Kernel Size 3× 3
C Kernel Size 3× 3
Layers 8
Dropout 0
Activation ResNet

Table 14: Experiment Configuration for S5 on DMLab

Hyperparameters DMLab

V100 Days 125
Params 140M
Input Resolution 64× 64
Latent Resolution 16× 16
Batch Size 16
Sequence Length 300
LR 1× 10−3

LR Schedule cosine
Warmup Steps 5k
Max Training Steps 500K
Weight Decay 1× 10−5

Encoder Depths 256
Blocks 1

Decoder Depths 256
Blocks 4

S5

Downsample Factor 16
Hidden Dim (U ) 1024
State Size (P ) 1024
Layers 8
Dropout 0
Activation GLU (half)
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Table 15: Experiment Configuration for Transformer on DMLab

Hyperparameters DMLab

V100 Days 125
Params 152M
Input Resolution 64× 64
Latent Resolution 16× 16
Batch Size 16
Sequence Length 300
LR 5× 10−4

LR Schedule cosine
Warmup Steps 5k
Max Training Steps 500K
Weight Decay 1× 10−5

Encoder Depths 256
Blocks 1

Decoder Depths 256
Blocks 4

Temporal
Transformer

Downsample Factor 16
Hidden Dim 512
Feedforward Dim 2048
Heads 16
Layers 8
Dropout 0
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Table 16: Experiment Configuration for TECO-ConvS5 on DMLab

Hyperparameters DMLab

V100 Days 110
Params 175M
Input Resolution 64× 64
Latent Resolution 8× 8
Batch Size 16
Sequence Length 300
LR 5× 10−4

LR Schedule cosine
Warmup Steps 5k
Max Training Steps 500K
Weight Decay 1× 10−5

DropLoss Rate 0.9

Encoder Depths 256, 512
Blocks 2

Codebook
Size 1024
Embedding Dim 32

Decoder Depths 256, 512
Blocks 4

ConvS5

Hidden Dim (U ) 512
State Size (P ) 1024
B Kernel Size 3× 3
C Kernel Size 3× 3
Layers 8
Dropout 0
Activation ResNet

MaskGit

Mask Schedule cosine
Hidden Dim 512
Feedforward Dim 2048
Heads 8
Layers 8
Dropout 0
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Table 17: Experiment Configuration for TECO-S5 on DMLab

Hyperparameters DMLab

V100 Days 80
Params 180M
Input Resolution 64× 64
Latent Resolution 8× 8
Batch Size 16
Sequence Length 300
LR 1× 10−3

LR Schedule cosine
Warmup Steps 5k
Max Training Steps 500K
Weight Decay 1× 10−5

DropLoss Rate 0.9

Encoder Depths 256, 512
Blocks 2

Codebook
Size 1024
Embedding Dim 32

Decoder Depths 256, 512
Blocks 4

S5

Downsample Factor 8
Hidden Dim (U ) 2048
State Size (P ) 2048
Layers 8
Dropout 0
Activation GLU (half)

MaskGit

Mask Schedule cosine
Hidden Dim 512
Feedforward Dim 2048
Heads 8
Layers 8
Dropout 0
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Table 18: Experiment Configuration for TECO-Transformer on DMLab

Hyperparameters DMLab

V100 Days 80
Params 173M
Input Resolution 64× 64
Latent Resolution 8× 8
Batch Size 16
Sequence Length 300
LR 1× 10−4

LR Schedule cosine
Warmup Steps 5k
Max Training Steps 500K
Weight Decay 1× 10−5

DropLoss Rate 0.9

Encoder Depths 256, 512
Blocks 2

Codebook
Size 1024
Embedding Dim 32

Decoder Depths 256, 512
Blocks 4

Temporal
Transformer

Downsample Factor 8
Hidden Dim 1024
Feedforward Dim 4096
Heads 16
Layers 8
Dropout 0

MaskGit

Mask Schedule cosine
Hidden Dim 512
Feedforward Dim 2048
Heads 8
Layers 8
Dropout 0
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Minecraft and Habitat For Minecraft and Habitat, we only trained TECO-ConvS5 due to the costs841

of training on these datasets. See dataset details in Appendix E and reported compute costs in Yan842

et al. [13]. For Minecraft, we evaluated two different learning rates [1× 10−4, 5× 10−4] and chose843

the best. For Habitat, we only performed one run with no further tuning. See Table 19 for further844

experiment configuration details.845

Table 19: Experiment Configuration for TECO-ConvS5 on Minecraft and Habitat

Hyperparameters Minecraft Habitat

V100 Days 470 575
Params 214M 351M
Input Resolution 128× 128 128× 128
Latent Resolution 8× 8 8× 8
Batch Size 16 16
Sequence Length 300 300
LR 5× 10−4 1× 10−4

LR Schedule cosine cosine
Warmup Steps 5k 5k
Max Training Steps 1M 1M
DropLoss Rate 0.9 0.9

Encoder Depths 256, 512 256, 512
Blocks 4 4

Codebook
Size 1024 1024
Embedding Dim 32 32

Decoder Depths 256, 512 256, 512
Blocks 8 8

ConvS5

Hidden Dim (U ) 512 512
State Size (P ) 512 512
B Kernel Size 3× 3 3× 3
C Kernel Size 3× 3 3× 3
Layers 12 8
Dropout 0 0
Activation ResNet ResNet

MaskGit

Mask Schedule cosine cosine
Hidden Dim 768 1024
Feedforward Dim 3072 4096
Heads 12 16
Layers 6 16
Dropout 0 0
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E Datasets846

E.1 Moving-MNIST847

The Moving-MNIST [54] dataset is generated by moving two 28× 28 size MNIST digits from the848

MNIST dataset [110] inside a 64×64 black background. The digits begin at a random initial location,849

and move with constant velocity, bouncing when they reach the boundary. For each of the sequence850

lengths we consider, 300 and 600, we follow Wang et al. [82] and Su et al. [85] and generate 10,000851

sequences for training.852

E.2 DMLab853

We use the DMLab long-range benchmark designed by Yan et al. [13] using the DeepMind Lab854

(DMLab) [99] simulator. The simulator generates random 3D mazes with random floor and wall855

textures. The benchmark consists of 40K action-conditioned, 300 frame videos at a 64×64 resolution.856

The videos are of an agent randomly navigating 7× 7 mazes by choosing random points in the maze857

and navigating to them through the shortest path.858

E.3 Minecraft859

We use the Minecraft [100] long-range benchmark designed by Yan et al. [13]. The game features860

3D worlds that contain complex terrains such as hills, forests, rivers and lakes. The benchmark was861

constructed by collecting 200K action-conditioned 300 frame videos at a 128× 128 resolution. The862

videos are in Minecraft’s marsh biome and the agent iterates walking forward for a random number863

of steps and randomly rotating left or right. This results in parts of the scene going out of view and864

coming back into view later.865

E.4 Habitat866

We use the Habitat long-range benchmark designed by Yan et al. [13] using the Habitat simulator [101].867

The simulator renders trajectories using scans of real 3D scenes. Yan et al. [13] compiled 1400 indoor868

scans from HM3D [111], Matterport3D [112] and Gibson [113] to generate 200K action-conditioned,869

300 frame videos with a 128× 128 resolution. Yan et al. [13] used Habitat’s in-built path traversal870

algorithm to construct action trajectories that move the agent between randomly sampled locations.871
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