
Appendix for: Convolutional State Space Models for Long-range651

Spatiotemporal Modeling652

Contents:653

• Appendix A: Propositions654

• Appendix B: ConvS5 Details: Parameterization, Initialization, Discretization655

• Appendix C: Supplementary Results656

• Appendix D: Experiment Configurations657

• Appendix E: Datasets658

17

A Propositions659

A.1 Parallel Scan for Convolutional Recurrences660

Proposition 1. Consider a convolutional recurrence as in (7) and define initial parallel scan elements661

ck = (ck,a, ck,b) := (A,B ∗ Uk). The binary operator ⊛, defined below, is associative.662

ci ⊛ cj := (cj,a ◦ ci,a, cj,a ∗ ci,b + cj,b), (14)

where ◦ denotes convolution of two kernels, ∗ denotes convolution between a kernel and input, and +663

is elementwise addition.664

Proof. Using that ◦ is associative and the companion operator of ∗, i.e. (d ◦ e) ∗ f = d ∗ (e ∗ f) (see665

Blelloch [61], Section 1.4), we have:666

(ci ⊛ cj)⊛ ck = (cj,a ◦ ci,a, cj,a ∗ ci,b + cj,b)⊛ (ck,a, ck,b) (15)

=

(

ck,a ◦ (cj,a ◦ ci,a), ck,a ∗ (cj,a ∗ ci,b + cj,b) + ck,b

)

(16)

=

(

(ck,a ◦ cj,a) ◦ ci,a, ck,a ∗ (cj,a ∗ ci,b) + ck,a ∗ cj,b + ck,b

)

(17)

=

(

(ck,a ◦ cj,a) ◦ ci,a, (ck,a ◦ cj,a) ∗ ci,b + ck,a ∗ cj,b + ck,b

)

(18)

= ci ⊛ (ck,a ◦ cj,a, ck,a ∗ cj,b + ck,b) (19)

= ci ⊛ (cj ⊛ ck) (20)

667

A.2 Computational Cost of Parallel Scan for Convolutional Recurrences668

Proposition 2. Given the effective inputs B ∗ U1:L ∈ R
L×H×W×P and a pointwise state kernel669

A ∈ R
P×P×1×1, the computational cost of computing the convolutional recurrence in Equation 7670

with a parallel scan is O
(

L(P 3 + P 2HW)
)

.671

Proof. Following Blelloch [61], given a single processor, the cost of computing the recurrence672

sequentially using the binary operator ⊛ defined in Proposition 1 is O
(

L(T◦ + T∗ + T+)
)

where T◦673

refers to the cost of convolving two kernels, T∗ is the cost of convolution between a kernel and input674

and T+ is the cost of elementwise addition. The cost of elementwise addition is T+ = O(PHW).675

For state kernels with resolution kA, T◦ = O(P 3k4A) and T∗ = O(P 2k2AHW). For pointwise676

convolutions this becomes T◦ = O(P 3) and T∗ = O(P 2HW). Thus, the cost of computing the677

recurrence sequentially using ⊛ is O
(

L(P 3 + P 2HW)
)

. Since there are work-efficient algorithms678

for parallel scans [104], the overall cost of the parallel scan is also O
(

L(P 3 + P 2HW)
)

.679

Note that ConvS5’s diagonalized parameterization discussed in Section 3.4 and Appendix B leads to680

T◦ = O(P) and T∗ = O(PHW). Therefore the cost of applying the parallel scan with ConvS5 is681

O(LPHW).682

A.3 Connection Between ConvSSMs and SSMs683

Proposition 3. Consider a ConvSSM state update as in (5) with pointwise state kernel A ∈684

R
P×P×1×1, input kernel B ∈ R

P×U×kB×kB , and input U(t) ∈ R
H′

×W ′
×U . Let Uim2col(t) ∈685

R
H×W×Uk2

B be the reshaped result of applying the Image to Column (im2col) [64, 65] operation on686

the input U(t). Then the dynamics of each state pixel of (5), X (t)i,j ∈ R
P , evolve according to the687

following differential equation688

X
′(t)i,j = ASSMX (t)i,j +BSSMUim2col(t)i,j (21)

where the state matrix, ASSM ∈ R
P×P , and input matrix, BSSM ∈ R

P×(Uk2

B
), can be formed by689

reshaping the state kernel, A, and input kernel, B, respectively.690

18

Proof. Let Uim2col ∈ R
Uk2

b
×HW denote the result of performing the im2col operation on the input691

U(t) for convolution with the kernel B. Reshape this matrix into the tensor Uim2col(t) ∈ R
H×W×Uk2

b .692

Reshape Uim2col(t) once more into the tensor V(t) ∈ R
H×W×U×kB×kB .693

Now, we can write the evolution for the individual channels of each pixel, X ′(t)i,j,k, in (5) as694

X
′(t)i,j,k =

P−1
∑

l=0

Ak,l,0,0X (t)i,j,l +

U−1
∑

q=0

kB−1
∑

m=0

kB−1
∑

n=0

Bk,q,m,nV(t)i,j,q,m,n. (22)

Let ASSM ∈ R
P×P be a matrix with rows, ASSM,i ∈ R

P , corresponding to a flattened version of695

the output features of A, i.e. Ai ∈ R
P×1×1. Similarly, reshape B into a matrix BSSM ∈ R

P×(Uk2

B
)

696

where the rows, BSSM,i ∈ R
Uk2

B correspond to a flattened version of the output features of B, i.e.697

Bi ∈ R
U×kB×kB .698

Then we can rewrite (22) equivalently as699

X
′(t)i,j,k =

P−1
∑

l=0

Ak,l,0,0X (t)i,j,l +

U−1
∑

q=0

kB−1
∑

m=0

kB−1
∑

n=0

Bk,q,m,nV(t)i,j,q,m,n (23)

=

P−1
∑

l=0

ASSM,k,lX (t)i,j,l +

Uk2

B
−1

∑

v=0

BSSM,k,vUim2col(t)i,j,v (24)

= AT
SSM,kX (t)i,j +BT

SSM,kUim2col(t)i,j (25)

700

19

B ConvS5 Details: Parameterization, Discretization, Initialization701

B.1 Background: S5702

S5 Parameterization and Discretization S5 [20] uses a diagonalized parameterization of the703

general SSM in (3).704

Let AS5 = VΛS5V
−1 ∈ R

P×P where ΛS5 ∈ C
P×P is a complex-valued diagonal matrix and705

V ∈ C
P×P corresponds to the eigenvectors. Defining x̃(t) = V−1x(t), B̃ = V−1B, and C̃ = CV706

we can reparameterize the SSM of (3) as the diagonalized system:707

dx̃(t)

dt
= ΛS5x̃(t) + B̃u(t), y(t) = C̃x̃(t) +Du(t). (26)

S5 uses learnable timescale parameters ∆ ∈ R
P and the following zero-order hold (ZOH) disretiza-708

tion:709

ΛS5 = DISCRETIZEA(ΛS5,∆) := eΛS5∆ (27)

BS5 = DISCRETIZEB(ΛS5, B̃,∆) := Λ−1
S5 (ΛS5 − I)B̃ (28)

S5 Initialization S5 initializes its state matrix by diagonalizing AS5 as defined here:710

AS5nk
= −







(n+ 1
2)

1/2(k + 1
2)

1/2, n > k
1
2 , n = k

(n+ 1
2)

1/2(k + 1
2)

1/2, n < k

. (29)

This matrix is the normal part of the normal plus low-rank HiPPO-LegS matrix from the HiPPO frame-711

work [53] for online function approximation. S4 originally initialized its single-input, single-output712

(SISO) SSMs with a representation of the full HiPPO-LegS matrix. This was shown to be approximat-713

ing long-range dependencies at initialization with respect to an infinitely long, exponentially-decaying714

measure [105]. Gupta et al. [41] empirically showed that the low-rank terms could be removed with-715

out impacting performance. Gu et al. [42] showed that in the limit of infinite state dimension, the716

linear, single-input ODE with this normal approximation to the HiPPO-LegS matrix produces the717

same dynamics as the linear, single-input ODE with the full HiPPO-LegS matrix. The S5 work718

extended these findings to the multi-input SSM setting [20].719

Importance of SSM Parameterization, Discretization and Initialization Prior research has720

highlighted the importance of parameterization, discretization and initialization choices of deep721

SSM methods through ablations and analysis [56, 19, 42, 20, 57]. Concurrent work from Orvieto722

et al. [57] provides particular insight into the favorable initial eigenvalue distributions provided by723

initializing with HiPPO-inspired matrices as well as an important normalization effect provided by the724

explicit discretization procedure. They also introduce a purely discrete-time parameterization that can725

perform similarly to the continuous-time discretization of S4 and S5. However, their parameterization726

practically ends up quite similar to the equations of (27-28). We choose to use the continuous-time727

parameterization of S5 for the implicit parameterization of ConvS5 since it can also be leveraged728

for zero-shot resolution changes [19, 20, 45] and processing irregularly sampled time-series in729

parallel [20]. However, due to Proposition 3, other long-range SSM parameterization strategies can730

also be used, such as in Orvieto et al. [57] or potential future innovations.731

B.2 ConvS5 Diagonalization732

We leverage S5’s diagonalized parameterization to reduce the cost of the parallel scan of ConvS5.733

Concretely, we initialize AS5 as in (29) and diagonalize as AS5 = VΛS5V
−1. To apply ConvS5,734

we compute ΛS5 and BS5 using (27-28), and then form the ConvS5 state and input kernels:735

ΛS5 ∈ R
P×P reshape

−−−−−→ AConvS5 ∈ R
P×P×1×1 (30)

BS5 ∈ R
P×(Uk2

B
) reshape
−−−−−→ BConvS5 ∈ R

P×U×kB×kB . (31)

See Listing 1 for an example of the core implementation. Note, the state kernel AConvS5 is "diagonal-736

ized" in the sense that all entries in the state kernel are zero except AConvS5,i,i = ΛS5,i,i ∀i ∈ [P].737

20

This means that the pointwise convolutions reduce to channel-wise multiplications. However, this738

does not reduce expressivity compared to a full pointwise convolution. This is because, given the739

ConvSSM to SSM equivalence of Proposition 3 and the use of complex-valued kernels, the diagonal-740

ization maintains expressivity since almost all SSMs are diagonalizable [41, 42], which follows from741

the well-known fact that almost all square matrices diagonalize over the complex plane.742

21

1 import jax

2 import jax.numpy as np

3 from ConvSSM_helpers import discretize, Conv2D, ResNet_Block

4 parallel_scan = jax.lax.associative_scan

5

6 def apply_ConvS5_layer(A, B, B_shape, C_kernel, log_Delta, resnet_params, us, x0):

7 """Compute the outputs of ConvS5 layer given input sequence.

8 Args:

9 A (complex64): S5 state matrix (P,)

10 B (complex64): S5 input matrix (P,Uk_B^2)

11 B_shape (tuple): shape of B_kernel

12 C_kernel (complex64) output kernel (U,P,k_C,k_C)

13 log_Delta (float32): learnable timescale params (P,)

14 resnet_params (dict): ResNet block params

15 us (float32): input sequence of features (L,bsz,H,W,U)

16 x0 (complex64): initial state (bsz,H,W,P)

17 Returns:

18 outputs (float32): the ConvS5 layer outputs (L,bsz,H,W,U)

19 x_L (complex64): the last state of the ConvSSM (bsz,H,W,P)

20 """

21 # Discretize and reshape ConvS5 state and input kernels

22 P, U, k_B = B_shape

23 A_bar, B_bar = discretize(A, B, np.exp(log_Delta))

24 A_kernel = A_bar # already correct shape due to diagonalization

25 B_kernel = B_bar.reshape(P, U, k_B, k_B)

26

27 # Apply ConvS5

28 ys, xs = apply_ConvS5(A_kernel, B_kernel, C_kernel, us, x0)

29

30 # Apply ResNet activation function

31 outputs = jax.vmap(ResNet_Block, axis=(None,0))(resnet_params, ys)

32 return outputs, xs[-1]

33

34 def apply_ConvS5(A_kernel, B_kernel, C_kernel, us, x0):

35 """Compute the output sequence of the convolutional SSM

36 given the input sequence using a parallel scan.

37 Computes x_k = A * x_{k-1} + B * u_k

38 y_k = C * x_k

39 where * is a convolution operator.

40 Args:

41 A_kernel (complex64): state kernel (P,)

42 B_kernel (complex64): input kernel (P,U,k_B,k_B)

43 C_kernel (complex64): output kernel (U,P,k_C,k_C)

44 us (float32): input sequence (L,bsz,H,W,U)

45 x0 (complex64): initial state (bsz,H,W,P)

46 Returns:

47 ys (float32): the convS5 outputs (L,bsz,H,W,U)

48 x_L (complex64): the last state (bsz,H,W,P)

49 """

50 # Compute initial scan elements

51 As = np.repeat(A_kernel[None, ...], us.shape[0], axis=0)

52 Bus = jax.vmap(Conv2D)(B_kernel, np.complex64(us))

53 Bus = Bus.at[0].add(np.expand_dims(A_bar, (0, 1, 2)) * x0)

54

55 # Convolutional recurrence with parallel scan

56 _, xs = parallel_scan(conv_binary_operator, (As, Bus))

57

58 # Compute ConvS5 outputs

59 ys = jax.vmap(Conv2D)(C_kernel, xs).real

60 return ys, xs

61

62 def conv_binary_operator(q_i, q_j):

63 """Binary operator for convolutional recurrence

64 with "diagonalized" 1X1 state kernels.

65 Args:

66 q_i, q_j (tuples): scan elements q_i=(A_i, BU_i) where

67 A_i (complex64) is state kernel (P,)

68 BU_i (complex64) is effective input (bsz,H,W,P)

69 Returns:

70 output tuple q_i \circledast q_j

71 """

72 A_i, BU_i = q_i

73 A_j, BU_j = q_j

74 # Convolve "diagonal" 1X1 kernels

75 AA = A_j * A_i

76 # Convolve "diagonal" A_j with BU_i

77 A_jBU_i = np.expand_dims(A_j, (0, 1, 2)) * BU_i

78 return AA, A_jBU_i + BU_j

Listing 1: JAX implementation of core code to apply a single ConvS5 layer to a batch of spatiotem-
poral input sequences.

22

C Supplementary Results743

We include expanded tables and sample trajectories from the experiments in the main paper. Sample744

videos can be found at the anonymized website:745

https://sites.google.com/view/convssm.746

C.1 Moving-MNIST747

Table 5: Full results on the Moving-Mnist dataset [54]. For the top table, all models are trained on
300 frames. For the bottom table, all models are trained on 600 frames. The evaluation task is to
condition on 100 frames, and then generate forward 400, 800 and 1200 frames. ConvSSM (ablation)
is performed by randomly initializing the state kernel (see Section 5.3 and Appendix D.4).

Trained on 300 frames

100 → 400 100 → 800 100 → 1200

Method Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Transformer 164M 73 ± 3 13.5 ± 0.1 0.669 ± 0.002 0.213 ± 0.003 159 ± 7 12.6 ± 0.1 0.609 ± 0.002 0.287 ± 0.001 265 ± 8 12.4 ± 0.1 0.591 ± 0.002 0.321 ± 0.002

ConvLSTM 43M 57 ± 3 16.9 ± 0.2 0.796 ± 0.004 0.113 ± 0.002 128 ± 4 15.0 ± 0.1 0.737 ± 0.003 0.169 ± 0.001 187 ± 6 14.1 ± 0.1 0.706 ± 0.003 0.203 ± 0.001

ConvSSM (ablation) 41M 67 ± 3 15.5 ± 0.1 0.742 ± 0.001 0.168 ± 0.001 287 ± 5 13.6 ± 0.1 0.577 ± 0.001 0.293 ± 0.001 511 ± 8 13.3 ± 0.1 0.515 ± 0.001 0.348 ± 0.001

ConvS5 41M 26 ± 1 18.1 ± 0.1 0.830 ± 0.003 0.094 ± 0.002 72 ± 3 16.0 ± 0.1 0.761 ± 0.005 0.156 ± 0.003 187 ± 5 14.5 ± 0.1 0.678 ± 0.003 0.230 ± 0.004

Trained on 600 frames

100 → 400 100 → 800 100 → 1200

Method Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Transformer 164M 21 ± 1 15.0 ± 0.1 0.741 ± 0.002 0.138 ± 0.001 42 ± 2 13.7 ± 0.1 0.672 ± 0.002 0.207 ± 0.003 91 ± 6 13.1 ± 0.1 0.631 ± 0.004 0.252 ± 0.002

ConvLSTM 43M 39 ± 5 17.3 ± 0.2 0.812 ± 0.005 0.100 ± 0.003 91 ± 7 15.5 ± 0.2 0.757 ± 0.005 0.149 ± 0.003 137 ± 9 14.6 ± 0.1 0.727 ± 0.004 0.180 ± 0.003

ConvSSM (ablation) 41M 81 ± 6 15.5 ± 0.1 0.743 ± 0.002 0.163 ± 0.003 145 ± 8 14.3 ± 0.1 0.696 ± 0.002 0.218 ± 0.002 215 ± 9 13.4 ± 0.1 0.614 ± 0.001 0.287 ± 0.001

ConvS5 41M 23 ± 3 18.1 ± 0.1 0.832 ± 0.003 0.092 ± 0.003 47 ± 7 16.4 ± 0.1 0.788 ± 0.002 0.134 ± 0.003 71 ± 9 15.6 ± 0.1 0.763 ± 0.002 0.162 ± 0.003

Table 6: Model runtime comparison for Moving-MNIST results in Table 5. ConvS5 can be parallelized
like a Transformer but maintains the constant cost-per-step autoregressive generation of ConvRNNs.

100 → 400 100 → 800 100 → 1200
Method Train Step Time (s) ↓ Sampling Speed (frames/s) ↑ Sampling Speed (frames/s) ↑ Sampling Speed (frames/s) ↑

Transformer 0.77 (1.0×) 1.1 (1.0×) 0.34 (1.0×) 0.21 (1.0×)
ConvLSTM 3.0 (3.9×) 117 (106×) 117 (345×) 117 (557×)
ConvS5 0.93 (1.2×) 90 (82×) 90 (265×) 90 (429×)

23

t=0 50 99 100 250 400 550 700 850 1000 1150 1299

Ground Truth

Transformer

ConvLSTM

ConvS5

 Condition Predicted Frames

(a) Example 1

t=0 50 99 100 250 400 550 700 850 1000 1150 1299

Ground Truth

Transformer

ConvLSTM

ConvS5

 Condition Predicted Frames

(b) Example 2

t=0 50 99 100 250 400 550 700 850 1000 1150 1299

Ground Truth

Transformer

ConvLSTM

ConvS5

 Condition Predicted Frames

(c) Example 3

Figure 3: Moving-MNIST Samples: 1200 frames generated conditioned on 100.

24

C.2 3D Environments748

Table 7: Full results for DMLab long-range benchmark dataset [13]. Results from Yan et al. [13] are
indicated with ∗. We separate out the methods trained using the TECO [13] training framework in
the bottom of the table. TECO-ConvSSM (ablation) refers to the ablation performed by randomly
initializing the state kernel (see Section 5.3 and Appendix D.5).

DMLab
Method Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

FitVid* 165M 176± 4.86 12.0± 0.013 0.356± 0.00171 0.491± 0.00108
CW-VAE* 111M 125± 7.95 12.6± 0.059 0.372± 0.00033 0.465± 0.00156
Perceiver AR* 30M 96.3± 3.64 11.2± 0.004 0.304± 0.00004 0.487± 0.00123
Latent FDM* 31M 181± 2.20 17.8± 0.111 0.588± 0.00453 0.222± 0.00493
Transformer 152M 97.0± 5.98 19.9± 0.108 0.619± 0.00506 0.123± 0.00191
S5 140M 221± 13.1 19.3± 0.128 0.641± 0.00400 0.162± 0.04510
ConvS5 101M 53.4± 4.51 23.6± 0.015 0.782± 0.01020 0.074± 0.00979

TECO-Transformer* 173M 27.5± 1.77 22.4± 0.368 0.709± 0.0119 0.155± 0.00958
TECO-Transformer (our run) 173M 28.2± 0.66 21.6± 0.079 0.696± 0.02640 0.082± 0.00119
TECO-S5 180M 34.6± 0.26 20.1± 0.037 0.687± 0.00132 0.143± 0.00049
TECO-ConvSSM (ablation) 175M 44.3± 2.69 21.0± 0.106 0.691± 0.00004 0.010± 0.00267
TECO-ConvS5 175M 31.2± 0.23 23.8± 0.056 0.803± 0.0020 0.085± 0.00179

Table 8: Full results on the Minecraft and Habitat long-range benchmark datasets [13]. Results from
Yan et al. [13] are indicated with ∗. Note that Yan et al. [13] did not evaluate FitVid or CW-VAE on
Habitat due to cost.

Minecraft
Method Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

FitVid* 176M 956± 15.8 13.0± 0.0089 0.343± 0.00380 0.519± 0.00367
CW-VAE* 140M 397± 15.5 13.4± 0.0610 0.338± 0.00274 0.441± 0.00367
Perceiver AR* 166M 76.3± 1.72 13.2± 0.0711 0.323± 0.00336 0.441± 0.00207
Latent FDM* 33M 167± 6.26 13.4± 0.0904 0.349± 0.00327 0.429± 0.00284
TECO-Transformer* 274M 116± 5.08 15.4± 0.0603 0.381± 0.00192 0.340± 0.00264
TECO-ConvS5 214M 70.7± 3.05 14.8± 0.0984 0.374± 0.00414 0.355± 0.00467

Habitat
Method Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Perceiver AR* 200M 164± 12.6 12.8± 0.0423 0.405± 0.00248 0.676± 0.00282
Latent FDM* 87M 433± 2.67 12.5± 0.0121 0.311± 0.00083 0.582± 0.00049
TECO-Transformer* 386M 76.3± 1.72 12.8± 0.0139 0.363± 0.00122 0.604± 0.00451
TECO-ConvS5 351M 95.1± 3.74 12.9± 0.212 0.390± 0.01238 0.632± 0.00823

25

t=0 73 143 144 163 182 202 221 240 260 279 299

Ground Truth

Transformer

S5

ConvS5

TECO-Transformer

TECO-S5

TECO-ConvS5

 Condition Predicted Frames

(a) 156 frames generated conditioned on 144 (action-conditioned).

t=0 17 35 36 68 101 134 167 200 233 266 299

Ground Truth

Transformer

S5

ConvS5

TECO-Transformer

TECO-S5

TECO-ConvS5

 Condition Predicted Frames

(b) 264 frames generated conditioned on 36 (no action-conditioning).

Figure 4: DMLab Samples

26

t=0 73 143 144 163 182 202 221 240 260 279 299

Ground Truth

TECO-Transformer

TECO-ConvS5

 Condition Predicted Frames

(a) 156 frames generated conditioned on 144 (action-conditioned).

t=0 17 35 36 68 101 134 167 200 233 266 299

Ground Truth

TECO-Transformer

TECO-ConvS5

 Condition Predicted Frames

(b) 264 frames generated conditioned on 36 (action-conditioned).

Figure 5: Minecraft Samples

t=0 73 143 144 163 182 202 221 240 260 279 299

Ground Truth

TECO-Transformer

TECO-ConvS5

 Condition Predicted Frames

(a) 156 frames generated conditioned on 144 (action-conditioned).

t=0 17 35 36 68 101 134 167 200 233 266 299

Ground Truth

TECO-Transformer

TECO-ConvS5

 Condition Predicted Frames

(b) 264 frames generated conditioned on 36 (no action-conditioning).

Figure 6: Habitat Samples

27

Table 9: Model runtime comparison for 3D Environment results in Tables 7-8. The implementations
of the baselines FitVid, CW-VAE, Perceiver AR and Latent FDM used in the TECO work [13] are not
publicly available in the TECO repository, so we were unable to include direct runtime comparisons
for those methods.

DMLab
Method Train Step Time (s) ↓ Sampling Speed (frames/s)

Transformer 1.25 (1.0×) 9.1 (1.0×)
S5 1.34 (1.1×) 28 (3.1×)
ConvS5 2.31 (1.8×) 56 (6.2×)

TECO-Transformer 0.75 (0.6×) 16 (1.8×)
TECO-S5 0.81 (0.7×) 21 (2.3×)
TECO-ConvS5 1.17 (0.9×) 18 (2.0×)

Minecraft
Method Train Step Time (s) ↓ Sampling Speed (frames/s)

TECO-Transformer 1.91 (1.0×) 8.1 (1.0×)
TECO-ConvS5 2.53 (1.3×) 14 (1.7×)

Habitat
Method Train Step Time (s) ↓ Sampling Speed (frames/s)

TECO-Transformer 2.71 (1.0×) 6.8 (1.0×)
TECO-ConvS5 3.10 (1.1×) 11 (1.6×)

28

D Experiment Configurations749

Our codebase modifies the TECO codebase from Yan et al. [13] and we reuse their core Transformer750

and TECO framework implementations. More architectural details and dataset-specific details are751

described below.752

D.1 Spatiotemporal Sequence Model Architectures753

ConvS5, ConvLSTM and S5 models are formed by stacking multiple ConvS5, ConvLSTM or S5754

layers, respectively. For each of these models, layer normalization [106] with a post-norm setup is755

used along with residual connections. For the Transformer, we use the Transformer implementation756

from Yan et al. [13] which consists of a stack of multi-head attention layers.757

ConvS5 and ConvLSTM are applied directly to sequences of frames of shape [sequence length, latent758

height, latent width, latent features], where the original data has been convolved to a latent resolution759

and latent number of features. Since S5 and Transformer act on vector-valued sequences, these760

models require an additional downsampling convolution operation to project the latent frames into a761

token and an upsampling transposed convolution operation to project the Transformer output tokens762

back into latent frames. We use the same sequence of compression operations for this as in Yan et al.763

[13]. The Encoder and Decoder referred to for all models in the hyperparameter tables below consist764

of ResNet Blocks with 3× 3 kernels as implemented in Yan et al. [13].765

D.2 Evaluation Metrics766

We evaluate methods by computing Fréchet Video Distance (FVD) [107], peak signal-to-noise ratio767

(PSNR), structural similarity index measure [108] and Learned Perceptual Image Patch Similarity768

(LPIPS) [109] between sampled trajectories and ground truth trajectories.769

D.3 Compute770

All models were trained with 32GB NVIDIA V100 GPUs. For Moving-MNIST, models were trained771

with 8 V100s. For all other experiments, models were trained with 16 V100s. We list V100 days in772

the hyperparameters, which denotes the number of days it would take to train on a single V100.773

D.4 Moving-MNIST774

All models were trained to minimize L1+L2 loss over the frames directly in pixel space, as in Su et al.775

[85]. We trained models on 300 frames. We then repeated the experiment and trained models on 600776

frames. For ConvS5 and ConvLSTM, we fixed the hidden dimensions (layer input/output features)777

and state sizes to be 256, and we swept over the following learning rates [1 × 10−4, 5 × 10−4,778

1× 10−3] and chose the best model. For Transformer, we swept over model size, considering hidden779

dimensions of [512, 2014] and learning rates [1×10−4, 5×10−4, 1×10−3] and chose the best model.780

We also observed better performance for the Transformer by convolving frames down to an 8× 8781

latent resolution (rather than the 16× 16 used by ConvS5 and ConvLSTM) before downsampling to782

a token. All other relevant training parameters were kept the same between the three methods. See783

Tables 10-12 for detailed experiment configurations.784

Each model was evaluated by collecting 1024 trajectories using the following procedure: condition785

on 100 frames from the ground truth test set, then generate forward 1200 frames. These samples were786

compared with the ground truth to compute FVD, PSNR, SSIM and LPIPS.787

The ConvSSM ablation was performed using the exact settings as ConvS5, except the state kernel788

was initialized with a Gaussian and we swept over the following learning rates [1× 10−4, 5× 10−4,789

1× 10−3].790

29

Table 10: Experiment Configuration for ConvS5 on Moving-MNIST experiments

Hyperparameters Moving-MNIST-300 Moving-MNIST-600

V100 Days 25 50
Params 41M 41M
Input Resolution 64× 64 64× 64
Latent Resolution 16× 16 16× 16
Batch Size 8 8
Sequence Length 300 600
LR 1× 10−3 1× 10−3

LR Schedule cosine cosine
Warmup Steps 5k 5k
Max Training Steps 300K 300K
Weight Decay 1× 10−5 1× 10−5

Encoder Depths 64, 128, 256 64, 128, 256
Blocks 1 1

Decoder Depths 64, 128, 256 64, 128, 256
Blocks 1 1

ConvS5

Hidden Dim (U) 256 256
State Size (P) 256 256
B Kernel Size 3× 3 3× 3
C Kernel Size 3× 3 3× 3
Layers 8 8
Dropout 0 0
Activation ResNet ResNet

Table 11: Experiment Configuration for ConvLSTM on Moving-MNIST experiments

Hyperparameters Moving-MNIST-300 Moving-MNIST-600

V100 Days 75 150
Params 43M 43M
Input Resolution 64× 64 64× 64
Latent Resolution 16× 16 16× 16
Batch Size 8 8
Sequence Length 300 600
LR 5× 10−4 5× 10−4

LR Schedule cosine cosine
Warmup Steps 5k 5k
Max Training Steps 300K 300K
Weight Decay 1× 10−5 1× 10−5

Encoder Depths 64, 128, 256 64, 128, 256
Blocks 1 1

Decoder Depths 64, 128, 256 64, 128, 256
Blocks 1 1

ConvLSTM

Hidden Dim 256 256
State Size 256 256
Kernel Size 3× 3 3× 3
Layers 8 8
Dropout 0 0

30

Table 12: Experiment Configuration for Transformer on Moving-MNIST experiments

Hyperparameters Moving-MNIST-300 Moving-MNIST-600

V100 Days 25 50
Params 164M 164M
Input Resolution 64× 64 64× 64
Latent Resolution 8× 8 8× 8
Batch Size 8 8
Sequence Length 300 600
LR 5× 10−4 1× 10−4

LR Schedule cosine cosine
Warmup Steps 5k 5k
Max Training Steps 300K 300K
Weight Decay 1× 10−5 1× 10−5

Encoder Depths 64, 128, 256, 512 64, 128, 256, 512
Blocks 1 1

Decoder Depths 64, 128, 256, 512 64, 128, 256, 512
Blocks 1 1

Temporal
Transformer

Downsample Factor 8 8
Hidden Dim 1024 1024
Feedforward Dim 4096 4096
Heads 16 16
Layers 8 8
Dropout 0 0

31

D.5 Long-Range 3D Environment Benchmarks791

We follow the procedures from Yan et al. [13] and train models on the same pre-trained vector-792

quantized (VQ) 16× 16 codes used by the baselines evaluated in that work. Models were trained793

to optimize a cross-entropy reconstruction loss between the predictions and true VQ codes. The794

evaluation of DMLab and Habitat involves both an action-conditioned and unconditioned setting.795

Therefore, as in Yan et al. [13], the actions were randomly dropped out half the time during training796

on these datasets.797

After training, we follow the procedure from Yan et al. [13] for evaluation in two different settings.798

The first setting involves computing PSNR, SSIM and LPIPS from 1024 samples generated by799

conditioning on the first 144 frames and then generating the next 156 frames while providing the800

model with past and future actions. The second setting does not provide actions as input (with the801

exception of Minecraft, which also provides actions in this setting). It involves computing FVD using802

1024 samples generated by conditioning on the first 36 frames and then predicting the remaining 264803

frames.804

All sequence models we trained used the same number of layers as the Transformer used in the805

TECO-Transformer trained by Yan et al. [13]. In addition, the TECO-Transformer, TECO-S5806

and TECO-ConvS5 models we trained used the exact encoder/decoder configuration and MaskGit807

configuration as in Yan et al. [13]. The Transformer, S5 and ConvS5 models we trained without808

the TECO framework were all trained using the same encoder/decoder configuration. See Tables809

13-19 for more detailed experimental configuration details. See dataset-specific paragraphs below for810

hyperparameter tuning information.811

TECO Training Framework Yan et al. [13] proposed the TECO training framework to train812

Transformers on long video data. For some of our experiments, we use ConvS5 layers and S5 layers813

as a drop-in replacement for the Transformer in this framework. We refer the reader to Yan et al. [13]814

for full details. Briefly, given the original VQ codes, TECO trains an additional encoder/decoder815

that compresses the frames to a lower latent resolution (e.g., from 16× 16 to 8× 8) by training an816

additional encoder/decoder with a codebook loss, LVQ. In addition, a MaskGit [98] dynamics prior817

loss, Lprior, is used for the latent transitions. The sequence model (e.g. Transformer, S5, ConvS5)818

takes the latent frames (compressed into tokens in the case of Transformer and S5) and produces an819

output which is used along with the latents by the decoder to produce predictions and a reconstruction820

loss, Lrecon. Models are trained to minimize the following total loss:821

LTECO = LVQ + Lrecon + Lprior. (32)

In addition, TECO includes the use of DropLoss [13], which drops out a percentage of random822

timesteps that are not decoded and therefore do not require computing the expensive Lrecon and823

Lprior terms.824

DMLab As mentioned above, the actions were randomly dropped out of sequences half the time825

(due to the two evaluation scenarios, action-conditioned and unconditioned). We observed that for826

DMLab, when provided past and future actions, models converged faster using the simple masking827

strategy discussed in Gu et al. [19] that masks the future inputs rather than feeding the predicted828

inputs (or true inputs during training) autoregressively. Therefore we trained all models (Transformer,829

S5, ConvS5, Teco-Transformer, TECO-S5, TECO-ConvS5) by using this strategy when the actions830

were provided, and using the autoregressive strategy when actions were not provided. We observed831

this significantly improved the LPIPS of the Transformer baselines. Note, for Minecraft and Habitat,832

we observed this strategy led to lower-quality frames and did not use it for the reported results for833

those datasets.834

We trained each model, Transformer, S5, ConvS5, Teco-Transformer, TECO-S5, TECO-ConvS5,835

with three different learning rates [1× 10−4, 5× 10−4, 1× 10−3] and selected the best run for each836

model. See Tables 13-18 for more experiment configuration details.837

The TECO-ConvSSM ablation used the exact same settings as TECO-ConvS5, except the state kernel838

was initialized with a random Gaussian and a lower learning rate of 1× 10−5 was required for stable839

training.840

32

Table 13: Experiment Configuration for ConvS5 on DMLab

Hyperparameters DMLab

V100 Days 150
Params 101M
Input Resolution 64× 64
Latent Resolution 16× 16
Batch Size 16
Sequence Length 300
LR 5× 10−4

LR Schedule cosine
Warmup Steps 5k
Max Training Steps 500K
Weight Decay 1× 10−5

Encoder Depths 256
Blocks 1

Decoder Depths 256
Blocks 4

ConvS5

Hidden Dim (U) 512
State Size (P) 512
B Kernel Size 3× 3
C Kernel Size 3× 3
Layers 8
Dropout 0
Activation ResNet

Table 14: Experiment Configuration for S5 on DMLab

Hyperparameters DMLab

V100 Days 125
Params 140M
Input Resolution 64× 64
Latent Resolution 16× 16
Batch Size 16
Sequence Length 300
LR 1× 10−3

LR Schedule cosine
Warmup Steps 5k
Max Training Steps 500K
Weight Decay 1× 10−5

Encoder Depths 256
Blocks 1

Decoder Depths 256
Blocks 4

S5

Downsample Factor 16
Hidden Dim (U) 1024
State Size (P) 1024
Layers 8
Dropout 0
Activation GLU (half)

33

Table 15: Experiment Configuration for Transformer on DMLab

Hyperparameters DMLab

V100 Days 125
Params 152M
Input Resolution 64× 64
Latent Resolution 16× 16
Batch Size 16
Sequence Length 300
LR 5× 10−4

LR Schedule cosine
Warmup Steps 5k
Max Training Steps 500K
Weight Decay 1× 10−5

Encoder Depths 256
Blocks 1

Decoder Depths 256
Blocks 4

Temporal
Transformer

Downsample Factor 16
Hidden Dim 512
Feedforward Dim 2048
Heads 16
Layers 8
Dropout 0

34

Table 16: Experiment Configuration for TECO-ConvS5 on DMLab

Hyperparameters DMLab

V100 Days 110
Params 175M
Input Resolution 64× 64
Latent Resolution 8× 8
Batch Size 16
Sequence Length 300
LR 5× 10−4

LR Schedule cosine
Warmup Steps 5k
Max Training Steps 500K
Weight Decay 1× 10−5

DropLoss Rate 0.9

Encoder Depths 256, 512
Blocks 2

Codebook
Size 1024
Embedding Dim 32

Decoder Depths 256, 512
Blocks 4

ConvS5

Hidden Dim (U) 512
State Size (P) 1024
B Kernel Size 3× 3
C Kernel Size 3× 3
Layers 8
Dropout 0
Activation ResNet

MaskGit

Mask Schedule cosine
Hidden Dim 512
Feedforward Dim 2048
Heads 8
Layers 8
Dropout 0

35

Table 17: Experiment Configuration for TECO-S5 on DMLab

Hyperparameters DMLab

V100 Days 80
Params 180M
Input Resolution 64× 64
Latent Resolution 8× 8
Batch Size 16
Sequence Length 300
LR 1× 10−3

LR Schedule cosine
Warmup Steps 5k
Max Training Steps 500K
Weight Decay 1× 10−5

DropLoss Rate 0.9

Encoder Depths 256, 512
Blocks 2

Codebook
Size 1024
Embedding Dim 32

Decoder Depths 256, 512
Blocks 4

S5

Downsample Factor 8
Hidden Dim (U) 2048
State Size (P) 2048
Layers 8
Dropout 0
Activation GLU (half)

MaskGit

Mask Schedule cosine
Hidden Dim 512
Feedforward Dim 2048
Heads 8
Layers 8
Dropout 0

36

Table 18: Experiment Configuration for TECO-Transformer on DMLab

Hyperparameters DMLab

V100 Days 80
Params 173M
Input Resolution 64× 64
Latent Resolution 8× 8
Batch Size 16
Sequence Length 300
LR 1× 10−4

LR Schedule cosine
Warmup Steps 5k
Max Training Steps 500K
Weight Decay 1× 10−5

DropLoss Rate 0.9

Encoder Depths 256, 512
Blocks 2

Codebook
Size 1024
Embedding Dim 32

Decoder Depths 256, 512
Blocks 4

Temporal
Transformer

Downsample Factor 8
Hidden Dim 1024
Feedforward Dim 4096
Heads 16
Layers 8
Dropout 0

MaskGit

Mask Schedule cosine
Hidden Dim 512
Feedforward Dim 2048
Heads 8
Layers 8
Dropout 0

37

Minecraft and Habitat For Minecraft and Habitat, we only trained TECO-ConvS5 due to the costs841

of training on these datasets. See dataset details in Appendix E and reported compute costs in Yan842

et al. [13]. For Minecraft, we evaluated two different learning rates [1× 10−4, 5× 10−4] and chose843

the best. For Habitat, we only performed one run with no further tuning. See Table 19 for further844

experiment configuration details.845

Table 19: Experiment Configuration for TECO-ConvS5 on Minecraft and Habitat

Hyperparameters Minecraft Habitat

V100 Days 470 575
Params 214M 351M
Input Resolution 128× 128 128× 128
Latent Resolution 8× 8 8× 8
Batch Size 16 16
Sequence Length 300 300
LR 5× 10−4 1× 10−4

LR Schedule cosine cosine
Warmup Steps 5k 5k
Max Training Steps 1M 1M
DropLoss Rate 0.9 0.9

Encoder Depths 256, 512 256, 512
Blocks 4 4

Codebook
Size 1024 1024
Embedding Dim 32 32

Decoder Depths 256, 512 256, 512
Blocks 8 8

ConvS5

Hidden Dim (U) 512 512
State Size (P) 512 512
B Kernel Size 3× 3 3× 3
C Kernel Size 3× 3 3× 3
Layers 12 8
Dropout 0 0
Activation ResNet ResNet

MaskGit

Mask Schedule cosine cosine
Hidden Dim 768 1024
Feedforward Dim 3072 4096
Heads 12 16
Layers 6 16
Dropout 0 0

38

E Datasets846

E.1 Moving-MNIST847

The Moving-MNIST [54] dataset is generated by moving two 28× 28 size MNIST digits from the848

MNIST dataset [110] inside a 64×64 black background. The digits begin at a random initial location,849

and move with constant velocity, bouncing when they reach the boundary. For each of the sequence850

lengths we consider, 300 and 600, we follow Wang et al. [82] and Su et al. [85] and generate 10,000851

sequences for training.852

E.2 DMLab853

We use the DMLab long-range benchmark designed by Yan et al. [13] using the DeepMind Lab854

(DMLab) [99] simulator. The simulator generates random 3D mazes with random floor and wall855

textures. The benchmark consists of 40K action-conditioned, 300 frame videos at a 64×64 resolution.856

The videos are of an agent randomly navigating 7× 7 mazes by choosing random points in the maze857

and navigating to them through the shortest path.858

E.3 Minecraft859

We use the Minecraft [100] long-range benchmark designed by Yan et al. [13]. The game features860

3D worlds that contain complex terrains such as hills, forests, rivers and lakes. The benchmark was861

constructed by collecting 200K action-conditioned 300 frame videos at a 128× 128 resolution. The862

videos are in Minecraft’s marsh biome and the agent iterates walking forward for a random number863

of steps and randomly rotating left or right. This results in parts of the scene going out of view and864

coming back into view later.865

E.4 Habitat866

We use the Habitat long-range benchmark designed by Yan et al. [13] using the Habitat simulator [101].867

The simulator renders trajectories using scans of real 3D scenes. Yan et al. [13] compiled 1400 indoor868

scans from HM3D [111], Matterport3D [112] and Gibson [113] to generate 200K action-conditioned,869

300 frame videos with a 128× 128 resolution. Yan et al. [13] used Habitat’s in-built path traversal870

algorithm to construct action trajectories that move the agent between randomly sampled locations.871

39

References323

[1] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical324

interaction through video prediction. Advances in neural information processing systems, 29,325

2016.326

[2] Yi Xu, Longwen Gao, Kai Tian, Shuigeng Zhou, and Huyang Sun. Non-local ConvLSTM327

for video compression artifact reduction. In Proceedings of the IEEE/CVF international328

conference on computer vision, pages 7043–7052, 2019.329

[3] He Huang, Zheni Zeng, Danya Yao, Xin Pei, and Yi Zhang. Spatial-temporal ConvLSTM for330

vehicle driving intention prediction. Tsinghua Science and Technology, 27(3):599–609, 2021.331

[4] Xiaoyu Chen, Xingsheng Xie, and Da Teng. Short-term traffic flow prediction based on332

ConvLSTM model. In 2020 IEEE 5th Information Technology and Mechatronics Engineering333

Conference (ITOEC), pages 846–850. IEEE, 2020.334

[5] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopad-335

hyay, Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli,336

et al. Fourcastnet: A global data-driven high-resolution weather model using adaptive Fourier337

neural operators. arXiv preprint arXiv:2202.11214, 2022.338

[6] Jonathan A Weyn, Dale R Durran, Rich Caruana, and Nathaniel Cresswell-Clay. Sub-seasonal339

forecasting with a large ensemble of deep-learning weather prediction models. Journal of340

Advances in Modeling Earth Systems, 13(7):e2021MS002502, 2021.341

[7] Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William Chan, Mohammad Norouzi, and342

David J. Fleet. Video diffusion models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,343

and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.344

[8] Aidan Clark, Jeff Donahue, and Karen Simonyan. Adversarial video generation on complex345

datasets. arXiv preprint arXiv:1907.06571, 2019.346

[9] Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation347

using VQ-VAE and Transformers. arXiv preprint arXiv:2104.10157, 2021.348

[10] Guillaume Le Moing, Jean Ponce, and Cordelia Schmid. CCVS: context-aware controllable349

video synthesis. Advances in Neural Information Processing Systems, 34:14042–14055, 2021.350

[11] Yu Tian, Jian Ren, Menglei Chai, Kyle Olszewski, Xi Peng, Dimitris N. Metaxas, and Sergey351

Tulyakov. A good image generator is what you need for high-resolution video synthesis. In352

International Conference on Learning Representations, 2021.353

[12] Pauline Luc, Aidan Clark, Sander Dieleman, Diego de Las Casas, Yotam Doron, Albin Cassirer,354

and Karen Simonyan. Transformation-based adversarial video prediction on large-scale data.355

arXiv preprint arXiv:2003.04035, 2020.356

[13] Wilson Yan, Danijar Hafner, Stephen James, and Pieter Abbeel. Temporally consistent video357

Transformer for long-term video prediction. arXiv preprint arXiv:2210.02396, 2022.358

[14] Songwei Ge, Thomas Hayes, Harry Yang, Xi Yin, Guan Pang, David Jacobs, Jia-Bin Huang,359

and Devi Parikh. Long video generation with time-agnostic VQGAN and time-sensitive360

Transformer. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel,361

October 23–27, 2022, Proceedings, Part XVII, pages 102–118. Springer, 2022.362

[15] William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Dietrich Weilbach, and Frank363

Wood. Flexible diffusion modeling of long videos. In Alice H. Oh, Alekh Agarwal, Danielle364

Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems,365

2022.366

[16] Vaibhav Saxena, Jimmy Ba, and Danijar Hafner. Clockwork variational autoencoders. Ad-367

vances in Neural Information Processing Systems, 34:29246–29257, 2021.368

10

[17] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun369

Woo. Convolutional LSTM network: A machine learning approach for precipitation nowcast-370

ing. Advances in neural information processing systems, 28, 2015.371

[18] Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville. Delving deeper into convolutional372

networks for learning video representations. arXiv preprint arXiv:1511.06432, 2015.373

[19] Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with374

structured state spaces. In International Conference on Learning Representations, 2021.375

[20] Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for376

sequence modeling. In The Eleventh International Conference on Learning Representations,377

2023.378

[21] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9379

(8):1735–1780, 1997.380

[22] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,381

Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-382

decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.383

[23] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent384

neural networks. In International Conference on Machine Learning, pages 1310–1318. PMLR,385

2013.386

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,387

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information388

Processing Systems, 30, 2017.389

[25] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,390

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,391

Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image392

recognition at scale. In International Conference on Learning Representations, 2021.393

[26] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia394

Schmid. ViViT: A video vision Transformer. In Proceedings of the IEEE/CVF international395

conference on computer vision, pages 6836–6846, 2021.396

[27] Agrim Gupta, Stephen Tian, Yunzhi Zhang, Jiajun Wu, Roberto Martín-Martín, and Li Fei-Fei.397

Maskvit: Masked visual pre-training for video prediction. arXiv preprint arXiv:2206.11894,398

2022.399

[28] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances400

in neural information processing systems, 30, 2017.401

[29] Jacob Walker, Ali Razavi, and Aäron van den Oord. Predicting video with VQVAE. arXiv402

preprint arXiv:2103.01950, 2021.403

[30] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming Transformers for high-resolution404

image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern405

recognition, pages 12873–12883, 2021.406

[31] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm407

Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling408

Transformer inference. arXiv preprint arXiv:2211.05102, 2022.409

[32] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast410

and memory-efficient exact attention with IO-awareness. Advances in Neural Information411

Processing Systems, 35:16344–16359, 2022.412

[33] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea413

Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,414

David Benjamin Belanger, Lucy Colwell, and Adrian Weller. Rethinking attention with415

Performers. In International Conference on Learning Representations, 2021.416

11

[34] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers417

are RNNs: Fast autoregressive Transformers with linear attention. In International Conference418

on Machine Learning, pages 5156–5165. PMLR, 2020.419

[35] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient Transformer. In420

International Conference on Learning Representations, 2020.421

[36] Iz Beltagy, Matthew Peters, and Arman Cohan. Longformer: The long-document Transformer.422

arXiv preprint arXiv:2004.05150, 2020.423

[37] Ankit Gupta and Jonathan Berant. Gmat: Global memory augmentation for Transformers,424

2020.425

[38] Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention426

with linear complexity. arXiv preprint arXiv:2006.04768, 2020.427

[39] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao428

Carreira. Perceiver: General perception with iterative attention. In International conference429

on machine learning, pages 4651–4664. PMLR, 2021.430

[40] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng431

Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. Long Range Arena: A benchmark for432

efficient Transformers. In International Conference on Learning Representations, 2021.433

[41] Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as434

structured state spaces. In Advances in Neural Information Processing Systems, 2022.435

[42] Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and436

initialization of diagonal state space models. In Advances in Neural Information Processing437

Systems, 2022.438

[43] Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and439

Daniela Rus. Liquid structural state-space models. In International Conference on Learning440

Representations, 2023.441

[44] Karan Goel, Albert Gu, Chris Donahue, and Christopher Re. It’s raw! Audio generation with442

state-space models. In Proceedings of the 39th International Conference on Machine Learning,443

volume 162 of Proceedings of Machine Learning Research, pages 7616–7633. PMLR, 17–23444

Jul 2022.445

[45] Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus,446

and Christopher Ré. S4ND: Modeling images and videos as multidimensional signals with447

state spaces. In Advances in Neural Information Processing Systems, 2022.448

[46] Md Mohaiminul Islam and Gedas Bertasius. Long movie clip classification with state-space449

video models. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel,450

October 23–27, 2022, Proceedings, Part XXXV, pages 87–104, 2022.451

[47] Shmuel Bar David, Itamar Zimerman, Eliya Nachmani, and Lior Wolf. Decision S4: Efficient452

sequence-based RL via state spaces layers. In The Eleventh International Conference on453

Learning Representations, 2023.454

[48] Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh,455

and Feryal Behbahani. Structured state space models for in-context reinforcement learning.456

arXiv preprint arXiv:2303.03982, 2023.457

[49] Linqi Zhou, Michael Poli, Winnie Xu, Stefano Massaroli, and Stefano Ermon. Deep latent458

state space models for time-series generation. arXiv preprint arXiv:2212.12749, 2022.459

[50] Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Re.460

Hungry hungry hippos: Towards language modeling with state space models. In The Eleventh461

International Conference on Learning Representations, 2023.462

12

[51] Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language463

modeling via gated state spaces. In The Eleventh International Conference on Learning464

Representations, 2023.465

[52] Junxiong Wang, Jing Nathan Yan, Albert Gu, and Alexander M Rush. Pretraining without466

attention. arXiv preprint arXiv:2212.10544, 2022.467

[53] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. HiPPO: Recurrent468

memory with optimal polynomial projections. Advances in Neural Information Processing469

Systems, 33:1474–1487, 2020.470

[54] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of471

video representations using LSTMs. In International conference on machine learning, pages472

843–852. PMLR, 2015.473

[55] Arieh Iserles. A first course in the numerical analysis of differential equations. 44. Cambridge474

university press, 2009.475

[56] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.476

Combining recurrent, convolutional, and continuous-time models with linear state space layers.477

Advances in Neural Information Processing Systems, 34, 2021.478

[57] Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan479

Pascanu, and Soham De. Resurrecting recurrent neural networks for long sequences. arXiv480

preprint arXiv:2303.06349, 2023.481

[58] Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length.482

In International Conference on Learning Representations, 2018.483

[59] James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent neural484

networks. In International Conference on Learning Representations, 2017.485

[60] Tao Lei, Yu Zhang, Sida Wang, Hui Dai, and Yoav Artzi. Simple recurrent units for highly486

parallelizable recurrence. In Proceedings of the 2018 Conference on Empirical Methods in487

Natural Language Processing, pages 4470–4481, 2018.488

[61] Guy Blelloch. Prefix sums and their applications. Technical report, Tech. rept. CMU-CS-90-489

190. School of Computer Science, Carnegie Mellon, 1990.490

[62] Wonmin Byeon, Qin Wang, Rupesh Kumar Srivastava, and Petros Koumoutsakos. ContextVP:491

Fully context-aware video prediction. In Proceedings of the European Conference on Computer492

Vision (ECCV), pages 753–769, 2018.493

[63] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning.494

arXiv preprint arXiv:1603.07285, 2016.495

[64] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional neural496

networks for document processing. In Tenth international workshop on frontiers in handwriting497

recognition. Suvisoft, 2006.498

[65] Yangqing Jia. Learning semantic image representations at a large scale. 2014.499

[66] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal500

Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and501

Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL502

http://github.com/google/jax.503

[67] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,504

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative505

style, high-performance deep learning library. Advances in neural information processing506

systems, 32, 2019.507

13

[68] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,508

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-509

fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,510

Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry511

Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya512

Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,513

Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang514

Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL515

https://www.tensorflow.org/. Software available from tensorflow.org.516

[69] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image517

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,518

pages 770–778, 2016.519

[70] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining520

Xie. A Convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer521

Vision and Pattern Recognition, pages 11976–11986, 2022.522

[71] Marijn F Stollenga, Wonmin Byeon, Marcus Liwicki, and Juergen Schmidhuber. Parallel523

multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation.524

Advances in neural information processing systems, 28, 2015.525

[72] Reza Azad, Maryam Asadi-Aghbolaghi, Mahmood Fathy, and Sergio Escalera. Bi-directional526

ConvLSTM U-net with densely connected convolutions. In Proceedings of the IEEE/CVF527

international conference on computer vision workshops, pages 0–0, 2019.528

[73] Si Woon Lee and Ha Young Kim. Stock market forecasting with super-high dimensional529

time-series data using ConvLSTM, trend sampling, and specialized data augmentation. expert530

systems with applications, 161:113704, 2020.531

[74] Qingqing Wang, Ye Huang, Wenjing Jia, Xiangjian He, Michael Blumenstein, Shujing Lyu,532

and Yue Lu. FACLSTM: ConvLSTM with focused attention for scene text recognition. Science533

China Information Sciences, 63:1–14, 2020.534

[75] Mohamadreza Bakhtyari and Sayeh Mirzaei. ADHD detection using dynamic connectivity535

patterns of EEG data and ConvLSTM with attention framework. Biomedical Signal Processing536

and Control, 76:103708, 2022.537

[76] Li Kang, Ziqi Zhou, Jianjun Huang, Wenzhong Han, and IEEE Member. Renal tumors538

segmentation in abdomen CT images using 3D-CNN and ConvLSTM. Biomedical Signal539

Processing and Control, 72:103334, 2022.540

[77] Tie Liu, Mai Xu, and Zulin Wang. Removing rain in videos: a large-scale database and a541

two-stream ConvLSTM approach. In 2019 IEEE International Conference on Multimedia and542

Expo (ICME), pages 664–669. IEEE, 2019.543

[78] Xiaofang Xia, Jian Lin, Qiannan Jia, Xiaoluan Wang, Chaofan Ma, Jiangtao Cui, and Wei544

Liang. ETD-ConvLSTM: A deep learning approach for electricity theft detection in smart545

grids. IEEE Transactions on Information Forensics and Security, 2023.546

[79] Xingjian Shi, Zhihan Gao, Leonard Lausen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and547

Wang-chun Woo. Deep learning for precipitation nowcasting: A benchmark and a new model.548

Advances in neural information processing systems, 30, 2017.549

[80] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H. Campbell, and Sergey550

Levine. Stochastic variational video prediction. In International Conference on Learning551

Representations, 2018.552

[81] Yunbo Wang, Haixu Wu, Jianjin Zhang, Zhifeng Gao, Jianmin Wang, S Yu Philip, and553

Mingsheng Long. PredRNN: A recurrent neural network for spatiotemporal predictive learning.554

IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(2):2208–2225, 2022.555

14

[82] Yunbo Wang, Zhifeng Gao, Mingsheng Long, Jianmin Wang, and S Yu Philip. PredRNN++:556

Towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. In557

International Conference on Machine Learning, pages 5123–5132. PMLR, 2018.558

[83] Yunbo Wang, Lu Jiang, Ming-Hsuan Yang, Li-Jia Li, Mingsheng Long, and Li Fei-Fei. Eidetic559

3D LSTM: A model for video prediction and beyond. In International conference on learning560

representations, 2019.561

[84] Wei Yu, Yichao Lu, Steve Easterbrook, and Sanja Fidler. Efficient and information-preserving562

future frame prediction and beyond. In International Conference on Learning Representations,563

2020.564

[85] Jiahao Su, Wonmin Byeon, Jean Kossaifi, Furong Huang, Jan Kautz, and Anima Anandkumar.565

Convolutional tensor-train LSTM for spatio-temporal learning. Advances in Neural Information566

Processing Systems, 33:13714–13726, 2020.567

[86] Jue Wang, Wentao Zhu, Pichao Wang, Xiang Yu, Linda Liu, Mohamed Omar, and Raffay568

Hamid. Selective structured state-spaces for long-form video understanding. arXiv preprint569

arXiv:2303.14526, 2023.570

[87] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks571

for biomedical image segmentation. In Medical Image Computing and Computer-Assisted572

Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9,573

2015, Proceedings, Part III 18, pages 234–241. Springer, 2015.574

[88] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger.575

3D U-net: learning dense volumetric segmentation from sparse annotation. In Medical576

Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International577

Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19, pages 424–432.578

Springer, 2016.579

[89] Tobias Höppe, Arash Mehrjou, Stefan Bauer, Didrik Nielsen, and Andrea Dittadi. Diffusion580

models for video prediction and infilling. Transactions on Machine Learning Research.581

[90] Mohammad Babaeizadeh, Mohammad Taghi Saffar, Suraj Nair, Sergey Levine, Chelsea Finn,582

and Dumitru Erhan. FitVid: Overfitting in pixel-level video prediction. arXiv preprint583

arXiv:2106.13195, 2021.584

[91] Ruslan Rakhimov, Denis Volkhonskiy, Alexey Artemov, Denis Zorin, and Evgeny Burnaev.585

Latent video Transformer. arXiv preprint arXiv:2006.10704, 2020.586

[92] Younggyo Seo, Kimin Lee, Fangchen Liu, Stephen James, and Pieter Abbeel. HARP: Autore-587

gressive latent video prediction with high-fidelity image generator. In 2022 IEEE International588

Conference on Image Processing (ICIP), pages 3943–3947. IEEE, 2022.589

[93] Ivan Skorokhodov, Sergey Tulyakov, and Mohamed Elhoseiny. StyleGAN-V: A continuous590

video generator with the price, image quality and perks of StyleGAN2. In Proceedings of the591

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3626–3636, 2022.592

[94] Masaki Saito and Shunta Saito. TGANv2: Efficient training of large models for video593

generation with multiple subsampling layers. arXiv preprint arXiv:1811.09245, 2(6), 2018.594

[95] Sihyun Yu, Jihoon Tack, Sangwoo Mo, Hyunsu Kim, Junho Kim, Jung-Woo Ha, and Jinwoo595

Shin. Generating videos with dynamics-aware implicit generative adversarial networks. In596

International Conference on Learning Representations, 2022.597

[96] Tim Brooks, Janne Hellsten, Miika Aittala, Ting-Chun Wang, Timo Aila, Jaakko Lehtinen,598

Ming-Yu Liu, Alexei Efros, and Tero Karras. Generating long videos of dynamic scenes.599

Advances in Neural Information Processing Systems, 35:31769–31781, 2022.600

[97] Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale601

pretraining for text-to-video generation via Transformers. arXiv preprint arXiv:2205.15868,602

2022.603

15

[98] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. MaskGit: Masked604

generative image Transformer. In Proceedings of the IEEE/CVF Conference on Computer605

Vision and Pattern Recognition, pages 11315–11325, 2022.606

[99] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich607

Küttler, Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, et al. Deepmind Lab.608

arXiv preprint arXiv:1612.03801, 2016.609

[100] William H Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela610

Veloso, and Ruslan Salakhutdinov. MineRL: A large-scale dataset of Minecraft demonstrations.611

arXiv preprint arXiv:1907.13440, 2019.612

[101] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana613

Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for614

embodied AI research. In Proceedings of the IEEE/CVF international conference on computer615

vision, pages 9339–9347, 2019.616

[102] Keyu Tian, Yi Jiang, Qishuai Diao, Chen Lin, Liwei Wang, and Zehuan Yuan. Designing617

BERT for convolutional networks: Sparse and hierarchical masked modeling. arXiv preprint618

arXiv:2301.03580, 2023.619

[103] Sunghyun Park, Kangyeol Kim, Junsoo Lee, Jaegul Choo, Joonseok Lee, Sookyung Kim, and620

Edward Choi. Vid-ODE: Continuous-time video generation with neural ordinary differential621

equation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages622

2412–2422, 2021.623

[104] Mark Harris, Shubhabrata Sengupta, and John D Owens. Parallel prefix sum (scan) with624

CUDA. GPU gems, 3(39):851–876, 2007.625

[105] Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Re. How to train your626

HIPPO: State space models with generalized orthogonal basis projections. In International627

Conference on Learning Representations, 2023.628

[106] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint629

arXiv:1607.06450, 2016.630

[107] Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michal-631

ski, and Sylvain Gelly. Towards accurate generative models of video: A new metric &632

challenges. arXiv preprint arXiv:1812.01717, 2018.633

[108] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:634

from error visibility to structural similarity. IEEE transactions on image processing, 13(4):635

600–612, 2004.636

[109] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreason-637

able effectiveness of deep features as a perceptual metric. In CVPR, 2018.638

[110] Yann LeCun. The MNIST database of handwritten digits. http://yann. lecun. com/exdb/mnist/,639

1998.640

[111] Santhosh K Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alex641

Clegg, John Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X Chang,642

et al. Habitat-Matterport 3D dataset (HM3D): 1000 large-scale 3D environments for embodied643

AI. arXiv preprint arXiv:2109.08238, 2021.644

[112] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis645

Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3D: Learning from RGB-D646

data in indoor environments. arXiv preprint arXiv:1709.06158, 2017.647

[113] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gib-648

son env: Real-world perception for embodied agents. In Proceedings of the IEEE conference649

on computer vision and pattern recognition, pages 9068–9079, 2018.650

16

