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Abstract

The neural population spiking activity recorded by intracortical brain-computer1

interfaces (iBCIs) contain rich structure. Current models of such spiking activity2

are largely prepared for individual experimental contexts, restricting data volume3

to that collectable within a single session and limiting the effectiveness of deep4

network models. The purported challenge in aggregating neural spiking data is5

the pervasiveness of context-dependent distribution shifts. However, large scale6

unsupervised pretraining by nature spans heterogenous data, and has proven a7

fundamental recipe for successful representation learning across deep learning. We8

thus develop Neural Data Transformer 2 (NDT2), a spatiotemporal Transformer9

for neural spiking activity, and demonstrate pretraining can leverage motor BCI10

datasets that span sessions, subjects, and experimental tasks. NDT2 enables rapid11

adaptation to novel contexts in downstream decoding tasks, and opens the path12

to deployment of pretrained DNNs for iBCI control. Code will be released with13

publication and available for reviewers in supplementary materials.14

1 Introduction15

Intracortical neural spiking activity contains rich statistical structure reflecting the processing it16

subserves. For example, motor cortical activity during reaching is characterized with low-D dynamical17

models [1, 2], and these models can predict behavior under external perturbation and provides18

an interpretive lens for motor learning [3–5]. However, these models are currently prepared per19

experimental context, meaning separate datasets are collected for each cortical phenomena in each20

subject, for each session. Meanwhile, spiking activity structure is at least somewhat stable across21

these contexts; for example, dominant principal components (PCs) of neural activity can remain22

stable across sessions, subjects, and behavioral tasks [6–9]. This structure persists in spite of23

turnover in recorded neurons, physiological changes in the subject, or task changes required by the24

experiment [10, 11]. Conserved neural population structure suggests the opportunity for models that25

span beyond single experimental contexts, enabling more efficient, potent analysis and application.26

In this work we focus on one primary use case: neuroprosthetics powered by intracortical brain-27

computer interfaces (iBCIs). With electrical recordings of just dozens to hundreds of channels28

of neuronal population spiking activity, today’s iBCIs can relate this observed neural activity to29

behavioral intent, achieving impressive milestones such as high speed speech decoding [12] and30

high degree of freedom control of robotic arms [13]. Even so, these iBCIs currently require arduous31

supervised calibration in which neural activity on that day is mapped to behavioral intent. At best,32

cutting-edge decoders have included training data from across several days, producing thousands of33

trials but still modest by deep learning standards [12]. Single-session models still dominate the Neural34

Latents Benchmarks (NLB), a primary representation learning benchmark for spiking activity [14].35
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Thus, despite the scientifically observed conserved manifold structure, there has been little adoption36

of neural population models that can productively aggregate data from broader contexts.37

One possible path forward is deep learning’s seemingly robust recipe for leveraging heterogeneous38

data across domains: a generic model backbone (e.g. a Transformer [15]), unsupervised pretraining39

over broad data, and lightweight adaptation for a target context. The iBCI community has set40

the stage for this effort, for example with iBCI dataset releases (Section A.1) and NDT1 [16],41

which shows Transformers only need modest changes to apply to spiking activity (at least in single42

session datasets). We hereafter refer to NDT as NDT1. Building on this momentum, we report that43

Transformer pretraining can apply to motor cortical neural spiking activity from iBCIs, and allows44

productive aggregation of data across contexts.45

Contributions: We contribute NDT2, a Transformer that pretrains over broad data sources of motor46

cortical spiking activity. NDT2 modifies NDT1 to improve scaling across heterogeneous contexts in47

3 ways: spatiotemporal attention, learned context embeddings, and asymmetric encode-decode [17].48

We find positive transfer with data from different data sessions, subjects, and tasks, and quantify their49

relative value. Once pretrained, NDT2 can be rapidly tuned in novel experimental sessions. We focus50

on offline evaluation on motor applications, demonstrating NDT2’s value in decoding unstructured51

monkey reaching and human iBCI cursor intent.52

1.1 Related Work53

Unsupervised neural data pretraining. Unsupervised pretraining is particularly appealing in54

neuroscience due to limited data availability for most supervised tasks. We compare some of the55

pretrained models in different neural data modalities in Table 1. There is a remarkable convergence in56

modeling design despite modality diversity: 3 of 4 neural approaches use masked autoencoding, and57

3 of 4 use a Transformer backbone. However, pretraining in each modality poses different challenges.58

Pertinent for spiking activity is the issue of data instability. While the fine spatial resolution of iBCI59

microelectrode arrays provide the signal needed for high-performance rehabilitation applications, it60

also causes high sensitivity to shifts in recording conditions. iBCIs typically require recalibration61

within hours, relative to ECoG-BCIs that may not require recalibration for days [18]. At the62

macroscopic end, EEG and fMRI can mostly address inter-measurement misalignment through63

preprocessing (e.g. registration to an atlas).64

Table 1. Neural data pretraining. NDT2, like contemporary neural data models, aim for BERT-scale [19]
pretraining. Neural models vary greatly in task quality and data encoding; invasive methods severely restrict
subject count available (especially with public data). Volume is estimated as full dataset size / model input size.

Modality Task Estimated Pretraining Volume Subjects

Spikes (NDT2) Motor reaching 0.25M trials ∼12
SEEG: LFP [20] Movie Viewing 3.2M trials / 4.5K electrode-hours 10
ECoG: LFP [21] Naturalistic behavior 0.04M trials / 108 days [22] 12
EEG [23] Clinical assessment 0.5M trials / (26K runs [24]) 11K
fMRI [25] Varied (34 datasets) 1.8M trials (12K scans) 1.7K
BERT [19] Natural Language 1M ‘trials’ (3.3B tokens) -

Data aggregation for iBCI. Multi-context data aggregation for iBCI has largely been limited to65

multi-session aggregation, and is moreover typically studied in highly structured tasks. Within this66

scope, data are often combined through a method called stitching [26]. For context, spiking events67

recorded on microelectrode arrays are sometimes “sorted” according to their electrical waveforms,68

attributing them to putative neural units. Such a sorting process produces inherently inconsistent data69

dimensions across sessions, but as mentioned, activity across sessions has been observed to share70

consistent subspace structure, as e.g. identified by PCA. Thus, the stitching strategy aims to extract71

this stable subspace (and also resolve neuron count differences) by learning readin and readout layers72

per session. Stitching is regularly applied for BCI applications over half a year [27–29, 11]. However,73

learnt layers incurs parameters proportional to model size and neuron count (e.g. 1282 = 10K74

params), which may be costly in clinical iBCI settings that comprise only a few dozen trials.75

Alternatively, many iBCI systems simply forgo spike sorting after observations of minor performance76

gains [10, 30]. Then, input dimensions are constant across sessions, and multi-session data can feed77

directly into a single model [10, 31, 32] (even if the units recorded in those dimensions shift [33]).78
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Figure 1. NDT2 is a spatiotemporal Transformer encoder-decoder. In pretraining, a spike rate decoder performs
masked spike reconstruction; downstream, additional decoders directly use the encoded representations. Both the
encoder and decoder share learned context embeddings representing known metadata, such as subject identity.

Note that these referenced models also typically incorporate augmentation strategies centered around79

channel gain modulation, noising, or dropout, emphasizing robustness as a design goal.80

Domain-adaptive vs. domain-robust decoding. BCI decoder context-robustness can be explicitly81

promoted by either aligning data recorded in novel contexts to those of a known context, or by building82

decoders that are robust to context changes. Adaptive approaches realign novel contexts by learning83

an input mapping that minimizes distributional distance of input encodings explicitly [11, 34, 35].84

Robust approaches aim to learn decoders that are agnostic to variability in recorded populations, by85

promoting invariant representations through model or objective design [32, 36, 37].86

While robustness to context changes are a sensible functional goal for BCI systems, we need not force87

this robustness on our neural data decoders. That is, we can build adaptation into model design and88

evaluation. A full BCI software and hardware ecosystem can provide additional information in a way89

that does not impair usage. This can for example be as simple as allowing test time tuning. Such90

calibration in novel contexts need not be expensive: e.g. it may be passively collected unsupervised91

data, or freely collected metadata like subject identity. Outside of neuroscience, thin adaptation92

mechanisms enable robotic policies to operate in novel environments [38, 39], and language models93

to flexibly perform many tasks [40–42].94

2 Approach95

2.1 Designing Transformers for unsupervised scaling on neural data96

Transformers prepared with masked autoencoding are a competitive model for representation learning97

on spiking neural activity in single contexts, as measured by their performance on the NLB [14].98

Cross-domain resources further provide extensive technical infrastructure and relatively charted99

scaling properties. Thus, we retain the core model recipe, focusing instead on input design.100

iBCI spiking activity is spatiotemporal. However, unlike the many pixels in vision domains, the few101

hundred neurons in neuronal “space” is small enough to not computationally require compression.102

NDT1 [16] thus only attended across space. Yet the meaning of individual neurons change across103

contexts, so spatial compression and attention may confer statistical benefits. STNDT [43] and104

EIT [37], adopt, for example, factorized spacetime attention. The former provided favorable single-105

session performance on the NLB, while the latter demonstrated improved multisession transfer. More106

generally, since factorization can impair performance [44], we might consider full spacetime attention107

over individual neuronal units.108

Of course, scaled pretraining must weigh any potential benefits against computational efficiency. Yet109

while full attention is more expensive, factorizing has the subtler cost of padding overhead from110

data heterogeneity in either space or time, as opposed to full attention’s cost in data “area”. In pilot111

experiments we find comparable performance at convergence and thus focus on a full spacetime112
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implementation. This choice also enables easy adoption of the asymmetric encoder-decoder proposed113

in [17], which provides memory savings by only introducing the masked proxy tokens the model aims114

to reconstruct in a thin decoder. We next consider resolution. In time, iBCI applications benefit from115

control rates of 50-100Hz [45]; we adopt 50Hz (20ms bins). In space, at present, 100-200 channels116

are used, but future devices are likely to record thousands of channels at a time. With context budgets117

of e.g. 2000 tokens, we cannot afford individual channel spatial processing. Like in ViTs [46], we118

propose using K-neuron patches, padding data to the nearest multiple of K. The patch is embedded119

by concatenating its constituent spike count embeddings, which are learned.120

We also provide learned context embeddings (i.e. more tokens) to NDT2 encoder and decoders. This121

mechanism enables cheap model specialization given known context metadata, analogous either to122

prompt tuning [40] or environment embeddings [38]. We factorize context embeddings into task,123

subject, and session embeddings.124

2.2 Datasets125

We pretrain models over an aggregation of datasets (see Section A.1). All data contains single-(sorted)126

or multi-unit (unsorted) spiking activity recorded from either monkey or human primary motor cortex127

(M1) during motor tasks. We bin activity at 20ms as appropriate for motor BCI. In particular, we focus128

evaluation on a publically available monkey dataset, where the subjects performed self-paced reaching129

to random targets generated on a 2D screen (Random Target Task, RTT) [47], and unpublished130

human clinical BCI datasets. RTT contains both sorted and unsorted activity from 2 monkeys over 47131

sessions (∼20K seconds per monkey) and is suited for evaluating scaling: it contains several long132

sessions (near 1h), and the task is relatively challenging — decoding performance steadily improves133

with more data (within the same session) [48]. For comparison, in another NLB task that uses cued134

preparation and movement periods (Maze), decoding performance saturates by 500 trials [14]. Since135

RTT is continuous, we split each session into 1s trials.136

We also study M1 activity in 2 human participants with spinal cord injury (P2 and P3). These137

participants have limited motor function but can modulate their cortical activity using attempted138

movements to control BCIs; we restrict our study to settings of 2D cursor control to be most analogous139

to RTT, which also restricts targets to a 2D workspace. All experiments conducted with humans were140

performed under an approved Investigational Device Exemption from the FDA, were approved by the141

university Institutional Review Board and the clinical trial is registered at clinicaltrials.gov . Informed142

consent was obtained before any experimental procedures were conducted. University and trial ID143

will be provided with unblinding. Details on the implants and clinical trial are described in [49, 13].144

3 Results145

We demonstrate the three requirements of a pretrained spiking neural data model for BCI: 1) an146

effective architecture, 2) beneficial scaled pretraining, and 3) practical deployment.147

Model preparation and evaluation. Most initial experiments use a 6-layer, 256 hidden size encoder148

(∼3M parameters), similar to settings in the NDT1 codebase. NDT2 uses a 2-layer decoder (0.7M149

parameters); we run controls to ensure this extra capacity does not benefit comparison models. To150

ensure that our models are not bottlenecked by compute or capacity, models are trained to convergence151

- with early stopping - and progressively larger models were trained until no return was observed. We152

pretrain with causal attention, as online iBCI decoding must be causal (though bidirectional attention153

improves modeling). We pretrain with 50% masking and dropout of 0.1. Further hyperparameters154

are not swept in general experiments; initial settings were manually tuned in pilot experiments and155

verified to be competitive against hyperparameter sweeps. Further training details are in Section A.2.156

We briefly compare against prior reported results, but to our knowledge there is no other work that157

attempts similar pretraining, so we primarily compare within NDT-family design choices.158

We evaluate models on randomly drawn held-out test data from select “target” sessions (selection159

is specified per experiment). Models calibrate to these sessions with the remaining data unless160

specified, typically through fine-tuning, or sometimes in pretraining. We observed no differences.161

As unsupervised evaluation, we simply use the Poisson negative log-likelihood (NLL) objective, i.e.162

the reconstruction of randomly masked bins of test trials. As supervised evaluation, we report R2 of163

decoded kinematics, i.e. a 2D velocity of the reaching effector. Note that while we find joint tuning164
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Figure 2. Pretraining architectures compared.. We show unsupervised and supervised performance (average
metric on 5 sessions, standard error intervals of 3 seeds) on sorted (left) and unsorted (right) spiking activity.
Higher is better for R2, lower is better for test negative log-likelihood (NLL). Data source lists pretraining
distribution (size-matched around 20Ks, except scratch single-session data). NDT2 improves with pretraining
with all data sources, whereas stitching is ineffective. NDT1 aggregation is helpful but does not apply beyond
session transfer. A reference well-tuned decoding score from the rEFH model is estimated [48].

with both objectives provides helpful regularization for the kinematic decoder in some experiments,165

the supervised metric is evaluated in a separate forward pass where no spikes are masked.166

3.1 NDT2 enables multicontext pretraining167

We evaluate on 5 temporally spaced evaluation sessions of monkey Indy in the RTT dataset, with168

both sorted and unsorted processing. Both versions are important; sorted datasets discard minimal169

information about spike identity and are broadly used in neuroscientific analysis while unsorted170

datasets are frequently more practical in BCI applications. Single-context models are trained from171

scratch, and to match this, pretrained models are tuned separately per evaluation session. Velocity172

decoding is done by tuning all models further with a lightweight behavioral probe. This separate173

preparation controls for the decoding gains given by the MAE pretraining objective itself, rather than174

broader data [50, 14]. Here we provide models 5 minutes (300 training trials) for each evaluation175

session. This quantity is a good litmus test for transfer as it is sufficient to fit reasonable single-session176

models but also near the high end for practical calibration. A 10% test split is used in each evaluation177

session (this small % is due to several sessions not containing much more than 300 trials). We pretrain178

models using approximately 20K trials of data, either with the remaining non-evaluation sessions of179

monkey Indy (Multi-Session), the sessions from the other monkey (Multi-Subject), or from other180

datasets entirely (Multi-Task).181

Prior work in multi-session aggregation either use stitching layers or directly train on multi-day data182

with consistent unit count. Thus we use NDT1 with stitching as a baseline for sorted data, and with183

or without stitching for unsorted data. NDT2 pads observed neurons in any dataset to the nearest184

patch multiple. Since we evaluate on the RTT dataset which lacks clear behavioral conditions, the185

stitch layers cannot be initialized with principal components regression [27]. All models identically186

receive context tokens.187

We show the performance of these pretrained models for sorted and unsorted data in Fig. 2. For188

context, we show single-session performance achieved by NDT1 and NDT2, and the reported189

decoding performance of the nonlinear rEFH model released with the dataset [48]. This rEFH model190

was prepared slightly differently: its data splits are sequential and contiguous in time, whereas191

we use random draws in keeping with NLB. 1 Single session performance for NDT1 and NDT2192

is below this baseline. (However, consistent with previous findings on the advantage of spatial193

modeling [43], we find single-session NDT2 provides some NLL gain over NDT1). Underperforming194

this established baseline is not too unexpected: NDT’s performance can vary widely depending on195

extent of tuning (Transformers span a wide performance range on the NLB, see also Section A.2).196

Indeed, pretraining is valuable in part for greatly simplifying the hyperparameter tuning needed for197

model preparation [51].198

1We estimate rEFH 20ms performance by linearly interpolating 16ms and 32ms scores reported in [48].
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Figure 3. Context embedding ablations. A. Multi-session model training curves, with varying session context
token count (3 seeds). Learning is improved, but additional tokens do not have notable effect. The converged
score in only modestly affected. B. Subject transfer training curves with similarly varied token budget for subject
embedding. Models receive 1 session token. There is no clear additional improvement nor harm.

However, all pretrained NDT2 models outperform these baselines, both in NLL and kinematic199

decoding. Surprisingly, subject-transfer works as well as session-transfer, and task-transfer provides200

an appreciable improvement as well. Stitching performs much worse in all cases, and in fact, task201

transfer brings NDT-Stitch below the single-session baseline. We expect that the underwhelming202

benefits of stitching is due to the lack of structure in the task.203

In the unsorted case, one expects that the consistent dimensionality would particularly benefit inter-204

session transfer. Indeed, unsorted cross-session transfer achieves the best decoding (> 0.7R2) in205

these experiments. Cross-task and subject decoding also improve slightly, indicating a minor benefit206

of unsorted decoding overall. Given this, we maintain unsorted formats in subsequent analysis of207

RTT. Otherwise, relative trends are consistent with the sorted case. Both analyses indicate different208

pretraining distributions all provide some benefit for modeling a new target context, but suggest209

differences e.g. between session transfer and the others. We return to a deeper comparison in Section210

3.2.211

Design choices. NDT2 introduces two primary design elements: context tokens, and patch size.212

We show the empirical optimality of 32 neuron patches in Section A.3.2; here we report on the213

effect of context tokens. NDT2 integrates context tokens directly by adding learned tokens and214

adding them to the data token sequence (i.e. in-context aggregation). Our pilots found no difference215

using cross-attention integration. The training curves of sorted multisession models augmented with216

context tokens, shown in Fig. 3A, demonstrate a primary effect in speeding convergence, which217

can be valuable in large scale pretraining. The benefit to converged NLL (some 1e− 3) is modest218

but non-negligible, considering the NLL resolution in Fig. 2. This trend replicates at smaller data219

scales (Fig. 10). Providing 1 session token and additionally varying the available subject tokens220

(Fig. 3B) has much smaller effects. However, given no visible harm and negligible compute overhead,221

we hold as a default policy to provide 1 token for each of session, subject, and task. We revisit the222

supervised benefits in Section 3.3.223

3.2 NDT2 scaling across contexts224

Given an architecture that can aggregate contexts, a natural goal is to identify what data can be225

productively aggregated. For example, the extreme of pretraining over spiking activity from all brain226

areas in a single model is likely unproductive given how sparsely we sample the full range of neural227

activity. To inform future scaling efforts, we perform three analyses to coarsely estimate the transfer228

affinities [52] of the three delineated context classes (cross-session, subject, and task). Previously229

these relationships have been grounded in shared linear subspaces [6–8]; we now quantify this in the230

more general generative model encompassed by DNN performance transfer.231

Scaling pretraining size. In Fig. 4A,B, we consider both unsupervised and supervised transfer as we232

scale pretraining size, given 100 trials of calibration in a novel context. The in-distribution skyline233

is given by the scaling of intra-session trials. First, there is a practical degree of positive transfer.234

At the extreme, the largest cross-session model tuned with 100 trials is comparable to a 1000-trial235

intra-session model. This indicates capture of a considerably long tail of neural variance (experiments236
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Figure 4. Scaling of transfer on RTT. We compare supervised R2 (A) and unsupervised NLL scaling (B) as we
increase the pretraining dataset size. Each point is a model that has been calibrated with 100 trials of evaluation
session data. All pretraining improves on training from a single-session from-scratch model, but the benefit
varies by source distribution. C. We seek a convergence point between pretraining and training from scratch, as
we increase the number of trials we use in our target context. Models converge by 3K trials.

are rarely much larger than 1000 trials). This transfer is analogous, for example, to retained overlap237

in the first K PCs across two sessions, but generalizes nonlinearly and to many more sessions.238

However, the shallower slopes for all other modalities indicate poorer transfer. In the unsupervised239

case (Fig. 4A), cross subject and task transfer never exceed the NLL achieved with 400 single-240

session trials. Even with an unrealistically extrapolated constant slope, we would need several orders241

more data before surpassing already feasible unsupervised modeling. Note our task scaling may be242

pessimistic as we mix human data (Table 2) with monkey data to prepare the largest model, but the243

trend before this point is still shallow. Interestingly, however, these limitations do not clearly translate244

to the supervised deployment, mirroring [53]. For example, the decode R2 achieved by the largest245

model in each modality is more competitive with in-session scaling than the same comparison in246

NLL (far right, Fig. 4B vs A).247

Convergence point with from-scratch models. We study the returns from pretraining as we vary248

target context calibration sizes [54]. Both models yield returns up to 3K trials, which represents about249

50m of data collection in the monkey datasets, and coincidentally is the size of the largest dataset250

in [47]. Session transfer is again ideal, but task transfer also allows a halving of the experimental251

budget to achieve the same unsupervised performance. This indicates pretraining is reasonably252

complementary to scaling target session collection efforts. This need not have been the case:253

even Fig. 4B suggests that task transfer by itself is ineffective at modeling the long tail of neural254

variance. Note that returns on supervised evaluation are likely similar or better based on Fig. 4A/B;255

we explore a related idea in Section 3.3.256

Overall, the returns on using pretrained BCI models depends on the use case. If we are interested257

in best explaining neural variance, pretraining alone underperforms a moderately large in-day data258

collection effort (scratch trace achieves lowest NLL in Fig. 4B). However, we do not see interfer-259

ence [54] in our experiments, where pretraining then tuning underperforms a from-scratch model.260

Thus, so long as we can afford the compute, broad pretraining is advantageous; we show these trends261

are repeated for two other evaluation sessions in Section A.5. We reiterate that our pretraining effort262

is modestly scaled; the largest pretraining only has 2 orders more data than the largest intra-context263

models. These conclusions may further strengthen insofar if we are able to better scale curation of264

pretraining data over individual experimental sessions.265

3.3 Pretraining for improved decoding on novel days266

RTT Decoding. In current BCI deployment, we assume the best case scenario, having both broad267

unsupervised data but also multiple sessions worth of supervision for our decoder. Thus, we can268

follow the 1st stage unsupervised pretraining with a 2nd stage of supervised pretraining of a decoder,269

and finally measure the decoding performance in a novel target session in Fig. 5. We find that given270
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either supervised or unsupervised calibration (Sup tune, Unsup tune) in our target session, we achieve271

decoding performance on par with the best from-scratch models. This is true both in the realistic272

case where the majority of target-session data are unlabeled (Scratch - 100 Trial Sup), and with the273

most optimistic scenario when thousands of trials of supervised data are available. As expected,274

pretrained decoders provide greater gains when target session data are limited. We also find that275

session-adaptation is valuable, as a decoder which does not use context, while deployable without any276

calibration, cannot achieve the same performance. In sum, pretraining allows a degree of calibration277

without explicit enforcement of domain adaptation (as explored e.g. in [11, 34, 35]).278

Figure 5. Tuning adaptive, pretrained de-
coders. Pretrained decoders with novel day cal-
ibration, whether supervised or not, outperform
from-scratch models and untuned models that do
not encode context with as few as 20s of data. Stan-
dard error shown with 3 seeds.

Human BCI evaluation We run a similar analysis279

of data transfer in offline decoding of human motor280

intent. Pretraining data now comprises attempted or281

BCI-based 2D cursor control; this is a substantial and282

challenging shift from actual reach in monkeys. Indi-283

vidual sessions contain low trial counts (e.g. 40), and284

velocity intent labels are much noisier than move-285

ment recordings (intent label creation is described286

in Section A.1). We now reserve a temporally con-287

tiguous experimental block for evaluation, but only288

tune one model over this block, rather than per ses-289

sion, due to the high session count. We also increase290

test split to 50% to decrease evaluation noise from291

low trial count. Results are shown in Table 2. We first292

compare broader pretraining against the cross-session293

regime available to a given subject (∼1-3 days of ex-294

periment time). Consistent with the previous efficacy295

of cross-session transfer, we see very minor improve-296

ments gained by sharing data across participants (row297

1 vs 2). In human data we have a new setting with298

multiple tasks performed by the same participants;299

pretraining across multiple task contexts aids model-300

ing of our evaluation data (row 1 vs 3). These points of reference are the best floors as single-sessions301

provide far too few trials to fit a DNN, and even simple linear decoders often do poorly (row 1 vs 8).302

Given reports of monkey to human transfer [55], we also assess whether monkey data in either303

pretraining or decoder preparation improves decoding (rows 5-8). We find that monkey data, however304

incorporated, reduces offline decoding performance (row 5-8 < 1). Overall, these analyses show little305

transfer across single human subjects; this suggests revisiting of data curation in future pretraining.306

Table 2. Human reach intent decoding. We show the decoding performance for 2 subjects for several data
preparations. Each row shows pretraining model beyond the base task- and subject-specific data. SEM is given
across 3 fine-tuning seeds. Base data is 100K trials for P2 and 30K trials for P3. Pretraining transfers across task
and somewhat across subject, but no benefit from monkey data.

Neural data (Unsup. pretrain) Behavior (Sup. pretrain) Velocity R2 (↑)
Subject Task +130K Monkey +24K RTT Monkey P2 P3

1) ✓ ✓ 0.503±0.020 0.515±0.008

2) ✓ 0.487±0.007 0.509±0.016

3) ✓ 0.444±0.007 0.493±0.002

4) ✓ ✓ ✓ ✓ 0.486±0.012 0.472±0.019

5) ✓ ✓ ✓ 0.490±0.007 0.477±0.018

6) ✓ ✓ ✓ 0.474±0.009 0.491±0.010

7) ✓ 0.443±0.005 0.455±0.013

8) Smoothed spike ridge regression (OLE) 0.077 0.208

4 Discussion307

NDT2 is a proof of concept that broad pretraining improves modeling of motor iBCI spiking activity.308

With simple modifications to the masked autoencoding Transformer that has been broadly adopted309
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across domains, NDT2 at once spans the different distribution shifts faced in spiking data. For310

rehabilitative BCI, NDT2’s simple recipe for multisession aggregation is promising even if the ideal311

scenario of cross-species transfer seems unlikely. More broadly, we conclude that pretraining, even at312

a modest 10-100K trials, is useful in realistic deployment scenarios with varied levels of supervised313

data.314

Limitations. NDT2 design can be refined in several ways. For example, we do not claim that full315

spacetime attention is necessary over factorization. While we identify positive transfer in several316

scenarios, more precise mapping of context affinity and transfer [52] may be valuable. Further, it317

is difficult to extrapolate the benefits of scaling beyond what was explored here, particularly with318

gains in unsupervised reconstruction appearing very limited. Our evaluation also has a limited scope:319

we model offline reach and cursor control, and task generality is still constrained to similar motor320

paradigms. However, these behaviors are more general than previous demonstrations of context321

transfer [11, 35, 32, 36], suggesting that this approach may have broader applications. Evaluating322

more complex behavior decoding is a practical priority. For example, pilot experiments with real-time323

decoding demonstrate that these models can be deployed successfully, but also indicate nuance in324

translating offline to online improvements [29]. Also, design parameters such as masking ratio may325

affect scaling trends, which we cannot assess due to compute limits.326

Negative NLB result. NDT2 performance did not exceed current NLB SoTA on motor datasets327

(RTT, Maze) [56]. This could simply be due to large single-session variability (which we document328

in Section A.5). More concretely, our scaling analysis indicates that modest pretraining (100K trials)329

may be insufficient against well-tuned baselines, especially on unsupervised neural data recovery,330

which is how the NLB is evaluated. Moreover, the NLB RTT dataset has 1K trials - larger than331

the setting we evaluate in - and while the NLB Maze datasets include a 100 trial split, simple task332

structure may have accordingly shifted the goalpost.333

Neural data foundations. Pretrained representation models in each subfield of neuroscience may334

bridge knowledge not only across neural data modalities but possibly also to vision and language335

interfaces that can help analyze neural data. This greater ecosystem will hinge on confidence in the336

individual models, built with open data and evolving, rigorous evaluation. For example, one technique337

in language decoding BCIs is to integrate language models to improve BCI usability [28, 12]. Similar338

motor priors will be task dependent; the center-out reach degenerates from continuous control into a339

classification task with a sufficient prior. We must carefully track whether performance gained from340

multimodal inputs is improving neural representations, or solely behavioral readouts.341

Modeling an embodied brain. Pretrained neural data models have potential connections to broader342

embodied domains. How does modeling motor neural data differ from modeling human behavior, or343

reinforcement learning physiological motor tasks [57]? In the sensory domain, for example, there are344

nearly direct architectural parallels between dominant stimulus response predictions models such as345

V1T [58] and vanilla ViTs [46]. The development of methods to distill each model productively into346

the other is would be of great merit for the NeuroAI agenda.347

Towards Continuously Deployed BCI. While we relax many constraints on our data sources, our348

evaluation is ultimately within experimental contexts. Extensions to naturalistic settings will be349

challenging. BCIs likely cannot continually calibrate in an unsupervised fashion with local neural data,350

since BCIs inherently operate in a changing domain. Observed neural signatures update interactively351

with the BCI itself, changing with local plasticity and user strategy. Robotics, which faces a similar352

“covariate shift” challenge, offers two paths forward. Shift can be mitigated with online supervision,353

through methods like DAGGER [59]. Analogously, BCI pseudo-supervision through methods like354

intent estimation [60, 61] will likely be critical for continuous deployment. The other paradigm of355

scaled offline or simulated learning to achieve broad domain coverage is less clearly translated, since356

we lack convincing closed-loop neural data simulators (though see [62, 60]. Either way, the relative357

value of calibrated neural data models vs behavioral decoders is unclear.358

Broader Impacts. Pretrained DNN-driven iBCIs may yield large usability improvements. However,359

these DNNs may require further safeguards to ensure that decoded behaviors, especially in real-time360

control scenarios, operate within reasonable safety parameters. Also, pretraining will require data361

from many different sources, but the landscape around human neural data privacy is still developing.362

While subject count remains low, true deidentification remains difficult, requiring, at a minimum,363

consented data releases.364
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A Supplementary Material563

A.1 Dataset Preparation564

We perform minimal preprocessing on datasets. For pretraining, we do not explicitly filter for565

successful trial outcome as done in most neuroscientific analyses (some datasets are released with566

erratic outcomes pre-filtered). Neither do we (beyond what is provided directly in datasets) filter567

for cross-correlated channels or low-firing neurons. We also do not z-score neuronal firing, both for568

simplicity and so as to not remove any potential cross-channel/session information. The one exception569

to this is that neurons with firing < 0.5Hz are removed in the sorted analysis of the O’Doherty RTT570

dataset, to reduce the number of spatial channels below 288. As some datasets report single unit571

activity and some report multi-unit activity, the dynamic range of the input data varied by an order572

of magnitude, with baseline firing rates varying between 0.1Hz to upwards of 50Hz. The authors573

believe additional data curation is likely to improve model quality.574

In total, the max number of pretraining trials or pseudo trials was on the order of 100K trials. Each575

trial lasted up to 2.5s (cropped or chunked if trials were longer), and used all recorded M1 activity,576

and PMd activity if available.577

Decoding targets were either in a standard unit or in z-scores against the dataset mean and standard578

deviation (not a session specific z-score). Standard units of meters/second were primarily used in579

most RTT analysis, except when preparing an RTT/human BCI decoder, which used respective580

z-scores.581

Reaching datasets582

• Neural Latents Benchmark motor datasets (MC_Maze, MC_Maze_small, MC_Maze_med,583

MC_Maze_large, MC_RTT): ∼3.7K trials.584

• Churchland et al., obstacle-guided (maze) reaching, 2 monkeys, 9 sessions / ∼20K trials.585

• Nir-Even Chen et al., delayed reaching, 2 monkeys, 12 sessions / ∼ 80K trials total.586

• O’Doherty et al., self-paced reaching, 2 monkeys, 47 sessions / ∼40K seconds total.587

Isometric manipulandum datasets588

• Gallego-Carracedo et al., isometric center-out and hold, 2 monkeys, 12 sessions, ∼2.7K589

trials total.590

• Dyer et al., 2 monkeys (same as above), 4 sessions/∼750 trials total.591

Human BCI datasets592

• Human participant data from ongoing clinical trials. Subsetted to 2D cursor control activity,593

either under observation/attempted activity, partial, or full BCI control [Private]. During594

observation, participants observe a programmatically controlled cursors, which e.g. is595

performing center out at a steady pace in a trialized fashion. We take the programmatic596

cursor velocity and apply a boxcar filter of 500ms and use that as our velocity label.597

A.2 Compute and Hyperparameter Tuning598

The full, uncurated logs of all model preparation are available at https://wandb.ai/<REDACTED>.599

Basic hyperparameters600

1. In both pretraining and fine-tuning, we scale batch size (accumulating batches or using601

multi-GPU training when necessary) to be roughly proportional to full dataset so that each602

epoch requires 10-100 steps; we find performance is not too sensitive to batch size within an603

order of magnitude of this heuristic (especially in pretraining).604

2. In pretraining we manually tuned LR to 5e − 4 in initial experiments and hold it fairly605

constant in pretraining. We swept learning rate in our hyperparameter comparisons below.606

3. In pretraining, we use learning rate warm-up for 100 epochs, and decay to ϵ by 2500 epochs.607

This is a high threshold that is typically not reached: training converges within 100-1K608
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epochs for our manually tuned LR. In fine-tuning, we experimented with similar ramping609

schedule but settled on fixed small LR (which are typically grid-searched).610

4. For RTT, we swept and found that a decoding lag of 120ms worked reasonably well. (This611

is similar to reports in [14]. For human BCI, we do not use decoding lag.612

5. For human offline evaluation, we take the best of two evaluation hyperparameter settings:613

10% or 50% masking during target-session tuning. We also report the R2 only for times614

where the intent is non-zero; participants are not typically perfectly zero-intent during the615

majority of non-zero phases (i.e. data are noisy). We do not filter data by putative quality as616

measured by online performance in the experiment in which the data was collected; thus617

our calibration data includes several noisy, incomplete trials as well. Evaluation data are618

restricted to a contiguous set of sessions with non-trivial linear decoding.619

Compute costs We estimate computational costs with respect to data volume, as model size is held620

relatively static (6-12 layers, 128-384 hidden size). Most analysis was run on SLURM clusters. Pilot621

realtime feasibility was assessed on an NVIDIA 1060/2060, where tuning took about 10 minutes and622

loop time was under 20ms.623

1. Fitting datasets on the order of 1K trials typically requires 20m-1hr on 12G 1080/2080-series624

NVIDIA GPUs.625

2. 10K-20K trial datasets require 2-8 32G-V100 hours.626

3. 100K+ datasets require 72 80G-A100 hours.627

A.3 NDT2 Design Notes628

Architectural details. We refer readers to the codebase for full details, but note that NDT2 used629

pre-normalization layers but otherwise leave the Pytorch implementation of the Transformer layers630

untouched.631

HP Sweeps.632

We briefly show that NDT2 achieves higher performances than comparisons when sweeping across633

dropout ([0.1, 0.4]), weight decay ([1e − 3, 5e − 2], and hidden size (128, 256). NDT2 does have634

higher variance, but the main sensitivity is to dropout. We run this sweep and test evaluation in one635

training stage, Our base NDT2 uses dropout 0.1, hidden size 256, weight decay 1e− 2. In the code,636

this experiment is configured in exp/arch/tune_hp, exp/arch/tune_hp_unsort.637

A.3.1 Mask Ratio.638

We do not widely explore mask ratios due to compute constraints. In pilots throughout, we do not find639

that decoding is too sensitive to mask ratio (e.g. Fig. 7), but reconstruction quality is hard to compare640

as the inference problem depends on the masking ratio itself. The reasonable effectiveness of high641

mask ratios is consistent with general observations of low dimensionality and high redundancy in the642

code, compared to say, language [63].643

A.3.2 Patch Size.644

In early experiments we explored patch size but quickly found a tradeoff. Smaller patch sizes do645

appear to incrementally improve neural data models, but are both more expensive computationally (to646

train) and statistically (to learn decoders off of). We show this in Fig. 8. Note how the unsupervised647

NLL is similar or better with smaller patches, but decoding is dramatically worse, regardless of648

whether we mean pool across the population’s tokens at each timestep (the default) or not. Smaller649

patches may be worth revisiting if we have a high amount of supervised data to learn a decoder with;650

this will likely be an empirical decision.651

A.4 Additional exploratory experiments652

Stitching design Our stitching implementation randomly intializes a linear readin and readout linear653

layer. For ease of implementation, we stitch at the output of the network encoder rather than the654

output of the decoder (the linear-exponential readout layer comes after per-context stitch layer). In655
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Figure 6. Sweeps for regularization parameters. NDT2 requires lower dropout.

Figure 7. Mask ratios over 5 datasets. At test time, the given ratio is held out during evaluation.
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Figure 8. 32-neuron patches compared against 8-neuron patches.

unreported pilots, we find stitching into compressed dimensions (e.g. half of readin channels) to656

reduce the context-specific parameter count, or only including stitching at the readin or readout made657

no significant difference.658

Kinematic decoder design There are three straightforward strategies for building a kinematic decoder659

with NDT2. In keeping with NLB, we could learn a linear probe on representations at each timestep,660

or we could use a thin Transformer decoder to allow information from multiple timesteps to aid the661

prediction. We experimented with both and chose the latter for minor gains. For simplicity, we run662

the Transformer decoder in one forward pass for all timesteps, i.e. there is no autoregressive feedback663

of previous kinematic estimates. We find that cross-attention for decoding queries slightly edges out664

in-context attention on the higher ends of the pretraining data scales we explore (e.g. 100K), and665

report with that setting. The primary difference is that cross-attention restricts neural data tokens from666

attending to the kinematic query tokens, while in-context strategies do not distinguish the two. For667

decoding probes, where the decoder is prepared on only a few hundred trials, we find it beneficial to668

mean-pool neural data tokens per timestep, and still use in-context attention (linear decoding directly669

works similarly).670

A.5 Single-session breakdown of experimental results671

Single-session variability We break open the aggregate results from our primary result figures. The672

primary takeaways are elaborated in each caption. Overall, we note that single datasets are insufficient673

to make conclusions on design choices given variability in results.674
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Figure 9. We breakout Fig. 2 into individual datasets (points indicate means on 3 seeds). NDT2 shows consistent
improvements over stitching, single session baselines, and rEFH (in most cases), but the ranking between data
sources shifts, particularly for decoding scores.
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Figure 10. Session context tokens improve learning, as measured by unsupervised loss in model training curves,
though the majority of benefit of realized with 1 token. We compare this for three data scales, annotated by S,
where we scale the number of trials available per session. (The increments were 100%, 25%, and 6.25% of the
data). We hypothesized that more data per session would make session tokens less relevant, but the primary
effect of increasing convergence appears unchanged at these scales.
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Figure 11. Individual dataset results for three scaling analyses. We presented the largest middle session in
the primary text, here we also show results on the first and final sessions in the dataset. The unsupervised and
supervised transfer scaling reiterate the previous conclusions: cross-subject and task transfer provides low returns
on scaling for unsupervised reconstruction, and decoding results are much more optimistic than unsupervised
results. For convergence analysis (Pretrain-positive regimes), all three trend lines suggest convergence beyond
1K trials.

Figure 12. The same breakout as above for pretrained decoder tuning. Again, we find that decoder tuning
reliably outperforms non-adaptive decoders.
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