
Generalized Bayesian Inference for Scientific
Simulators via Amortized Cost Estimation

Richard Gao*1,2

r.dg.gao@gmail.com
Michael Deistler*1,2

michael.deistler@uni-tuebingen.de

Jakob H. Macke1,2,3

jakob.macke@uni-tuebingen.de

1Machine Learning in Science, Excellence Cluster Machine Learning, University of Tübingen
2Tübingen AI Center

3Department Empirical Inference, Max Planck Institute for Intelligent Systems
Tübingen, Germany

*Equal contributions.

Abstract

Simulation-based inference (SBI) enables amortized Bayesian inference for sim-
ulators with implicit likelihoods. But when we are primarily interested in the
quality of predictive simulations, or when the model cannot exactly reproduce
the observed data (i.e., is misspecified), targeting the Bayesian posterior may be
overly restrictive. Generalized Bayesian Inference (GBI) aims to robustify infer-
ence for (misspecified) simulator models, replacing the likelihood-function with a
cost function that evaluates the goodness of parameters relative to data. However,
GBI methods generally require running multiple simulations to estimate the cost
function at each parameter value during inference, making the approach compu-
tationally infeasible for even moderately complex simulators. Here, we propose
amortized cost estimation (ACE) for GBI to address this challenge: We train a
neural network to approximate the cost function, which we define as the expected
distance between simulations produced by a parameter and observed data. The
trained network can then be used with MCMC to infer GBI posteriors for any obser-
vation without running additional simulations. We show that, on several benchmark
tasks, ACE accurately predicts cost and provides predictive simulations that are
closer to synthetic observations than other SBI methods, especially for misspecified
simulators. Finally, we apply ACE to infer parameters of the Hodgkin-Huxley
model given real intracellular recordings from the Allen Cell Types Database. ACE
identifies better data-matching parameters while being an order of magnitude more
simulation-efficient than a standard SBI method. In summary, ACE combines the
strengths of SBI methods and GBI to perform robust and simulation-amortized
inference for scientific simulators.

1 Introduction

Mechanistic models expressed as computer simulators are used in a wide range of scientific domains,
from astronomy, geophysics, to neurobiology. The parameters of the simulator, θ, encode mechanisms
of interest, and simulating different parameter values produces different outputs, i.e., sim(θi)→ xi,
where each model-simulation xi can be compared to experimentally observed data, xo. Using such
simulators, we can quantitatively reason about the contribution of mechanisms behind experimental

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

measurements. But to do so, a key objective is often to find all those parameter values that can
produce simulations consistent with observed data.

One fruitful approach towards this goal is simulation-based inference (SBI) [1], which makes it
possible to perform Bayesian inference on such models by interpreting simulator outputs as samples
from an implicit likelihood [2], x ∼ p(x|θ). Standard Bayesian inference targets the parameter
posterior distribution given observed data, i.e., p(θ|xo) = p(xo|θ)p(θ)

p(xo)
, where p(θ) captures prior

knowledge and constraints over model parameters, and the likelihood function p(xo|θ) is evaluated
as a function of θ for a fixed xo. SBI methods can differ in whether they aim to approximate the
likelihood [3, 4, 5, 6] or the posterior directly [7, 8, 9], and can be amortized, i.e., do not require
new simulations and retraining for new data [10, 11]. In the end, each method provides samples
from the posterior, which are all, in theory, capable of producing simulations that are identical to
the observation we condition on. Furthermore, by definition, the posterior probability of drawing a
sample scales as the product of its prior probability and, critically, the likelihood that this sample can
produce a simulation that is exactly equal to the observation.

However, targeting the exact posterior may be overly restrictive. In many inference scenarios,
modelers are primarily interested in obtaining a diverse collection of parameter values that can
explain the observed data. This desire is also reflected in the common usage of posterior predictive
checks, where seeing predictive simulations that resemble the data closely (in some specific aspects)
is used to gauge the success of the inference process. In particular, it is often clear that the scientific
model is only a coarse approximation to the data-generating process, and in some cases even cannot
generate data-matching simulations, i.e., is misspecified [12]. For example, in the life-sciences, it is
not uncommon to use idealized, theoretically motivated models with few parameters, and it would be
unrealistic to expect that they precisely capture observations of highly complex biological systems. In
such cases, or in cases where the model is fully deterministic, it is nonsensical to use the probability
of exactly reproducing the data. In contrast, it would still be useful to find parameter values that
produce simulations which are ‘close enough’, or as close as possible to the data. Therefore, instead
of sampling parameters according to how often they produce simulations that match the data exactly,
many use cases call for sampling parameters according to how closely their corresponding simulations
reproduce the observed data.

Figure 1: Estimating cost from simulations.
Using the expected distance between simulated
and target data as the cost function, GBI assigns
high probability to parameter values that, on av-
erage, produce simulations that are close—but
not necessarily equal—to the observation.

Generalized Bayesian Inference (GBI) [13] of-
fers a principled way to do so by replacing the
(log) likelihood function with a cost function that
simply scores a parameter given an observation,
such as the expected distance between xo and all
possible simulations x produced by θi (Fig. 1).
Several recent works have leveraged this frame-
work to perform inference for models with implicit
or intractable likelihoods, especially to tackle
model misspecification: Matsubara et al. [14] use
a Stein Discrepancy as the cost function (which
requires the evaluation of an unnormalized likeli-
hood and multiple i.i.d. data samples), and Cherief-
Abdellatif et al. and Dellaporta et al. [15, 16] use
simulator samples to estimate maximum mean
discrepancy and directly optimize over this cost
function via stochastic gradient descent (which
requires a differentiable simulator). More broadly, cost functions such as scoring rule estimators
have been used to generalize approximate Bayesian computation (ABC) [17] and synthetic likelihood
approaches [3, 18], where the Monte Carlo estimate requires (multiple) simulations from p(x|θ).
Thus, existing GBI approaches for SBI either require many simulations to be run during MCMC
sampling of the posterior (similar to classical ABC methods), or are limited to differentiable simula-
tors. Moreover, performing inference for new observations requires re-running simulations, rendering
such methods simulation-inefficient and expensive at inference-time, and ultimately impractical for
scientific simulators with even moderate computational burden.

We here propose to perform GBI for scientific simulators with amortized cost estimation (ACE),
which inherits the flexibility of GBI but amortizes the overhead of simulations by training a neural

2

network to predict the cost function for any parameter-observation pair. We first outline the GBI
formalism in Sec. 2, then introduce ACE in Sec. 3. In Sec. 4, we show that ACE provides GBI
posterior predictive simulations that are close to synthetic observations for a variety of benchmark
tasks, especially when the simulator is misspecified. We showcase its real-world applicability in
Sec. 5: using experimental data from the Allen Cell Types Database, ACE successfully infers
parameters of the Hodgkin-Huxley single-neuron simulator with superior predictive performance
and an order of magnitude higher simulation efficiency compared to neural posterior estimation [10].
Finally, we discuss benefits and limitations of GBI and ACE, and related work (Sec. 6).

2 Background

To construct the GBI posterior, the likelihood, p(xo|θ), is replaced by a ‘generalized likelihood
function’, L(θ;xo), which does not need to be a probabilistic model of the data-generating process,
as long as it can be evaluated for any pair of θ and xo. Following the convention in Bissiri et al. [13],
we define L(θ;xo) ≡ e−βℓ(θ;xo), where ℓ(θ;xo) is a cost function that encodes the quality of θ
relative to an observation xo, and β is a scalar inverse temperature hyperparameter that controls how
much the posterior weighs the cost relative to the prior. Thus, the GBI posterior can be written as

p(θ|xo) ∝ e−βℓ(θ;xo)p(θ). (1)

As noted previously [13], if we define ℓ(θ;xo) ≡ − log p(xo|θ) (i.e., self-information) and β = 1,
then we recover the standard Bayesian posterior, and "tempered" or "power" posterior for β ̸= 1
[19, 20]. The advantage of GBI is that, instead of adhering strictly to the (implicit) likelihood, the
user is allowed to choose arbitrary cost functions to rate the goodness of θ relative to an observation
xo, which is particularly useful when the simulator is misspecified. Previous works have referred to
ℓ(θ;xo) as risk function [21], loss function [13], or (proper) scoring rules when they satisfy certain
properties [22, 18] (further discussed in Section 6.1). Here we adopt ‘cost’ to avoid overloading the
terms ‘loss’ and ‘score’ in the deep learning context.

3 Amortized Cost Estimation for GBI

3.1 Estimating cost function with neural networks

In this work, we consider cost functions that can be written as an expectation over the likelihood:

ℓ(θ;xo) ≡ Ep(x|θ)[d(x,xo)] =

∫
x

d(x,xo)p(x|θ)dx. (2)

Many popular cost functions and scoring rules can be written in this form, including the average
mean-squared error (MSE) [13], the maximum mean discrepancy (MMD2) [23], and the energy score
(ES) [22] (details in Appendix A2). While ℓ(θ;xo) can be estimated via Monte Carlo sampling, doing
so in an SBI setting is simulation-inefficient and time-intensive, since the inference procedure must be
repeated for every observation xo, and simulations must be run in real-time during MCMC sampling
of the posterior. Furthermore, this does not take advantage of the structure in parameter-space or
data-space around neighboring points that have been simulated.

We propose to overcome these limitations by training a regression neural network (NN) to learn
ℓ(θ;xo). Our first insight is that cost functions of the form of Eq. 2 can be estimated from a dataset
consisting of pairs of parameters and outputs—in particular, from a single simulation run per θ for
MSE, and finitely many simulation runs for MMD2 and ES. We leverage the well-known property
that NN regression converges to the conditional expectation of the data labels given the data: If we
compute the distances d(x,xo) between a single observation xo and every x in our dataset, then
a neural network fϕ(·) trained to predict the distances given parameters θ will denoise the noisy
distance labels d(x,xo) and converge onto the desired cost fϕ(θ)→ ℓ(θ;xo) = Ep(x|θ)[d(x,xo)],
approximating the cost of any θ relative to xo (see Appendix A3.1 for formal statement and proof).

3.2 Amortizing over observations

As outlined above, a regression NN will converge onto the cost function ℓ(θ;xo) for a particular
observation xo. However, naively applying this procedure would require retraining of the network

3

for any new observation xo, which prevents application of this method in time-critical or high-
throughput scenarios. We therefore propose to amortize cost estimation over a target distribution
p(xt). Specifically, a NN which receives as input a parameter θ and an independently sampled target
datapoint xt will converge to ℓ(θ;xt) for all xt on the support of the target distribution (Fig. 2a,b),
enabling estimation of the cost function for any pair of (θ,xt) (see Appendix A3.2 for formal
statement and proof).

Naturally, we use the already simulated x ∼ p(x) as target data during training, and therefore do not
require further simulations. In order to have good accuracy on potentially misspecified observations,
however, such datapoints should be within the support of the target distribution. Thus, in practice,
we augment this target dataset with noisy simulations to broaden the support of p(xt). Furthermore,
if the set of observations (i.e., real data) is known upfront, they can also be appended to the target
dataset during training. Lastly, to keep training efficient and avoid quadratic scaling in the number of
simulations, we randomly subsample a small number of xt per θ in each training epoch (2 in our
experiments), thus ensuring linear scaling as a function of simulation budget. Fig. 2a,b summarizes
dataset construction and network training for ACE (details in Appendix A4.1).

3.3 Sampling from the generalized posterior

Given a trained cost estimation network fϕ(·, ·), an observed datapoint xo, and a user-selected inverse
temperature β, the generalized posterior probability (Eq. 1) can be computed up to proportionality
for any θ: p(θ|xo) ∝ exp(−β · fϕ(θ,xo))p(θ) and, thus, this term can be sampled with MCMC
(Fig. 2c). The entire algorithm is summarized in Algorithm 1.

Algorithm 1: Generalized Bayesian Inference with Amortized Cost Estimation (ACE)

Inputs: prior p(θ), simulator with implicit likelihood p(x|θ), number of simulations N ,
feedforward NN fϕ with parameters ϕ, NN learning rate η, distance function d(·, ·), noise level
σ, number of noise-augmented samples S, inverse temperature β, number of target datapoints
per θ Ntarget, K observations x(1,...,K)

o .
Outputs: M samples from generalized posteriors given K observations.

Generate dataset:
sample prior and simulate: θ,x← {θi ∼ p(θ),xi ∼ p(x|θi)}i:1...N
add noise and concatenate: xtarget = [x, x1...S + ϵ, xo], ϵ ∼ N (0, σ2I)

Training:
while not converged do

for (θ,x) in batch do
xused
t ← sample Ntarget datapoints from xtarget

for xt in xused
t do

L ← L+ (fϕ(θ,xt)− d(x,xt))
2

ϕ← ϕ− η · Adam(∇ϕL) ; // and reset L to zero

Sampling:
for k ∈ [1, ...,K] do

Draw M samples, with MCMC, from: exp(−β · fϕ(θ,x(k)
o)) p(θ)

3.4 Considerations for choosing the value of β

We note that the choice of value for β is an important decision, though this is an issue not only for
ACE but GBI methods in general [13]. A good “baseline" value for β is such that the average distance
across a subset of the training data is scaled to be in the same range as the (log) prior probability, both
of which can be computed on prior simulations. From there, increasing β sacrifices sample diversity
for predictive distance, and as β approaches infinity, posterior samples converge onto the minimizer
of the cost function. In practice, we recommend experimenting with a range of (roughly) log-spaced
values since, as we show below, predictive sample quality tend to improve with increasing β.

4

Figure 2: Schematic of dataset construction, network training, and inference. (a-b) The neural
network is trained to predict the distance between pairs of x (red) and xt (green), as a noisy sample
of the cost function (i.e., expected distance) evaluated on θ (grey) and xt. (c) At inference time,
the trained ACE network predicts the cost for any parameter θ given observation xo (top row),
which is used to evaluate the GBI posterior under different β (bottom row, darker for larger β) for
MCMC sampling without running additional simulations. The distance is well-defined and can be
approximated even when the simulator is misspecified (dashed lines).

4 Benchmark experiments

4.1 Experiment setup

Tasks We first evaluated ACE on four benchmark tasks (modified from Lueckmann et al. [24]) with
a variety of parameter- and data-dimensionality, as well as choice of distance measure: (1) Uniform
1D: 1D θ and x, the simulator implements an even polynomial with uniform noise likelihood, uniform
prior (Fig. 2c); (2) 2 Moons: 2D θ and x, simulator produces a half-circle with constant mean radius
and radially uniform noise of constant width, translated as a function of θ, uniform prior; (3) Linear
Gaussian: 10D θ and x, Gaussian model with mean θ and fixed covariance, Gaussian prior; (4)
Gaussian Mixture: 2D θ and x, simulator returns five i.i.d. samples from a mixture of two Gaussians,
both with mean θ, and fixed covariances, one with broader covariance than the other, uniform prior.

For the first three tasks, we use the mean-squared error between simulation and observation as the
distance function. For the Gaussian Mixture task, we use maximum mean discrepancy (MMD2)
to measure the statistical distance between two sets of five i.i.d. samples. Importantly, for each of
the four tasks, we can compute the integral in Eq. 2 either analytically or accurately capture it with
quadrature over x. Hence, we obtain the true cost ℓ(θ;xo) and subsequently the ‘ground-truth’ GBI
posterior (with Eq. 1), and use that to draw, for each value of β and xo, 5000 samples (GT-GBI, black
in Fig. 3). See Appendix A4.2 for more detailed descriptions of tasks and distance functions.

Training data For each task, we simulate 10,000 pairs of (θ,x) and construct the target dataset
as in Fig. 2a, with 100 additional noise-augmented targets and 20 synthetic observations—10 well-
specified and 10 misspecified—for a total of 10120 xt data points. Well-specified observations are
additional prior predictive samples, while misspecified observations are created by moving prior
predictive samples outside the boundaries defined by the minimum and maximum of 100,000 prior
predictive simulations (e.g., by successively adding Gaussian noise). See Appendix A4.3 for details.

Test data To evaluate inference performance, we use ACE to sample approximate GBI posteriors
conditioned on 40 different synthetic observations, 20 of which were included in the target dataset xt,
and 10 additional well-specified and misspecified observations which were not included in the target
dataset. We emphasize that including observations in the target data is not a case of test data leakage,
but represents a real use case where some experimental data which one wants to perform inference on
are already available, while the network should also be amortized for unseen observations measured
after training. Nevertheless, we report in Fig. 3 results for ‘unseen’ observations, i.e., not in the target
dataset. Results are almost identical for those that were in the target dataset (Appendix A1). We drew
5000 posterior samples per observation, for 3 different β values for each task.

Metrics We are primarily interested in two aspects of performance: approximate posterior pre-
dictive distance and cost estimation accuracy. First, as motivated above, we want to find parameter

5

Figure 3: Performance on benchmark tasks. ACE obtains posterior samples with low average
distance to observations, and accurately estimates cost function. Rows: results for each task.
Columns: average predictive distance compared to SBI methods and GT (1st and 2nd), cost estimation
accuracy evaluated on ACE posterior samples for different β (lighter blue shades are lower values of
β) (3rd), and C2ST accuracy relative to GT GBI posterior (4th, lower is better).

configurations which produce simulations that are as close as possible to the observation, as mea-
sured by the task-specific distance function. Therefore, we simulate using each of the 5000 ACE
GBI posterior samples, and compute the average distance between predictive simulations and the
observation. Mean and standard deviation are shown for well-specified and misspecified observations
separately below (Fig. 3, 1st and 2nd columns). Second, we want to confirm that ACE accurately
approximates ℓ(θ;xo), which is a prerequisite for correctly inferring the GBI posterior. Therefore,
we compare the ACE-predicted and true cost across 5000 samples from each GBI posterior, as well
as the classifier 2-sample test (C2ST, [25, 24]) score between the ACE approximate and ground-truth
GBI posterior (Fig. 3, 3rd and 4th columns). Note that cost estimation accuracy can be evaluated for
parameter values sampled in any way (e.g., from the prior), but here we evaluate accuracy as samples
become more concentrated around good parameter values, i.e., from GBI posteriors with increasing
β. We expect that these tasks become increasingly challenging with higher values of β, since these
settings require the cost estimation network to be highly accurate in tiny regions of parameter-space.

Other algorithms As a comparison against SBI methods that target the standard Bayesian posterior
(but which nevertheless might produce good predictive samples), we also tested approximate Bayesian
computation (ABC), neural posterior estimation (NPE, [7]), and neural likelihood estimation (NLE,
[4, 26]) on the same tasks. NPE and NLE were trained on the same 10,000 simulations, and 5000
approximate posterior samples were obtained for each xo. We used the amortized (single-round)
variants of both as a fair comparison against ACE. Additionally, to rule out the possibility that ACE
is simply benefiting from the additional inverse temperature hyperparameter, we implemented a
"tempered" version of NLE by scaling the NLE-approximated log-likelihood term (by the same
βs) during MCMC sampling. For ABC, we used the 10,000 training samples as a reference set,
from which 50 were drawn as posterior samples with probability scaling inversely with the distance
between their corresponding simulation and the observation, i.e., ABC with acceptance kernel [27].

6

4.2 Benchmark results

Overall, we see that for well-specified xo (i.e., observations for which the simulator is well-specified),
ACE obtains GBI posterior samples that achieve low average posterior predictive simulation distance
across all four tasks, especially at high values of β (Fig. 3, 1st column). In comparison, ABC is
worse for the Linear Gaussian task (which has a higher parameter dimensionality than all other tasks),
whereas NPE, NLE, and tempered NLE achieve similarly low posterior predictive distances.

On misspecified observations, across all tasks and simulation-budgets (with the exception of Gaussian
mixture on 10k simulations) we see that ACE achieves lower or equally low average posterior
predictive simulation distance as neural SBI methods, even at moderate values of β (Fig. 3, 2nd
column, Figs. A4, A5). This is in line with our intuition that ACE returns a valid and accurate cost
even if the simulator is incapable of producing data anywhere near the observation, while Bayesian
likelihood and posterior probabilities estimated by NLE and NPE are in these cases nonsensical
[28, 29, 30, 31]. Furthermore, simply concentrating the approximate Bayesian posterior via tempering
does not lead to more competitive performance than ACE on such misspecified observations, and
is sometimes even detrimental (e.g., tempered NLE at high β on Uniform 1D and Linear Gaussian
tasks). Therefore, we see that ACE can perform valid inference for a broad range of simulators,
obtaining a distribution of posterior samples with predictive simulations close to observations, and is
automatically robust against model-misspecification as a result of directly targeting the cost function.

For both well-specified and misspecified observations, ACE-GBI samples achieve posterior predictive
distance very close to ground-truth (GT)-GBI samples, at all values of β (Fig. 3, 1st and 2nd column),
suggesting that ACE is able to accurately predict the expected distance. Indeed, especially for low to
moderate values of β, the ACE-predicted cost closely matches the true cost (Fig. 3, 3rd column, light
blue for well-specified xo, Fig. A2 for misspecified). For higher values of β, ACE-predicted cost is
still similar to true cost, although the error is, as expected, larger for very large β (Fig. 3, 3rd column,
dark blue).

As a result, highly concentrated generalized posteriors are estimated with larger (relative) discrepan-
cies, which is reflected in the classifier 2-sample score (C2ST) between ACE and GT GBI posteriors
(Fig. 3, 4th column): ACE posterior samples are indistinguishable from GT samples at low β, even for
the 10D Linear Gaussian task, but becomes less accurate with increasing β. Nevertheless, predictive
simulation distance dramatically increases with β even when ACE is less accurate, suggesting that
sampling to explicitly minimize a cost function which targets parameters with data-similar simula-
tions is a productive goal. Relative performance results across algorithms are qualitatively similar
when using a training simulation budget of 200 (Fig. A4) and 1000 (Fig. A5), but ABC required a
sufficiently high simulation budget and performed poorly for 1000 training simulations or less.

5 Hodgkin-Huxley inference from Allen Cell Types Database recordings

Finally, we applied ACE to a commonly used scientific simulator and real data: we used a single-
compartment Hodgkin-Huxley (HH) simulator from neuroscience and aimed to infer eight parameters
of the simulator given electrophysiological recordings from the Allen Cell Types Database [32, 33, 34].
While this simulator can generate a broad range of voltage traces, it is still a crude approximation
to real neurons: it models only a subset of ion channels, it ignores the spatial structure of neurons,
and it ignores many intracellular mechanisms [35]. It has been demonstrated that parameters of
the HH-model given synthetic recordings can be efficiently estimated with standard NPE [10], but
estimating parameters given experimental recordings has been challenging [36] and has required
ad-hoc changes to the inference procedure (e.g., Bernaerts et al. [37] added noise to the summary
statistics, and Gonçalves et al. [10] used a custom multi-round scheme with a particular choice of
density estimator). We will demonstrate that ACE can successfully perform simulation-amortized
inference given experimental recordings from the Allen Cell Types Database (Fig. 4a).

We trained NPE and ACE given 100K prior-sampled simulations (details in Appendix A4.4). After
training, ACE accurately predicts the true cost of parameters given experimental observations (Fig. 4b).
We then used slice sampling to draw samples from the GBI posterior for three different values of
β = {25, 50, 100} and for ten observations from the Allen Cell Types Database. Interestingly,
the marginal distributions between NPE and ACE posteriors are very similar, especially for rather
low values of β (Fig. 4c, cornerplot in Appendix Fig. A7). The quality of posterior predictive
samples, however, strongly differs between NPE and ACE: across the ten observations from the Allen

7

Figure 4: Applicaton of ACE to Allen data. (a) Three observations from the Allen Cell Types
Database. (b) True cost (evaluated as Monte-Carlo average over 10 simulations) per θ vs ACE-
predicted cost. Colors are different observations. (c) Marginals of posterior distributions for NPE
(orange) and ACE (shades of blue. Light blue: β = 25, medium blue: β = 50, dark blue: β = 100).
(d) Top: Two GBI predictive samples for each observation. Bottom: Two NPE predictive samples.
Additional samples in Appendix A8-A11. (e) Average predictive distance to observation for NPE and
ACE with β = {25, 50, 100}.

Cell Types database, only 35.6% of NPE posterior predictives produced more than five spikes (all
observations have at least 12 spikes), whereas the ACE posterior predictives closely match the data,
even for low values of β (Fig. 4d, samples for all observations and all β values in Figs. A8,A9,A10
and for NPE in Fig. A11. 66% (β = 25), 87% (β = 50), 96% (β = 100) of samples have more than
five spikes). Indeed, across all ten observations, the average posterior predictive distance of ACE
was significantly smaller than that of NPE, and for large values of β the distance is even less than
half (Fig. 4e). Finally, for rejection-ABC, only the top 35 samples (out of the full training budget of
100K simulations) had a distance that is less than the average posterior predictive distance achieved
by ACE.

To investigate these differences between NPE and ACE, we also evaluated NPE posterior predictive
performance on synthetic data (prior predictives) and found that it had an average predictive distance
of 0.189, which roughly matches the performance of ACE on the experimental observations (0.174 for
β=50). This suggest that, in line with previous results [37], NPE indeed struggles with experimental
observations, for which the simulator is inevitably imperfect. We then trained NPE with 10 times
more simulations (1M in total). With this increased simulation budget, NPE performed significantly
better than with 100K simulations, but still produced poorer predictive samples than ACE trained
with 100K simulations (for β = {50, 100}), although the marginals were similar between NPE (1M)
and ACE (100K) (Fig. A6, samples for all observations in Appendix Fig. A12).

Overall, these results demonstrate that ACE can successfully be applied to real-world simulators on
which vanilla NPE fails. On the Hodgkin-Huxley simulator, ACE generates samples with improved
predictive accuracy despite an order of magnitude fewer simulations and despite the marginal
distributions being similar to those of NPE.

6 Discussion

We presented ACE, a method to perform distance-aware inference for scientific simulators within the
Generalized Bayesian Inference (GBI) framework. Contrary to ‘standard’ simulation-based inference
(SBI), our method does not target the Bayesian posterior, but replaces the likelihood function with a
cost function. For real-world simulators, doing so can provide practical advantages over standard
Bayesian inference:

8

First, the likelihood function quantifies the probability that a parameter generates data which exactly
matches the data. However, in cases where the model is a rather crude approximation to the real
system being studied, scientists might well want to include parameters that can generate data that
is sufficiently close (but not necessarily identical) in subsequent analyses. Our method makes this
possible, and is advantageous over other GBI-based methods since it is amortized over observations
and the inverse temperature β. Second, many simulators are formulated as noise-free models, and
it can be hard to define appropriate stochastic extensions (e.g., [38]). In these cases, the likelihood
function is ill-defined and, in practice, this setting would require ‘standard’ SBI methods, whose
density estimators are generally built to model continuous distributions, to model discrete jumps
in the posterior density. In contrast, our method can systematically and easily deal with noise-free
simulators, and in such situations more closely resembles parameter-fitting algorithms. Lastly,
standard Bayesian inference is challenging when the model is misspecified, and the performance of
neural network-based SBI methods can suffer drastically in this scenario [30].

6.1 Related work

GBI for Approximate Bayesian Computation Several studies have proposed methods that perform
GBI on simulators with either an implicit (i.e., simulation-based) likelihood or an unnormalized
likelihood. Wilkinson et al. [39] argued that rejection-ABC performs exact inference for a modified
model (namely, one that appends an additive uniform error) instead of approximate inference for
the original model. Furthermore, ABC with arbitrary probabilistic acceptance kernels can also be
interpreted as having different error models, and Schmon et al. [17] integrate this view to introduce
generalized posteriors for ABC, allowing the user to replace the hard-threshold kernel (i.e., ϵ-ball
of acceptance) with an arbitrary loss function that measures the discrepancy between x and xo for
MCMC-sampling of the approximate generalized posterior.

Other recent GBI methods require a differentiable simulator [16, 15] or build tractable cost functions
that can be sampled with MCMC [14, 18], but this still requires running simulations at inference
time (i.e., during MCMC) and does not amortize the cost of simulations and does not reuse already
simulated datapoints.

Finally, Bayesian Optimization for Likelihood-free Inference (BOLFI, [40]) and error-guided LFI-
MCMC [41] are not cast as generalized Bayesian inference approaches, but are related to ACE.
Similarly as in ACE, they train models (for BOLFI, a Gaussian process and, for error-guided LFI-
MCMC, a classifier) to estimate the discrepancy between observation and simulation. In BOLFI, the
estimator is then used to iteratively select new locations at which to simulate. However, contrary to
ACE, neither of these two methods amortizes the cost of simulations over observations.

Misspecification-aware SBI Several other methods have been proposed to overcome the problem
of misspecification in SBI: For example, Bernaerts et al. [37] add noise to the summary statistics
in the training data, Ward et al. [42] use MCMC to make the misspecified data well-specified, and
Kelly et al. [43] introduce auxiliary variables to shift the (misspecified) observation towards being
well-specified. All of these methods, however, maintain that the inference result should be an ‘as close
as possible’ version of the posterior distribution. Contrary to that, our method does not aim to obtain
the Bayesian posterior distribution (which, for misspecified models, can often be nonsensical or even
undefined if the evidence is zero), but is specifically targeted towards parameter regions that are a
specified distance from the observation. More broadly, recent advances in uncertainty quantification
in deep neural networks, where standard mean-predicting regression networks are supplemented with
a uncertainty- or variance-predicting network [44, 45], may serve to further connect loss-minimizing
deep learning with (misspecification-aware) SBI.

6.2 Limitations

While our method amortizes the cost of simulations and of training, it still requires another method to
sample from the posterior distribution. We used multi-chain slice-sampling [46] for efficiency, but
any other MCMC algorithm, as well as variational inference, could also be employed [47, 48]. While
sampling incurs an additional cost, this cost is generally small in comparison to potentially expensive
simulations.

9

In addition, our method can perform inference for distance functions which can be written as
expectations over the likelihood. As we demonstrated, this applies to many popular and widely used
distances. Our method can, however, not be applied to arbitrary distance functions (e.g., the minimum
distance between all simulator samples and the observation). While the distances we investigated
here are certainly useful to practioners, they do not necessarily fulfill the criterion of being ‘proper’
scoring rules [22, 18]. Furthermore, we note that the cost functions considered here by default give
rise to unnormalized generalized likelihoods. Therefore, depending on whether the user aims to
approximate the generalized posterior given the normalized or unnormalized likelihood, different
MCMC schemes should be used in conjunction with ACE (standard MCMC vs. doubly-intractable
MCMC, e.g., the Exchange algorithm [49]).

Compared to ‘standard’ SBI, GBI introduces an additional hyperparameter to the inference procedure,
the inverse temperature β. This hyperparameter has to be set by the user and its choice strongly
affects inference behaviour: low values of β will include regions of parameter-space whose data do
not necessarily match the observation closely, whereas high values of β constrain the parameters to
only the best-fitting parameter values. While we provide heuristics for selecting β, we acknowledge
the inconvenience of an additional hyperparameter. However, our method is amortized over β, which
makes exploration of different β values possible, and which could simplify automated methods for
setting β, similar to works where β is taken as the exponent of the likelihood function [50].

Finally, as with any method leveraging deep neural networks, including neural density estimator-based
SBI methods (such as NPE), sensitivity to the number of training samples and the dimensionality
of the task should always be considered. As we demonstrate above, increasing simulation budget
improves the performance of any algorithm, and a reasonable number of training simulations yielded
improved performance on a real-world neuroscience application, while the amortization property
shifts the cost of simulations up front. In addition, we consider tasks up to 10 dimensions here, as
most existing SBI methods have been benchmarked and shown to perform adequately on such tasks
[24], though it remains to be seen how ACE can extend to higher dimensional parameter-space and
data-space and whether embedding networks will be similarly helpful.

7 Conclusion

We presented a method that performs generalized Bayesian inference with amortized cost estimation.
Our method produces good predictive samples on several benchmark tasks, especially in the case
of misspecified observations, and we showed that it allows amortized parameter estimation of
Hodgkin-Huxley models given experimental recordings from the Allen Cell Types Database.

8 Acknowledgements

RG is supported by the European Union’s Horizon 2020 research and innovation program under
the Marie Skłodowska-Curie grant agreement No. 101030918 (AutoMIND). MD is supported by
the International Max Planck Research School for Intelligent Systems (IMPRS-IS). The authors are
funded by the Machine Learning Cluster of Excellence, EXC number 2064/1–390727645. This work
was supported by the Tübingen AI Center (Agile Research Funds), the German Federal Ministry of
Education and Research (BMBF): Tübingen AI Center, FKZ: 01IS18039A, and the German Research
Foundation (DFG): SFB 1233, Robust Vision: Inference Principles and Neural Mechanisms, project
number: 276693517.

We would like to thank Jan Boelts, Janne Lappalainen, and Auguste Schulz for feedback on the
manuscript, Julius Vetter for feedback and discussion on proper scoring rules, Poornima Ramesh and
Mackelab members for extensive discussions throughout the project, as well as Francois-Xavier Briol
for suggestions on sampling doubly-intractable posteriors, and the reviewers for their constructive
comments on the readability of the manuscript and suggestions for additional analyses.

10

References
[1] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.

Proceedings of the National Academy of Sciences, 117(48):30055–30062, 2020.

[2] Peter J Diggle and Richard J Gratton. Monte carlo methods of inference for implicit statistical
models. Journal of the Royal Statistical Society. Series B, Statistical methodology, 46(2):193–
227, 1984.

[3] Simon N Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature,
466(7310):1102–1104, 2010.

[4] George Papamakarios, David Sterratt, and Iain Murray. Sequential neural likelihood: Fast
likelihood-free inference with autoregressive flows. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 837–848. PMLR, 2019.

[5] Joeri Hermans, Volodimir Begy, and Gilles Louppe. Likelihood-free mcmc with amortized
approximate ratio estimators. In International Conference on Machine Learning, pages 4239–
4248. PMLR, 2020.

[6] Owen Thomas, Ritabrata Dutta, Jukka Corander, Samuel Kaski, and Michael U Gutmann.
Likelihood-free inference by ratio estimation. Bayesian Analysis, 17(1):1–31, 2022.

[7] George Papamakarios and Iain Murray. Fast ε-free inference of simulation models with bayesian
conditional density estimation. Advances in neural information processing systems, 29, 2016.

[8] David Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic posterior transformation
for likelihood-free inference. In International Conference on Machine Learning, pages 2404–
2414. PMLR, 2019.

[9] Katalin Csilléry, Michael GB Blum, Oscar E Gaggiotti, and Olivier François. Approximate
bayesian computation (abc) in practice. Trends in ecology & evolution, 25(7):410–418, 2010.

[10] Pedro J Gonçalves, Jan-Matthis Lueckmann, Michael Deistler, Marcel Nonnenmacher, Kaan
Öcal, Giacomo Bassetto, Chaitanya Chintaluri, William F Podlaski, Sara A Haddad, Tim P
Vogels, et al. Training deep neural density estimators to identify mechanistic models of neural
dynamics. Elife, 9:e56261, 2020.

[11] Stefan T Radev, Ulf K Mertens, Andreas Voss, Lynton Ardizzone, and Ullrich Köthe. Bayesflow:
Learning complex stochastic models with invertible neural networks. IEEE transactions on
neural networks and learning systems, 2020.

[12] Stephen G Walker. Bayesian inference with misspecified models. Journal of statistical planning
and inference, 143(10):1621–1633, October 2013.

[13] Pier Giovanni Bissiri, Chris C Holmes, and Stephen G Walker. A general framework for updating
belief distributions. Journal of the royal statistical society. series b, statistical methodology,
78(5):1103, 2016.

[14] Takuo Matsubara, Jeremias Knoblauch, François-Xavier Briol, Chris Oates, et al. Robust
generalised bayesian inference for intractable likelihoods. arXiv preprint arXiv:2104.07359,
2021.

[15] Badr-Eddine Cherief-Abdellatif and Pierre Alquier. MMD-Bayes: Robust bayesian estimation
via maximum mean discrepancy. In Cheng Zhang, Francisco Ruiz, Thang Bui, Adji Bousso
Dieng, and Dawen Liang, editors, Proceedings of The 2nd Symposium on Advances in Approxi-
mate Bayesian Inference, volume 118 of Proceedings of Machine Learning Research, pages
1–21. PMLR, December 2020.

[16] Charita Dellaporta, Jeremias Knoblauch, Theodoros Damoulas, and François-Xavier Briol.
Robust bayesian inference for simulator-based models via the mmd posterior bootstrap. In
International Conference on Artificial Intelligence and Statistics, pages 943–970. PMLR, 2022.

[17] Sebastian M Schmon, Patrick W Cannon, and Jeremias Knoblauch. Generalized posteriors in
approximate bayesian computation. arXiv preprint arXiv:2011.08644, 2020.

11

[18] Lorenzo Pacchiardi and Ritabrata Dutta. Generalized bayesian likelihood-free inference using
scoring rules estimators. arXiv preprint arXiv:2104.03889, 2021.

[19] Enzo Marinari and Giorgio Parisi. Simulated tempering: A new monte carlo scheme. May
1992.

[20] N Friel and A N Pettitt. Marginal likelihood estimation via power posteriors. Journal of the
Royal Statistical Society. Series B, Statistical methodology, 70(3):589–607, 2008.

[21] Wenxin Jiang and Martin A Tanner. Gibbs posterior for variable selection in High-Dimensional
classification and data mining. Annals of statistics, 36(5):2207–2231, 2008.

[22] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American statistical Association, 102(477):359–378, 2007.

[23] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773,
2012.

[24] Jan-Matthis Lueckmann, Jan Boelts, David Greenberg, Pedro Goncalves, and Jakob Macke.
Benchmarking simulation-based inference. In International Conference on Artificial Intelligence
and Statistics, pages 343–351. PMLR, 2021.

[25] David Lopez-Paz and Maxime Oquab. Revisiting classifier two-sample tests. arXiv preprint
arXiv:1610.06545, 2016.

[26] Jan-Matthis Lueckmann, Giacomo Bassetto, Theofanis Karaletsos, and Jakob H Macke.
Likelihood-free inference with emulator networks. In Symposium on Advances in Approx-
imate Bayesian Inference, pages 32–53. PMLR, 2019.

[27] Scott A Sisson and Yanan Fan. Likelihood-free markov chain monte carlo. arXiv preprint
arXiv:1001.2058, 2010.

[28] Peter Grünwald and John Langford. Suboptimal behavior of bayes and mdl in classification
under misspecification. Machine Learning, 66:119–149, 2007.

[29] Peter Grünwald and Thijs Van Ommen. Inconsistency of bayesian inference for misspecified
linear models, and a proposal for repairing it. Bayesian Analysis, 2017.

[30] Patrick Cannon, Daniel Ward, and Sebastian M Schmon. Investigating the impact of model
misspecification in neural simulation-based inference. arXiv preprint arXiv:2209.01845, 2022.

[31] Daniel Ward, Patrick Cannon, Mark Beaumont, Matteo Fasiolo, and Sebastian Schmon. Robust
neural posterior estimation and statistical model criticism. Advances in Neural Information
Processing Systems, 35:33845–33859, 2022.

[32] Allen Institute for Brain Science. Allen cell types database. http://celltypes.brain-map.org/,
2016.

[33] Corinne Teeter, Ramakrishnan Iyer, Vilas Menon, Nathan Gouwens, David Feng, Jim Berg,
Aaron Szafer, Nicholas Cain, Hongkui Zeng, Michael Hawrylycz, Christof Koch, and Stefan
Mihalas. Generalized leaky integrate-and-fire models classify multiple neuron types. Nature
communications, 9(1):709, February 2018.

[34] Martin Pospischil, Maria Toledo-Rodriguez, Cyril Monier, Zuzanna Piwkowska, Thierry Bal,
Yves Frégnac, Henry Markram, and Alain Destexhe. Minimal hodgkin–huxley type models for
different classes of cortical and thalamic neurons. Biological cybernetics, 99:427–441, 2008.

[35] Romain Brette. What is the most realistic single-compartment model of spike initiation? PLoS
computational biology, 11(4):e1004114, 2015.

[36] Nicholas Tolley, Pedro LC Rodrigues, Alexandre Gramfort, and Stephanie R Jones. Methods
and considerations for estimating parameters in biophysically detailed neural models with
simulation based inference. bioRxiv, pages 2023–04, 2023.

12

[37] Yves Bernaerts, Michael Deistler, Pedro J Goncalves, Jonas Beck, Marcel Stimberg, Federico
Scala, Andreas S Tolias, Jakob H Macke, Dmitry Kobak, and Philipp Berens. Combined
statistical-mechanistic modeling links ion channel genes to physiology of cortical neuron types.
bioRxiv, pages 2023–03, 2023.

[38] Joshua H Goldwyn and Eric Shea-Brown. The what and where of adding channel noise to the
hodgkin-huxley equations. PLoS computational biology, 7(11):e1002247, 2011.

[39] Richard David Wilkinson. Approximate bayesian computation (ABC) gives exact results under
the assumption of model error. Statistical applications in genetics and molecular biology,
12(2):129–141, May 2013.

[40] Michael U Gutmann and Jukka Corander. Bayesian optimization for likelihood-free inference
of simulator-based statistical models. Journal of Machine Learning Research, 2016.

[41] Volodimir Begy and Erich Schikuta. Error-guided likelihood-free MCMC. arXiv, October 2020.

[42] Daniel Ward, Patrick Cannon, Mark Beaumont, Matteo Fasiolo, and Sebastian M Schmon.
Robust neural posterior estimation and statistical model criticism. In Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022.

[43] Ryan P Kelly, David J Nott, David T Frazier, David J Warne, and Chris Drovandi.
Misspecification-robust sequential neural likelihood. arXiv preprint arXiv:2301.13368, 2023.

[44] Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi,
Xiuyuan Lu, and Benjamin Van Roy. Epistemic neural networks. July 2021.

[45] Salem Lahlou, Moksh Jain, Hadi Nekoei, Victor I Butoi, Paul Bertin, Jarrid Rector-Brooks,
Maksym Korablyov, and Yoshua Bengio. DEUP: Direct epistemic uncertainty prediction.
October 2022.

[46] Radford M Neal. Slice sampling. The annals of statistics, 31(3):705–767, 2003.

[47] Samuel Wiqvist, Jes Frellsen, and Umberto Picchini. Sequential neural posterior and likelihood
approximation. arXiv preprint arXiv:2102.06522, 2021.

[48] Manuel Glöckler, Michael Deistler, and Jakob H. Macke. Variational methods for simulation-
based inference. In International Conference on Learning Representations, 2022.

[49] Iain Murray, Zoubin Ghahramani, and David MacKay. MCMC for doubly-intractable distribu-
tions. June 2012.

[50] Pei-Shien Wu and Ryan Martin. A comparison of learning rate selection methods in generalized
bayesian inference. Bayesian Analysis, 18(1):105–132, 2023.

[51] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[52] Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github,
2019.

[53] Scott A Sisson, Yanan Fan, and Mark M Tanaka. Sequential monte carlo without likelihoods.
Proceedings of the National Academy of Sciences, 104(6):1760–1765, 2007.

[54] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[55] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. Advances in neural information processing systems, 30,
2017.

13

[56] Alvaro Tejero-Cantero, Jan Boelts, Michael Deistler, Jan-Matthis Lueckmann, Conor Durkan,
Pedro J. Gonçalves, David S. Greenberg, and Jakob H. Macke. sbi: A toolkit for simulation-
based inference. Journal of Open Source Software, 5(52):2505, 2020.

[57] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows.
Advances in neural information processing systems, 32, 2019.

[58] Michael Deistler, Pedro J. Goncalves, and Jakob H. Macke. Truncated proposals for scalable
and hassle-free simulation-based inference. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

14

Appendix
A1 Software and Data

We used PyTorch for all neural networks [51] and hydra to track all configurations [52]. Code to
reproduce results is available at https://github.com/mackelab/neuralgbi.

A2 Common cost functions as expectations of the likelihood

As described in Sec. 3, our framework includes all cost functions which can be written as expectations
over the likelihood: ℓ(θ;xo) = Ep(x|θ)[d(x,xo)]. Below, we demonstrate that the average mean-
squared error (MSE), the maximum mean discrepancy (MMD2) [23], and the energy score [22] fall
into this category.

Average Mean-squared error The average mean-squared error between samples from the likeli-
hood p(x|θ) and an observation xo is defined as:

MSE(p(x|θ),xo) = Ex∼p(x|θ)[||x− xo||2]

which is trivially of the form required for our framework.

Maximum mean discrepancy Throughout this paper, we use the maximum mean discrepancy
squared (MMD2) [23]. The MMD2 between the likelihood p(x|θ) and the data distribution p(xo) is
defined as:

MMD2(p(x|θ), p(xo)) =

Ex,x′∼p(x|θ)[k(x,x
′)] + Exo,x′

o∼p(xo)[k(xo,x
′
o)] + Ex∼p(x|θ),xo∼p(xo)[k(x,xo)]

Assume we are given K iid samples as observations x(1,...,K)
o . Thus, the MMD2 becomes:

MMD2(p(x|θ), p(xo)) =

Ex,x′∼p(x|θ)[k(x,x
′)] +

1

K2

K∑
i=1

K∑
j=1

k(xi
o,x

j
o) + Ex∼p(x|θ)

1

K

K∑
i

k(x,xi
o)

which can be written as a single expectation over p(x|θ)

MMD2(p(x|θ), p(xo)) =

Ex∼p(x|θ)

[
Ex′∼p(x|θ)[k(x,x

′)] +
1

K2

K∑
i=1

K∑
j=1

k(xi
o,x

j
o) +

1

K

K∑
i

k(x,xi
o)
]

and follows the form required for our framework.

Energy score Following Gneiting et al. [22], the (negative, in order to fit our notation) energy score
(ES) is defined as

ES(p(x|θ)|xo) = −
1

2
Ex,x′∼p(x|θ)[||x− x′||β] + Ex∼p(x|θ)[||x− xo||β].

This can straight-forwardly be written as a single expectation over the likelihood

ES(p(x|θ)|xo) = Ex∼p(x|θ)[
1

2
Ex′∼p(x|θ)[||x− x′||β]− ||x− xo||β]

and, thus, falls within our framework.

A3 Convergence proofs

The proofs closely follow standard proofs that regression converges to the conditional expectation.

15

https://github.com/mackelab/neuralgbi

A3.1 Proposition 1 and proof

Proposition 1. Let p(θ,x) be the joint distribution over parameters and data. Let ℓ(θ;xo) be a
cost function that can be written as ℓ(θ;xo) = Ep(x|θ)[d(x,xo)] =

∫
x
d(x,xo)p(x|θ)dx and let

fϕ(·) be a function parameterized by ϕ. Then, the loss function L = Ep(θ,x)[(fϕ(θ)− d(x,xo))
2] is

minimized if and only if, for all θ ∈ supp(p(θ)), fϕ(θ) = Ep(x|θ)[d(x,xo)].

Proof. We aim to prove that
Eθ,x∼p(θ,x)[(d(x,xo)− g(θ))2] ≥ Eθ,x∼p(θ,x)[(d(x,xo)− Ex′∼p(x|θ)[d(x

′,xo)])
2]

for every function g(θ). We begin by rearranging terms:
Eθ,x∼p(θ,x)[(d(x,xo)− g(θ))2] =

Eθ,x∼p(θ,x)[(d(x,xo)− Ex′∼p(x|θ)[d(x
′,xo)] + Ex′∼p(x|θ)[d(x

′,xo)]− g(θ))2] =

Eθ,x∼p(θ,x)[(d(x,xo)− Ex′∼p(x|θ)[d(x
′,xo)])

2 + (Ex′∼p(x|θ)[d(x
′,xo)]− g(θ))2] +X

with
X = Eθ,x∼p(θ,x)[(d(x,xo)− Ex′∼p(x|θ)[d(x

′,xo)])(Ex′∼p(x|θ)[d(x
′,xo)]− g(θ))].

By the law of iterated expectations, one can show that X = 0:
X = Eθ′∼p(θ)Eθ∼p(θ)Ex∼p(x|θ)[(d(x,xo)−Ex′∼p(x|θ)[d(x

′,xo)])(Ex′∼p(x|θ)[d(x
′,xo)]−g(θ))].

The first term in the products reads a difference of the same term, and, thus, is zero.

Thus, since X = 0 and since Ex′∼p(x|θ)[d(x
′,xo)]− g(θ)2 ≥ 0, we have

Eθ,x∼p(θ,x)[(d(x,xo)− g(θ))2] ≥ Eθ,x∼p(θ,x)[(d(x,xo)− Ex′∼p(x|θ)[d(x
′,xo)])

2].

A3.2 Proposition 2 and proof

Proposition 2. Let p(θ,x) be the joint distribution over parameters and data and let p(xt) be a
distribution of target samples. Let ℓ(θ;xo) be a cost function and fϕ(·) a parameterized function as
in proposition 1. Then, the loss function L = Ep(θ,x)p(xt)[(fϕ(θ,xt)− d(x,xt))

2] is minimized if
and only if, for all θ ∈ supp(p(θ)) and all xt ∈ supp(p(xt)) we have fϕ(θ,xt) = Ep(x|θ)[d(x,xt)].

Proof. We aim to prove that
Eθ,x∼p(θ,x),xt∼p(xt)[(d(x,xt)− g(θ,xt))

2] ≥
Eθ,x∼p(θ,x),xt∼p(xt)[(d(x,xt)− Ex′∼p(x|θ)[d(x

′,xt)])
2]

for every function g(θ,xt). We begin as in proposition 1:
Eθ,x∼p(θ,x),xt∼p(xt)[(d(x,xt)− g(θ,xt))

2] =

Ep(xt)[Eθ,x∼p(θ,x)[(d(x,xt)− g(θ,xt))
2]

Below, we prove that, for any xt, the optimal g(θ,xt) is the conditional expectation
Ex′∼p(x|θ)[d(x

′,xt)]:

Eθ,x∼p(θ,x)[(d(x,xt)− g(θ,xt))
2] =

Eθ,x∼p(θ,x)[(d(x,xt)− Ex′∼p(x|θ)[d(x
′,xt)] + Ex′∼p(x|θ)[d(x

′,xt)]− g(θ,xt))
2] =

Eθ,x∼p(θ,x)[(d(x,xt)− Ex′∼p(x|θ)[d(x
′,xt)])

2 + (Ex′∼p(x|θ)[d(x
′,xt)]− g(θ,xt))

2] +X

with
X = Eθ,x∼p(θ,x)[(d(x,xo)− Ex′∼p(x|θ)[d(x

′,xo)])(Ex′∼p(x|θ)[d(x
′,xo)]− g(θ,xt))],

which, as above, is X = 0 (proof is identical to proposition 1). Thus, since Ex′∼p(x|θ)[d(x
′,xt)]−

g(θ,xt)
2 ≥ 0, we have:

Eθ,x∼p(θ,x)[(d(x,xt)− g(θ,xt))
2] ≥ Eθ,x∼p(θ,x)[(d(x,xo)− Ex′∼p(x|θ)[d(x

′,xo)])
2]

Because this inequality holds for any xt, the average over p(xt) will also be minimized if and only if
g(θ,xt)) matches the conditional expectation Ex′∼p(x|θ)[d(x

′,xo)] for any xt within the support of
p(xt).

16

A4 Further experimental details

A4.1 Details on training procedure

Dataset construction We generate samples from the prior θi ∼ p(θ) and corresponding simulations
xi ∼ p(x|θi), to obtain parameter-simulation pairs, Θ, X = {θi,xi}i=1...N . Next, a dataset of
target data points, Xtarget, is constructed by concatenating in the batch-dimension: 1) X , 2) a random
subset of X augmented with Gaussian noise with a specified variance, i.e., xi + ϵi, ϵi ∼ N (0, σ2I),
and 3) any number of real experimental observations the user wishes to include, Xreal; in total,
Ntarget = N +Nnoised +Nreal. Note that Xtarget does not technically need to include any simulated
or real data, only ‘realistic’ targets in the neighborhood of the observed data that one eventually
wants to perform inference for. Practically, 1) has already been simulated, and 2) and 3) does
not require additional simulations while improving performance through noise augmentation and
having access to real data targets. Finally, a pairwise distance matrix D is computed with elements
di,j = d(xi,xt),xi ∈ X,xt ∈ Xtarget. D can either be pre-computed in full, or partially within the
training loop.

Network optimization and convergence to GBI loss Given dataset Θ, X,Xtarget, D, a fully
connected feed-forward deep neural network with weights ϕ is trained to minimize the mean squared
error loss: 1

Nsimntargets

∑Nsim
i=1

∑ntarget
t=1 (NNϕ(θi,xt) − d(xi,xt))

2. In other words, for a parameter
configuration θi and a target data point xt, the network is trained to predict the distance di,t between
the corresponding single (stochastic) simulation xi and the target xt. In every training epoch, ntarget
target simulations (usually 1-10, compared to Ntarget > 10000) are randomly sub-sampled per θi,
drastically reducing training time and allowing the relevant di,t to be computed on the fly.

Note that we do not wish to accurately predict the distance d(xi,xt) in data-space for individual
simulations xi, but rather the loss ℓ(θi;xt). Conveniently, with mean squared error as the objective
function for network training, for a fixed pair of θi,xt, the trained network predicts the mean distance,
Ep(x|θi)[d(x,xt)], precisely the loss function we target in Eq.2 (proof in Appendix).

A4.2 Description of benchmark tasks, distance and cost functions

A4.2.1 Uniform 1D

A one-dimensional task with uniform noise to illustrate how expected distance from observation can
be used as a cost function for inference, especially in the case of model misspecification:

Prior U(−1.5, 1.5)
Simulator x|θ = g(z) + ϵ, where ϵ ∼ U(−0.25, 0.25), z = 0.8 × (θ + 0.25), and

xnoiseless = g(z) = 0.1627 + 0.9073z − 1.2197z2 − 1.4639z3 + 1.4381z4.

Dimensionality θ ∈ R1,x ∈ R1

Cost function d(x,xo): MSE; p(x|θ) computed exactly given uniform noise. For obtaining
the true cost, Eq. 2 is analytically integrated over xnoiseless ± 0.25

Posterior Ground-truth GBI posterior samples are obtained via rejection sampling. We
used the prior as proposal distribution.

A4.2.2 Two Moons

A two-dimensional task with a posterior that exhibits both global (bimodality) and local (crescent
shape) structure to illustrate how algorithms deal with multimodality:

17

Prior U(−1,1)

Simulator x|θ =

[
r cos(α) + 0.25

r sin(α)

]
+

[
−|θ1 + θ2|/

√
2

(−θ1 + θ2)/
√
2

]
, where α ∼ U(−π/2, π/2),

and r ∼ N (0.1, 0.012)

Dimensionality θ ∈ R2,x ∈ R2

Cost function d(x,xo): MSE; and p(x|θ) computed exactly. To obtain the true cost, Eq. 2
is numerically integrated over a 2D grid of dx with 500 equal bins in both
dimensions, where x(1) ∈ [−1.2, 0.4], x(2) ∈ [−1.6, 1.6].

Posterior Ground-truth GBI posterior samples are obtained via rejection sampling with
the prior as proposal distribution.

References [24, 8]

A4.2.3 Linear Gaussian

Inference of the mean of a 10-d Gaussian model, in which the covariance is fixed. The (conjugate)
prior is Gaussian:

Prior N (0, 0.1⊙ I)

Simulator x|θ ∼ N (x|mθ = θ,S = 0.1⊙ I)

Dimensionality θ ∈ R10,x ∈ R10

Cost function d(x,xo): MSE; and p(x|θ) computed exactly. The true cost (Eq. 2) can be
computed analytically.

Posterior Ground-truth GBI posterior samples are obtained following the procedure in
Lueckmann et al. [24]: We first ran MCMC to generate 10k samples from the
GBI posterior. We then trained a neural spline flow on these 10k samples and,
finally, used the trained flow as proposal distribution for rejection sampling.

References [24, 8]

A4.2.4 Gaussian Mixture

The single-trial version of this task is common in the ABC literature. It consists of inferring the
common mean of a mixture of two two-dimensional Gaussian distributions, one with much broader
covariance than the other. In this study, we used this task to infer the common mean of the two
distributions from five i.i.d. simulations:

Prior U(−10,10)
Simulator x|θ ∼ 0.5 N (x|mθ = θ,S = I)+ 0.5 N (x|mθ = θ,S = 0.01⊙ I)

Dimensionality θ ∈ R2,x ∈ R2

Cost function d(x,xo): MMD2. The true cost (Eq. 2) is obtained by integrating the distance
function on a grid for every trial independently and multiplying over the trials.

Posterior Ground-truth GBI posterior samples are obtained via rejection sampling. As
proposal, we used a Normal distribution centered around the ground truth
parameter and with variance 50

β .

References [24, 53]

18

A4.3 Training, inference, and evaluation for benchmark tasks

ACE For the benchmark tasks, the cost estimation network is a residual network with 3 hidden
layers of 64 units [54]. The training dataset was split 90:10 into training and validation sets, with
ntarget = 2 and 5 xt randomly sampled each epoch for evaluating training and validation loss,
respectively. We used a batchsize of 500, i.e., 500 θ, 2 xt, for 1000 cost targets per training batch.
Networks usually converge within 500 epochs, with 100 epochs of non-decreasing validation loss as
the convergence criterion. For inference, we ran multi-chain slice sampling with 100 chains to sample
the potential function. For the Gaussian Mixture task with 5 i.d.d. samples per simulation/observation,
we appended to the cost estimation network a fully connected, permutation-invariant embedding
network [55] (2 layers, 100 units each), which preprocessed the i.d.d. datapoints into a single
20-dimensional vector (but was trained end-to-end).

Kernel ABC We compared our algorithm with a version of kernel ABC on the benchmark tasks.
For kernel ABC, we accepted samples (from the fixed set of 10000 prior simulations) with probability
exp(−β · d(x,xo)), where d(·, ·) is the distance function. In many cases, and especially for large β,
this yielded very few or no accepted samples. We, therefore, reduced β until at least 50 samples were
accepted.

NPE We used the implementation in the sbi toolbox [56], with neural spline flow [57] as density
estimator (five transformation layers) to approximate the posterior. For tasks with bounded priors (all
except Linear Gaussian), we appended a sigmoidal transformation to the flow such that its support
matches the support of the prior [58]. For the Gaussian Mixture task, the same permutation-invariant
embedding net was used as for ACE. Posterior samples were directly obtained from the trained flow.
All other hyperparameters were the same as in the sbi toolbox, version 0.19.2 [56].

NLE and tempered NLE We used the implementation in the sbi toolbox [56], with neural spline
flow [57] as density estimator (five transformation layers) to approximate the likelihood. For the
Gaussian Mixture task with 5 i.d.d. simulations per sample/observation, they were split up as 5
independent simulations with the same θ repeated 5 times, effectively having 5 times the training
simulation budget. We ran multi-chain slice sampling with 100 chains to sample the potential function
as the sum of log-prior probability and flow-approximated log-likelihood. Tempered NLE uses the
same learned likelihood estimator, but the log-likelihood term in the potential function is scaled by β
during MCMC sampling (same values as used for ACE). All other hyperparameters were the same as
in the sbi toolbox, version 0.19.2 [56].

Noise augmentation For each task, we randomly subsampled 100 of all simulated datapoints (x),
and added Gaussian noise with zero-mean and standard deviation equaling two times the standard
deviation of all prior predictives, i.e., N (0, (2σx)

2I). We additionally varied noise amplitude
(0, 2σx, 5σx) and found little to no effect on benchmark performance (see Appendix A3).

Synthetic misspecified observations For the Uniform 1D, 2 Moons, and Linear Gaussian task, we
generated an additional 100,000 prior predictive simulations and defined the prior predictive bound
as the minimum and maximum (of each dimension) of those simulations and σx as their standard
deviation. Then, to create 20 misspecified observations, we generated 20 model-simulations and added
Gaussian noise with zero-mean and standard deviation equaling 0.5 σx (i.e., ϵ ∼ N (0, (0.5σx)

2I)) to
the 20 observations iteratively until they are outside of the prior predictive bounds in every dimension.
For the Gaussian Mixture task, we replaced the second Gaussian above byN (12.5× sign(θ), 0.52I),
i.e. displacing the mean to the corner of the quadrant whose signs match θ, and slightly increasing
the variance.

Metrics For the metrics in Fig. 3, in columns 1, 2, and 4 and all corresponding figures in the
Appendix, results were aggregated across the 10 well-specified and misspecified samples separately,
where marker and error bars represent mean and standard deviation over 10 observations. Columns 1
and 2 show average distance between observation and 5000 posterior predictive simulations from
each algorithm (except ABC, for which there were 50 posterior samples). Column 3 shows, for
each of the 10 well-specified observations and 3 β values, 3 random posterior samples for which we
compare the ACE-estimated and ground-truth cost, i.e., 10× 3× 3 = 90 points are shown for each

19

task. Column 4 shows C2ST score between 5000 ground-truth GBI posterior samples and ACE GBI
posterior samples.

A4.4 Training procedure for Hodgkin-Huxley model

For NPE, we used the implementation in the sbi toolbox [56]. As density estimator, we used a neural
spline flow [57] with five transformation layers. We used a batchsize of 5,000. We appended a
sigmoidal transformation to the flow such that its support matches the support of the prior [58]. All
other hyperparameters were the same as in the sbi toolbox, version 0.19.2 [56].

For ACE, we used a residual neural network [54] with 7 layers and 100 hidden units each. We used
10% of all simulations as held-out validation set and stopped training when the validation set did not
decrease for 100 epochs. We used a batchsize of 5000. For sampling from the generalized posterior,
we ran multi-chain slice sampling with 100 chains. As distance function, we used mean-absolute-
error, where the distance in each summary statistic was z-scored with the standard deviation of the
prior predictives. To generate xt, we used all simulations which generated between 5 and 40 spikes
(since any reasonable experimental recording would fall within this range) and we appended 1000
augmented simulations to which we added Gaussian noise with two times the standard deviation of
prior predictives that produce between 5 and 40 spikes. We did not use the experimental recordings
from the Allen Cell Types database in xt.

A5 Hodgkin-Huxley model

We used the same model as Gonçalves et al. [10], which follows the model proposed in Pospischil et
al. [34]. Briefly, the model contains four types of conductances (sodium, delayed-rectifier potassium,
slow voltage-dependent potassium, and leak) and has a total of eight parameters that generate a time
series which we reduce to seven summary statistics (spike count, mean resting potential, standard
deviation of the resting potential, and the first four voltage moments mean, standard deviation, skew,
curtosis, same as in Gonçalves et al. [10]).

20

A6 Supplementary figures

Figure A1: Benchmark performance for ‘seen’ observations Panels are the same as in Fig. 3, but
for the 20 xo that were included in the target dataset during training.

21

Figure A2: Cost estimation accuracy for all observations Columns are same as 3rd column in
Fig. 3, but for all combinations of (unseen, seen) and (well-specified, misspecified) observations (10
each, 40 total) for each task. 1st column here is identical to Fig. 3 3rd column.

Figure A3: Benchmark performance for ACE trained with various augmentation noise levels.
Results based on 10k training budget plus 100 noise augmented samples with varying noise amplitudes
(blue, orange, green), as well as removing data augmentation altogether (i.e., no noise augmented
simulated nor observed data, red). Overall, changing σ does not significantly impact performance
compared to the original results (2σx, blue).

22

Figure A4: Benchmark performance with simulation budget of 200 Panels are the same as in
Fig. 3, but all algorithms trained with simulation budget of 200.

Figure A5: Benchmark performance with simulation budget of 1000 Panels are the same as in
Fig. 3, but all algorithms trained with simulation budget of 1000.

23

Figure A6: NPE performance with 1 million simulations. Panels are the same as in Fig. 4, but
NPE was run with 1 million simulations. ACE is still run with 100K simulations and, thus, the ACE
data is the same as in Fig. 4.

Figure A7: Cornerplot of posterior distributions. Diagonals are 1D-marginals, upper diagonals
are 2D-marginals (68th-percentile contour from 5000 posterior samples). Orange: NPE with 100K
simulations. Shades of blue: ACE with 100K simulations with β = 25 (light blue), β = 50 (medium
blue), β = 100 (dark blue).

24

Figure A8: Posterior predictive samples of ACE (with 100K simulations) with β = 25. Top
row (black): 10 experimental recordings from the Allen Cell Types database. Below: nine predictive
samples given each of the ten observations.

25

Figure A9: Posterior predictive samples of ACE (with 100K simulations) with β = 50. Top row
(black): 10 experimental recordings from the Allen Cell Types database. Below: Nine predictive
samples given each of the ten observations.

26

Figure A10: Posterior predictive samples of ACE (with 100K simulations) with β = 100. Top
row (black): 10 experimental recordings from the Allen Cell Types database. Below: Nine predictive
samples given each of the ten observations.

27

Figure A11: Posterior predictive samples of NPE with 100K simulations. Top row (black): 10
experimental recordings from the Allen Cell Types database. Below: Nine predictive samples given
each of the ten observations.

28

Figure A12: Posterior predictive samples of NPE with 1M simulations. Top row (black): 10
experimental recordings from the Allen Cell Types database. Below: Nine predictive samples given
each of the ten observations.

29

	Introduction
	Background
	Amortized Cost Estimation for GBI
	Estimating cost function with neural networks
	Amortizing over observations
	Sampling from the generalized posterior
	Considerations for choosing the value of

	Benchmark experiments
	Experiment setup
	Benchmark results

	Hodgkin-Huxley inference from Allen Cell Types Database recordings
	Discussion
	Related work
	Limitations

	Conclusion
	Acknowledgements
	Software and Data
	Common cost functions as expectations of the likelihood
	Convergence proofs
	Proposition 1 and proof
	Proposition 2 and proof

	Further experimental details
	Details on training procedure
	Description of benchmark tasks, distance and cost functions
	Uniform 1D
	Two Moons
	Linear Gaussian
	Gaussian Mixture

	Training, inference, and evaluation for benchmark tasks
	Training procedure for Hodgkin-Huxley model

	Hodgkin-Huxley model
	Supplementary figures

