
A Pseudo-Code400

Algorithm 1 CSRO Meta-training

Input: Offline Datasets D = {Di}Nenv
i=1 of a set of training tasks {Mi}Nenv

i=1 , initialize learned policy
πθ, Q-function Qω , context encoder qϕ, and CLUB encoder qψ , hyperparameter λ
Parameter: θ, ω, ϕ, ψ

1: while not done do
2: for step in training steps do
3: Sample buffer Di ∼ D and context from buffer c = {(sj , aj , rj , s′j)} ∼ Di, history

transitions h ∼ Di.
4: Compute each transition embedding z = qϕ(z|(s, a, r, s′)), z = qψ(z|(s, a)) and task

representation z = qϕ(z|c)
5: Compute LV D(ψ)
6: Update ψ to minimize LV D(ψ)
7: Compute Lencoder(ϕ) = LmaxMI(ϕ) + λLminMI(ϕ)
8: Update ϕ to minimize Lencoder(ϕ)
9: Use history transitions h to compute Lcritic(ω), Lactor(θ)

10: Update θ,ω to minimize Lcritic(ω), Lactor(θ)
11: end for
12: end while

Algorithm 2 CSRO Meta-testing

Input: A set of testing tasks {Mi}Nenv
i=1 , learned policy πθ, context encoder qϕ, random explore step

tr
1: for each task Mi do
2: c = {}
3: for t = 0, . . . , T − 1 do
4: if t < tr then
5: Agent samples a random action at to roll out (st, at, rt, s

′

t)
6: else
7: Compute posterior z = qϕ(z|c).
8: Agent use πθ(a|s, z) roll out (st, at, rt, s

′

t)
9: end if

10: c = c ∪ (st, at, rt, s
′

t)
11: end for
12: Compute posterior z = qϕ(z|c).
13: Roll out policy πθ(a|s, z) for evaluation
14: end for

B Environment Details401

In this section, we show details about the environments of our experiment.402

Point-Robot: A problem of control point robot navigation in 2D space. The start position is fixed to403

(0, 0). The goal of each task is located on a unit semicircle centered on the start position. Each task404

needs to control the robot from the start position to the goal. The state space is R2, comprising the405

XY position of the robot. The action space is [−1,−1]2, with each dimension corresponding to the406

moving distance in the XY direction. The reward function is defined as the negative distance from407

the goal.408

Half-Cheetah-Vel: Control a Cheetah to move forward and achieve goal velocity. The target velocity409

is sampled from [1, 3]. The state space is R20, comprising the position and velocity of the cheetah;410

the angle and angular velocity of each joint. The action space is [−1, 1]6, with each dimension411

corresponding to the torque of each joint. The reward function is the absolute difference between the412

agent’s velocity and the target velocity plus the control cost.413

12

Ant-Goal: The Ant-Goal task consists of controlling an "ant" robot to navigate. The goal of each414

task is located on a circle with radius 2 centered on (0, 0). The state space is R29, comprising the415

position and velocity of the ant as well as the angle and angular velocity of 8 joints. The action space416

is [−1, 1]8, with each dimension corresponding to the torque of each joint. The reward function is417

defined as the negative distance from the goal plus the control cost.418

Humanoid-Dir: The Humanoid-Dir task consists of controlling a "humanoid" robot in the target419

direction. The target direction of each task is sampled from [0, 2π]. The state space is R376 and the420

action space is [−1, 1]17. The reward function is the dot between the velocity of the robot and the421

target direction plus the staying alive bonus and control cost.422

Hopper-Rand-Params: The Hopper-Rand-Params is control a one-legged robot to move forward.423

The source code is taken from the rand_param_envs repository.1 The tasks are varied in body mass,424

body inertia, joint damping, and friction. Each parameter is the product of the default value and the425

coefficient sampled from [1.5−3, 1.53]. The state space is R11 and the action space is [−1, 1]3. The426

reward function is forward velocity plus the staying alive bonus and control cost.427

Walker-Rand-Paras: The Walker-Rand-Params is control a bi-pedal robot to move forward, also428

from the rand_param_envs repository. Each parammeter is obtained in the same way as Hopper-429

Rand-Params and the reward function is the same as Hopper-Rand-Params. The state space is R17430

and the action space is [−1, 1]6.431

C Offline Data Collections432

For each task, we sample 40 environments from environment distribution. Out of these, 30 envi-433

ronments are designated as training environments, while the remaining 10 environments serve as434

test environments. We employ SAC [9] to train an agent on each training environment and save the435

policy at different training steps. To create offline datasets, we generate 50 trajectories using each436

policy from every environment. Table 2 presents the hyperparameters employed during the collection437

of offline datasets.438

Table 2: Hyperparameters used in offline datasets collection.

Hyperparameters Point-Robot Half-Cheetah-Vel Ant-Dir Humanoid-Dir Hopper-Rand-Params Walker-Rand-Params
Training steps 5000 1e6 1e6 1e6 1e6 1e6

Initial steps 2e3 5e4 5e4 5e4 5e4 5e4
Eval frequency 200 5e4 5e4 5e4 5e4 5e4

Sampling episodes 50 50 50 50 50 50
Learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4

Batch size 1024 1024 1024 1024 1024 1024

D Experimental Setting439

For each task, We use offline datasets collected at different times to train. Details of using offline440

datasets in Table 3:441

Table 3: Details of using offline datasets: The ’Checkpoints’ column indicates the data collected by
policies at different steps during the meta-training phase. The three numbers denote the starting steps,
ending steps, and steps spacing.

Env Checkpoints
Point-Robot [2200, 4800, 200]

Half-Cheetah-Val [100000, 950000, 50000]
Ant-Goal [100000, 950000, 50000]

Humanoid-Dir [50000, 950000, 50000]
Hopper-Rand-Params [50000, 950000, 50000]
Walker-Rand-Params [50000, 950000, 50000]

We list other hyperparameters in the offline meta-training phase in Table 4.442

1https://github.com/dennisl88/rand_param_envs.

13

Table 4: Hyperparameters used in offline meta-training.

Hyperparameters Point-Robot Half-Cheetah-Vel Ant-Dir Humanoid-Dir Hopper-Rand-Params Walker-Rand-Params
Reward scale 100 5 5 5 5 5

Latent dimension 20 20 20 20 40 40
Use BRAC False True True True True True
Batch size 256 256 256 256 256 256

Meta batch size 16 16 10 16 16 16
Embedding batch size 1024 100 512 256 256 256
Actor Learning rate 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Critic Learning rate 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4

Encoder Learning rate 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Maximum episode length 20 200 200 200 200 200

MinMI loss weightλ 25 10 50 50 25 25
behavior regularization 50 50 50 50 50 50

Discount factor 0.9 0.99 0.99 0.99 0.99 0.99

E Comparison Offline Test Results443

Offline testing is an ideal evaluation method where the context used is sampled from the pre-collected444

offline data in the test task, thereby disregarding the context shift problem. To assess our performance445

in the offline test phase, we adopt the same approach as the training environment and collect offline446

datasets as context on the testing environment.447

We compare CSRO with other methods across all six environments and plot the mean and standard448

deviation curves of returns based on 8 random seeds in Figure6. In most environments, CSRO449

demonstrates competitive performance compared to other baselines. Experimental results demonstrate450

the effectiveness of our algorithm, even in the absence of addressing the context shift problem.451

Figure 6: Compared to other OMRL methods, CSRO’s offline testing averages returns on unseen
testing tasks

F Ablation Offline and Online Test452

Under the offline test scenario that ignores the context shift problem, the algorithm can achieve its453

highest performance. We compare the performance of the online testing method that uses the non-prior454

context collection strategy(Np) with offline testing. We conduct experiments on six environments and455

plot the mean and standard deviation curves of returns across 8 random seeds in Figure7.456

In most environments, the performance of CSRO that uses Np is close to the offline test. There exists457

a gap between Point-Robot and Ant-Goal environments due to the particularly severe and challenging458

14

context shift problem in these two environments. However, our approach still outperforms previous459

methods. The experimental results highlight the efficacy of our approach in addressing the context460

shift issue, albeit with some remaining challenges in these specific environments.461

Figure 7: The average return of the offline test and the online test that uses the non-prior context
collect strategy on unseen test tasks.

G Visualize Contexts and Trajectory of Online Test462

Figure 8: Visualization of contexts and trajectory after using the non-prior context collection strategy
in the Point-Robot environment.

Lastly, we further study the non-prior context collection strategy. Figure 8 showcases two different463

tasks in the Point-Robot environment. We illustrate the context gathered through the non-prior464

15

context collection strategy and the corresponding trajectory navigation. Observing the visualizations,465

we notice that the agent’s perception of the task improves after random exploration. Subsequent466

explorations enhance the agent’s understanding of the environment, enabling it to accurately navigate467

toward the goal.468

16

	Pseudo-Code
	Environment Details
	Offline Data Collections
	Experimental Setting
	Comparison Offline Test Results
	Ablation Offline and Online Test
	Visualize Contexts and Trajectory of Online Test

