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1 Inference Details

Generation. Following [1, 2], we apply a more flexible control over the number of generation
steps and noise schedule during the reverse process after embedding ᾱt into the diffusion model.
To be specific, we utilized 20 and 10 generation steps when testing on LOLv1 and LOLv2 faster
inference, respectively, and empirically selected 1− α0 = 6× 10−4 and 1− αT = 0.88 for LOLv1,
1−α0 = 9× 10−4 and 1−αT = 0.85 for LOLv2-real, and 1−α0 = 2× 10−3 and 1−αT = 0.84
for LOLv2-synthetic in the reverse process.

Inference time. Table S1 provides the inference time of different methods. Although our method
consumes a little more time owing to the inherent computational burden associated with diffusion-
based methods, our work shows promising performance compared to other methods, as evidenced by
the quantitative results in Table 1 and visual results in Figs. 3, and 4 of our manuscript, and more
visual results in the following Figs. S1, S2, and S3. We will also try to apply other techniques [3, 4]
to speed-up the reverse process.

Table S1: Comparisons of inference time of the recent SOTA methods on the LOLv1 dataset. Note
that the inference time per image was conducted using an RTX3080 GPU on the same server.

Methods LLFlow [6] SNR-Aware [8] LLFormer [5] Ours

Inference time (s) 0.40 0.09 0.31 0.55

2 More Visual Results

Figs. S1, S2, and S3 present more enhanced results on the LOLv1 [7], LOLv2 [9] datasets, obtained
by our proposed method and other three most recent SOTA approaches, i.e., LLFlow [6], SNR-Aware
[8], and LLFormer [5]. It can be observed that our method consistently outperforms compared
approaches by effectively suppressing artifacts and revealing image details, leading to visually
appealing results that are more faithful to the original scene.

3 Ablation Studies of Matrix Rank across the Reverse Process

Fig. S4 presents the matrix rank across clusters from the intermediate-generated results of the reverse
process. The empirical findings reveal that in the absence of the proposed global structure-aware
regularization, the rank of a cluster of patches tends to manifest either lower (the first and second
rows of Fig. S4) or higher singular values (the last two rows of Fig. S4) relative to the ground truth
(GT). Lower singular values denote the loss of reconstructing distinct components within similar
patches, whereas higher values indicate the emergence of dissimilar contents or noise. Nonetheless,
the incorporation of the proposed regularization technique consistently captures an appropriate rank
in matrix, thereby facilitating the reconstruction of the global structure in images.
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Figure S1: Visual comparisons of the enhanced results by different methods on LOLv1.
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Figure S2: Visual comparisons of the enhanced results by different methods on LOLv2-real.
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Figure S3: Visual comparisons of the enhanced results by different methods on LOLv2-synthetic.
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Figure S4: The distribution of the singular values of a cluster from the intermediate enhanced results
over different timesteps (t) of the reverse process. Note that we illustrate the rank of a cluster of
patches, which are highlighted with a white box.
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