
NCDL: Supplementary Material

Joshua J. Horacsek
Department of Computer Science

University of Calgary
Calgary, Alberta

j.horacsek@ncdl.ai

Usman R. Alim
Department of Computer Science

University of Calgary
Calgary, Alberta

ualim@ucalgary.ca

Abstract

This supplementary material provides proofs for the assertions in the main paper, as
well as some additional helpful figures to illustrate concepts behind the algorithms
we develop. The full implementation for these is also available and serves as further
reference, and is available at https://www.ncdl.ai

1 Proofs

Proposition 3.1 (κ-index). Given i, j with 0 ≤ i, j < C, for any n ∈ LR,m ∈ LS with ι(n) = i and
ι(m) = j, it must be that both ι(n−m) and ι(n+m) are constant. We define κ±(i, j) := ι(n±m).

Proof. Suppose we have n,n′ ∈ LR and m,m′ ∈ LS with ι(n) = ι(n′) = i and ι(m) = ι(m′) =
j. Then, further suppose for a contradiction that k := ι(n−m) and l := ι(n′ −m′) and k ̸= l. By
definition, we have n = vR

i +Da, n′ = vR
i +Da′, m = vS

j +Db, m′ = vS
j +Db′ for some

a,b,a′,b′ ∈ Zs. By assumption it must also be that n−m = vk +Dx and n′ −m′ = vl +Dy
for x,y ∈ Zs. Rearranging these shows that both vj − vi ∈ vk +DZs and vj − vi ∈ vl +DZs,
which is impossible since our cosets are mutually exclusive. Thus k = l. A similar argument holds
for the case of addition.

Convolution Figure 1, helps provide some intuition for the following proposition
Proposition 3.2. For a lattice tensor aLR and filter fLP where the region P is strictly positive, the
result of the convolution ob,k,LS := (ab,c,LR ⋆ fc,k,LP ) can be written in terms of its output cosets as

õi =

C−1∑
j=0

ãκ+(i,j) [·+ δ(i, j)] ∗ f̃j (1)

where ∗ is the traditional Cartesian convolution operator, and δ(i, j) := D−1(vR
κ+(i,j) − vR

i − vS
j )

is a constant by which we shift the appropriate coset of aLR .

Proof. We start with the definition

ob,c,LS [n, l,p] :=

c−1∑
j=0

∑
s∈supp(f)

a[n, j,p+ s]f [l, j, s] (2)

we restrict to the output on the ith coset, which gives

õi[n, l,p] =

c−1∑
j=0

∑
s∈supp(f)

a[n, j,Dp+ vR
i + s]f [l, j, s]. (3)

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://www.ncdl.ai


P

vP1

* vP1
=

P

vP1

P

*

P

= + *

Split into output cosets, then compute the cosets as sums over convolutions over the 
combinations of the cosets

P

*

P

= + *

Coset 0

Coset 1

Figure 1: An illustration of the convolution decomposition. The shaded points are not considered in
the convolution operations. The κ and δ terms simply generalize the intuition behind these figures.

we split this sum over the cosets of the filter, amd re-arrange the sums

õi[n, l,p] =

C−1∑
j=0

c−1∑
k=0

∑
s∈supp(f̃j)

a[n, k,Dp+ vR
i +Ds+ vS

j ]f [l, k,Ds+ vS
j ]. (4)

We can immediately simplify by definition

õi[n, l,p] =

C−1∑
j=0

c−1∑
k=0

∑
s∈supp(f̃j)

ãκ+(i,j)[n, k,p+ s+ δ(i, j)]f̃j [l, k, s] (5)

which gives

õi =

C−1∑
j=0

ãκ+(i,j) [·+ δ(i, j)] ∗ f̃j . (6)

The only thing that remains is to ensure that δ(i, j) is well defined — that is, we need to show that
vR
κ+(i,j) − vR

i − vS
j = vR

h − (vR
i + vS

j ) ∈ DZs. But this is true, since (vR
i + vS

j ) is on the same
coset as vR

κ+(i,j), finishing the proof.

We now turn to the derivative computation.

Proposition 3.3. For a lattice tensor aLR and filter fLP where the region P is strictly positive, with
convolution defined as

o[n, i,p] := (ab,c,LR ⋆ fc,k,LP )[n, i,p] (7)

2



whose output lattice tensor is in LS where LR = LS ⊕ LP , the derivatives of the loss h with respect
to the filter and input lattice tensor are given by

∂h

∂a[n, i,k]
= (o ⋆ fc,k,LP )[n, i,k], (8)

∂h

∂f [i, j,k]
=

b−1∑
n=0

 ∑
p∈LS

∂h

∂o[n, i,p]
· a[n, j,p+ k]

 , (9)

where f mirrors the filter and swaps the channels, i.e. f [i, j,k] := f [j, i,−k].

Proof. The proof for this is mechanical, we start from the chain rule, then simplify
∂h

∂a[n, i,k]
=

∑
m

∑
j

∑
p

∂h

∂o[m, j,p]
· ∂o[m, j,p]

∂a[n, i,k]
(10)

=
∑
m

∑
j

∑
p

∂h

∂o[m, j,p]
· ∂

∂a[n, i,k]

c−1∑
l=0

∑
s∈supp(f)

a[n, l,p+ s]f [j, l, s] (11)

=
∑
j

∑
p

∂h

∂o[n, j,p]

∑
s∈supp(f)

∂

∂a[n, i,k]
a[n, i,p+ s]f [j, i, s] (12)

=
∑
j

∑
p

∂h

∂o[n, j,p]
f [j, i,k− p] (13)

=
∑
j

∑
q

∂h

∂o[n, j,k− q]
f [j, i,q] (14)

=
∑
j

∑
q∈supp(f)

∂h

∂o[n, j,k− q]
f [j, i,q] (15)

=
∑
j

∑
q∈supp(f)

∂h

∂o[n, j,k− q]
f [j, i,q] (16)

Applying the definition of f gives the final result. We follow a similar derivation for the filter f .
∂h

∂f [i, j,k]
=

∑
n

∑
m

∑
p

∂h

∂o[n,m,p]
· ∂o[n,m,p]

∂f [i, j,k]
(17)

=
∑
n

∑
m

∑
p

∂h

∂o[n,m,p]
· ∂

∂f [i, j,k]

c−1∑
l=0

∑
s∈supp(f)

a[n, l,p+ s]f [m, l, s] (18)

=
∑
n

∑
m

∑
p

∂h

∂o[n,m,p]
·
c−1∑
l=0

∑
s∈L

a[n, l,p+ s]
∂f [m, l, s]

∂f [i, j,k]
(19)

=
∑
n

∑
p

∂h

∂o[n, i,p]
· a[n, j,p+ k] (20)

which gives the final result.

Pooling Although Figure 1 illustrates convolution, the same intuition applies; we break up the
operation over the cosets of the lattice. We encapsulate this idea in the following proposition.
Proposition 3.4. For a lattice tensor aLR and stencil geometry LP where the region P is strictly
positive, the result of the lattice pooling operation on,c,LR [l,m,n] = maxs∈LP{a[l,m,n+ s]} can
be written in terms of its output cosets as

õi[l,m,n] = max
0≤j<C

{
max

s∈D−1(LP−vj)∩Zs

{
ãκ+(i,j) [n+ s+ δ(i, j)]

}}
(21)

where the maximum operation running over the set D−1(LP − vj) ∩ Zs is the traditional max pool
operator, restricted to the jth coset of the stencil.

3



Proof. We proceed by first restricting the output of

on,c,LR [l,m,n] = max
s∈LP

{a[l,m,n+ s]} (22)

to the ith coset. By definition, we have

õi[l,m,n] = max
s∈LP

{a[l,m,Dn+ vR
i + s]}. (23)

We can take the maximum over the maximum of the cosets (the max of the max is still the max),
explicitly the restriction to the set D−1(LP −vj)∩Zs is the restriction to the jth coset of the stencil

õi[n, l,n] = max
0≤j<C

{
max

s∈D−1(LP−vj)∩Zs
{a[l,m,Dn+ vR

i +Ds+ vP
j ]}

}
. (24)

then by definition, we have

õi = max
0≤j<C

{
max

s∈D−1(LP−vj)∩Zs

{
ãκ+(i,j) [n+ s+ δ(i, j)]

}}
(25)

as desired.

We again turn to derivative computation.
Proposition 3.5. For a lattice tensor aLR and filter geometry LP where the region P is strictly
positive, lattice pooling

ob,c,LR
[n, i,k] = max

s∈LP

{a[n, i,k+ s]} (26)

whose output lattice tensor is in LS , has the gradients given by
∂h

∂a[n, i,k]
=

∑
p∈LP

∂h

∂o[n, i,k− p]
· µ[n, i,k− p,p] (27)

where

µ[n, i,p,q] :=

{
1 if maxs∈LP

{a[n, i,p+ s]} = a[n, i,p+ q]

0 otherwise.
(28)

Proof. The proof of this is, again, mechanical. We start by noting that

ob,c,LR
[n, i,k] = max

s∈LP

{a[n, i,k+ s]} (29)

=
∑
s∈LP

µ[n, i,k, s] · a[n, i,k+ s] (30)

We proceed by noting the chain rule

∂h

∂a[n, i,k]
=

∑
m

∑
j

∑
p

∂h

∂o[m, j,p]
· ∂o[m, j,p]

∂a[n, i,k]
(31)

=
∑
m

∑
j

∑
p

∂h

∂o[m, j,p]
· ∂

∂a[n, i,k]

∑
s∈LP

µ[m, j,p, s]a[m, j,p+ s] (32)

=
∑
p

∂h

∂o[n, i,p]
· ∂

∂a[n, i,k]

∑
s∈L

µ[n, i,p, s] · a[n, i,p+ s] (33)

Where this last simplification, simply expand the range of the last sum (since we may sum over
additional points of the lattice, µ will nullify these points). Finally, we may treat µ as a constant, as it
remains constant in a small neighborhood of a. This gives

∂h

∂a[n, i,k]
=

∑
p

∂h

∂o[n, i,p]
· µ[n, i,p,k− p] (34)

=
∑
p

∂h

∂o[n, i,k− p]
· µ[n, i,k− p,p] (35)

where the last line follows from a change of variables, restricting the sum to the filters stencil gives
the desired result.

4



2 Expanding on Padding and Down/Upsampling

Padding Figure 2 illustrates the differences between left and right padding. Right padding is
practically trivial. However, when padding to the left, we must ensure that the coset vectors remain
consistent.

vP1

vP1

P

PP

vP1

Right pad the x axisLeft pad the x axis

Figure 2: Padding by a unit of 1 in both left and right cases. Left padding is more involved, since it
requires shifting the coset vectors.

Downsampling & Upsampling Figure 3 illustrates down and up sampling with a non-dyadic
subsampling lattice. Only two lattices are involved with the Quincunx lattice, however, a similar
example exists in 3D, where we subsample from the Cartesian lattice to the FCC lattice, to the BCC
lattice, then back to the Cartesian lattice.

P

[−1 1
1 1]

P P

[−1 1
1 1]

Downsample Downsample

UpsampleUpsample

Figure 3: A non dyadic downsampling scheme. The lattice is down/upsampled by the given matrix.

5


	Proofs
	Expanding on Padding and Down/Upsampling

