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Abstract

Large text-to-image diffusion models have impressive capabilities in generating
photorealistic images from text prompts. How to effectively guide or control these
powerful models to perform different downstream tasks becomes an important open
problem. To tackle this challenge, we introduce a principled finetuning method
– Orthogonal Finetuning (OFT), for adapting text-to-image diffusion models to
downstream tasks. Unlike existing methods, OFT can provably preserve hyper-
spherical energy which characterizes the pairwise neuron relationship on the unit
hypersphere. We find that this property is crucial for preserving the semantic gen-
eration ability of text-to-image diffusion models. To improve finetuning stability,
we further propose Constrained Orthogonal Finetuning (COFT) which imposes
an additional radius constraint to the hypersphere. Specifically, we consider two
important finetuning text-to-image tasks: subject-driven generation where the goal
is to generate subject-specific images given a few images of a subject and a text
prompt, and controllable generation where the goal is to enable the model to
take in additional control signals. We empirically show that our OFT framework
outperforms existing methods in generation quality and convergence speed.

1 Introduction

Recent text-to-image diffusion models [45, 50, 53] achieve impressive performance in text-guided
control for high-fidelity image generation. Despite strong results, text guidance can still be ambiguous
and insufficient to provide fine-grained and accurate control to the generated images. To address this
shortcoming, we target two types of text-to-image generation tasks in this paper:

• Subject-driven generation [51]: Given just a few images of a subject, the task is to generate
images of the same subject in a different context using the guidance of a text prompt.

• Controllable generation [38, 68]: Given an additional control signal (e.g., canny edges, segmenta-
tion maps), the task is to generate images following such a control signal and a text prompt.

Both tasks essentially boil down to how to effectively finetune text-to-image diffusion models without
losing the pretraining generative performance. We summarize the desiderata for an effective finetuning
method as: (1) training efficiency: having fewer trainable parameters and number of training epochs,
and (2) generalizability preservation: preserving the high-fidelity and diverse generative performance.
To this end, finetuning is typically done either by updating the neuron weights by a small learning
rate (e.g., [51]) or by adding a small component with re-parameterized neuron weights (e.g., [22, 68]).
Despite simplicity, neither finetuning strategy is able to guarantee the preservation of pretraining
generative performance. There is also a lack of principled understanding towards designing a good
finetuning strategy and finding suitable hyperparameters such as the number of training epochs.
A key difficulty is the lack of a measure for quantifying the preservation of pretrained generative
ability. Existing finetuning methods implicitly assume that a smaller Euclidean distance between the
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Figure 1: (a) Subject-driven generation: OFT preserves the hyperspherical energy and yields more stable finetuning performance across different
number of iterations, while both DreamBooth [51] and LoRA [22] do not. OFT can preserve hyperspherical energy and perform stable finetuning,
while both LoRA and DreamBooth are unable. (b) Controllable generation: OFT is more sample-efficient in training and converges well with
only 5% of the original dataset, while both ControlNet [68] and LoRA [22] cannot converge until 50% of the data is present. The hyperspherical
energy comparison between LoRA and OFT is fair, since they finetune the same layers. ControlNet uses a different layer finetuning strategy, so
its hyperspherical energy is not comparable. The detailed settings are given in the experiment section and Appendix A.

finetuned model and the pretrained model indicates better preservation of the pretrained ability. Due
to the same reason, finetuning methods typically work with a very small learning rate. While this
assumption may occasionally hold, we argue that the Euclidean difference to the pretrained model
alone is unable to fully capture the degree of semantic preservation, and therefore a more structural
measure to characterize the difference between the finetuned model and the pretrained model can
greatly benefit the preservation of pretraining performance as well as finetuning stability.

Inspired by the empirical observation that hyperspherical similarity encodes semantic information
well [7, 35, 36], we use hyperspherical energy [32] to characterize the pairwise relational structure
among neurons. Hyperspherical energy is defined as the sum of hyperspherical similarity (e.g., cosine
similarity) between all pairwise neurons in the same layer, capturing the level of neuron uniformity
on the unit hypersphere [34]. We hypothesize that a good finetuned model should have a minimal
difference in hyperspherical energy compared to the pretrained model. A naive way is to add a
regularizer such that the hyperspherical energy remains the same during the finetuning stage, but there
is no guarantee that the hyperspherical energy difference can be well minimized. Therefore, we take
advantage of an invariance property of hyperspherical energy – the pairwise hyperspherical similarity
is provably preserved if we apply the same orthogonal transformation for all neurons. Motivated
by such an invariance, we propose Orthogonal Finetuning (OFT) which adapts large text-to-image
diffusion models to a downstream task without changing its hyperspherical energy. The central idea
is to learn a layer-shared orthogonal transformation for neurons such that their pairwise angles are
preserved. OFT can also be viewed as adjusting the canonical coordinate system for the neurons
in the same layer. By jointly taking into consideration that smaller Euclidean distance between the
finetuned model and the pretrained model implies better preservation of pretraining performance, we
further propose an OFT variant – Constrained Orthogonal Finetuning (COFT) which constrains the
finetuned model within the hypersphere of a fixed radius centered on the pretrained neurons.

The intuition for why orthogonal transformation works for finetuning neurons partially comes from
2D Fourier transform, with which an image can be decomposed as magnitude and phase spectrum.
The phase spectrum, which is angular information between input and basis, preserves the major part
of semantics. For example, the phase spectrum of an image, along with a random magnitude spectrum,
can still reconstruct the original image without losing its semantics. This phenomenon suggests that
changing the neuron directions is the key to semantically modifying the generated image (which is the
goal of both subject-driven and controllable generation). However, changing neuron directions with a
large degree of freedom will inevitably destroy the pretraining generative performance. To constrain
the degree of freedom, we propose to preserve the angle between any pair of neurons, largely based
on the hypothesis that the angles between neurons are crucial for representing the knowledge of
neural networks. With this intuition, it is natural to learn layer-shared orthogonal transformation for
neurons in each layer such that the hyperspherical energy stays unchanged.

We also draw inspiration from orthogonal over-parameterized training [33] which trains classification
neural networks from scratch by orthogonally transforming a randomly initialized neural network.
This is because a randomly initialized neural network yields a provably small hyperspherical energy in
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expectation and the goal of [33] is to keep hyperspherical energy small during training (small energy
leads to better generalization in classi�cation [30, 32]). [33] shows that orthogonal transformation is
suf�ciently �exible to train generalizable neural networks for classi�cation problems. In contrast, we
focus on �netuning text-to-image diffusion models for better controllability and stronger downstream
generative performance. We emphasize the difference between OFT and [33] in two aspects. First,
while [33] is designed to minimize the hyperspherical energy, OFT aims to preserve the same
hyperspherical energy as the pretrained model so that the intrinsic pretrained structure will not be
destroyed by �netuning. In the case of �netuning diffusion models, minimizing hyperspherical
energy could destroy the original semantic structures. Second, OFT seeks to minimize the deviation
from the pretrained model, which leads to the constrained variant. In contrast, [33] imposes no such
constraints. The key to �netuning is to �nd a good trade-off between �exibility and stability, and we
argue that our OFT framework effectively achieves this goal. Our contributions are listed below:

• We propose a novel �netuning method – Orthogonal Finetuning for guiding text-to-image diffusion
models towards better controllability. To further improve stability, we propose a constrained variant
which limits the angular deviation from the pretrained model.

• Compared to existing �netuning methods, OFT performs model �netuning while provably pre-
serving the hyperspherical energy, which we empirically �nd to be an important measure of the
generative semantic preservation of the pretrained model.

• We apply OFT to two tasks: subject-driven generation and controllable generation. We conduct a
comprehensive empirical study and demonstrate signi�cant improvement over prior work in terms
of generation quality, convergence speed and �netuning stability. Moreover, OFT achieves better
sample ef�ciency, as it converges well with a much smaller number of training images and epochs.

• For controllable generation, we introduce a new control consistency metric to evaluate the control-
lability. This core idea is to estimate the control signal from the generated image and then compare
it with the origin control signal. The metric further validates the strong controllability of OFT.

2 Related Work

Text-to-image diffusion models. Tremendous progress [16, 39, 45, 50, 53] has been made in
text-to-image generation, largely thanks to the rapid development in diffusion-based generative
models [12, 20, 55, 56] and vision-language representation learning [1, 28, 29, 37, 44, 54, 57, 61].
GLIDE [39] and Imagen [53] train diffusion models in the pixel space. GLIDE trains the text encoder
jointly with a diffusion prior using paired text-image data, while Imagen uses a frozen pretrained
text encoder. Stable Diffusion [50] and DALL-E2 [45] train diffusion models in the latent space.
Stable Diffusion uses VQ-GAN [14] to learn a visual codebook as its latent space, while DALL-
E2 adopts CLIP [44] to construct a joint latent embedding space for representing images and text.
Other than diffusion models, generative adversarial networks [27, 48, 65, 67] and autoregressive
models [13, 46, 62, 66] have also been studied in text-to-image generation. OFT is inherently a
model-agnostic �netuning approach and can be applied to any text-to-image diffusion model.

Subject-driven generation. To prevent subject modi�cation, [2, 39] consider a given mask from
users as an additional condition. Inversion methods [8, 12, 15, 45] can be applied to modify the
context without changing the subject. [18] can perform local and global editing without input
masks. The methods above are unable to well preserve identity-related details of the subject. In
Pivotal Tuning [49], a generator is �netuned around an initial inverted latent code with an additional
regularization to preserve the identity. Similarly, [41] learns a personalized generative face prior
from a collection of a person's face images. [6] can generate difference variations of an instance,
but it may lose the instance-speci�c details. With a customized token and a few subject images,
DreamBooth [51] �netunes the text-to-image diffusion model using a reconstruction loss and a class-
speci�c prior preservation loss. OFT adopts the DreamBooth framework, but instead of performing
naive �netuning with a small learning rate, OFT �netunes the model with orthogonal transformations.

Controllable generation. The task of image-to-image translation can be viewed as a form of
controllable generation, and previous methods mostly adopt conditional generative adversarial
networks [9, 23, 42, 60, 71]. Diffusion models are also used for image-to-image translation [52, 58,
59]. More recently, ControlNet [68] proposes to control a pretrained diffusion model by �netuning and
adapting it to additional control signals and achieves impressive controllable generation performance.
Another concurrent and similar work, T2I-Adapter [38], also �netunes a pretrained diffusion model
in order to gain stronger controllability for the generated images. Following the same task setting
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in [38, 68], we apply OFT to �netune pretrained diffusion models, yielding consistently better
controllability with fewer training data and less �netuning parameters. More signi�cantly, OFT does
not introduce any additional computational overhead during test-time inference.

Model �netuning . Finetuning large pretrained models on downstream tasks has been increasingly
popular nowadays [3, 11, 17]. As a form of �netuning, adaptation methods (e.g., [21, 22, 43]) are
heavily studied in natural language processing. LoRA [22] is the most relevant work to OFT, and it
assumes a low-rank structure for the additive weight update during �netuning. In contrast, OFT uses
layer-shared orthogonal transformation to update neuron weights in a multiplicative manner, and it
provably preserves the pair-wise angles among neurons in the same layer, yielding better stability.

3 Orthogonal Finetuning

3.1 Why Does Orthogonal Transformation Make Sense?

We start by discussing why orthogonal transformation is desirable in �netuning text-to-image diffusion
models. We decompose this question into two smaller ones: (1) why we want to �netune the angle of
neurons (i.e., direction), and (2) why we adopt orthogonal transformation to �netune angles.

Figure 2: A toy experiment to demonstrate the impor-
tance of angular information. The autoencoder is trained
in a standard way using inner product activation, and (a)
shows the standard reconstruction. In testing, the angular
information of neurons alone can well recover the input
image, even if the autoencoder is not trained with angles.

For the �rst question, we draw inspiration from the empir-
ical observation in [7, 35] that angular feature difference
well characterizes the semantic gap. SphereNet [36] shows
that training a neural network with all neurons normalized
onto a unit hypersphere yields comparable capacity and
even better generalizability, implying that the direction of
neurons can fully capture the most important information
from data. To better demonstrate the importance of neuron
angles, we conduct a toy experiment in Figure 2 where we
train a standard convolutional autoencoder on some �ower
images. In the training stage, we use the standard inner
product to produce the feature map (z denotes the element
output of the convolution kernelw andx is the input in
the sliding window). In the testing stage, we compare three
ways to generate the feature map: (a) the inner product
used in training, (b) the magnitude information, and (c) the
angular information. The results in Figure 2 show that the angular information of neurons can almost
perfectly recover the input images, while the magnitude of neurons contains no useful information.
We emphasize that we do not apply the cosine activation (c) during training, and the training is
done only based on inner product. The results imply that the angles (directions) of neurons play the
major role in storing the semantic information of the input images. In order to modify the semantic
information of images, �netuning the neuron directions will likely be more effective.

Figure 3: Controllable generation with or
without orthogonality. Middle column is from
the original OFT, and the right column is given
by OFT without the orthogonality constraint.

For the second question, the simplest way to �netune direction of
neurons is to simultaneously rotate / re�ect all the neurons (in the
same layer), which naturally brings in orthogonal transformation.
It may be more �exible to use some other angular transformation
that rotates different neurons with different angles, but we �nd that
orthogonal transformation is a sweet spot between �exibility and
regularity. Moreover, [33] shows that orthogonal transformation is
suf�ciently powerful for learning neural networks. To support our
argument, we perform an experiment to demonstrate the effective
regularization induced by the orthogonality constraint. We perform
the controllable generation experiment using the setting of Con-
trolNet [68], and the results are given in Figure 3. We can observe that our standard OFT performs
quite stably and achieves accurate control after the training is �nished (epoch 20). In comparison,
OFT without the orthogonality constraint fails to generate any realistic image and achieve no control
effect. The experiment validates the importance of the orthogonality constraint in OFT.

3.2 General Framework

The conventional �netuning strategy typically uses gradient descent with a small learning rate to
update a model (or certain layers of a model). The small learning rate implicitly encourages a small
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deviation from the pretrained model, and the standard �netuning essentially aims to train the model
while implicitly minimizing kM � M 0k whereM is the �netuned model weights andM 0 is the
pretrained model weights. This implicit constraint makes intuitive sense, but it can still be too �exible
for �netuning a large model. To address this, LoRA introduces an additional low-rank constraint for
the weight update,i.e., rank(M � M 0)= r 0 wherer 0 is set to be some small number. Different from
LoRA, OFT introduces a constraint for the pair-wise neuron similarity:kHE(M ) � HE(M 0)k=0
whereHE(�) denotes hyperspherical energy of a weight matrix. As an illustrative example, we
consider a fully connected layerW = f w1; � � � ; wn g2 Rd� n wherew i 2 Rd is thei -th neuron (W 0

is the pretrained weights). The output vectorz 2 Rn of this fully connected layer is computed by
z = W > x wherex 2 Rd is the input vector. OFT can be interpreted as minimizing the hyperspherical
energy difference between the �netuned model and the pretrained model:

min
W


 HE(W ) � HE(W 0)


 , min

W






X

i 6= j

kŵ i � ŵ j k� 1 �
X

i 6= j

kŵ 0
i � ŵ 0

j k� 1




 (1)

whereŵ i := w i =kw i k denotes thei -th normalized neuron, and the hyperspherical energy of a fully
connected layerW is de�ned asHE(W ):=

P
i 6= j kŵ i � ŵ j k� 1. One can easily observe that the

attainable minimum is zero for Eq.(1). The minimum can be achieved as long asW andW 0 differ
only up to a rotation or re�ection,i.e., W = RW 0 in whichR 2 Rd� d is an orthogonal matrix (The
determinant1 or � 1 means rotation or re�ection, respectively). This is exactly the idea of OFT,
that we only need to �netune the neural network by learning layer-shared orthogonal matrices to
transform neurons in each layer. Formally, OFT seeks to optimize the orthogonal matrixR 2 Rd� d

for a pretrained fully connected layerW 0 2 Rd� n , changing the forward pass fromz =( W 0)> x to

z = W > x = ( R � W 0)> x ; s.t.R > R = RR > = I (2)

whereW denotes the OFT-�netuned weight matrix andI is an identity matrix. OFT is illustrated in
Figure 4. Similar to the zero initialization in LoRA, we need to ensure OFT to �netune the pretrained
model exactly fromW 0. To achieve this, we initialize the orthogonal matrixR to be an identity
matrix so that the �netuned model starts with the pretrained weights. To guarantee the orthogonality
of the matrixR , we can use differential orthogonalization strategies discussed in [26, 33]. We will
discuss how to guarantee the orthogonality in a computationally ef�cient way.

3.3 Ef�cient Orthogonal Parameterization

Figure 4: (a) Original OFT without a diagonal structure. (b) OFT withr diagonal
blocks of the same size. Whenr = 1 , the case of (b) recovers the case of (a).

Standard orthogonalization such as Gram-
Schmidt method, despite differentiable, is
often too expensive to compute in prac-
tice [33]. For better ef�ciency, we adopt
Cayley parameterization to generate the
orthogonal matrix. Speci�cally, we con-
struct the orthogonal matrix withR =
(I + Q)( I � Q) � 1 whereQ is a skew-symmetric matrix satisfyingQ = � Q> . Such an ef�ciency
comes at a small price – the Cayley parameterization can only produce orthogonal matrices with
determinant1 which belongs to the special orthogonal group. Fortunately, we �nd that such a limita-
tion does not affect the performance in practice. Even if we use Cayley transform to parameterize
the orthogonal matrix,R can still be very parameter-inef�cient with a larged. To address this, we
propose to representR with a block-diagonal matrix withr blocks, leading to the following form:

R = diag(R 1 ; R 2 ; � � � ; R r ) =

2

6
4

R 1 2 O( d
r )

.. .
R r 2 O( d

r )

3

7
5 2 O(d) (3)

whereO(d) denotes the orthogonal group in dimensiond, andR 2 Rd� d andR i 2 Rd=r � d=r ; 8i are
orthogonal matrices. Whenr =1 , then the block-diagonal orthogonal matrix becomes a standard
unconstrained one. For an orthogonal matrix with sized� d, the number of parameters isd(d� 1)=2,
resulting in a complexity ofO(d2). For anr -block diagonal orthogonal matrix, the number of
parameter isd(d=r � 1)=2, resulting in a complexity ofO(d2=r). We can optionally share the block
matrix to further reduce the number of parameters,i.e., R i = R j ; 8i 6= j . This reduces the parameter
complexity toO(d2=r2). Despite all these strategies to improve parameter ef�ciency, we note that the
resulting matrixR remains orthogonal, so there is no sacri�ce in preserving hyperspherical energy.
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We discuss how OFT compares to LoRA in terms of parameter ef�ciency. For LoRA with a low-rank
parameterr 0, we have its number of trainable parameters asr 0(d+ n). If we consider bothr andr 0 to
be dependent on the neuron dimensiond (e.g., r = r 0= �d where0<� � 1 is some constant), then the
parameter complexity of LoRA becomesO(d2 + dn) and the parameter complexity of OFT becomes
O(d). We illustrate the difference in complexity between OFT and LoRA with a concrete example.
Suppose we have a weight matrix with size128� 128, LoRA has2; 048trainable parameters with
r 0=8 , while OFT has960trainable parameters withr =8 (no block sharing is applied).

3.4 Constrained Orthogonal Finetuning

We can further limit the �exibility of original OFT by constraining the �netuned model to be within a
small neighborhood of the pretrained model. Speci�cally, COFT uses the following forward pass:

z = W > x = ( R � W 0)> x ; s.t.R > R = RR > = I ; kR � I k � � (4)

which has an orthogonality constraint and an� -deviation constraint to an identity matrix. The
orthogonality constraint can be achieved with the Cayley parameterization introduced in Section 3.3.
However, it is nontrivial to incorporate the� -deviation constraint to the Cayley-parameterized
orthogonal matrix. To gain more insights on the Cayley transform, we apply the Neumann series to ap-
proximateR =( I + Q)( I � Q) � 1 asR � I +2Q + O(Q2) (under the assumption that the Neumann

Figure 5: How� affects the �exibility of COFT in subject-driven generation.

series converges in the operator
norm). Therefore, we can move
the constraintkR � I k � � inside
the Cayley transform, and the
equivalent constraint iskQ � 0k�
� 0 where0 denotes an all-zero ma-
trix and� 0 is another error hyper-
parameter (different than� ). The new constraint on the matrixQ can be easily enforced by projected
gradient descent. To achieve identity initialization for the orthogonal matrixR , we initializeQ
as an all-zero matrix. COFT can be viewed as a combination of two explicit constraints: minimal
hyperspherical energy difference and constrained deviation from the pretrained model. The second
constraint is usually implicitly used by existing �netuning methods, but COFT makes it an explicit
one. Despite the excellent performance of OFT, we observe that COFT yields even better �netuning
stability than OFT due to this explicit deviation constraint. Figure 5 provides an example on how
� affects the performance of COFT. We can observe that� controls the �exibility of �netuning.
With larger� , the COFT-�netuned model resembles the OFT-�netuned model. With smaller� , the
COFT-�netuned model behaves increasingly similar to the pretrained text-to-image diffusion model.

3.5 Re-scaled Orthogonal Finetuning

We propose a simple extension to the original OFT by additionally learning a magnitude scaling
coef�cient for each neuron. This is motivated by the fact that re-scaling neurons does not change the
hyperspherical energy (the magnitude will be normalized out). Speci�cally, we use the forward pass:
z =( DRW 0)> x whereD = diag(s1; � � � ; sd) 2 Rd� d is a diagonal matrix with all the diagonal
elements1; � � � ; cd larger than zero. In contrast to OFT's original forward pass in Eq.(2) where only
R is learnable, we have both the diagonal matrixD and the orthogonal matrixR learnable. The
re-scaled OFT will further improve the �exibility of OFT with a neglectable number of additional
trainable parameters. Note that, we still stick to the original OFT in the experiment section in order
to demonstrate the effectiveness of orthogonal transformation alone, but we actually �nd that the
re-scaled OFT can generally improve performance (see Appendix C for empirical results).

4 Intriguing Insights and Discussions

OFT is agnostic to different architectures. We can apply OFT to any type of neural network in
principle. For Transformers, LoRA is typically applied to the attention weights [22]. To compare
fairly to LoRA, we only apply OFT to �netune the attention weights in our experiments. Besides
fully connected layers, OFT is also well suited for �netuning convolution layers, because the block-
diagonal structure ofR has interesting interpretations in convolution layers (unlike LoRA). When
we use the same number of blocks as the number of input channels, each block only transforms a
unique neuron channel, similar to learning depth-wise convolution kernels [10]. When all the blocks
in R are shared, OFT transforms the neurons with an orthogonal matrix shared across channels. We
conduct a preliminary study on �netuning convolution layers with OFT in Appendix D
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Connection to LoRA. By adding a low-rank matrix, LoRA prevents the information in the pretrained
weight matrix from shifting dramatically. In contrast, OFT controls the transform that applies to
the pretrained weight matrix to be orthogonal (full-rank), which prevents the transform to destroy
the pretraining information. We can rewrite OFT's forward pass asz =( RW 0)> x =( W 0 +( R �
I )W 0)> x where(R � I )W 0 is analogous to LoRA's low-rank weight update. SinceW 0 is typically
full-rank, OFT also performs low-rank weight update whenR � I is low-rank. Similar to LoRA that
has a rank parameterr 0, OFT has a diagonal block parameterr to reduce the number of trainable
parameters. More interestingly, LoRA and OFT represent two distinct ways to be parameter-ef�cient.
LoRA exploits the low-rank structure to reduce the number of trainable parameters, while OFT takes
a different route by exploiting the sparsity structure (i.e., block-diagonal orthogonality).

Why OFT converges faster. On one hand, we can see from Figure 2 that the most effective update
to modify the semantics is to change neuron directions, which is exactly what OFT is designed for.
On the other hand, OFT can be viewed as �netuning neurons on a smooth hypersphere manifold,
which yields better optimization landscape. This is also empirically veri�ed in [33].

Why not minimize hyperspherical energy. One of the key difference to [33] is that we do not
aim to minimize hyperspherical energy. This is quite different from classi�cation problems where
neurons without redundancy are desired. The minimum hyperspherical energy means all neurons are
uniformly spaced around the hypersphere. This is not a meaningful objective to �netune a pretrained
generative model, since it will likely destroy the pretraining information.

Trade-off between �exibility and regularity in �netuning . We discover an underlying trade-off be-
tween �exibility and regularity. Standard �netuning is the most �exible method, but it yields poor sta-
bility and easily causes model collapse. Being surprisingly simple, OFT �nds a good balance between
�exibility and regularity by preserving the pairwise neuron angles. The block-diagonal parameteriza-
tion can also be viewed as a regularization of the orthogonal matrix. Although it limits the �exibility,
it brings additional regularity and stability. COFT is also another example of limiting the �exibility.

No additional inference overhead. Unlike ControlNet, our OFT framework introduces no additional
inference overhead to the �netuned model. In the inference stage, we can simply multiply the learned
orthogonal matrixR into the pretrained weight matrixW 0 and obtain an equivalent weight matrix
W = RW 0. Thus the inference speed is the same as the pretrained model.

5 Experiments and Results

General settings. In all the experiments, we use Stable Diffusion v1.5 [50] as our pretrained text-
to-image diffusion model. All the compared methods �netune the same pretrained model under the
same setting. For fairness, we randomly pick generated images from each method. For subject-driven
generation, we generally follow DreamBooth [51]. For controllable generation, we generally follow
ControlNet [68] and T2I-Adapter [38]. To ensure a fair comparison to LoRA, we only apply OFT or
COFT to the same layer where LoRA is used. More results and details are given in Appendix A.

5.1 Subject-driven Generation

Figure 6: Generated images across different iterations.

Settings. We use DreamBooth [51] and LoRA [22] as the
baselines. All the methods adopt the same loss function as
in DreamBooth. For DreamBooth and LoRA, we generally
follow the original paper and use the best hyperparameter
setup. More results are provided in Appendix A,E,F,J.

Finetuning stability and convergence. We �rst evalu-
ate the �netuning stability and the convergence speed for
DreamBooth, LoRA, OFT and COFT. Results are given in
Figure 1 and Figure 6. We can observe that both COFT and
OFT are able to �netune the diffusion model quite stably.
After 400 iterations, both DreamBooth and OFT variants
achieve good control, while LoRA fails to preserve the
subject identity. After 2000 iterations, DreamBooth starts
to generate collapsed images, and LoRA fails to generate
yellow shirt (and instead generates yellow fur). In contrast,
both OFT and COFT are still able to achieve stable and consistent control over the generated image.
These results validate the fast yet stable convergence of our OFT framework in subject-driven genera-
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Figure 7: Qualitative comparison of subject-driven generation among DreamBooth, LoRA, COFT and OFT. Results are generated with the same
�netuned model from each method. All examples are randomly picked. The �gure is best viewed digitally, in color and signi�cantly zoomed in.

tion. We note that the insensitivity to the number of �netuning iteration is quite important, since it
can effectively alleviate the trouble of tuning the iteration number for different subjects. For both
OFT and COFT, we can directly set a relatively large iteration number without carefully tuning it.
For COFT with a proper� , both the learning rate and the iteration number become effortless to set.

Method DINO" CLIP-I " CLIP-T " LPIPS"

Real Images 0.703 0.864 - 0.695
DreamBooth 0.614 0.778 0.239 0.737
LoRA 0.613 0.765 0.237 0.744
COFT 0.630 0.783 0.235 0.744
OFT 0.632 0.785 0.237 0.746

Table 1: Quantitative comparison of subject �delity (DINO,
CLIP-I), prompt �delity (CLIP-T) and diversity metric
(LPIPS). The evaluation images and prompts are the same as
[51] (25 subjects with 30 text prompts each subject).

Quantitative comparison. Following [51], we conduct
a quantitative comparison to evaluate subject �delity
(DINO [5], CLIP-I [44]), text prompt �delity (CLIP-
T [44]) and sample diversity (LPIPS [69]). CLIP-I com-
putes the average pairwise cosine similarity of CLIP
embeddings between generated and real images. DINO
is similar to CLIP-I, except that we use ViT S/16 DINO
embeddings. CLIP-T is the average cosine similarity of
CLIP embeddings between text prompt and generated
images. We also evaluate average LPIPS cosine simi-
larity between generated images of the same subject with the same text prompt. Table 1 show that
both COFT and OFT outperforms DreamBooth and LoRA in the DINO and CLIP-I metrics by a
considerable margin, while achieving slightly better or comparable performance in prompt �delity
and diversity metric. For each method, we repeatedly �netune the same pretrained model with 30
different random seeds to minimize randomness. The results show that our OFT framework not only
achieves better convergence and stability, but also yields consistently better �nal performance.

Qualitative comparison. To have a more intuitive understanding of OFT's bene�ts, we show some
randomly picked examples for subject-driven generation in Figure 7. For a fair comparison, all the
examples are generated from the same �netuned model using each method, so no text prompt will
be separately optimized for its �nal results. For each method, we select the model that achieves
the best validation CLIP metrics. From the results in Figure 7, we can observe that both OFT and
COFT deliver excellent semantic subject preservation, while LoRA often fails to preserve the subject
identity (e.g., LoRA completely loses the subject identity in the bowl example). In the meantime, both
OFT and COFT have much more accurate control using text prompts, while DreamBooth, despite its
preservation of subject identity, often fails to generate the image following the text prompt (e.g., the
�rst row of the bowl example). The qualitative comparison demonstrates that our OFT framework
achieves better controllability and subject preservation at the same time. Moreover, the number of
iterations is not sensitive in OFT, so OFT performs well even with a large number of iterations, while
neither DreamBooth nor LoRA can. More qualitative examples are given in Appendix F. Moreover,
we conduct a human evaluation in Appendix H which further validates the superiority of OFT.

5.2 Controllable Generation

Settings. We use ControlNet [68], T2I-Adapter [38] and LoRA [22] as the baselines. We consider
three challenging controllable generation tasks in the main paper: Canny edge to image (C2I) on the
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COCO dataset [31], segmentation map to image (S2I) on the ADE20K dataset [70] and landmark
to face (L2F) on the CelebA-HQ dataset [25, 63]. All the methods are used to �netune Stable
Diffusion (SD) v1.5 on these three datasets for 20 epochs. More results are given in Appendix F,G,J.

Figure 8: Face landmark error.

Convergence. We evaluate the convergence speed of ControlNet, T2I-
Adapter, LoRA and COFT on the L2F task. We provide both quantitative
and qualitative evaluation. Speci�cally for the evaluation metric, we
compute the meaǹ2 distance between control face landmarks and pre-
dicted face landmarks. In Figure 8, we plot the face landmark error
obtained by the model �netuned with different number of epochs. We
can observe that both COFT and OFT achieve signi�cantly faster con-
vergence. It takes 20 epochs for LoRA to converge to the performance
of our OFT framework at the 8-th epoch. We note that OFT and COFT
use a similar number of trainable parameters to LoRA (much fewer than
ControlNet), while being much more ef�cient to converge than existing methods. On the other hand,
the fast convergence of OFT is also validated by the results in Figure 1. The right example in Figure 1
shows that OFT is much more data-ef�cient than ControlNet and LoRA, since OFT can converge well
with only 5% of the ADE20K dataset. For qualitative results, we focus on comparing OFT, COFT
and ControlNet, because ControlNet achieves the closest landmark error to ours. Results in Figure 9
show that both OFT and COFT converge stably and the generated face pose is gradually aligned
with the control landmarks. In contrast to our stable and smooth convergence, the controllability in
ControlNet suddenly emerges after the 8-th epoch, which perfectly matches the sudden convergence
phenomenon observed in [68]. Such a convergence stability makes our OFT framework much easier
to use in practice, since the training dynamics of OFT is far more smooth and predictable. Thus it
will be easier to �nd good OFT's hyperparameters.

Figure 9: Qualitative examples with different number of epochs.

Quantitative comparison. We introduce a control
consistency metric to evaluate the performance of
controllable generation. The basic idea is to com-
pute the control signal from the generated image and
then compare it with the original input control sig-
nal. For the C2I task, we compute IoU and F1 score.
For the S2I task, we compute mean IoU, mean and
overall accuracy. For the L2F task, we compute the
mean`2 distance between control landmarks and
predicted landmarks. More details regarding the
consistency metrics are given in Appendix A. For
all the compared method, we use the best possible hyperparameter settings. Results in Table 2 show
that both OFT and COFT yield much stronger and accurate control than the other methods. We
observe that the adapter-based approaches (e.g., T2I-Adapter and ControlNet) converge slowly and
also yield worse �nal results. Compared to ControlNet, LoRA performs better in the S2I task and
worse in the C2I and L2F tasks. In general, we �nd that the performance ceiling of LoRA is relatively
low, even if we have carefully tuned its hyperparameters. As a comparison, the performance of our
OFT framework has not yet saturated, since we empirically �nd that it still gets better as the number
of trainable parameters gets large. We emphasize that our quantitative evaluation in controllable
generation is one of our novel contributions, since it can accurately evaluate the control performance
of the �netuned models (up to the accuracy of the off-the-shelf segmentation/detection model).

Task Metric SD ControlNet T2I-Adapter LoRA COFT OFT

C2I
IoU " 0.049 0.189 0.078 0.168 0.195 0.193
F1 " 0.093 0.317 0.143 0.286 0.325 0.323

S2I
mIoU " 7.72 20.88 16.38 22.98 26.92 27.06
mAcc " 14.40 30.91 26.31 35.52 40.08 40.09
aAcc" 33.61 61.42 51.63 58.03 62.96 62.42

L2F Error# 146.19 7.61 23.75 7.68 6.92 7.07

Table 2: Quantitative comparison of control signal consistency for three control
tasks (Canny edge to image, segmentation to image and landmark to face).

Qualitative comparison. We also qual-
itatively compare OFT and COFT to
current state-of-the-art methods, includ-
ing ControlNet, T2I-Adapter and LoRA.
Randomly generated images in Fig-
ure 10 show that OFT and COFT not
only yield high-�delity and realistic im-
age quality, but also achieve accurate
control. In the S2I task, we can see that
LoRA completely fails to generate images following the input segmentation map, while Control-
Net, OFT and COFT can well control the generated images. In contrast to ControlNet, both OFT
and COFT are able to generate high-�delity images with more vivid details and more reasonable
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Figure 10: Qualitative comparison of controllable generation. The �gure is best viewed digitally, in color and signi�cantly zoomed in.

geometric structures with far less model parameters. In the C2I task, both OFT and COFT are
able to hallucinate semantically similar images based on a rough Canny edges, while T2I-Adapter
and LoRA perform much worse. In the L2F task, our method produces the most accurate pose
control for the generated faces even under challenging face poses. In all three control tasks, we
show that both OFT and COFT produce qualitatively better images than the state-of-the-art baselines,
demonstrating the effectiveness of our OFT framework in controllable generation. To give a more
comprehensive qualitative comparison, we provide more qualitative examples for all the three control
tasks in Appendix F.2, and moreover, we demonstrate OFT can perform well on more control tasks
(including dense pose to human body, sketch to image and depth to image) in Appendix G.

6 Concluding Remarks and Open Problems

Motivated by the observation that angular information among neurons crucially determines visual
semantics, we propose a simple yet effective �netuning method – orthogonal �netuning for controlling
text-to-image diffusion models. Speci�cally, we target two text-to-image applications: subject-driven
generation and controllable generation. Compared to existing methods, OFT demonstrates stronger
controllability and �netuning stability with fewer number of �netuning parameters. More importantly,
OFT does not introduce additional inference overhead, leading to an ef�cient deployable model.

OFT also introduces a few interesting open problems. First, OFT guarantees the orthogonality via
Cayley parametrization which involves a matrix inverse. It slightly limits the scalability of OFT.
Although we address this limitation using block diagonal parametrization, how to speed up this
matrix inverse in a differentiable way remains a challenge. Second, OFT has unique potential in
compositionality, in the sense that the orthogonal matrices produced by multiple OFT �netuning tasks
can be multiplied together and remains an orthogonal matrix. Whether this set of orthogonal matrices
preserve the knowledge of all the downstream tasks remains an interesting direction to study. Finally,
the parameter ef�ciency of OFT is largely dependent on the block diagonal structure which inevitably
introduces additional biases and limits the �exibility. How to improve the parameter ef�ciency in a
more effective and less biased way remains an important open problem.
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A Experimental Details

To verify the effectiveness of our Orthogonal Fine-tuning (OFT) method, we extensively evaluate the
performance of our method in two common text-to-image generation tasks: subject-driven generation
and controllable generation. More speci�cally, we use the exact same task setting as ControlNet [68]
and Dreambooth [51] and the baseline implementations were sourced from the GitHub repository
Diffusers1 and ControlNet2.

Data and Model. For training the convolutional autoencoder from Figure 2, we use 1000 random
images from the Oxford 102 Flower dataset [40]. For the task of subject-driven generation, we use the
of�cial DreamBooth dataset, which consists of 30 subjects from 15 different classes. For each subject,
there are several images and 25 different text prompts. For generating the image-control-caption
combinations, we use BLIP [29] to automatically caption the images (pre-trained model weight and
code for captioning based on the GitHub repository BLIP3). Note, although COCO provides captions
for the training and validation split, to be consistent with other image-control-caption combinations,
we instead use the BLIP-generated captions as text prompts. For the C2I task, we use the whole
COCO 2017 dataset [31] with in total of 180K images; we generate canny edge images as the control
signal using the same canny edge detector as ControlNet. For the S2I task, we use the semantic
segmentation dataset ADE20K [70] with in total of 24K image-segmentation mask pairs. For the
L2F dataset, we use the CelebA-HQ dataset [25], which contains 30K images. Additionally, we
demonstrate that OFT also works well in other controllable generation tasks, including depth-to-
image (D2I), densepose-to-image (P2I), and sketch-to-image (Sk2I). For the D2I task, we also use
the COCO dataset and employ MiDaS [47] to generate depth maps; the pre-trained weights are
obtained from the GitHub repository MiDaS4. For the P2I task, we use the DeepFashion-MultiModal
dataset [24] with in total of 44K clothed human images with the corresponding densepose. For the
Sk2I task, we use a subset of the LAION-Aesthetics dataset with approximately 350K images to
learn sketch-guided image generation. We use the Stable Diffusion v1.55 as the base model.

Subject-driven generation. For training our subject-driven generation diffusion model, we follow
the training objective of Dreambooth. More speci�cally, we use the class-speci�c prior preservation
loss to �ne-tune our orthogonal matrices:

Ex ;c;� ;� 0;t [wt kx̂ � (� t x + � t � ; c) � x k2
2 + �w t 0kx̂ � (� t 0x pr + � t 0� 0; cpr) � x prk2

2]; (5)

with cpr being the class conditioning vector. For calculating the prior-preservation loss, we additionally
need to generate 200 images using the subject's class prompt. Similar to LoRA, we inject our trainable
orthogonal matrices into the attention modules of the stable diffusion model. To be comparable with
LoRA, we choose the exact same linear layers as LoRA to affect upon: the linear layersW q, W k ,
W v andW o. We perform training on 1 Tesla V100-SXM2-32GB GPU using a learning rate of
6 � 10� 5, batch size of 1, and train for approximately 1000 iterations. In the case of COFT, we use
� = 6 � 10� 5 to constrain the orthogonal matrices.

Controllable generation. Apart from injecting the trainable OFT weights into the stable diffusion
model, we need to add a small encoding model to stable diffusion to encode the control signal. To
be comparable with ControlNet [68], we use the same encoding module, which is a shallow 8-layer
convolutional network with Scaled Exponential Linear Unit (SELU) activation functions. We also the
same training objective as ControlNet. The control signal is encoded and concatenated once with the
input to the stable diffusion U-Net. For the LoRA baseline, we use the same encoding module to
encode the control signal. For S2I, L2I and P2I, we �ne-tune the model for 20 epochs; for C2I and
D2I we �ne-tune the model for 10 epochs; for Sk2I we �ne-tune the model for8 epochs. We perform
training on4 NVIDIA A100-SXM4-80GB GPUs using a learning rate of1 � 10� 5, batch size of4
for L2I and batch size of16 for the rest of tasks. For �ne-tuning with COFT, we use� = 1 � 10� 3.

1https://github.com/huggingface/diffusers
2https://github.com/lllyasviel/ControlNet
3https://github.com/salesforce/BLIP
4https://github.com/isl-org/MiDaS
5https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.ckpt
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Evaluation. When evaluating the effectiveness of controllable generation, we primarily focus on
evaluating the controllability. Using the consistency metrics introduced in the main paper, we can
effectively compute the difference between the control signal and the generated image. For the
C2I task, we apply the identical canny �lter on the generated image to determine a canny image of
the predicted image. Both the control signal canny image and the canny image obtained from the
generated images are black-and-white images, with pixel values being either 0 or 1. We evaluate the
pixel-wise Intersection over Union (IoU) and F1 score between these two canny predictions. For the
S2I task, we compute mean IoU, mean and overall accuracy by deploying a pre-trained semantic
segmentation model. More speci�cally, we use the Segformer6 [64] model, which is trained on
ADE20K (Segformer-B4), to perform semantic segmentation on our generated images. We use the
segmentation accuracy as an indication for the overall semantically and structural resemblance of
the generated images to the ground truth image. For the L2F task, we compute the mean`2 distance
between the input control landmarks and the landmarks estimated from generated images using facial
landmark detector [4].

We also evaluate the generation performance by calculating Fréchet Inception Distance (FID) [19],
we use the default setting of the GitHub repository pytorch-�d7. The FID is a metric quantifying the
similarity between two image dataset. It utilizes 2048-dimensional features, which are derived from
the �nal average pooling layer of a pretrained InceptionV3 network trained on ImageNet dataset. A
lower FID score indicates a higher similarity between the datasets.

6https://github.com/NVlabs/SegFormer
7https://github.com/mseitzer/pytorch-�d
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B Effect of Different Number of Diagonal Blocks

We note that the number of diagonal blocksr is an important hyperparameter that effectively
controls the number of trainable parameters. It is necessary to perform a sensitivity study on this
hyperparameter. Following the same settings as the main paper, we evaluate howr affects OFT in the
S2I task. Results in Table 3 show that smallerr (closer to recovering the standard orthogonal matrix)
generally works better than largerr . However, we �nd that a good trade-off between �exibility
and parameter-ef�ciency indeed exists. Empirically, we �nd that we can use a much biggerr if the
dataset is simple, leading to better parameter-ef�ciency and faster convergence. In the main paper,
we always user = 4 because we �nd thatr = 4 works well across datasets and tasks. Note that, in
terms of the number of inference parameters, both LoRA and OFT have the exact same number of
parameters, which is equal to the number of parameters of the underlying stable diffusion model,
while ControlNet has an additional control model with 361M parameters.

ControlNet r = 2 r = 4 r = 8 r = 16

Trainable Parameters 361.3 M 29.5 M 16.3 M 9.7 M 6.4 M

Inference Parameters 1.42 B 1.06 B 1.06 B 1.06 B 1.06 B

mIoU " 20.88 27.18 27.06 24.09 21.0

mAcc " 30.91 39.39 40.09 36.95 32.55

aAcc" 61.42 65.24 62.96 60.25 55.5

Table 3: How the number of diagonal blocks affects the control capability of OFT.
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C Experiments on Re-scaled OFT

Since both OFT and COFT transform neurons with orthogonal matrices and do not affect the
magnitude of neurons, their magnitude may be sub-optimal with their updated orientations. To
address this issue, we propose a re-scaled OFT where the neuron magnitude is re�ned using the same
set of data in the downstream task. Speci�cally, re-scaled OFT further �netunes the magnitude of
neurons without changing their directions. re-scaled OFT can be performed in two manners: (1)joint
�tting : magnitude �tting can be used simultaneously with OFT or COFT, and (2)Post-stage �tting:
magnitude �tting can be used after OFT or COFT is �nished. An important motivation for re-scaled
OFT comes from Figure 2, where we observe that constructing images only with angular information
perfectly preserves visual structures, but it also results in a certain degree of color distortion. We
hypothesize that this minor color distortion is caused by magnitude loss and �xing this issue can
potentially improve the visual quality of generated images.

Notably, re-scaled OFT does not change the hyperspherical energy since it does not change the
direction of neurons - all the nice properties of OFT and COFT on hyperspherical energy are still
perfectly preserved. Therefore, the advantage of structural preservation is also inherited.

To simplify the experiments and validate the effectiveness of re-scaled OFT, we perform post-stage
magnitude �tting on the COFT model and compare the FID between the original validation images
and the generated images (using the control signals extracted from validation images). The reason
we use FID here is that FID is more sensitive to color distortion, while the consistency metric only
measures the structural preservation. Table 4 shows that magnitude �tting can indeed improve the
FID of COFT and is bene�cial to COFT.

Magnitude �tting is lightweight and can be implemented by simply adding one trainable parameter
for each layer we modify; the parameter has the shape of (N � 1), with N corresponds to the number
of neurons in that speci�c layer. The performance gain shown in Table 4 is achieved by performing
Post-stage �ttingon a COFT-�netuned model for only one additional epoch. Moreover, we expect
that the joint �tting re-scaled OFT can lead to better performance.

SD ControlNet T2I LoRA COFT Re-scaled COFT

FID # 41.2 30.9 33.1 30.9 30.8 30.2

Table 4: FID on the segmentation to image task (ADE20K).r = 4 is used here.

19



D Applying OFT to Convolution Layers

In the original setting [22], LoRA is only applied to the linear layers of the attention modules. To be a
fair comparison, we also apply OFT to these weights. However, OFT is not limited to linear layers but
can easily be adapted to convolution layers by transforming the convolutional neurons. We highlight
the compatibility of OFT and COFT for �netuning convolution layers. More interestingly, sharing
the parameters of diagonal blocks inR becomes interpretable in convolution layers. With a suitable
setup, orthogonal matrices with sharing diagonal blocks can transform the convolution kernel in a
channel-sharing manner (or in a spatial manner), implying that the same orthogonal transformation is
applied to all channels. This shares similar intuition with depth-wise convolution.

For this ablation experiment, we study the performance of applying OFT to the convolution layers in
the ResNet blocks of the stable diffusion model. In this experiment, we use COFT as the baseline
method and consider the controllable generation (segmentation to image) as an example. We have
both quantitative (Table 5) and qualitative results (Figure 11). We can empirically observe that by only
�ne-tuning the convolutional layers, we can also achieve some degree of control. By simultaneously
�ne-tuning both linear and convolutional layers, we achieve a slightly better FID score. Note, for
�ne-tuning convolutional layers, we letr be equal to the number of channels of convolutional neurons
in that layer.

COFT (attention) COFT (conv) COFT (extended)

FID # 30.8 39.8 30.4

Table 5: FID results of applying COFT to different types of layers. (withr = 4 )

Figure 11: Controllable generation results of applying COFT to different types of layers.
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E Comparison between COFT and OFT

We have already provided many qualitative examples for COFT and OFT in the main paper. One may
question the fundamental difference between OFT and COFT. Based on the intuition behind COFT,
the deviation constraint is introduced to improve the training stability. We demonstrate the training
stability of COFT with a qualitative example in subject-driven generation. Results in Figure 12 and
Figure 13 show that, despite being much more stable than existing methods, OFT will eventually
generate collapsed images at the 9000-th iteration. In contrast, COFT still produces visually appealing
images. We train both OFT and COFT with a learning rate of1 � 10� 5 and constrain COFT with
� = 1 � 10� 5.

Figure 12: Qualitative comparison between COFT and OFT on subject-driven generation.

21


