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Abstract

Sampling in discrete spaces, with critical applications in simulation and opti-
mization, has recently been boosted by significant advances in gradient-based
approaches that exploit modern accelerators like GPUs. However, two key chal-
lenges hinder the further research progress in discrete sampling. First, since there
is no consensus on experimental settings, the empirical results in different research
papers are often not comparable. Secondly, implementing samplers and target
distributions often requires a nontrivial amount of effort in terms of calibration,
parallelism, and evaluation. To tackle these challenges, we propose DISCS (DIS-
Crete Sampling), a tailored package and benchmark that supports unified and
efficient implementation and evaluations for discrete sampling in three types of
tasks: sampling for classical graphical models, combinatorial optimization, and
energy based generative models. Throughout the comprehensive evaluations in
DISCS, we acquired new insights into scalability, design principles for proposal
distributions, and lessons for adaptive sampling design. DISCS implements rep-
resentative discrete samplers in existing research works as baselines, and offers a
simple interface that researchers can conveniently design new discrete samplers
and compare with baselines in a calibrated setup directly.

1 Introduction

Sampling in discrete spaces has been an important problem in physics (Edwards & Anderson,
1975 [Baumgirtner et al.l [2012), statistics (Robert & Casellal 2013 |Carpenter et al., 2017), and
computer science (LeCun et al., 2006; Wang & Cho, 2019) for decades. Since sampling from a target
distribution 7(z) o exp(—f(x)) in a discrete space X is typically intractable, one usually resorts
to MCMC methods(Metropolis et al.,|1953; |Hastings}, |1970). However, except for a few algorithms
such as Swedesen-Wang for the Ising model (Swendsen & Wang, [1987) and Hamze-Freitas for
hierachical models (Hamze & de Freitas, |[2012), which exploit special structure of the underlying
problem, sampling in a general discrete space has primarily relied on Gibbs sampling, which exhibits
notoriously poor efficiency in high dimensional spaces.

Recently, a family of locally balanced samplers (Zanellal 2020; \Grathwohl et al.| 2021} |Sun et al.|
2021; [Zhang et al. |2022), using ratio informed proposal distributions, %, have significantly
improved sampling efficiency by exploiting modern accelerators like GPUs and TPUs. From the
perspective of gradient flow on the Wasserstein manifold of distributions, Gibbs sampling is simply a
coordinate descent algorithm, whereas locally balanced samplers perform as full gradient descent
(Sun et al., [2022a)). Despite the advances in locally balanced samplers, a quantitative benchmark
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is still missing. One important reason is that there is no consensus on the experimental setting.
Particularly, the initialization of energy based generative models, random seeds used in graphical
models, and the protocol of hyper-parameter tuning all have a signi cant impact on performance.
As a result, some empirical results in different research papers may not be comparable. Under this
circumstance, a uni ed benchmark is in crucial need for boosting the research in discrete sampling.

There are two key challenges that seriously hinder the appearance of such a benchmark. First, a
sampler may perform well in one target distribution while poorly in another one. To thoroughly
examine the performance of a sampler, a quali ed benchmark needs to collect a set of representative
distributions that covers the potential applications of a discrete sampler. Second, the evaluation of
discrete samplers is complicated. Although the commonly used metric ESS (Vehtali et €l., 2021) can
effectively re ect the ef ciency of a sampler in Monte Carlo integration or Bayesian inference, it is

not very informative in scenarios when the sampler guides the search in combinatorial optimization
problems, or performs as a decoder in deep generative models.

To address the two challenges, we propb$8CS a tailored benchmark for discrete sampling.

In particular,DISCSconsists of three groups of tasks: sampling from classical graphical models,
sampling for solving combinatorial optimization problems, and sampling from deep EBMs. These
tasks cover the topics of simulation and optimization, and models ranging from hand-designed
graphical models to learned deep EBMs. For each task, we collect the representative problems from
both synthetic and real-world applications, for example graph partitioning for distributed computing
and language model for text generation. We carefully design the evaluation mefBitS@S$ In
sampling classical graphical models tadBSCSuses the ESS as standard. In sampling for solving
combinatorial optimization task®ISCSruns simulated annealing (Kirkpatrick et al., 1983) with
multiple chains and report the average of the best results in each chain. In sampling from energy
based generative modeBISCSemploys domain speci c ways to measure the sample quality.

DISCSoffers a convenient interface for researchers to implement new discrete samplers, without
worrying about parallelism, experiment loop and evaluatibiSCScan ef ciently sweep over
different tasks and con gurations in parallel and thus the evaluation reported in this paper can be
easily reproduced. Als®ISCSimplements existing discrete samplers random walk Metropolis
(Metropolis et al., 1953), block Gibbs, Hamming ball samgler (Titsias & Yau, [2017), LB (Zanella,
2020), GWG|(Grathwohl et &[., 2021), PAS (Sun €et[al., 2021), DMALA (Zhanglet al.,| 2022), DLMC
(Sun et al., 2022a), and is actively maintaining to add new samplers. Researchers can directly compare
the results with the state-of-the-art methods.

With DbSCS we observe an interesting phenomenon that the locally balanced weight function
g(t) =  t performs better (worse) thayft) = ﬁ when Ising model has temperature higher (lower)

than the critical temperature. There have been a lot of studies about how to select the locally balanced
function for a locally balanced sampler (Zanella, 2020; Sansone, 2022), but the answer remains open.

We hope the observations in this paper can provide some insight on this question.

We wrap theDISCSpackage as a JAX library to facilitate the research in discrete sampling. The
library will be open sourced dittps://github.com/google-research/discs . The paper is
organized as follows:

* In section 2, we cover the related sampling tasks and discrete samplers.

* In section 3, we formulate the discrete sampling problem.

* In section 4, we introduce the discrete sampling tasks and evaluation metfitS@% We also
report the results for existing discrete samplers.

In section 5, we discuss the contribution and limitation®t8CS

2 Related Work

Discrete sampling has been widely used to study the physical picture of spin glasses (Hukushima &
Nemoto, 1996; Katzgraber et al., 2001), solve combinatorial optimization via simulated annealing
(Kirkpatrick et al., 1983), and for traning or decoding deep energy based models (Wang & Cho, 2019;



83
84

85
86

87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104

105
106
107
108

110
111

112
113
114
115
116

117
118
119

120

121
122
123
124

Du et al., 2020; Dai et al., 2020b). However, they primarily depend on Gibbs sampling, which could
be very slow in high dimensional space.

Since the seminal work Zanella (2020), the recent years have witnessed signi cant progresses for
discrete sampling in the both theory and practice. Zanella (2020) introduces the locally balanced
proposal(x;y) / o g;) wherey 2 N (X)) restricted within a small neighborhoodxfandg( ) :

R: ! R, satisfyingg(a) = ag(%), and prove it is asymptotically optimal. In the following works,

PAS (Sun et al., 2021) and DMALA (Zhang et al., 2022) generalize locally balanced proposal to large
neighborhoods by introducing an auxiliary path and mimicking the diffusion process, respectively.
Inspired by these locally balanced samplers, Sun et al. (2022a) generalize the Langevin dynamics
in continuous space tdiscrete Langevin dynami¢®LD) in discrete space as a continuous time
Markov chaindihP(X”h = yjXt' = x) = ¢ 88) and show that previous locally balanced
samplers are simulations of DLD with different discretization strategies. In the view of Wasserstein
gradient ow, the Gibbs sampling can be seen as coordinate descent and DLD gives a full gradient
descent. Hence, locally balanced samplers induced from DLD provides a principled framework to
utilize the modern accelerators like GPUs and TPUs to accelerate discrete sampling. Besides the
discretization of DLD, another crucial part to design a locally balanced sampler is estimating the
probability ratio—{¥}. Grathwohl et al. (2021) proposes to used gradient approximafign

exp(hr f(x);y xi) and obtains good performance on various classical models and deep energy
based models. When the Hessian is available, Rhodes & Gutmann (2022); Sun et al. (2023a) use
second order approximation via Gaussian integral trick (Hubbard, 1959) to further improve the
sampling ef ciency on skewed target distributions. When the gradient is not avaiable, Xiang et al.
(2023) use zero order approximation via Newton's series.

Besides designing the sampler, Sun et al. (2022b) proves that when tuning path length in PAS (Sun
et al., 2021), the optimal ef ciency is obtained when average acceptance rate is 0.574, and design an
adaptive tuning algorithm for PAS. Sansone (2022) learn locally balanced weight function for locally
balanced proposal, but how to select the weight function in a principled manner is still unclear.

3 Formulation for Sampling in Discrete Space

The sampling in discrete space can be formulated as the following problem: in a nite discrete space
X, we have an energy functidr( ) : X ! R. We consider a target distribution

exp( f (x)).

> z= exp( t(2); (1)

z2X

(x) =

where is the inverse temperature. When the normalizés intractable, people usually resort to
Markov chain Monte Carlo (MCMC). Metropolis-Hastings (M-H) (Metropolis et al., 1953; Hastings,
1970) is a commonly used general purpose MCMC algorithm. Speci cally, given a currenk State
the M-H algorithm proposes a candidate stafeom a proposal distributiog(x("); y). Then, with
probability
min e Mayix9) ©
C(xM)gx®yy)
the proposed state is accepted afid? = y; otherwisex(**D = x(U) In this way, the detailed

balance condition is satis ed and the M-H sampler generates a Markov xffainx® ; ::: that has
as its stationary distribution.

)

4 Benchmark for Sampling in Discrete Space

The recent development of locally balanced samplers that use the%tim guideq(x; ) have

signi cantly improved the sampling ef ciency in discrete space. However, there is no consensus
for many experimental settings and the empirical results in different research papers may not be
comparable. Under this circumstance, we proppseCSas a benchmark for general purpose
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samplers in discrete space. In Section 4.1, we introduces the baselDEED& In Section 4.2, 4.3,
4.4, we introduce the tasks considere®isCSand how the discrete samplers are evaluated on these
tasks. We also report the results of the baselines.

4.1 Baselines

We include both classical discrete samplers and locally balanced samplers in recent research papers
as baselines in our benchmark. Speci cal}SCSimplements

1. Random Walk Metropolis (RWM) (Metropolis et al., 1953).

2. Block Gibbs (BG), where BG-&> denotes using block Gibbs with block siae

3. Hamming Ball Sampler (HB) (Titsias & Yau, 2017), where HB><<b> denotes using block size
a and Hamming ball sizb.

4. Gibbs with Gradient (GWG) (Grathwohl et al., 2021), a locally balanced sampler that use gradient
to approximation the probability ratio. For binary distribution, GWG has a scaling factor
determine how many sites to ip per step.

5. Path Auxiliary Sampler (PAS) (Sun et al., 2021), a locally balanced sampler that has a scaling
factorL to determine the path length.

6. Discrete Metropolis Adjusted Langevin Algorithm (DMALA)(Zhang et al., 2022), a locally
balanced sampler that has a scaling factdo determine the step size.

7. Discrete Langevin Monte Carlo (DLMC) (Sun et al., 2022a), a locally balanced sampler that has
a scaling factor to determine the simulation time of DLD. DLMC has multiple choices for its
numerical solver to approximate the transition matBxSCSconsiders the two versions used in
the original paper, DLMC that uses an interpolation and DLMCf that uses Euler's forward method.

Remark: weight functior, All the locally balanced samplers have the exibility to select locally

balanced functiong(t) = = t andg(t) = ﬁ are the two most commonly used weight functions. In

this paper, we will use t by default. When we use both of them, we use <sampler>-<func> to refer
the type of the weight function.

Remark: scaling Since the scalings of the proposal distribution in RWM, PAS, DMALA, and
DLMC are tunable, we considers two versions with adaptive tuning or binary search tuning for fair
comparison. Sun et al. (2022b, 2023b) propose adaptive tuning algorithm for PAS and DLMC when
the target distribution is factorized. In practice, we nd that they also apply well for other locally
balanced samplers and for more general target distributions. Hence, in this paper, we use the adaptive
tuning algorithm by default to tune the scaling for locally balanced samplers. In the several exceptions
where the adaptive algorithm does not apply, we will use <sampler-name>-noA to indicate the results
from binary search tuning.

4.2 Sampling from Classical Graphical Models

This section covers the classical graphical models that are widely used in physics and statistics,
including Bernoulli Models, Ising Models (Ising, 1924), and Factorial Hidden Markov Models
(Ghahramani & Jordan, 1995). The graphical models have large exibility, for example, the number
of discrete variables, the number of categories for each discrete variable, and the temperature of the
model. The performances of different samplers can heavily depends on these con guiai®@s.
provides tools to automatically sweep over hundreds of con gurations by one click. Same as the
routine in Monte Carlo integration or Bayesian infereddéSCSuses the Effective Sample Size
(ESS) to measure the ef ciency for each sampler and reports the ESS normalized by the nhumber of
calling energy function and the ESS normalized by the running time.

We use Ising Models as an example in the main text, and the more results are reported in Appendix.
For an Ising Model de ned on a 2D grid, where the state space f 1;1g° P represents the spins
on all nodes. For each state? X , the energy function is de ned as:

X X
f(x)= Jij XiX; hi X; 3
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wherelJ; is the internel interaction and tlig is the external eld. The con gurationd andh can

be set freely irDISCS In the main text, we report the results using the con guration from Zanella
(2020). SpecicallyJ; =0:5h; = ;+ ;,where; Uniform( 1:5;1:5)and ; = 0:5if node

i is located in a circle has the same center as the 2D grid and rgtﬂ%uselse 0:5. We consider the

target distribution (x) / exp( f (X)), where isthe inverse temperature. UsiBgSCS one can

easily investigate the in uence of the model dimension. In Figure 1, one can see that the traditional
samplers, RWM, GB, HB, have signi cant decrease in ESS when the model dimension increases,
while the locally balanced samplers are less affected as the ratio informadtoeffectively guides

the proposal distribution. The overall trends basically follows the prediction from Sun et al. (2022b)
that the ESS i©(d 1) for RWM andO(d 3) for PAS.

Figure 1: Results on Ising model with different dimensions

ThroughDISCS researchers can also easily evaluate the samplers with different temperature. In
Figure 2, we evaluate Ising models with inverse temperatures from 0.1607 to 0.7607. We consider

Ising model without external eldh; 0 andJ; 1 as we know the critical temperature for this
con guration isﬁp? which means the critical point for inverse temperature 0:4407. From

the results, we can see that

» The Ising model is harder to sample from when the inverse temperaisreloser to the critical
point, which is consistent with the theory in statistical physics p_
» When the inverse temperaturas lower than the critical point, using weight functigft) = =~ t
gives larger ESS; When the inverse temperature is larger than the critical point, using weight

functiong(t) = t+t1 consistently obtains larger ESS.

The second observation implies that one should use ratio fung¥efor target distributions with
sharp landscapes. We will revisit this conclusion in Figure 5 and Table 2.

Figure 2: Performance of locally balanced samplers with different types of weight functions v.s
temperature on: (Ief§0 501sing model, (right)100 100lsing model

The categorical version of Ising model is Potts model, where each site of x;stete values in a
symmetry group, instead 6f 1;1g. For simplicity, we denote the symmetry group as a set of one
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hot vectorsC= fey; ;g with hy 2 RS;J; 2 RC €. In this way, the energy function becomes:
X X
f(x)= X7 Jij X; hh; ; x;i (4)
B] i
In Figure 3, one can see the sampling ef ciency is very robust with respect to the number of category.
The result for BG-2 on Potts model with 256 categories are omitted as it takes over 100 hours.

Figure 3: Results of Potts models with different number of categories

4.3 Sampling for Solving Combinatorial Optimiazation

Combinatorial optimization is a core challenge in domains like logistics, supply chain management
and hardware design, and has been a fundamental problem of study in computer science for decades.
Combining with simulated annealing Kirkpatrick et al. (1983), discrete sampling algorithm is a
powerful tool to solve combinatorial optimization problems (Sun et al., 2023b). In expectation, a
sampler with a faster mixing rate can nd better solutions. Hence, the second type of tasks is sampling
for solving combinatorial optimization problems. CurrenBySCScovers four problems: Maximum
Independent Set, Max Clique, Max Cut, and Balanced Graph Partition. Without loss of generality,
we consider combinatorial optimization that admit the following form:

. OT;I:T;C » a(x); st bx)=0 (5)
For ease of exposition, we also assuge 0; 8x 2 C, but otherwise do not limit the form @f
andb. To convert the optimization problem to a sampling problem, we rst rewrite the constrained
optimization into a penalty form via a penalty coef cientthen treat this as an energy function for
an EBM. In particular, the energy function takes the form:

f(x)=a(x)+ bx) (6)
Then, we de ne the probability of at inverse temperatureby:
p (x)/ exp( f (X)) )

A naive approach to this problem would be directly sampling from  (x), but such a distribution
is highly nonsmooth and unsuitable for MCMC methods. Instead, following classical simulated an-
nealing, we de ne a sequence of distributions parameterized by a sequence of decaying temperatures:

P=[p,(X);p.(X)::::5p ; (X)] (8)
where the sequencg < ;<:::< 1 !1 convergesto alarge enough valuelamcreases.

Example 1: Max Cut A cutonagraplc = (V;E) isto nd a partition of the graph nodes into two
complementary set¢ = V; [ Vs, such that the number of edgesinbetweerV; andV; is as large

as possible. Max Cut is an unconstrained problem, which makes its formulation relatively simple.
We can seC = f0; 1g such thatx; = O represents 2 V; andx; = 1 meansx; 2 V,. Then we
canwritea(x) = x> Ax;b(x) 0, whereA is the adjacency matrix d&. By applying simulated



221
222
223
224

225

226
227
228
229
230
231
232
233
234

235

236
237

239
240

annealing with the same temperature schedule, we can compare the performance for each sampler.
We report the results in Figure 4. The ratio is computed by dividing the cut size for the solutions
obtained by running Gurobi for one hour (Dai et al., 2020a). The legends are sorted according to the
optimal value they nd. One can see that the PAS leads the results. Also, locally balanced samplers
signi cantly outperforms the traditional samplers, especially when the graph size increases.

ER-[256-300] ER-[512-600] ER-[1024-1100]

Figure 4: Results for MAXCUT on ER graphs. The ratio is computed by dividing the optimal cut size
obtained from running Gurobi for 1 hour. (top) ratio with respect to number of M-H steps, (bottom)
ratio with respect to running time.

Example 2: Maximum Independent Set On a graphG = (V;E), an independent s& V

means that for anij 2 S, (i;j ) 2 E. We can sef= f0; 1g such thalx-P= 0 meand 2 S and

Xi =1 meand 2 S. Then we can writ@(x) = oy Xi andb(x) = ii )2 XiXj. Forthe

penalty coef cient , we follow Sun et al. (2022c) to select= 1:0001being a value slightly larger

thanl. We run all samplers on ve groups of small ER graphs with 700 to 800 nodes, each group has
128 graphs with densities varying 0.05, 0.10, 0.15, 0.20, and 0.25. We also run all samplers on 16
large ER graphs with 9000 to 11000 nodes. For each con gurations, we run 32 chains with the same
running time and report the average of the best results found by each chain in Table 1. One can easily
see that PAS obtains the best result.

Table 1: Results for MIS on ER graphs. The set found by sampling algorithm is not necessary an
independent set, we report a lower bound: set size - # pair of adjacent nodes in the set.

ER[700-800] ER[9000-11000]

Sampler | 505 010 045 020 025 0.15
HB-10-1 | 100374 58.750 41812 32344 26.469 277.149
BG-2 | 102.468 60.000 42.820 32250 27.312 316.170
RMW | 97.186 56.249 40429 31.219 25594 -555.674
GWG-nA | 104.812 62.125 44.38334.812 28.187|  367.310
DMALA | 104.750 62.031 44.195 34.375 28.081 357.058
PAS | 105.062 62.250 44.57034.719 28.500|  377.123
DLMCf | 104450 62219 44.078 34.469 28.1p5 354.121
DLMC | 104.844 62.187 44.273 34500 28.281 355.058

4.4 Sampling from Energy Based Generative Models

The discrete samplers can also play as the decoder in generative models. In particular, given a
dataseD = fX;g\,; sampled from the target distribution one can train an energy functién( ),

such that the energy based mode{ ) / exp( f ()) tsthe dataseD. DISCSprovides multiple
checkpoints for the energy function trained on real-world image or language datasets. Researchers
can easily evaluate their samplers after loading the learned energy function.



241
242
243
244
245

246
247
248
249

250
251
252
253
254

For the models that are relatively simple, for example, Restricted Boltzmann Machine (RBM) trained
on MNIST (LeCun, 1998) and fashion-MNIST (Xiao et al., 2017b), one can continue using ESS
as the metric. In Figure 5, we evaluate the samplers on RBMs trained on MNIST with 25 and 200
hidden variables. One can see that 1) DLMC has the best performance, 2) when the hidden dimension
is larger, the learned distribution becomes sharper, hgiclscebtains better ef ciency compared to

t, which is consistent with our observation in Figure 2. For more complicated deep energy based
models, a sampler may fail to mix within a reasonable steps. In this case, ESS is not a good metric.
To address this probler®ISCSprovides multiple alternative measurements, including snapshots,
annealed importance sampling, and domain speci ¢ scores.

Figure 5: Results on RBMs trained on MNIST dataset. (top) RBM with 25 binary hidden variables,
(bottom) RBM with 200 binary hidden variables

Snapshots After loading the checkpoint of energy based generative mo¢®_;Scan generate
shapshots of the sampling chains. For example, in Figure 6, we display the snapshots of sampling on
a deep residual network trained on MNIST data (Sun et al., 2021) and on pretrained language model
BERT®. One can see that locally balanced samplers generates samples with higher qualities, and can
typically visit multiple modalities in the distribution.

MNIST BERT

Figure 6: Snapshots of energy based generative models: (left) snapshots for every 1k steps on MNIST
ResNet, (right) snapshots for text lling task on BERT in Table 2

Yloading the check point from https://huggingface.co/bert-base-uncased.
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Domain Speci ¢ Scoresin many deep generative tasks, the goal is to ef ciently sample high-quality
samples, instead of mixing in the learned energy based models. In this scenario, domain specic
scores that directly evaluate the sample qualities are a better choice. For eXal88provides

text lling tasks based on pre-trained language models like BERT (Wang & Cho, 2019; Devlin

et al., 2018). Following the settings in prior work (Zhang et al., 20R2$CSrandomly sample 20
sentences from TBC (Zhu et al., 2015) and WiKiText-103 (Merity et al., 2016), mask four words in
each sentence (Donahue et al., 2020), and sample 25 sentences from the probability distribution given
by BERT. As a common practice in non-auto-regressive text generation, we select the top-5 sentences
with the highest likelihood out of 25 sentences to avoid low-quality generation (Gu et al., 2017; Zhou
et al., 2019). We evaluate the generated samples in terms of diversity and quality. For diversity,
we use self-BLEU (Zhu et al., 2018) and the number of unique n-grams (Wang & Cho, 2019) to
measure the difference between the generated sentences. For quality, we measure the BLEU score
(Papineni et al., 2002) between the generated texts and the original dataset, which is the combination
of TBC and WikiText-103. We report the quantitative results in Table 2. We do not have the results
for HB and BG as they are computationally infeasible for this task with 30k+ tokens. In this task,
the locally balanced sampleﬁ still outperforms RMW. Also, one can notice that the weight function
ﬁ signi cantly outperforms t. The reason is that the overparameterized neural network is a low
temperature system with sharp landscape. This phenomenon is consistent with the results in Figure 2.

Table 2: Quantative results on text in lling. The reference text for computing the Corpus BLEU is
the combination of WT103 and TBC.

Uniquen-grams %) (')
Methods | Self-BLEU () Self T103 TBC Corpus BLEU ()
n=2 n=3 n=2 n=3 n=2 n=3

RM\?{ 92.41 6.26 9.10 1897 26.73 19.33 26.67 16.24
GWG 57 85.93 11.22 17.14 23.16 3556 2358 35.56 16.75
DMALA "t 85.88 1158 17.14 22.07 34.08 23.22 34.15 17.06

PA B 85.39 11.37 1760 22.61 3553 23.65 3547 16.57
DLMCfp:[ 88.39 953 14.06 21.00 3185 2227 3198 16.70
DLMC  t 85.28 12.05 1765 24.03 36.34 2451 36.27 16.45
GWG 81.15 15.47 22,70 25.62 38.91 25.62 38.58 16.68
DMALAt+1 80.21 16.36 23.71 25.60 39.39 26.75 39.72 16.53
PAS 81.02 1562 22.65 2559 39.28 26.08 39.48 16.69
DLMCf -+ 80.12 16.25 23.76 25.41 39.31 26.86 39.57 16.73
DLMC i 84.55 12.62 1847 2427 37.28 2494 37.14 16.69

5 Conclusion

DISCSis a tailored benchmark for discrete sampling. It implements various discrete sampling tasks
and state-of-the-art discrete samplers and enables a fair comparison. From the results, we know
that DLMC leads in sampling from classical graphical models, PAS leads in solving combinatorial
optimization problems, DLMCf and DMALA has the best performance on language models. We
believe more ef cient discrete samplers can be obtained by designing better discretization of DLD
(Sun et al., 2022aPDISCSis a convenient tools during this process. The researcher can freely set the
con gurations for tasks and samplers abt5CSwill automatically compile the program and run the
processes in parallel. Besides, we observe that the choice of the locally balanced weight function
should depends on the critical temperature of the target distribution. We believe this observation is
insightful and will lead to a deeper understanding of locally balanced samplers.

Of course DISCSdoes not include all existing tasks or samplers in discrete sampling, for example,
the zero order (Xiang et al., 2023) and second order (Sun et al., 2023a) approximation methods. We
will keep iteratingDISCSand more features will be added in the future. We wpdpCSto a JAX

library. Researchers can conveniently implement customer tasks or samplers to accelerate their study
and, in the meanwhile, contribute the coddi&CSfor further improvement. We believ@ISCS

will be a powerful tools for researchers and facilitate the future research in discrete sampling.
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A Experiment Details
The source code is open source at DISCS and the data used in this paper is avaiable at DISCS DATA.

A.1 Classical Graphical Models

For all the experiments of classical graphical models, we run 100 chains. The chains are run in
parallel on 4 V100 GPUs, with each GPU handling a mini batch of 25 chains. We evaluate the
performance of all the samplers and study the effect of sample shape, number of categories, locally
balance function type for locally balanced samplers and the smoothness/sharpness of different models.
Note that the result for BG-2 on Potts 10 and Categorical 8 model with 256 categories are omitted as

it takes over 100 hours. The chain length is set as 1 million steps when studying the effect of number
of categories and sample shape and in the other cases is set as 100k steps. For each experiment, as
the sampling happens, all the samples of all chains are mapped separately on a randomly generated
sample to a lower dimension of one. The ESS is calculated on the mapped samples after the burn-in
phase i.e. after the generation of half of the chain using TensorFlow MCMC effective sample size.
The ESS is averaged over all the chains and is reported over the running time and number of energy
evaluation of each sampler. In the following sections, we provide the energy function we used for
each of the classical graphical models.

A.1.1 Factorized Models

Factorized models are the simplest distributions in a discrete space, where each site is independent
with others. Consider the category set of one hot vedbrs fey;:::;ec g and the state space

X = CV. We havgCj= C is the number of category aml is the number of variables. The energy
function of a factorized model is:

X
fxX)= M "i 9)
n=1
where 9 2 R®. We denote the target distribution as Bernoulli model wBen 2 and Categorical
model wherC > 2. We report the results on Bernoulli models and Categorical models in Figure 7
and 8, respectively.

A.1.2 Ising Models

The Ising model (Ising, 1924) is a mathematical model of ferromagnetism in statistical mechanics.
It consists of binary random variables arranged in a lattice g&aph( V; E) and allows node to
interact with its neighbors. The Potts model (Potts, 1952) is a generalization of the Ising model where
the random variables are categorical. The energy function for Ising model and Potts model can be
described as:

X X

f(x)= hXn; ni Jij (Xi5%j) (20)

n=1 (ij )2E

where we set? 2 R", andJj (Xi;y;) = Lix,=y, ¢- FOr Ising model, we use”  Uniform(  2;1)

for the outer part of the lattice graph, anl  Uniform( 1; 2) for the inner part of the lattice graph.
We report the results on Ising model and Potts model in Figure 9, 10.

A.1.3 Factorial Hidden Markov Model

FHMM (Ghahramani & Jordan, 1995) uses latent variables to characterize time series data. In
particular, it assumes the continuous data R is generated by hidden state2 C- K. The
probability function is:

oo R X _ ;
p(x) = p(x1)  p(x'ix" 1) plyix) = N(yi;  MWWixi+ b ?) (11)
=2 =1 k=1
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Figure 7: Results on Bernoulli Models

In particular, for binary model, we conside¢x; = 0) =0 :9; P(x! = x' !jxt 1)=0:8, =2:0.
We usel. = 200; K = 50 for high temperature setting aihd= 1000; K = 10 in low temperature
setting. For categorical model, we ugéxijx; 6 0) andp(x!jx' 1;x' 6 x' 1) as uniform
distribution and we usk = 200, K = 10 with category numbe€ = 4;8. We report the results in
Figure 11.

A.2 Combinatorial Optimization

Here we rst provide the experimental details for the combinatorial optimization problems, MIS,
Max Clique, Maxcut and, Balanced Graph Partition. The statistics of the synthetic datasets, including
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Figure 8: Results on Categorical Models

Table 3: Synthetic data statistics.

Name MIS Max Clique Maxcut
ER-[700-800] ER-[9000-11000] RB ER BA
Max # nodes 800 10,915 475 1,100 1,100
Max # edges 47,885 1,190,799 90,585 91,239 4,384
# Test instances 128 16 500 1,000 1,000

the maximum number of nodes/edges in a graph, and the number of test instances are reported in
3. Additionally the statistics of real-world graphs are in 4. For Maxcut-ba and all Balanced Graph
Partition and MIS graphs, we used 32 as the number of chains and for Maxcut-optsicom, Maxcut-er,
ans all MaxClique graphs we used 16. The data used for these experiments could be found at DISCS
DATA.

We run all the experiments on 8 V100 GPUs in parallel. For only Maxcut Optsicom graph, we use 2
V100 GPUs. The test instances are divided evenly between the GPUs and are run in parallel. For
each experiment, we report the average of the best solution found over the number of test instances
along with the end-to-end run time (in seconds) of each in tables. We report the results for all the
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Figure 9: Results on Ising Models

samplers and plot the their solution through as the chain is being generated over M-H step and the
running time.

In the following sections, we provide the actual energy function we used for each of the problems
we experimented in the main paper. For a gr&ph ( V; E) we label the nodes iW from 1 tod.

The adjacency matrix is representeddas-or a weighted graph we simply |8 denote the edge
weight between nodieand] . For constraint problems, we follow Sun et al. (2022c) to select penalty
coef cient as the minimum value of such tha :=argmin f (x) is achieved ax satisfying

the original constraints. Such a choice of the coef cient guarantees the target distribution converges
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Figure 10: Potts

Table 4: Real-world data statistics.

Name MIS Max Clique  Maxcut Balanced Graph Partition
SATLIB Twitter Optsicom MNIST VGG ALEXNET RESNET INCEPTION
Max # nodes 1,347 247 125 414 1,325 798 20,586 27,114
Max # edges 5,978 12,174 375 623 2,036 1,198 32,298 40,875
# Test instances 500 196 10 1 1 1 1 1

to the optimal solution of the original CO problems while keeping the target distribution as smooth as
possible.

A21 MIS
The MIS has the integer programming formulation as
xd
min GXxi; S.txixj =0;8(;j)2E (12)
x2f 0;1gd i=1
We use the corresponding energy function in the following quadratic form:
T
A
f(x):= c'x+ % (13)
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Figure 11: Results on FHMMs

In our experiments equals tdl and we use = 1:0001 In post processing, we iteratively go through

all nodesx; fori = 1;:::;d. If there exist; = 1 for (x;;X;) 2 E, we ipits valuex; = 0. After

post processing, the statds guaranteed to be feasible in the original MIS problem. We provide the
average of the best solutions over all number of instances along with their corresponding running
time at 5. The plots of the experiments could be found at 12.

We also conduct experiments to justify the results are robust regarding the choice of the penalty
coef cient. In Figure 13, we use penalty coef cient2 f 1:001; 1:01; 1:1; 2g on ER-[700-800]
graphs with densit§ 0:05; 0:10; 0:15; 0:20; 0:25g. We also use a dashed line to represent the optimal
value obtained by running Gurobi-10 for 1 hour. From the results, we can observe that 1) PAS
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Table 5: MIS.

Sampler  Oraphs ER[700-800] ER[9000-11000]| SATLIB
Density | 0.05 0.10 0.15 0.20 0.25 0.15

HB.10.1 _SiZ€ | 100374 58750 41812 32344 26469 277.149 422427

Time(s) | 426.185 390.810 684.590 414.067 429.879 15139.425 | 5381.857

BG.2 Size | 102468 60.000 42.820 32250 27.312  316.170 422.200

Time(s) | 291.427 290.042 562.986 295.024 288.109 13079.125 | 3027.204

RMW Size | 97.186 56.249 40429 31.219 25594  -555.674 420.284

Time(s) | 284.092 293.517 499.577 297.140 281.772 12401.737 | 2955.729

GWG.na _Size | 104812 62125 44383 34812 28187 367.310 422.971

Time(s) | 278.885 308.873 737.671 303.435 310.951 24698.296 | 3540.670

DMALA _Size | 104750 62031 44195 34375 28.031 357.058 423.641

Time(s) | 291.271 292.131 714.614 297.848 298.732 24769.380 | 3465.343

PAS Size | 105062 62250 44570 34719 28500 377.123 424.143

Time(s) | 299.004 310.765 759.372 299.569 308.475 25242.166 | 4826.039

DLMCE _Size | 104450 62219 44078 34.469 28.125 354.121 423.387

Time(s) | 291.366 301.554 726.287 302.667 300.413 24892.216 | 3679.425

DLMC _Size | 104844 62187 44.273 34500 28281  355.058 423.479

Time(s) | 293.235 294.975 725.326 294.688 299.484 24976.312 | 3523.320

consistently obtains the best results, 2) locally balanced samplers have results consistently better than
traditional sampler and Gurobi.

A.2.2 Max Clique

The max clique problem is equivalent to MIS on the dual graph. In our experiroeqjsals tal.

xd
min Xi;  S.txjxj; =0; 8(i;j) 2E 14
A G Xi iX] () (14)
The energy function is
f(x):= c'x+ 5 1”x (I"x 1) xTAx (15)

In our experiments equals tdl and we use = 1:0001 In post processing, we iteratively go through

all nodesx; fori = 1;:::;d. Ifthere exist; = 1 for (x;;X;) 2 E, we ipits valuex; = 0. After

post processing, the statas guaranteed to be feasible in the original Max Clique problem. We
provide the average of the best solutions over all number of instances along with their corresponding
running time at 6. The plots of the experiments could be found at 14.

A.2.3 Maxcut
We optimize the following problem:

X 1 XjX;
min Ai;j -~
x2f 1;1g¢ . 2
(i )2E

(16)

Note that for simplicity each dimension wfis selected fronfi  1; 1g. To represent the corresponding
energy function fox 2 f 0; 1g°, we have

1 (2Xi l)(ZXj l)

> 17)

X
f(x):= Aij
(ij )2E
In our experiment#\; equals tol. Since the problem is always feasible, the post processing is

identity map. We provide the average of the best solutions over all number of instances along with
their corresponding running time at 7. The plots of the experiments could be found at 15.
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Table 6: Max Clique.

Sampler Resulty RB TWITTER
Ratio 0.850 0.966
HB-10-1 ;
Time(s) | 1724.893 6.817
BG-2 Ratio 0.859 0.995
Time(s) | 1592.808 6.327
RMW Ratio 0.841 0.584
Time(s) | 1683.397 5.664
Ratio 0.878 0.999
GWG-nA _.
Time(s) | 2525.801 6.032
Ratio 0.876 0.999
DMALA ;
Time(s) | 2561.617| 6.190
PAS Ratio 0.878 0.999
Time(s) | 2542.538 6.160
Ratio 0.871 0.999
DLMCF .
Time(s) | 2532.835 5.988
Ratio 0.875 0.999
DLMC ;
Time(s) | 2639.588 6.124
Table 7: Maxcut.
BA ER OPTSICOM
Sampler  Resulls 1550 3210 6475 128150 256-300 512-600 1024-L1GH6-300 512600 1024-1100
HB-10-1 Ratio 1.000 1.000 1.000 1.000 1.000 1.008 1.014 1.020 1.000 0.998 1.000
Time(s) | 742.568 754.613 749.626 783.278 792.338 1143.302 1890/5331.019 416.002 1488.38% 75.347
BG-2 Ratio 1.000 1.000 1.000 1.000 1.000 1.009 1.014 1.021 1.001 0.999 1.000
Time(s) | 517.183 538.258 550.082 553.863 531.720 578.991 1157/5269.116 337.014 1295.21 17.050
RMW R_atio 0.998 1.000 1.000 1.000 0.999 1.005 1.007 1.019 0.997 0.996 1.000
Time(s) | 534.215 534.615 528.641 558.608 541.302 574.778 1065,8287.071 333.402 1266.63 58.960
GWG-nA R_atio 1.000 1.000 1.000 1.000 1.000 1.010 1.017 1.021 1.002 1.001 1.000
Time(s) | 522.094 531.425 578.917 551.923 545.634 724.721 1427/5284.202 466.199 1666.02 80.124
DMALA Ratio 1.000 1.000 1.000 1.000 1.000 1.010 1.01§ 1.021 1.002 1.002 1.000
Time(s) | 531.433 538.938 568.224 549.026 544.568 750.909 1490,8227.855 461.179 1643.13 53.509
PAS Ratio 1.000 1.000 1.000 1.000 1.000 1.010 1.018 1.021 1.002 1.002 1.000
Time(s) | 519.842 538.814 550.035 550.578 580.051 940.408 1917/9248.005 543.607 1689.07. 59.213
DLMCE Ratio 1.000 1.000 1.000 1.000 1.000 1.010 1.018 1.021 1.002 1.001 1.000
Time(s) | 521.592 526.289 545.877 557.564 533.119 765.719 1510/3202.841 452.252 1639.53! 52.552
DLMC Ratio 1.000 1.000 1.000 1.000 1.000 1.010 1.018 1.021 1.002 1.0021 1.000
Time(s) | 531.003 550.118 543.287 544.611 542.677 765.104 1564,1981.262 451.080 1642.22 53.368
41 A.2.4 Balanced graph partition
152 We nd the following objective for balanced graph partition gives the best result:
Ia
X X i X xd
f(x):= I (Xi 6 X; &&( Xi = sjjXj = 8)) + d=k I(Xi = S) (18)
s=1 (ij )2E s=1 i=1

483 Wherek is the number of partitions. Since the problem is always feasible, the post processing is
484 identity map. We provide the edge cut ratio and balanceness of the best samples over all the chains at
485 8.

16 A.3 Energy Based Generative Models
487 A.3.1 Restricted Boltzmann Machine

a8 The RBM is an unnormalized latent variable model, with a visible random vane®I€N and a
489 hidden random variable 2 f 0; 1g™ . Whenv is binary, we call it a binary RBM (binRBM) and
490 Whenv is categorical, we call it a categorical RBM (catRBM). The energy function of both binRBM
491 and catRBM (Tran et al., 2011) can be written as:
2 3
X X bd X
f(v)= 4 Wi ni mNm Mm md ; Vni2 (19)
h n=1 m=1 d;m
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Table 8: Balanced graph partition.

Metric Samplers VGG MNIST-conv ResNet AlexNet Inception-v3

HB-10-1 0050  0.046 0050  0.037 0.065

BG-2 0048 0045 0050 0.038 0.069

RMW 0054  0.046 0092  0.052 0.117
GWG 0102  0.046 0159  0.063 0.164

DMALA  0.084  0.058 0178  0.063 0.176

_ DMALA-nA 0059 0045 0048  0.039 0.054

Edge cut ratict PAS 0053 0045 0047  0.037 0.052
PAS-nA 0084  0.050 0138  0.053 0.144

DLMCE  0.086  0.063 0178  0.053 0.176

DLMCE-nA 0092  0.069 0048 0085  0.052

DLMC 0105  0.056 0183  0.097 0.182

DLMC-nA 0113  0.048 0082  0.091 0.086
HB-10-1 0999 0,999 0999  0.999 0.999
BG-2 0999  0.97 0999  0.999 0.999
RMW 0999  0.998 0999  0.999 0.999
GWG 0999 0997 0999  0.999 0.999

DMALA 0999  0.998 0999  0.999 0.999

DMALA-nA 0999  0.997 0099  0.999 0.999
Balanceness PAS 0999  0.997 0999  1.000 0.999
PAS-nA 0999  0.998 0999  0.999 0.999
DLMCF 0999  0.997 0999  0.999 0.999
DLMCF-nA 0999  0.995 0999  0.999 0.999

DLMC 0099  0.094 0999  0.999 0.999

DLMC-nA 0999  0.993 0999  0.999 0.999

Unlike the previous three models, where the parameters are hand designed, we train binary RBM
on MNIST (LeCun, 1998) and categorical RBM on Fashion-MNIST (Xiao et al., 2017a) using
contrastive divergence Hinton (2002). Across all settings, we Bawe784. For binary models, we

useM = 25 for high temperature setting andl = 200 for low temperature setting. For categorical
models, we us& = 100. We report the results in Figure 16. The experimental setup is similar to
classical graphical models.

A.3.2 Deep residual network

In this experiment, we train a deep residual network on MNIST, Omniglot and Caltech dataset.
The model paramters and experimental setup could be found at DISCS DATA. We then use all the
samplers to sample from the trained energy models. We use the chain length of 10k and number of
chains of 100. We randomly selected one chain from the 100 chains and save its sample after each
1k steps, giving us 10 images per each chain for each sampler 17. We can see that locally balanced
samplers are able to generate higher quality images faster and visit more diverse modalities.

A.3.3 TextInlling

Here we additionally provide the performance of the locally balanced samplers in their non adaptive
condition observed at 9. The data used for this experiment could be found at DISCS DATA.
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Table 9: Quantative results on text in lling. The reference text for computing the Corpus BLEU is
the combination of WT103 and TBC.

Uniquen-grams o) (")
Methods Self-BLEU @) Self WT103 TBC Corpus BLEU ()
n=2 n=3 n=2 n=3 n=2 n=3

RM\Q{ 92.41 6.26 9.10 18.97 26.73 19.33 26.67 16.24
GWG t 85.93 11.22 17.14 23.16 3556 23.58 35.56 16.75
GWGHT 81.15 15.47 2270 25.62 38.91 25.62 38.58 16.68
DMALA-nA "t 83.99 13.26 1952 2433 36.40 25.30 36.40 16.37
DMALA-nAbﬁ 80.44 15.86 23.58 25.79 39.88 26.57 40.20 16.64
DMALA " t 85.88 11.58 17.14 22.07 34.08 23.22 34.15 17.06
DMALA - 80.21 16.36 23.71 2560 39.39 26.75 39.72 16.53
PAS t 85.39 11.37 17.60 2261 3553 23.65 3547 16.57
PAS D 81.02 15.62 22.65 2559 39.28 26.08 39.48 16.69
DLMCf-nA" t 91.57 725 1042 1953 28.31 20.13 28.18 16.56
DLMCf-n%ﬁ 81.66 1531 21.78 26.39 3956 27.60 39.69 16.31
DLMCf" t 88.39 9.53 14.06 21.00 31.85 2227 31.98 16.70
DLMCfﬁ 80.12 16.25 23.76 2541 39.31 26.86 39.57 16.73
DLMC-nA" t 83.74 12.74 19.64 2427 37.27 2494 37.34 16.73
DLMC-n%ﬁ 82.26 1418 2141 2551 39.10 26.18 39.29 16.55
DLMC' t 85.28 12.05 17.65 24.03 36.34 2451 36.27 16.45
DLMCﬁ 84.55 12.62 18.47 2427 37.28 2494 37.14 16.69
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ER[700-800]

ER[9000-11000]

Figure 12: Solving progress on MIS
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Figure 13: Reuslts on MIS: effect of penalty coef cient. (top)-(bottom) ER-[700-800] with density
{0.05, 0.10, 0.15, 0.20, 0.25}. The dashed line represents the best result obtained by running Gurobi
for 1 hour.
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Figure 14: Solving progress on Max Clique
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