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Abstract

Sampling in discrete spaces, with critical applications in simulation and opti-1

mization, has recently been boosted by significant advances in gradient-based2

approaches that exploit modern accelerators like GPUs. However, two key chal-3

lenges hinder the further research progress in discrete sampling. First, since there4

is no consensus on experimental settings, the empirical results in different research5

papers are often not comparable. Secondly, implementing samplers and target6

distributions often requires a nontrivial amount of effort in terms of calibration,7

parallelism, and evaluation. To tackle these challenges, we propose DISCS (DIS-8

Crete Sampling), a tailored package and benchmark that supports unified and9

efficient implementation and evaluations for discrete sampling in three types of10

tasks: sampling for classical graphical models, combinatorial optimization, and11

energy based generative models. Throughout the comprehensive evaluations in12

DISCS, we acquired new insights into scalability, design principles for proposal13

distributions, and lessons for adaptive sampling design. DISCS implements rep-14

resentative discrete samplers in existing research works as baselines, and offers a15

simple interface that researchers can conveniently design new discrete samplers16

and compare with baselines in a calibrated setup directly.17

1 Introduction18

Sampling in discrete spaces has been an important problem in physics (Edwards & Anderson,19

1975; Baumgärtner et al., 2012), statistics (Robert & Casella, 2013; Carpenter et al., 2017), and20

computer science (LeCun et al., 2006; Wang & Cho, 2019) for decades. Since sampling from a target21

distribution π(x) ∝ exp(−f(x)) in a discrete space X is typically intractable, one usually resorts22

to MCMC methods(Metropolis et al., 1953; Hastings, 1970). However, except for a few algorithms23

such as Swedesen-Wang for the Ising model (Swendsen & Wang, 1987) and Hamze-Freitas for24

hierachical models (Hamze & de Freitas, 2012), which exploit special structure of the underlying25

problem, sampling in a general discrete space has primarily relied on Gibbs sampling, which exhibits26

notoriously poor efficiency in high dimensional spaces.27

Recently, a family of locally balanced samplers (Zanella, 2020; Grathwohl et al., 2021; Sun et al.,28

2021; Zhang et al., 2022), using ratio informed proposal distributions, π(y)
π(x) , have significantly29

improved sampling efficiency by exploiting modern accelerators like GPUs and TPUs. From the30

perspective of gradient flow on the Wasserstein manifold of distributions, Gibbs sampling is simply a31

coordinate descent algorithm, whereas locally balanced samplers perform as full gradient descent32

(Sun et al., 2022a). Despite the advances in locally balanced samplers, a quantitative benchmark33
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is still missing. One important reason is that there is no consensus on the experimental setting.34

Particularly, the initialization of energy based generative models, random seeds used in graphical35

models, and the protocol of hyper-parameter tuning all have a signi�cant impact on performance.36

As a result, some empirical results in different research papers may not be comparable. Under this37

circumstance, a uni�ed benchmark is in crucial need for boosting the research in discrete sampling.38

There are two key challenges that seriously hinder the appearance of such a benchmark. First, a39

sampler may perform well in one target distribution while poorly in another one. To thoroughly40

examine the performance of a sampler, a quali�ed benchmark needs to collect a set of representative41

distributions that covers the potential applications of a discrete sampler. Second, the evaluation of42

discrete samplers is complicated. Although the commonly used metric ESS (Vehtari et al., 2021) can43

effectively re�ect the ef�ciency of a sampler in Monte Carlo integration or Bayesian inference, it is44

not very informative in scenarios when the sampler guides the search in combinatorial optimization45

problems, or performs as a decoder in deep generative models.46

To address the two challenges, we proposeDISCS, a tailored benchmark for discrete sampling.47

In particular,DISCSconsists of three groups of tasks: sampling from classical graphical models,48

sampling for solving combinatorial optimization problems, and sampling from deep EBMs. These49

tasks cover the topics of simulation and optimization, and models ranging from hand-designed50

graphical models to learned deep EBMs. For each task, we collect the representative problems from51

both synthetic and real-world applications, for example graph partitioning for distributed computing52

and language model for text generation. We carefully design the evaluation metrics inDISCS. In53

sampling classical graphical models tasks,DISCSuses the ESS as standard. In sampling for solving54

combinatorial optimization tasks,DISCSruns simulated annealing (Kirkpatrick et al., 1983) with55

multiple chains and report the average of the best results in each chain. In sampling from energy56

based generative models,DISCSemploys domain speci�c ways to measure the sample quality.57

DISCSoffers a convenient interface for researchers to implement new discrete samplers, without58

worrying about parallelism, experiment loop and evaluation.DISCScan ef�ciently sweep over59

different tasks and con�gurations in parallel and thus the evaluation reported in this paper can be60

easily reproduced. Also,DISCSimplements existing discrete samplers random walk Metropolis61

(Metropolis et al., 1953), block Gibbs, Hamming ball sampler (Titsias & Yau, 2017), LB (Zanella,62

2020), GWG (Grathwohl et al., 2021), PAS (Sun et al., 2021), DMALA (Zhang et al., 2022), DLMC63

(Sun et al., 2022a), and is actively maintaining to add new samplers. Researchers can directly compare64

the results with the state-of-the-art methods.65

With DISCS, we observe an interesting phenomenon that the locally balanced weight function66

g(t) =
p

t performs better (worse) thang(t) = t
t +1 when Ising model has temperature higher (lower)67

than the critical temperature. There have been a lot of studies about how to select the locally balanced68

function for a locally balanced sampler (Zanella, 2020; Sansone, 2022), but the answer remains open.69

We hope the observations in this paper can provide some insight on this question.70

We wrap theDISCSpackage as a JAX library to facilitate the research in discrete sampling. The71

library will be open sourced athttps://github.com/google-research/discs . The paper is72

organized as follows:73

• In section 2, we cover the related sampling tasks and discrete samplers.74

• In section 3, we formulate the discrete sampling problem.75

• In section 4, we introduce the discrete sampling tasks and evaluation metrics inDISCS. We also76

report the results for existing discrete samplers.77

• In section 5, we discuss the contribution and limitations ofDISCS.78

2 Related Work79

Discrete sampling has been widely used to study the physical picture of spin glasses (Hukushima &80

Nemoto, 1996; Katzgraber et al., 2001), solve combinatorial optimization via simulated annealing81

(Kirkpatrick et al., 1983), and for traning or decoding deep energy based models (Wang & Cho, 2019;82
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Du et al., 2020; Dai et al., 2020b). However, they primarily depend on Gibbs sampling, which could83

be very slow in high dimensional space.84

Since the seminal work Zanella (2020), the recent years have witnessed signi�cant progresses for85

discrete sampling in the both theory and practice. Zanella (2020) introduces the locally balanced86

proposalq(x; y) / g( � (y )
� (x ) ), wherey 2 N (X ) restricted within a small neighborhood ofx andg(�) :87

R+ ! R+ satisfyingg(a) = ag( 1
a ), and prove it is asymptotically optimal. In the following works,88

PAS (Sun et al., 2021) and DMALA (Zhang et al., 2022) generalize locally balanced proposal to large89

neighborhoods by introducing an auxiliary path and mimicking the diffusion process, respectively.90

Inspired by these locally balanced samplers, Sun et al. (2022a) generalize the Langevin dynamics91

in continuous space todiscrete Langevin dynamics(DLD) in discrete space as a continuous time92

Markov chain d
dh P(X t + h = yjX t = x) = g( � (y )

� (x ) ), and show that previous locally balanced93

samplers are simulations of DLD with different discretization strategies. In the view of Wasserstein94

gradient �ow, the Gibbs sampling can be seen as coordinate descent and DLD gives a full gradient95

descent. Hence, locally balanced samplers induced from DLD provides a principled framework to96

utilize the modern accelerators like GPUs and TPUs to accelerate discrete sampling. Besides the97

discretization of DLD, another crucial part to design a locally balanced sampler is estimating the98

probability ratio � (y )
� (x ) . Grathwohl et al. (2021) proposes to used gradient approximation� (y )

� (x ) �99

exp(�hr f (x); y � xi ) and obtains good performance on various classical models and deep energy100

based models. When the Hessian is available, Rhodes & Gutmann (2022); Sun et al. (2023a) use101

second order approximation via Gaussian integral trick (Hubbard, 1959) to further improve the102

sampling ef�ciency on skewed target distributions. When the gradient is not avaiable, Xiang et al.103

(2023) use zero order approximation via Newton's series.104

Besides designing the sampler, Sun et al. (2022b) proves that when tuning path length in PAS (Sun105

et al., 2021), the optimal ef�ciency is obtained when average acceptance rate is 0.574, and design an106

adaptive tuning algorithm for PAS. Sansone (2022) learn locally balanced weight function for locally107

balanced proposal, but how to select the weight function in a principled manner is still unclear.108

3 Formulation for Sampling in Discrete Space109

The sampling in discrete space can be formulated as the following problem: in a �nite discrete space110

X , we have an energy functionf (�) : X ! R. We consider a target distribution111

� (x) =
exp(� �f (x))

Z
; Z =

X

z2X

exp(� �f (z)) ; (1)

where� is the inverse temperature. When the normalizerZ is intractable, people usually resort to112

Markov chain Monte Carlo (MCMC). Metropolis-Hastings (M-H) (Metropolis et al., 1953; Hastings,113

1970) is a commonly used general purpose MCMC algorithm. Speci�cally, given a current statex ( t ) ,114

the M-H algorithm proposes a candidate statey from a proposal distributionq(x ( t ) ; y). Then, with115

probability116

min
n

1;
� (y)q(y; x( t ) )

� (x ( t ) )q(x ( t ) ; y)

o
; (2)

the proposed state is accepted andx ( t +1) = y; otherwise,x ( t +1) = x ( t ) . In this way, the detailed117

balance condition is satis�ed and the M-H sampler generates a Markov chainx (0) ; x (1) ; ::: that has�118

as its stationary distribution.119

4 Benchmark for Sampling in Discrete Space120

The recent development of locally balanced samplers that use the ratio� (y )
� (x ) to guideq(x; �) have121

signi�cantly improved the sampling ef�ciency in discrete space. However, there is no consensus122

for many experimental settings and the empirical results in different research papers may not be123

comparable. Under this circumstance, we proposeDISCSas a benchmark for general purpose124
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samplers in discrete space. In Section 4.1, we introduces the baselines inDISDS. In Section 4.2, 4.3,125

4.4, we introduce the tasks considered inDISCSand how the discrete samplers are evaluated on these126

tasks. We also report the results of the baselines.127

4.1 Baselines128

We include both classical discrete samplers and locally balanced samplers in recent research papers129

as baselines in our benchmark. Speci�cally,DISCSimplements130

1. Random Walk Metropolis (RWM) (Metropolis et al., 1953).131

2. Block Gibbs (BG), where BG-<a> denotes using block Gibbs with block sizea.132

3. Hamming Ball Sampler (HB) (Titsias & Yau, 2017), where HB-<a>-<b> denotes using block size133

a and Hamming ball sizeb.134

4. Gibbs with Gradient (GWG) (Grathwohl et al., 2021), a locally balanced sampler that use gradient135

to approximation the probability ratio. For binary distribution, GWG has a scaling factorL to136

determine how many sites to �ip per step.137

5. Path Auxiliary Sampler (PAS) (Sun et al., 2021), a locally balanced sampler that has a scaling138

factorL to determine the path length.139

6. Discrete Metropolis Adjusted Langevin Algorithm (DMALA)(Zhang et al., 2022), a locally140

balanced sampler that has a scaling factor� to determine the step size.141

7. Discrete Langevin Monte Carlo (DLMC) (Sun et al., 2022a), a locally balanced sampler that has142

a scaling factor� to determine the simulation time of DLD. DLMC has multiple choices for its143

numerical solver to approximate the transition matrix.DISCSconsiders the two versions used in144

the original paper, DLMC that uses an interpolation and DLMCf that uses Euler's forward method.145

Remark: weight function All the locally balanced samplers have the �exibility to select locally146

balanced function.g(t) =
p

t andg(t) = t
t +1 are the two most commonly used weight functions. In147

this paper, we will use
p

t by default. When we use both of them, we use <sampler>-<func> to refer148

the type of the weight function.149

Remark: scaling Since the scalings of the proposal distribution in RWM, PAS, DMALA, and150

DLMC are tunable, we considers two versions with adaptive tuning or binary search tuning for fair151

comparison. Sun et al. (2022b, 2023b) propose adaptive tuning algorithm for PAS and DLMC when152

the target distribution is factorized. In practice, we �nd that they also apply well for other locally153

balanced samplers and for more general target distributions. Hence, in this paper, we use the adaptive154

tuning algorithm by default to tune the scaling for locally balanced samplers. In the several exceptions155

where the adaptive algorithm does not apply, we will use <sampler-name>-noA to indicate the results156

from binary search tuning.157

4.2 Sampling from Classical Graphical Models158

This section covers the classical graphical models that are widely used in physics and statistics,159

including Bernoulli Models, Ising Models (Ising, 1924), and Factorial Hidden Markov Models160

(Ghahramani & Jordan, 1995). The graphical models have large �exibility, for example, the number161

of discrete variables, the number of categories for each discrete variable, and the temperature of the162

model. The performances of different samplers can heavily depends on these con�gurations.DISCS163

provides tools to automatically sweep over hundreds of con�gurations by one click. Same as the164

routine in Monte Carlo integration or Bayesian inference,DISCSuses the Effective Sample Size165

(ESS) to measure the ef�ciency for each sampler and reports the ESS normalized by the number of166

calling energy function and the ESS normalized by the running time.167

We use Ising Models as an example in the main text, and the more results are reported in Appendix.168

For an Ising Model de�ned on a 2D grid, where the state spaceX = f� 1; 1gp� p represents the spins169

on all nodes. For each statex 2 X , the energy function is de�ned as:170

f (x) = �
X

i;j

J ij x i x j �
X

i

hi x i (3)

4



whereJ ij is the internel interaction and thehi is the external �eld. The con�gurationsJ andh can171

be set freely inDISCS. In the main text, we report the results using the con�guration from Zanella172

(2020). Speci�cally,J ij = 0 :5, hi = � i + � i , where� i � Uniform(� 1:5; 1:5) and� i = 0 :5 if node173

i is located in a circle has the same center as the 2D grid and radiusp
2

p
2
, else� 0:5. We consider the174

target distribution� (x) / exp(� �f (x)) , where� is the inverse temperature. UsingDISCS, one can175

easily investigate the in�uence of the model dimension. In Figure 1, one can see that the traditional176

samplers, RWM, GB, HB, have signi�cant decrease in ESS when the model dimension increases,177

while the locally balanced samplers are less affected as the ratio information� (y )
� (x ) effectively guides178

the proposal distribution. The overall trends basically follows the prediction from Sun et al. (2022b)179

that the ESS isO(d� 1) for RWM andO(d� 1
3 ) for PAS.180

Figure 1: Results on Ising model with different dimensions

ThroughDISCS, researchers can also easily evaluate the samplers with different temperature. In181

Figure 2, we evaluate Ising models with inverse temperatures from 0.1607 to 0.7607. We consider182

Ising model without external �eld:hi � 0 andJ ij � 1 as we know the critical temperature for this183

con�guration is 2
log(1+

p
2)

which means the critical point for inverse temperature� = 0 :4407. From184

the results, we can see that185

• The Ising model is harder to sample from when the inverse temperature� is closer to the critical186

point, which is consistent with the theory in statistical physics187

• When the inverse temperature� is lower than the critical point, using weight functiong(t) =
p

t188

gives larger ESS; When the inverse temperature is larger than the critical point, using weight189

functiong(t) = t
t +1 consistently obtains larger ESS.190

The second observation implies that one should use ratio functiont
t +1 for target distributions with191

sharp landscapes. We will revisit this conclusion in Figure 5 and Table 2.192

Figure 2: Performance of locally balanced samplers with different types of weight functions v.s
temperature on: (left)50� 50 Ising model, (right)100� 100Ising model

The categorical version of Ising model is Potts model, where each site of a statex i has values in a193

symmetry group, instead off� 1; 1g. For simplicity, we denote the symmetry group as a set of one194
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hot vectorsC = f e1; :::; ecg with hi 2 RC ; J ij 2 RC � C . In this way, the energy function becomes:195

f (x) = �
X

i;j

x>
i J ij x j �

X

i

hhi ; x i i (4)

In Figure 3, one can see the sampling ef�ciency is very robust with respect to the number of category.196

The result for BG-2 on Potts model with 256 categories are omitted as it takes over 100 hours.

Figure 3: Results of Potts models with different number of categories
197

4.3 Sampling for Solving Combinatorial Optimiazation198

Combinatorial optimization is a core challenge in domains like logistics, supply chain management199

and hardware design, and has been a fundamental problem of study in computer science for decades.200

Combining with simulated annealing Kirkpatrick et al. (1983), discrete sampling algorithm is a201

powerful tool to solve combinatorial optimization problems (Sun et al., 2023b). In expectation, a202

sampler with a faster mixing rate can �nd better solutions. Hence, the second type of tasks is sampling203

for solving combinatorial optimization problems. Currently,DISCScovers four problems: Maximum204

Independent Set, Max Clique, Max Cut, and Balanced Graph Partition. Without loss of generality,205

we consider combinatorial optimization that admit the following form:206

min
x 2C = f 0;1;:::;C � 1gd

a(x); s.t. b(x) = 0 (5)

For ease of exposition, we also assumeb(x) � 0; 8x 2 C, but otherwise do not limit the form ofa207

andb. To convert the optimization problem to a sampling problem, we �rst rewrite the constrained208

optimization into a penalty form via a penalty coef�cient� , then treat this as an energy function for209

an EBM. In particular, the energy function takes the form:210

f (x) = a(x) + � � b(x) (6)

Then, we de�ne the probability ofx at inverse temperature� by:211

p� (x) / exp(� �f (x)) (7)

A naive approach to this problem would be directly sampling fromp� !1 (x), but such a distribution212

is highly nonsmooth and unsuitable for MCMC methods. Instead, following classical simulated an-213

nealing, we de�ne a sequence of distributions parameterized by a sequence of decaying temperatures:214

P = [ p� 0 (x); p� 1 (x); : : : ; p� T (x)] (8)

where the sequence� 0 < � 1 < : : : < � T ! 1 converges to a large enough value asT increases.215

Example 1: Max Cut A cut on a graphG = ( V; E) is to �nd a partition of the graph nodes into two216

complementary setsV = V1 [ V2, such that the number of edges inE betweenV1 andV2 is as large217

as possible. Max Cut is an unconstrained problem, which makes its formulation relatively simple.218

We can setC = f 0; 1g such thatx i = 0 representsi 2 V1 andx i = 1 meansx i 2 V2. Then we219

can writea(x) = � x> Ax; b(x) � 0, whereA is the adjacency matrix ofG. By applying simulated220

6



annealing with the same temperature schedule, we can compare the performance for each sampler.221

We report the results in Figure 4. The ratio is computed by dividing the cut size for the solutions222

obtained by running Gurobi for one hour (Dai et al., 2020a). The legends are sorted according to the223

optimal value they �nd. One can see that the PAS leads the results. Also, locally balanced samplers224

signi�cantly outperforms the traditional samplers, especially when the graph size increases.

ER-[256-300] ER-[512-600] ER-[1024-1100]

Figure 4: Results for MAXCUT on ER graphs. The ratio is computed by dividing the optimal cut size
obtained from running Gurobi for 1 hour. (top) ratio with respect to number of M-H steps, (bottom)
ratio with respect to running time.

225

Example 2: Maximum Independent Set On a graphG = ( V; E), an independent setS � V226

means that for anyi; j 2 S, (i; j ) =2 E. We can setC = f 0; 1g such thatx i = 0 meansi =2 S and227

x i = 1 meansi 2 S. Then we can writea(x) = �
P

i 2 V x i andb(x) =
P

( i;j )2 E x i x j . For the228

penalty coef�cient� , we follow Sun et al. (2022c) to select� = 1 :0001being a value slightly larger229

than1. We run all samplers on �ve groups of small ER graphs with 700 to 800 nodes, each group has230

128 graphs with densities varying 0.05, 0.10, 0.15, 0.20, and 0.25. We also run all samplers on 16231

large ER graphs with 9000 to 11000 nodes. For each con�gurations, we run 32 chains with the same232

running time and report the average of the best results found by each chain in Table 1. One can easily233

see that PAS obtains the best result.234

Table 1: Results for MIS on ER graphs. The set found by sampling algorithm is not necessary an
independent set, we report a lower bound: set size - # pair of adjacent nodes in the set.

Sampler ER[700-800] ER[9000-11000]
0.05 0.10 0.15 0.20 0.25 0.15

HB-10-1 100.374 58.750 41.812 32.344 26.469 277.149
BG-2 102.468 60.000 42.820 32.250 27.312 316.170
RMW 97.186 56.249 40.429 31.219 25.594 -555.674

GWG-nA 104.812 62.125 44.383 34.812 28.187 367.310
DMALA 104.750 62.031 44.195 34.375 28.031 357.058

PAS 105.062 62.250 44.570 34.719 28.500 377.123
DLMCf 104.450 62.219 44.078 34.469 28.125 354.121
DLMC 104.844 62.187 44.273 34.500 28.281 355.058

4.4 Sampling from Energy Based Generative Models235

The discrete samplers can also play as the decoder in generative models. In particular, given a236

datasetD = f X i gN
i =1 sampled from the target distribution� , one can train an energy functionf � (�),237

such that the energy based model� � (�) / exp(� f � (�)) �ts the datasetD. DISCSprovides multiple238

checkpoints for the energy function trained on real-world image or language datasets. Researchers239

can easily evaluate their samplers after loading the learned energy function.240
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For the models that are relatively simple, for example, Restricted Boltzmann Machine (RBM) trained241

on MNIST (LeCun, 1998) and fashion-MNIST (Xiao et al., 2017b), one can continue using ESS242

as the metric. In Figure 5, we evaluate the samplers on RBMs trained on MNIST with 25 and 200243

hidden variables. One can see that 1) DLMC has the best performance, 2) when the hidden dimension244

is larger, the learned distribution becomes sharper, hencet
t +1 obtains better ef�ciency compared to245

p
t, which is consistent with our observation in Figure 2. For more complicated deep energy based246

models, a sampler may fail to mix within a reasonable steps. In this case, ESS is not a good metric.247

To address this problem,DISCSprovides multiple alternative measurements, including snapshots,248

annealed importance sampling, and domain speci�c scores.249

Figure 5: Results on RBMs trained on MNIST dataset. (top) RBM with 25 binary hidden variables,
(bottom) RBM with 200 binary hidden variables

Snapshots After loading the checkpoint of energy based generative models,DISCScan generate250

snapshots of the sampling chains. For example, in Figure 6, we display the snapshots of sampling on251

a deep residual network trained on MNIST data (Sun et al., 2021) and on pretrained language model252

BERT1. One can see that locally balanced samplers generates samples with higher qualities, and can253

typically visit multiple modalities in the distribution.254

MNIST BERT

Figure 6: Snapshots of energy based generative models: (left) snapshots for every 1k steps on MNIST
ResNet, (right) snapshots for text �lling task on BERT in Table 2

1loading the check point from https://huggingface.co/bert-base-uncased.
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Domain Speci�c ScoresIn many deep generative tasks, the goal is to ef�ciently sample high-quality255

samples, instead of mixing in the learned energy based models. In this scenario, domain speci�c256

scores that directly evaluate the sample qualities are a better choice. For example,DISCSprovides257

text �lling tasks based on pre-trained language models like BERT (Wang & Cho, 2019; Devlin258

et al., 2018). Following the settings in prior work (Zhang et al., 2022),DISCSrandomly sample 20259

sentences from TBC (Zhu et al., 2015) and WiKiText-103 (Merity et al., 2016), mask four words in260

each sentence (Donahue et al., 2020), and sample 25 sentences from the probability distribution given261

by BERT. As a common practice in non-auto-regressive text generation, we select the top-5 sentences262

with the highest likelihood out of 25 sentences to avoid low-quality generation (Gu et al., 2017; Zhou263

et al., 2019). We evaluate the generated samples in terms of diversity and quality. For diversity,264

we use self-BLEU (Zhu et al., 2018) and the number of unique n-grams (Wang & Cho, 2019) to265

measure the difference between the generated sentences. For quality, we measure the BLEU score266

(Papineni et al., 2002) between the generated texts and the original dataset, which is the combination267

of TBC and WikiText-103. We report the quantitative results in Table 2. We do not have the results268

for HB and BG as they are computationally infeasible for this task with 30k+ tokens. In this task,269

the locally balanced sampler still outperforms RMW. Also, one can notice that the weight function270
t

t +1 signi�cantly outperforms
p

t. The reason is that the overparameterized neural network is a low271

temperature system with sharp landscape. This phenomenon is consistent with the results in Figure 2.272

Table 2: Quantative results on text in�lling. The reference text for computing the Corpus BLEU is
the combination of WT103 and TBC.

Methods Self-BLEU (#)
Uniquen-grams (%) (" )

Corpus BLEU (" )Self WT103 TBC
n = 2 n = 3 n = 2 n = 3 n = 2 n = 3

RMW 92.41 6.26 9.10 18.97 26.73 19.33 26.67 16.24
GWG

p
t 85.93 11.22 17.14 23.16 35.56 23.58 35.56 16.75

DMALA
p

t 85.88 11.58 17.14 22.07 34.08 23.22 34.15 17.06
PAS

p
t 85.39 11.37 17.60 22.61 35.53 23.65 35.47 16.57

DLMCf
p

t 88.39 9.53 14.06 21.00 31.85 22.27 31.98 16.70
DLMC

p
t 85.28 12.05 17.65 24.03 36.34 24.51 36.27 16.45

GWG t
t +1 81.15 15.47 22.70 25.62 38.91 25.62 38.58 16.68

DMALA t
t +1 80.21 16.36 23.71 25.60 39.39 26.75 39.72 16.53

PAS t
t +1 81.02 15.62 22.65 25.59 39.28 26.08 39.48 16.69

DLMCf t
t +1 80.12 16.25 23.76 25.41 39.31 26.86 39.57 16.73

DLMC t
t +1 84.55 12.62 18.47 24.27 37.28 24.94 37.14 16.69

5 Conclusion273

DISCSis a tailored benchmark for discrete sampling. It implements various discrete sampling tasks274

and state-of-the-art discrete samplers and enables a fair comparison. From the results, we know275

that DLMC leads in sampling from classical graphical models, PAS leads in solving combinatorial276

optimization problems, DLMCf and DMALA has the best performance on language models. We277

believe more ef�cient discrete samplers can be obtained by designing better discretization of DLD278

(Sun et al., 2022a).DISCSis a convenient tools during this process. The researcher can freely set the279

con�gurations for tasks and samplers andDISCSwill automatically compile the program and run the280

processes in parallel. Besides, we observe that the choice of the locally balanced weight function281

should depends on the critical temperature of the target distribution. We believe this observation is282

insightful and will lead to a deeper understanding of locally balanced samplers.283

Of course,DISCSdoes not include all existing tasks or samplers in discrete sampling, for example,284

the zero order (Xiang et al., 2023) and second order (Sun et al., 2023a) approximation methods. We285

will keep iteratingDISCSand more features will be added in the future. We wrapDISCSto a JAX286

library. Researchers can conveniently implement customer tasks or samplers to accelerate their study287

and, in the meanwhile, contribute the code toDISCSfor further improvement. We believeDISCS288

will be a powerful tools for researchers and facilitate the future research in discrete sampling.289
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A Experiment Details388

The source code is open source at DISCS and the data used in this paper is avaiable at DISCS DATA.389

A.1 Classical Graphical Models390

For all the experiments of classical graphical models, we run 100 chains. The chains are run in391

parallel on 4 V100 GPUs, with each GPU handling a mini batch of 25 chains. We evaluate the392

performance of all the samplers and study the effect of sample shape, number of categories, locally393

balance function type for locally balanced samplers and the smoothness/sharpness of different models.394

Note that the result for BG-2 on Potts 10 and Categorical 8 model with 256 categories are omitted as395

it takes over 100 hours. The chain length is set as 1 million steps when studying the effect of number396

of categories and sample shape and in the other cases is set as 100k steps. For each experiment, as397

the sampling happens, all the samples of all chains are mapped separately on a randomly generated398

sample to a lower dimension of one. The ESS is calculated on the mapped samples after the burn-in399

phase i.e. after the generation of half of the chain using TensorFlow MCMC effective sample size.400

The ESS is averaged over all the chains and is reported over the running time and number of energy401

evaluation of each sampler. In the following sections, we provide the energy function we used for402

each of the classical graphical models.403

A.1.1 Factorized Models404

Factorized models are the simplest distributions in a discrete space, where each site is independent405

with others. Consider the category set of one hot vectorsC = f e1; :::; eC g and the state space406

X = CN . We havejCj = C is the number of category andN is the number of variables. The energy407

function of a factorized model is:408

f (x) =
NX

n =1

hxn ; � n i (9)

where� d 2 RC . We denote the target distribution as Bernoulli model whenC = 2 and Categorical409

model whenC > 2. We report the results on Bernoulli models and Categorical models in Figure 7410

and 8, respectively.411

A.1.2 Ising Models412

The Ising model (Ising, 1924) is a mathematical model of ferromagnetism in statistical mechanics.413

It consists of binary random variables arranged in a lattice graphG = ( V; E) and allows node to414

interact with its neighbors. The Potts model (Potts, 1952) is a generalization of the Ising model where415

the random variables are categorical. The energy function for Ising model and Potts model can be416

described as:417

f (x) = �
NX

n =1

hxn ; � n i �
X

( i;j )2 E

J ij (x i ; x j ) (10)

where we set� d 2 Rn , andJ ij (x i ; yj ) = 1 f x i = y j g. For Ising model, we use� n � Uniform(� 2; 1)418

for the outer part of the lattice graph, and� n � Uniform(� 1; 2) for the inner part of the lattice graph.419

We report the results on Ising model and Potts model in Figure 9, 10.420

A.1.3 Factorial Hidden Markov Model421

FHMM (Ghahramani & Jordan, 1995) uses latent variables to characterize time series data. In422

particular, it assumes the continuous datay 2 RL is generated by hidden statex 2 CL � K . The423

probability function is:424

p(x) = p(x1)
LY

l =2

p(x t jx t � 1); p(yjx) =
LY

l =1

N (yt ;
KX

k=1

hWk ; x l;k i + b; � 2) (11)
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Figure 7: Results on Bernoulli Models

In particular, for binary model, we considerP(x1 = 0) = 0 :9; P(x t = x t � 1jx t � 1) = 0 :8, � = 2 :0.425

We useL = 200; K = 50 for high temperature setting andL = 1000; K = 10 in low temperature426

setting. For categorical model, we usep(x1jx1 6= 0) and p(x t jx t � 1; x t 6= x t � 1) as uniform427

distribution and we useL = 200, K = 10 with category numberC = 4 ; 8. We report the results in428

Figure 11.429

A.2 Combinatorial Optimization430

Here we �rst provide the experimental details for the combinatorial optimization problems, MIS,431

Max Clique, Maxcut and, Balanced Graph Partition. The statistics of the synthetic datasets, including432
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Figure 8: Results on Categorical Models

Table 3: Synthetic data statistics.

Name MIS Max Clique Maxcut

ER-[700-800] ER-[9000-11000] RB ER BA
Max # nodes 800 10,915 475 1,100 1,100
Max # edges 47,885 1,190,799 90,585 91,239 4,384

# Test instances 128 16 500 1,000 1,000

the maximum number of nodes/edges in a graph, and the number of test instances are reported in433

3. Additionally the statistics of real-world graphs are in 4. For Maxcut-ba and all Balanced Graph434

Partition and MIS graphs, we used 32 as the number of chains and for Maxcut-optsicom, Maxcut-er,435

ans all MaxClique graphs we used 16. The data used for these experiments could be found at DISCS436

DATA.437

We run all the experiments on 8 V100 GPUs in parallel. For only Maxcut Optsicom graph, we use 2438

V100 GPUs. The test instances are divided evenly between the GPUs and are run in parallel. For439

each experiment, we report the average of the best solution found over the number of test instances440

along with the end-to-end run time (in seconds) of each in tables. We report the results for all the441
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Figure 9: Results on Ising Models

samplers and plot the their solution through as the chain is being generated over M-H step and the442

running time.443

In the following sections, we provide the actual energy function we used for each of the problems444

we experimented in the main paper. For a graphG = ( V; E) we label the nodes inV from 1 tod.445

The adjacency matrix is represented asA. For a weighted graph we simply letA ij denote the edge446

weight between nodei andj . For constraint problems, we follow Sun et al. (2022c) to select penalty447

coef�cient � as the minimum value of� such thatx � := arg min f (x) is achieved atx � satisfying448

the original constraints. Such a choice of the coef�cient guarantees the target distribution converges449
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Figure 10: Potts

Table 4: Real-world data statistics.

Name MIS Max Clique Maxcut Balanced Graph Partition

SATLIB Twitter Optsicom MNIST VGG ALEXNET RESNET INCEPTION
Max # nodes 1,347 247 125 414 1,325 798 20,586 27,114
Max # edges 5,978 12,174 375 623 2,036 1,198 32,298 40,875

# Test instances 500 196 10 1 1 1 1 1

to the optimal solution of the original CO problems while keeping the target distribution as smooth as450

possible.451

A.2.1 MIS452

The MIS has the integer programming formulation as453

min
x 2f 0;1gd

�
dX

i =1

ci x i ; s.t. x i x j = 0 ; 8(i; j ) 2 E (12)

We use the corresponding energy function in the following quadratic form:454

f (x) := � cT x + �
xT Ax

2
(13)
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Figure 11: Results on FHMMs

In our experimentsc equals to1 and we use� = 1 :0001. In post processing, we iteratively go through455

all nodesx i for i = 1 ; :::; d. If there existsx j = 1 for (x i ; x j ) 2 E , we �ip its valuex j = 0 . After456

post processing, the statex is guaranteed to be feasible in the original MIS problem. We provide the457

average of the best solutions over all number of instances along with their corresponding running458

time at 5. The plots of the experiments could be found at 12.459

We also conduct experiments to justify the results are robust regarding the choice of the penalty460

coef�cient. In Figure 13, we use penalty coef�cient� 2 f 1:001; 1:01; 1:1; 2g on ER-[700-800]461

graphs with densityf 0:05; 0:10; 0:15; 0:20; 0:25g. We also use a dashed line to represent the optimal462

value obtained by running Gurobi-10 for 1 hour. From the results, we can observe that 1) PAS463
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Table 5: MIS.

Sampler Graphs ER[700-800] ER[9000-11000] SATLIB
Density 0.05 0.10 0.15 0.20 0.25 0.15

HB-10-1 Size 100.374 58.750 41.812 32.344 26.469 277.149 422.427
Time(s) 426.185 390.810 684.590 414.067 429.879 15139.425 5381.857

BG-2 Size 102.468 60.000 42.820 32.250 27.312 316.170 422.200
Time(s) 291.427 290.042 562.986 295.024 288.109 13079.125 3027.204

RMW Size 97.186 56.249 40.429 31.219 25.594 -555.674 420.284
Time(s) 284.092 293.517 499.577 297.140 281.772 12401.737 2955.729

GWG-nA Size 104.812 62.125 44.383 34.812 28.187 367.310 422.971
Time(s) 278.885 308.873 737.671 303.435 310.551 24698.296 3540.670

DMALA Size 104.750 62.031 44.195 34.375 28.031 357.058 423.641
Time(s) 291.271 292.131 714.614 297.848 298.732 24769.380 3465.343

PAS Size 105.062 62.250 44.570 34.719 28.500 377.123 424.143
Time(s) 299.004 310.765 759.372 299.569 308.475 25242.166 4826.039

DLMCF Size 104.450 62.219 44.078 34.469 28.125 354.121 423.387
Time(s) 291.366 301.554 726.287 302.667 300.413 24892.216 3679.425

DLMC Size 104.844 62.187 44.273 34.500 28.281 355.058 423.479
Time(s) 293.235 294.975 725.326 294.688 299.884 24976.312 3523.320

consistently obtains the best results, 2) locally balanced samplers have results consistently better than464

traditional sampler and Gurobi.465

A.2.2 Max Clique466

The max clique problem is equivalent to MIS on the dual graph. In our experimentsc equals to1.467

min
x 2f 0;1gd

�
dX

i =1

ci x i ; s.t. x i x j = 0 ; 8(i; j ) =2 E (14)

The energy function is468

f (x) := � cT x +
�
2

�
1> x � (1> x � 1) � xT Ax

�
(15)

In our experimentsc equals to1 and we use� = 1 :0001. In post processing, we iteratively go through469

all nodesx i for i = 1 ; :::; d. If there existsx j = 1 for (x i ; x j ) =2 E, we �ip its valuex j = 0 . After470

post processing, the statex is guaranteed to be feasible in the original Max Clique problem. We471

provide the average of the best solutions over all number of instances along with their corresponding472

running time at 6. The plots of the experiments could be found at 14.473

A.2.3 Maxcut474

We optimize the following problem:475

min
x 2f� 1;1gd

�
X

( i;j )2 E

A i;j

�
1 � x i x j

2

�
(16)

Note that for simplicity each dimension ofx is selected fromf� 1; 1g. To represent the corresponding476

energy function forx 2 f 0; 1gd, we have477

f (x) := �
X

( i;j )2 E

A i;j

�
1 � (2x i � 1)(2x j � 1)

2

�
(17)

In our experimentsA ij equals to1. Since the problem is always feasible, the post processing is478

identity map. We provide the average of the best solutions over all number of instances along with479

their corresponding running time at 7. The plots of the experiments could be found at 15.480
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Table 6: Max Clique.

Sampler Results RB TWITTER

HB-10-1 Ratio� 0.850 0.966
Time(s) 1724.893 6.817

BG-2 Ratio� 0.859 0.995
Time(s) 1592.808 6.327

RMW Ratio� 0.841 0.584
Time(s) 1683.397 5.664

GWG-nA Ratio� 0.878 0.999
Time(s) 2525.801 6.032

DMALA Ratio� 0.876 0.999
Time(s) 2561.617 6.190

PAS Ratio� 0.878 0.999
Time(s) 2542.538 6.160

DLMCF Ratio� 0.871 0.999
Time(s) 2532.835 5.988

DLMC Ratio� 0.875 0.999
Time(s) 2639.588 6.124

Table 7: Maxcut.
Sampler Results BA ER OPTSICOM

16-20 32-10 64-75 128-150 256-300 512-600 1024-1100256-300 512-600 1024-1100

HB-10-1 Ratio� 1.000 1.000 1.000 1.000 1.000 1.008 1.014 1.020 1.000 0.998 1.000
Time(s) 742.568 754.613 749.626 783.278 792.338 1143.302 1890.534331.019 416.002 1488.382 75.347

BG-2 Ratio� 1.000 1.000 1.000 1.000 1.000 1.009 1.014 1.021 1.001 0.999 1.000
Time(s) 517.183 538.258 550.082 553.863 531.720 578.991 1157.571269.116 337.014 1295.219 17.050

RMW Ratio� 0.998 1.000 1.000 1.000 0.999 1.005 1.007 1.019 0.997 0.996 1.000
Time(s) 534.215 534.615 528.641 558.608 541.302 574.778 1065.852267.071 333.402 1266.630 58.960

GWG-nA Ratio� 1.000 1.000 1.000 1.000 1.000 1.010 1.017 1.021 1.002 1.001 1.000
Time(s) 522.094 531.425 578.917 551.923 545.634 724.721 1427.577264.202 466.199 1666.021 80.124

DMALA Ratio� 1.000 1.000 1.000 1.000 1.000 1.010 1.018 1.021 1.002 1.002 1.000
Time(s) 531.433 538.938 568.224 549.026 544.568 750.909 1490.872277.855 461.179 1643.135 53.509

PAS Ratio� 1.000 1.000 1.000 1.000 1.000 1.010 1.018 1.021 1.002 1.002 1.000
Time(s) 519.842 538.814 550.035 550.578 580.051 940.408 1917.954278.005 543.607 1689.071 59.213

DLMCF Ratio� 1.000 1.000 1.000 1.000 1.000 1.010 1.018 1.021 1.002 1.001 1.000
Time(s) 521.592 526.289 545.877 557.564 533.119 765.719 1510.380272.841 452.252 1639.539 52.552

DLMC Ratio� 1.000 1.000 1.000 1.000 1.000 1.010 1.018 1.021 1.002 1.002 1.000
Time(s) 531.003 550.118 543.287 544.611 542.677 765.104 1564.198271.262 451.080 1642.223 53.368

A.2.4 Balanced graph partition481

We �nd the following objective for balanced graph partition gives the best result:482

f (x) :=
kX

s=1

X

( i;j )2 E

I (x i 6= x j &&( x i = sjjx j = s)) +
kX

s=1

 

d=k �
dX

i =1

I (x i = s)

! 2

(18)

wherek is the number of partitions. Since the problem is always feasible, the post processing is483

identity map. We provide the edge cut ratio and balanceness of the best samples over all the chains at484

8.485

A.3 Energy Based Generative Models486

A.3.1 Restricted Boltzmann Machine487

The RBM is an unnormalized latent variable model, with a visible random variablev 2 CN and a488

hidden random variableh 2 f 0; 1gM . Whenv is binary, we call it a binary RBM (binRBM) and489

whenv is categorical, we call it a categorical RBM (catRBM). The energy function of both binRBM490

and catRBM (Tran et al., 2011) can be written as:491

f (v) =
X

h

2

4�
NX

n =1

hvn ; � n i �
MX

m =1

� m hm �
X

d;m

hhm � m;d ; vn i

3

5 (19)
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Table 8: Balanced graph partition.

Metric Samplers VGG MNIST-conv ResNet AlexNet Inception-v3

Edge cut ratio#

HB-10-1 0.050 0.046 0.050 0.037 0.065
BG-2 0.048 0.045 0.050 0.038 0.069
RMW 0.054 0.046 0.092 0.052 0.117
GWG 0.102 0.046 0.159 0.063 0.164

DMALA 0.084 0.058 0.178 0.063 0.176
DMALA-nA 0.059 0.045 0.048 0.039 0.054

PAS 0.053 0.045 0.047 0.037 0.052
PAS-nA 0.084 0.050 0.138 0.053 0.144
DLMCF 0.086 0.063 0.178 0.053 0.176

DLMCF-nA 0.092 0.069 0.048 0.085 0.052
DLMC 0.105 0.056 0.183 0.097 0.182

DLMC-nA 0.113 0.048 0.082 0.091 0.086

Balanceness"

HB-10-1 0.999 0.999 0.999 0.999 0.999
BG-2 0.999 0.997 0.999 0.999 0.999
RMW 0.999 0.998 0.999 0.999 0.999
GWG 0.999 0.997 0.999 0.999 0.999

DMALA 0.999 0.998 0.999 0.999 0.999
DMALA-nA 0.999 0.997 0.999 0.999 0.999

PAS 0.999 0.997 0.999 1.000 0.999
PAS-nA 0.999 0.998 0.999 0.999 0.999
DLMCF 0.999 0.997 0.999 0.999 0.999

DLMCF-nA 0.999 0.995 0.999 0.999 0.999
DLMC 0.999 0.994 0.999 0.999 0.999

DLMC-nA 0.999 0.993 0.999 0.999 0.999

Unlike the previous three models, where the parameters are hand designed, we train binary RBM492

on MNIST (LeCun, 1998) and categorical RBM on Fashion-MNIST (Xiao et al., 2017a) using493

contrastive divergence Hinton (2002). Across all settings, we haveD = 784. For binary models, we494

useM = 25 for high temperature setting andM = 200 for low temperature setting. For categorical495

models, we useM = 100. We report the results in Figure 16. The experimental setup is similar to496

classical graphical models.497

A.3.2 Deep residual network498

In this experiment, we train a deep residual network on MNIST, Omniglot and Caltech dataset.499

The model paramters and experimental setup could be found at DISCS DATA. We then use all the500

samplers to sample from the trained energy models. We use the chain length of 10k and number of501

chains of 100. We randomly selected one chain from the 100 chains and save its sample after each502

1k steps, giving us 10 images per each chain for each sampler 17. We can see that locally balanced503

samplers are able to generate higher quality images faster and visit more diverse modalities.504

A.3.3 Text In�lling505

Here we additionally provide the performance of the locally balanced samplers in their non adaptive506

condition observed at 9. The data used for this experiment could be found at DISCS DATA.507
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Table 9: Quantative results on text in�lling. The reference text for computing the Corpus BLEU is
the combination of WT103 and TBC.

Methods Self-BLEU (#)
Uniquen-grams (%) (" )

Corpus BLEU (" )Self WT103 TBC
n = 2 n = 3 n = 2 n = 3 n = 2 n = 3

RMW 92.41 6.26 9.10 18.97 26.73 19.33 26.67 16.24
GWG

p
t 85.93 11.22 17.14 23.16 35.56 23.58 35.56 16.75

GWG t
t +1 81.15 15.47 22.70 25.62 38.91 25.62 38.58 16.68

DMALA-nA
p

t 83.99 13.26 19.52 24.33 36.40 25.30 36.40 16.37
DMALA-nA t

t +1 80.44 15.86 23.58 25.79 39.88 26.57 40.20 16.64
DMALA

p
t 85.88 11.58 17.14 22.07 34.08 23.22 34.15 17.06

DMALA t
t +1 80.21 16.36 23.71 25.60 39.39 26.75 39.72 16.53

PAS
p

t 85.39 11.37 17.60 22.61 35.53 23.65 35.47 16.57
PAS t

t +1 81.02 15.62 22.65 25.59 39.28 26.08 39.48 16.69
DLMCf-nA

p
t 91.57 7.25 10.42 19.53 28.31 20.13 28.18 16.56

DLMCf-nA t
t +1 81.66 15.31 21.78 26.39 39.56 27.60 39.69 16.31

DLMCf
p

t 88.39 9.53 14.06 21.00 31.85 22.27 31.98 16.70
DLMCf t

t +1 80.12 16.25 23.76 25.41 39.31 26.86 39.57 16.73
DLMC-nA

p
t 83.74 12.74 19.64 24.27 37.27 24.94 37.34 16.73

DLMC-nA t
t +1 82.26 14.18 21.41 25.51 39.10 26.18 39.29 16.55

DLMC
p

t 85.28 12.05 17.65 24.03 36.34 24.51 36.27 16.45
DLMC t

t +1 84.55 12.62 18.47 24.27 37.28 24.94 37.14 16.69
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Figure 12: Solving progress on MIS

24



Figure 13: Reuslts on MIS: effect of penalty coef�cient. (top)-(bottom) ER-[700-800] with density
{0.05, 0.10, 0.15, 0.20, 0.25}. The dashed line represents the best result obtained by running Gurobi
for 1 hour.
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