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Abstract

Delayed feedback is a critical problem in dynamic recommender systems. In
practice, the feedback result often depends on the frequency of recommendation.
Most existing online learning literature fails to consider optimization of the recom-
mendation frequency, and regards the reward from each successfully recommended
message as equal. In this paper, we consider a novel cascading bandits setting,
where individual messages from a selected list are sent to a user periodically. When-
ever a user does not like a message, she may abandon the system with a probability
positively correlated with the recommendation frequency. A learning agent needs to
learn both the underlying message attraction probabilities and users’ abandonment
probabilities through the randomly delayed feedback. We first show a dynamic
programming solution to finding the optimal message sequence in deterministic
scenarios, in which the reward is allowed to vary with different messages. Then we
propose a polynomial time UCB-based offline learning algorithm, and discuss its
performance by characterizing its regret bound. For the online setting, we propose
a learning algorithm which allows adaptive content for a given user. Numerical
experiment on AmEx dataset confirms the effectiveness of our algorithms.

1 Background

1.1 Introduction

Recommending dynamic content based on adaptive learning of user behavior is a critical task to
online platforms. In marketing campaign, as only 2% of web traffic converts on the first visit1, it is
important to re-target potential users with notifications such as ads, emails or app reminders to gain
traction and awareness. The content for those notifications should be dynamic and adapted to a user’s
behavior. Since the feedback may not be instant, a campaign system still needs to provide campaigns
to other users while waiting. Meanwhile, the frequency at which the notifications are sent should also
be judiciously managed, i.e., sending more messages may increase the odds of a click, but frequent
messaging may also alienate and drive away users.

Online learning for recommendation tasks has been extensively studied in the multi-armed bandit
framework. In this setting, pulling certain arms in the bandit problem corresponds to selecting
marketing messages for a user. In particular, cascading bandit [13, 14, 18, 21, 20, 25] which models
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1https://retargeter.com/what-is-retargeting-and-how-does-it-work/
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sending a sequence of messages to individual users is a popular choice for analyzing sequential
recommendations. However, existing settings in this field are often stylized and overlook certain
characteristics that are prevalent in real-world scenarios. For instance, a common assumption is
immediate user feedback, whereas in practice, it may take hours to months to receive responses.
Additionally, bandit models typically disregard the variation in payback for each message, which
limits the practical implications of the model for recommendations. Furthermore, the concept of
“frequency” in message dissemination is absent in current cascading bandit literature, where an entire
sequence of messages is sent to a user at once. Consequently, the content for a single user becomes
non-adaptive, potentially missing out on additional feedback from other users over an extended time
span and foregoing potential benefits.

In this work, we propose and analyze a variant of cascading bandit with five notable differences
from the existing literature. Firstly, whenever a user does not like a message, she may abandon the
system and forgo receipt of future messages. Thus, the order of messages influences the reward in our
setting, which is in contrast to the existing work on cascading bandit such as [13, 14, 18, 21, 20, 25].
Secondly, instead of having the total number of messages in a sequence as a fixed parameter, this
quantity is also a decision variable. In particular, we assume the abandonment probability may
increase with the frequency at which messages are being disseminated. Thirdly, individual messages
for each user are sent out with some time apart, as opposed to all at once. As we gather more feedback
from some of the previous messages, we have the ability to update the remaining sequence, and thus
the content for a user is dynamic and adaptive. Fourthly, the reward generated after a message is
clicked varies with the type of it. Lastly, we also incorporate delayed feedback in our setting.

The analysis for this setting is particularly challenging. One source of complications comes from
the interlaced timing of multiple events, i.e., users arrive at different time, messages for individual
users are sent at different time, and their responses time is also random. Meanwhile, users’ feedback
also depends on multiple factors, including the choices of the content, their order, as well as the
dissemination frequency.

The contribution of our work is fourfold. 1. We introduce a novel cascading bandit setting with
delayed feedback, different reward and frequency control. 2. For the offline combinatorial problem
with all known parameters, we characterize a polynomial-time algorithm which determines an optimal
list with the appropriate dissemination frequency. 3. For the online setting where we need to learn
both the message attraction probabilities and the abandonment probabilities, we propose a learning
algorithm and characterized its regret bound. 4. We incorporate personalization by analyzing a
contextual variant of the online problem which utilizes both content and user features.

The paper is organized as follows. We review the related literature in Section 1.2. In Section 2, we
formally introduce the model and analyze the offline optimization problem with all known parameters.
In Section 3 and Section 4, we study the online learning problem in the presence of delayed feedback
for the non-contextual and contextual settings, respectively. We evaluate the performance of our
algorithms with numerical experiments in Section 5. Lastly, we discuss some limitations and research
prospect of our work in Section 6.

1.2 Related Work

The analysis on delayed feedback has started to receive increasing attention in recent years [1, 22, 16,
23]. In online learning, [8] considers a fixed and known delay effect, and shows an additive penalty
of the regret for the stochastic setting. [11] analyzes a more general setting and show that the regret
increase is multiplicative in the adversarial setting and additive in the stochastic setting. They propose
meta-algorithms that can adapt non-delay algorithms and develop a UCB algorithm for the bandit
problem. [7] and [19] analyze the impact of delayed feedback in a Gaussian process bandit and an
online Markov decision process respectively. Compared to the existing bandit literature, to the best of
our knowledge, our work is the first to incorporate delay effects for the cascade model which involves
a sequence of actions. Besides the uncertainty contributed by the random response time, the feedback
also depends on both the choice of the messages and the order in which they are being sent.

Our work shares some similarity with combinatorial bandits [3, 5, 15, 4] as the learning agent needs to
choose a set of messages. However, in our setting, the order of the messages also impacts the rewards.
As highlighted in the introduction, our work extends the cascading bandits literature by including
frequency control and delayed feedback. This setting can be potentially modeled as a reinforcement
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learning problem, such as [24], which proposes an offline reinforcement learning framework to
optimize sequential notification decisions. However, this approach significantly increases the learning
complexity, making it difficult to analyze performance theoretically.

In the original cascading model [6], a user who is presented with a list of messages examines the
content sequentially, until she clicks on the first attractive message. A common different assumption
is the dependent click model. In this model, a user may click on multiple messages and finally stop at
the truly attractive one. It can be used in bandit settings [12] or generic click-models algorithms [9].
In cascading bandit [13, 14, 18, 21, 20, 25], the attraction probabilities of messages are not known a
priori. A learning agent selects a list with a fixed number of messages to incoming users, with the
goal to maximize the total clicks over T time steps. User’s feedback to a list is immediate. The agent
then uses this information to learn the underlying attraction probabilities and updates their list for the
next user. Although [10] provides a bound based on Thompson sampling for semi-bandit rewards
and [20] provides a problem-independent bound for unstructured rewards, they do not consider the
messages’ difference in theory. While [2] also considers user abandonment behavior in a cascading
bandit setting, the abandonment probability is a constant and the recommendation to a single user is
static, as opposed an adaptive sequence which is considered in this work.

2 Problem Formulation

Assume there are N available messages, which we denote as X . We use S = (S1, S2, · · · , Sm) to
denote a list of messages, where S1 and Sm represent the first and the last message, respectively.
Let κ be the index function mapping the position in a list to a message, i.e., κ(i) = j if and only if
Si = {j}. Define ϑ as the inverse function of κ, i.e., ϑ(i) = j if and only if Sj = {i}.

Users will receive a list of messages periodically. Upon receiving a message, if a user finds it
attractive, she clicks on it. Otherwise, she may examine the next message with probability q(m) if the
list has not run out, or she may leave with probability 1− q(m). The probability q(m) depends on the
total length of the list or the message dissemination frequency, which we will elaborate next. For each
message i, we use vi to denote its attraction probability which captures the relevance of its content
to a user, and use Ri to denote its return when a user clicks on it. We define v = (v1, · · · , vN ) and
R = (R1, · · · , RN ).

A user arrives at time t, where t = 1, · · · , T . We assume that for every user, there is a fixed time
window D, during which selected messages will be disseminated2. Messages are sent sequentially
at a fixed time interval with a dissemination frequency f(m) := ⌈m/D⌉. Here we keep the
recommendation frequency fixed for every user, which allows us to easily capture the trade-off
between the total number of messages that can be disseminated and the probability of abandonment.
At every time step, a user receives at most one message. Define M as the maximum number of
messages that can be sent during D. We assume q(m) is a non-increasing function with m. The
intuition is that when the frequency of re-targeting is higher, a user is more likely to be overwhelmed
and is more prone to abandonment. We denote q = (q(1), · · · , q(M)). The following example
illustrates the interactions between users and messages at different time.

Example 2.1. Figure 1 shows 5 users that arrive at time t = 1, · · · , 5. Actions taken by users are
color-coded, i.e., a user clicks on a specific message (orange), has not clicked but remains active
(green), and has abandoned the system (yellow). Mi, t = j denotes that message i is sent at time
step j, e.g., User 2 receives message 10 at t = 2 and message 9 at t = 6. While the dissemination
frequency is determined for a given user upon arrival, it may be different across users, e.g., User 2
and 5 receive messages at a fixed interval of 4 and 6 time steps respectively.

For a list with m messages, besides the first message which is guaranteed to be viewed, the probability
that message i is being examined, denoted as wi(m), depends on the outcomes of the earlier messages,
i.e., wi(m) =

∏ϑ(i)−1
j=1 ((1 − vκ(j))q(m)). It is the probability that the user does not click on any

messages shown before i and still remains in the system. Let U(S,v, q(m)) denote the payoff that
the learning agent receives from a list of messages S, when the message attraction probabilities are v

2D is known as the re-targeting window in the marketing literature. See https://www.adroll.com/
learn-more/retargeting.
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Figure 1: An illustrative example on user’s interactions with the learning agent.

and abandonment probability is 1− q(m). The expected payoff is

E[U(S,v,R, q(m))] =
∑
i∈X

wi(m)Rivi.

To determine a list of messages with appropriate dissemination frequency, the learning agent needs
to solve an optimization problem that maximizes E[U(S,v,R, q(m))], subject to a constraint that
Si ∩ Sj = ∅ for i ̸= j, indicating no duplicated messages in the list. We use S∗ to denote the optimal
solution to the combinatorial optimization problem.

In the following result, we characterize the property of the optimal list S∗. We then propose an
algorithm to identify S∗ in the offline setting, i.e., when the message attraction probabilities v and
the probabilities q describing users’ abandonment behavior are known.

Theorem 2.2. In the optimal sequence S∗, the characteristic parameter of messages

γ =
vR

1− v(1− q(m))

are sorted in a descending order.

Proof outline: We prove the statement by contradiction. If S is not ordered by γ, we generate another
sequence S′ by swapping a pair of adjacent messages in S. We can prove that the expected payoff of
S′ is higher than S, which is a contradiction.

We include complete proof in the supplementary material. Note that while Theorem 2.2 provides a
necessary condition for S∗, it does not indicate that the messages with the highest γ should be selected.
The structure of E[U(S,v,R, q(m))] shows that each message in the list will only influence the
contribution of all the messages after it on the total return. Therefore, we use a dynamic programming
approach to determine the list backwards.

Algorithm 1: Determine the optimal sequence S∗ with frequency control.
1 Input messages and their v, R;
2 for m = 1 : M do
3 Sort messages based on their γ in a descending order S′ = (S1, S2, · · · , SN );
4 for l = m− 1 : N − 1 do
5 W (m− 1, l) = maxl+1≤i≤NviRi; G(m− 1, l) = argmaxl+1≤i≤NviRi;
6 end
7 for k = m− 1 : 1 do
8 for l = k − 1 : N −m+ k − 1 do
9 W (k − 1, l) = maxl+1≤i≤N−m+k−1(viRi + (1− vi)q(m)W (k, i));

10 G(k − 1, l) = argmaxl+1≤i≤N−m+k−1(viRi + (1− vi)q(m)W (k, i)) ∪
G(k, argmaxl+1≤i≤N−m+k−1(viRi + (1− vi)q(m)W (k, i)))

11 end
12 end
13 Output W (0, 0), G(0, 0).
14 end
15 Select the highest W (0, 0) and record the corresponding m and G(0, 0).

Algorithm 1 describes the procedure of finding the optimal list S∗ with frequency f(m∗). Messages
will be first sorted in a descending order based on γ. For any feasible m, we selected the messages
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backwards. The last message must be the one left with the highest expected return vR. We define

W (k, l) =

m∑
i=k+1

vκ(i)Rκ(i)

i−1∏
s=k+1

(1− vκ(s))q(m), k ≤ l (2.1)

as the maximum weighted sum of the last (m− k) messages’ return, when the (k+ 1)-th message to
be sent is restricted to be after the l-th message in S′. G(k, l) is to record the messages selected. The
transition equation shows the influence of the (k − 1)-th message on the feasible place for the k-th
messages in S′. Therefore, G(0, 0) is the optimal m messages, and W (0, 0) means total return. The
optimal list is the list with the highest expected return W (0, 0) among the M candidates.

3 Learning with Delayed Feedback

In the previous section, we have explored the structure of the optimal list when v and q are both
known. In this section, we turn to the online learning setting with delayed feedback. To differentiate
the time stamps, we will use r to indicate the time when a user arrives (i.e., r = 1, · · · , T ) and use t
to indicate when messages are being sent. The first message for a user r is sent instantaneously at
t = r, and the subsequent messages are sent at the frequency determined by f(m).

A message sent at time t is delayed if its feedback is received after t. Let τ denote the delayed
duration. Throughout this analysis with delayed feedback, we assume that 0 ≤ τ ≤ τmax with
probability 1, i.e., the delay has a finite support independent of the attraction probability. When the
feedback is not received after τmax (e.g., a user stops responding to messages), we assume the user
has abandoned. Note that τmax is not related to the attraction probability, nor does it imply feedback.

Define Sr as the list of messages for user r, where the total message length is mr. We use regret to
measure the performance of a learning algorithm, where the regret for a policy π is defined as

Reg(T ) = Eπ

[
T∑

r=1

U(S∗,v,R, q(m∗))− U(Sr,v,R, q(mr))

]
.

3.1 Learning Algorithm

As the messages are sent sequentially with some time apart, the learning agent may use additional
feedback to update the remaining messages. Thus, the content for a user can be dynamic. We will
now present our UCB-based learning strategy to achieve this.

We first define our unbiased estimator for u and q respectively. Let Ti(t) be the total number of
feedback (i.e., sum of clicks and no-clicks) received for message i by time t, and let ci(t) denote the
number of clicks for message i by time t. Similarly, let T̃m(t) denote the total number of no-clicks
from users with dissemination frequency f(m), and bm(t) denote the number of abandoned users
with frequency f(m) by time t. Let nm(t) = T̃m(t)− bm(t).

Define the estimator v̂i,t = ci(t)/Ti(t) and q̂t(m) = nm(t)/T̃m(t), which are both unbiased. Next,
define the upper confidence bound for v and q as follows,

vUCB
i,t = v̂i,t +

√
2
log t

Ti(t)
, and qUCB

t (m) = q̂t(m) +

√
2
log t

T̃m(t)
. (3.1)

The following lemma proves the concentration bound for these estimators.

Lemma 3.1. For any t, we have P
(
vUCB
i,t −

√
8 log t
Ti(t)

< vi < vUCB
i,t

)
≥ 1− 2

t4 for all i ∈ X and

P
(
qUCB
t (m)−

√
8 log t

T̃m(t)
< q(m) < qUCB

t (m)
)
≥ 1− 2

t4 for all 1 ≤ m ≤ M .

Then we propose Algorithm 2 for our learning task.
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Algorithm 2: An online learning algorithm for cascading bandits with delayed feedback

1 Initialization: Set vUCB
i,0 = 1 for all i ∈ X , qUCB

0 (m) = 1 for m = 1, · · · ,M ; t = 1;
2 while t < T do
3 for Any feedback for some message i do
4 Update vUCB

i,t and qUCB
t (m) according to Equation (3.1);

5 end
6 for Any active user r with message scheduled to be sent at time t do
7 Compute Sr = argmaxS E[U(S,vUCB

t−1 ,R, qUCB
t−1 (mr))] according to Algorithm 1;

8 Send the first message e in Sr\Orto user r; Or = Or ∪ {e};
9 end

10 Compute (St,mt) = argmaxS,m E[U(S,vUCB
t−1 ,R, qUCB

t−1 (m))] according to Algorithm 1;
11 Offer St

1 to user t and the dissemination frequency is set to f(mt); Ot = St
1;

12 end

We introduce the following notations. At time t, we consider a user r active where r < t, if she has
not clicked on a message or abandoned, and there is a message scheduled to send to her at time t.
Define mr as the total number of messages selected for user r, where the corresponding abandonment
probability is 1− q(mr) and the frequency is f(mr). In the recommendation system, mr is always
fixed for a single user and is determined when she enters the system, but it may vary for users entering
the system at different times. Define Or as the set of messages that have already been sent to user r.

Algorithm 2 states that at time t, the learning agent first updates the UCB estimators for v and q
based on the available information. For the user that just arrived at time t, the agent determines a list
St with frequency f(mt), and sends the first message St

1. Meanwhile, for an active user r who is
scheduled to have the message sent at time t, the learning agent determines a new recommending list
Sr with frequency f(mr) (determined at time r), and then sends the first message in the list Sr\Or.

3.2 Regret Analysis

Before presenting the regret bound for Algorithm 2, we want to highlight the challenges behind the
analysis. Firstly, we allow dynamic content for active users who remain in the system. Secondly, the
feedback of individual messages may be delayed for a random amount of time and the frequency of
the message dissemination across users could be different. User feedback depends on both the choice
of content and the dissemination frequency, which further complicates the analysis. To address these
challenges, we develop a novel proof technique to analyze the regret.

Let S∗ denote the optimal strategy and Sr denote the sequence for user r under strategy π. Without
loss of generality, assume γ1 ≥ γ2 ≥ · · · ≥ γN . Define Ft as the filtration regarding all the
information before time t. We say t ∈ Er if a message is sent to user r at time t.

Lemma 3.2 proves that with the higher attraction probabilities and the lower the abandonment
probabilities, the expected payoff is higher. Lemma 3.3 estimates the upper bound regret of a single
recommendation under identical reward. Theorem 3.4 gives an upper bound of regret when delayed
feedback exists.
Lemma 3.2. Assume S∗ is the optimal list of messages with length m∗. Under the condition that
0 ≤ v ≤ vUCB and 0 ≤ q(m∗) ≤ qUCB(m∗), we have

E[U(S∗,vUCB ,R, qUCB(m∗))] ≥ E[U(S∗,v,R, q(m∗))].

Lemma 3.3. When all messages have identical reward, for t ∈ Er and any q′ ∈ (0, 1), we have

Eπ[E[(U(k,v, q′)− U(ert,k,v, q
′))1(vUCB

t ≥ v)|Ft−1]]

≤ Eπ

[
E
[(

vUCB
ert,k,t

− vert,k

)
1(vUCB

t ≥ v)|Ft−1

]]
,

where ert,k is the kth message sent to user r at time t.

Theorem 3.4 (Performance bound for Algorithm 2). The expected regret of Algorithm 2 is bounded
above by

Reg(T ) ≤ C1(N +M2)
√
T log T + C2Nτmax

for some constants C1 and C2.
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Proof Outline: First we note that

Eπ[U(S∗,v,R, q(m∗))]− Eπ[U(Sr,v,R, q(mr))]

=Eπ[U(S∗,v,R, q(m∗))− U(S∗,v,R, q(mr))]

+ Eπ[U(S∗,v,R, q(mr))− U(Sr,v,R, q(mr))] (3.2)

Let Sr
0 denote the initial list for user r when she just arrives, i.e., Sr

0 is the optimal sequence
given vUCB

r−1 and qUCB
r−1 . Note that this list may change at a later time when more information

becomes available. Define events Bi,t = {vUCB
i,t −

√
8 log t/Ti(t) < vi < vUCB

i,t } and Em,t =

{qUCB
t (m) −

√
8 log t/T̂m(t) < q(m) < qUCB

t (m)}. Define Ht =
⋂

i∈X Bi,t

⋂
1≤m≤M Em,t.

Firstly we could estimate the upper bound of Eπ[U(S∗,v,R, q(m∗)) − U(S∗,v,R, q(mr))] by
coupling. We can get

T∑
r=1

Eπ

[
E[(U(Sr

0,v
UCB
r−1 ,R, qUCB

r−1 (mr))− U(Sr
0,v,R, q(mr)))1(Hr−1)|Fr−1]

]
≤C2N

√
T log T + C3M

2
√
T log T .

Regarding the second part in Equation (3.2), we now bound the difference between
Eπ[U(S∗,v,R, q(mr))] and Eπ[U(Sr,v,R, q(mr))]. Note that Sr is an updated list that may
differ from Sr

0, so we again use coupling to bound the difference. We couple the processes sending
S∗ and Sr, which both have the identical dissemination frequency mr.

Summing over all time steps, we have
∑T

r=1 Eπ[U(S∗,v,R, q(mr)) − U(Sr,v,R, q(mr))] ≤
C4

√
log T

∑N
i=1 Eπ

[∑T
t=1 zi,t

√
1

Ti(t−1)

]
+ DEπ

[∑T
t=1 1(J

c
t )
]

where Jt =
⋂

i∈X Bi,t. With
some derivations, for each i ∈ X , we can bound the term

Eπ

[
T∑

t=1

zi,t

√
1

Ti(t− 1)

]
≤ C5τmax + C6

√
T .

Applying Lemma 3.1, we have

Eπ

[
T∑

t=1

1(Hc
t )

]
≤ C7(N +M).

Combining all the results above, we arrive at the desired result.

The complete proofs of Lemma 3.2, Lemma 3.3, and Theorem 3.4 are included in the supplementary
material. If the delay effect is absent, we can show that the regret bound in Theorem 3.4 is reduced
to C1(N +M2)

√
T log T . In other words, we show that the increase in the regret contributed by

the delayed feedback is additive and linear in τmax in our setting. In this paper, we mainly focus on
the instance-independent regret, while it is possible to derive an instance-dependent result similarly
following Theorem 2 and Theorem 4 in [13], combined with the technique that we have used here to
deal with multiple interactions and the delayed feedback.

As a special case of our proposed model, we can compare this result with the state-of-the-art results
of cascading bandits. [15] has derived lower bound as Ω(

√
NMT ). Moreover, [11] has shown the

regret of O(
√
NT log T +NE[τ ]). Our setup is more complicated since there are more unknown

parameters that need to be learned (probability of abandonment), and the feedback is received in a
delayed manner. The regret bound for our proposed algorithm is O(max(N,M2)

√
T +Nτ). From

the comparison to two special cases, we can see that regret is optimal in T as well as the delay
duration.

4 Personalized Recommendation

In the previous section, we assume that all users share the identical preferences towards content and
the abandonment behavior. To provide personalized recommendations which incorporate content and
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user features, we propose a contextual variant of the learning algorithm which is motivated by [17].
Note that in this section, we allow the message set X to vary for different users, denoted as Xr.

Define wr,i as the features of message i in Xr, and xr as user’s features. We assume the attraction
probability of message i is a logit function of its content feature wr,i, and user r’s abandonment
behavior can be described by a logit function of the user’s features xr. Define the link function
µ(y) = exp(y)/(1 + exp(y)). That is,

1− P (abandon|xr,m) = exp(x′
rαm)/(1 + exp(x′

rαm)) = µ(x′
rαm), and

P (click on message i|wr,i) = exp(w′
r,iβ)/(1 + exp(w′

r,iβ)) = µ(w′
r,iβ).

Set Ŷr,j = 1 if user r remains in the system after she does not click on the jth message in a list,
while Ŷr,j = 0 if she abandons the system after viewing the jth message. Therefore, the maximum
likelihood estimator of αm at time t, α̂m,t, can be obtained as

α̂m,t = argmax
α

t∑
r=1

mr∑
j=1

1(mr = m)
(
Ŷr,jx

′
rα− log(1 + ex

′
rα)

)
1(user r examines the jth message but does not click by time t). (4.1)

Similarly, let Yr,j = 1 if user r clicks on the message j, and Yr,i = 0 otherwise. The maximum
likelihood estimator of β at time t can be obtained as

β̂t = argmax
β

t∑
r=1

mr∑
j=1

(
Yr,jw

′
r,κr(j)

β − log
(
1 + ew

′
r,κr(j)β

))
1(user r gives the feedback for the jth message by time t), (4.2)

where feedback includes both clicks and no-clicks and κr is the index function for user r.

Define the covariance matrices at time t for two estimators as Mm,t =
∑t

r=1

∑mr

j=1 xrx
′
r1(user

r examines the jth message but does no click by time t)1(mr = m), and Vt =∑t
r=1

∑mr

j=1 wr,κ(j)w
′
r,κ(j)1(user r gives the feedback for the jth message by time t). We pro-

pose the following contextual learning algorithm. In each step, after observing users’ feedback,
we update the maximum likelihood estimators for αm and β, respectively, followed by their upper
confidence bound. We then use these estimators to determine the messages for the active users.

Algorithm 3: An online algorithm for contextual cascading bandits with delayed feedback
1 Input: Total time steps T , tuning parameter η, γ1 and γ2; t = 0 ;
2 Initialize: Randomly choose frequency and messages to send until time η. Update Vη and Mm,η;
3 while t < T do
4 Update α̂m,t and β̂t by Equation (4.1) and Equation (4.2); t = t+ 1;
5 Observe a user’s contexts xt and message contexts wt,i; Update

vUCB
t−1 (wt,i) = µ

(
w′

t,iβ̂t−1 + γ1∥wt,i∥V −1
t−1

)
, for all i, and

qUCB
m,t−1(xt) = µ

(
x′
tα̂m,t−1 + γ2∥xt∥M−1

m,t−1

)
, for all m

for Any active user r with message scheduled to be sent at time t do
6 Compute Sr = argmaxS E[U(S,vUCB

t−1 ,R, qUCB
t−1 (m)] according to Algorithm 1;

7 Send the first message e in Sr\Orto user r; Or = Or ∪ {e};
8 end
9 Compute (St,mt) = argmaxS,m E[U(S,vUCB

t−1 ,R, qUCB
t−1 (m)] according to Algorithm 1 ;

10 Offer St
1 to user t and the dissemination frequency is set to f(mt); Ot = St

1;
11 Update Mm,t and Vt;
12 end

It is also important to note that although Algorithm 2 and Algorithm 3 are both based on the
assumption that messages cannot be recommended repeatedly, they can be easily generalized. If
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Or is not excluded from the candidate messages, the two algorithms can be applied the repeat-
recommendation case. Moreover, if we want to constrain the total number of repetitive displays of
one message as B, we can create B copies of that message in the candidate set.

5 Numerical Experiment

In this section, we evaluate the performance of both the non-contextual and contextual algorithms
based on the features of the real AmEx User Click dataset3, which records over 463,000 recommen-
dations of AmEx from July 2 to July 7 in 2017. The combination of "product"and "campaign_id" is
regarded as messages in simulation.

Experiment I: Non-contextual setting. There are N = 25 available messages. The attraction
probability v is uniformly generated from distribution [0, 0.5], and the return R uniformly generated
from distribution [1, 3], The maximum length of message list M is set to be 10. Based on estimations
from the short lists in AmEx dataset, we set q(m) = 1

1+exp(0.03m) . We set the re-targeting window
D = 200 in all settings. The response time τ is uniformly generated from [0, 3] for each user. In
addition to our proposed algorithm, we introduce several algorithms as benchmarks: three different
ϵ-greedy algorithms and TS-Cascade, which is a Thompson sampling algorithm for cascading bandits
with Gaussian update [25].

Result: We observe the results of 100 independent simulations for T = 30,000 time steps. The
results are shown in Fig 2, where the shaded area represents the 95% confidence region. We find
that the optimistic greedy and decaying ϵ-greedy algorithms are difficult to find an optimal list. The
average regret at T = 30,000 of our UCB algorithm is 550.14, with a 95% confidence interval of
(454.71, 645.57), significantly better than the benchmarks.
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Figure 2: Regrets of Algorithm 2.
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Figure 3: Regrets of Algorithm 3.

Experiment II: Contextual setting. There are N = 25 available messages. The maximum length of
message list M is set to be 20. User features are uniformly generated from [0, 5]× [0, 5]× [0, 5], and
message features are uniformly generated from [−6, 0] × [0, 1] × [0, 2] × [−5, 0]. The coefficient
related to the abandonment behavior, denoted as αm, is uniformly generated in the range (four-
dimensional including the intercept) −1.04× [−0.064m, 0]× [−0.08m, 0]× [−0.16m, 0] for m =
1, · · · , 20, where αm,1 is the intercept. An alternative coefficient α̃m is uniformly generated from
−1.04 × [−0.004m, 0] × [−0.064m, 0] × [−0.08m, 0] for m = 1, · · · , 20. The coefficient related
to message attraction is β = (0.05, 0.2, 0.1, 0.3, 0.4), where β1 is the intercept. Users’ response time
is uniformly distributed on [0,10]. We also implement several benchmark algorithms: two variants of
the ϵ-greedy algorithm, the explore-then-commit algorithm, and LinTS-Cascade, which is a linear
generalization of TS-Cascade [25].

Result: We observe the results of 50 independent simulations for T = 3,000 time steps. The result is
shown in Fig 3. The average regret at T = 3,000 of Algorithm 3 is 293.94, with a 95% confidence
interval of (273.85, 314.04), significantly better than the benchmark algorithms. In the early stage,

3https://www.kaggle.com/code/muditagrawal/amex-user-click-prediction
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the contextual UCB algorithm also has good performance, showing a faster convergence speed than
benchmarks.

Experiment III: Comparison of UCB and contextual UCB. To compare the effect of Algorithm
2 and Algorithm 3, we make two settings: (a): N = 25,M = 20 with user features and message
features generated from the same distribution as in Experiment 2, but only generated once and then
fixed. All other parameters are the same as in Experiment 2; (b): same as (a) but with N = 100.
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Figure 4: Comparison of the two UCB algorithms.

Result: We observe the results of 50 independent simulations for T = 3,000 time steps. The result
is shown in Fig 4. The average regrets under the 4 settings are 1451.95, 798.94, 441.90 and 280.73
from high to low, respectively. The contextual bandit UCB always work better than UCB algorithm
in the same setting. Furthermore, the advantage of contextual algorithm becomes greater when there
are more messages. This is because more messages will improve the estimation accuracy of α and β.

6 Conclusion

In this work, we considered a cascading bandit problem with delayed feedback and flexible rewards.
Based on the users’ feedback, the learning agent needs a policy to select a list of messages and
determine the frequency at which these messages are disseminated. We proposed a novel learning
algorithm to effectively learn such a policy, and it is capable of recommending a list that is dynamic
to a given user within polynomial time. Experiments proved the effectiveness and applicability of our
algorithm compared to benchmark algorithms in a novel cascading bandit problem.

For future work, it would be interesting to analyze the performance of alternative bandit algorithms,
such as Thompson-sampling-based algorithms for this setting. Additionally, considering that users’
preferences may change over time, another avenue for future research would be to incorporate
non-stationarity into user preferences.
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