
Supplementary Material
The mathematical analysis presented in this supplement builds on two distinct lines of work: (a)
optimization-based characterization of the MMSE denoisers [23, 66, 82]; (b) analysis of incremental
optimization algorithms [74, 83–85]. Our results are also related to two recent papers on PnP, namely
the work on BC-RED in [21] and on PnP-ISTA in [23]. Our results can be viewed as an extension
of [21] to nonconvex data fidelity terms and expansive denoisers. They can also be viewed as an
extension of [23] to block-coordinate updates and possibly inexact MMSE denoisers.

The structure of this supplementary document is as follows. In Section A, we prove the convergence
of BC-PnP under the deterministic sequential update rule. In Section B, we prove the convergence of
BC-PnP under the random i.i.d. update rule. In Section C, we provide technical lemmas useful for the
proofs of the main theorems. In Section D, we provide background material useful for our theoretical
analysis. In Section E, we provide additional simulations omitted from the main paper due to space.

A Proof of Theorem 1

Theorem. Run BC-PnP under Assumptions 1-5 using the sequential block selection and the step
0 < � < 1/Lmax. Then, we have
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where C1 > 0 and C2 > 0 are iteration independent constants. If additionally the sequence of error
terms {"i}i�1 is square-summable, we have that rf(xtb) ! 0 as t ! 0.

Proof. The block update i 2 {1, · · · , b} of the sequential BC-PnP using the inexact and exact
denoisers can be expressed
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for each i 2 {1, · · · , b} and any k � 1. Since we have
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we can re-write (16) as
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From the smoothness of hi for zi 2 Im(D⇤
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From the smoothness of g and the sequential nature of updates, we can obtain the following bound��������
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where for the last inequality we used the triangualar inequality. By combining the last two equations
and using the step-size � = 1/(↵Lmax), we get

krf(uk)k2  ↵Lmaxkuk � vk�1k2 + bLkuk � vkk2 + bLkvk � vk�1k2
 (↵Lmax + bL)kuk � vkk2 + (↵Lmax + bL)kvk � vk�1k2

 (↵Lmax + bL)kvk � vk�1k2 + (↵Lmax + bL)
bX

i=1

"(k�1)b+i.

By using this bound, we can get the following bound for the iterate of BC-PnP
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with A1 := (↵Lmax + bL) and A2 := (↵Lmax + bL+L+Mmax), where we first used the triangular
inequality and then Lemma 3. By squaring both sides and using (a + b)2  2a2 + 2b2
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By combining this inequality with Lemma 1, we get
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averaging both sides of the bound over t � 1, we get the desired result
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where C1 := B1 and C2 := bB2.

B Proof of Theorem 2

Theorem. Run BC-PnP under Assumptions 1-5 using the random i.i.d. block selection and the step
0 < � < 1/Lmax. Then, we have

E
"

1

t

tX

k=1

kG(xk�1)k22

#
 D1

t
(f(x0) � f⇤) + D2"

2
t ,

where D1 > 0 and D2 > 0 are iteration independent constants. If additionally the sequence of error
terms {"i}i�1 is square-summable, we have that G(xt)

a.s.��!0 as t ! 1.
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Proof. To simplify our notations and analysis we will use � = 1/(↵Lmax) with ↵ > 1. Note that
Assumption 3 implies that there exists f⇤ > �1 such that we have almost surely f⇤  f(xk), k � 1.
Consider the iteration k of BC-PnP in (6), where the random variables ik are selected uniformly at
random from {1, · · · , b}. This implies that
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On the other hand, from Lemma 2, we have almost surely that
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By taking conditional expectation of this bound, subtracting f⇤ from both sides, and using the
equality (17), we get
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where ✓ := (↵ � 1)/(2↵2bLmax). Hence, by averaging over t � 1 iterations and taking the total
expectation, we obtain
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where D1 := 1/✓ and D2 := �/(2✓). If {"k}k�1 in (18) is square summable, we can apply the
supermartingale convergence theorem (see Section D), to get almost surely
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which implies that kG(xk)k2
a.s.��! 0 as k ! 1.

C Useful technical lemmas

Lemma 1. Consider the iteration k � 1 of BC-PnP under Assumptions 1-5 using the sequential
block selection and the step-size � = 1/(↵Lmax) with ↵ > 1. Then, we have that

kvk � vk�1k22  2

(↵ � 1)Lmax

�
f(vk�1) � f(vk)

�
+

�

2

bX

i=1

"2(k�1)b+i, k � 1,

where vk := (x(k�1)b+1
1 , · · · , xkb

b ), f = g + h with h defined in (11), and � := (↵Lmax + Mmax).
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By combining the observation above with Lemma 2, we get the following bound
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which directly leads to the desired result.
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Lemma 2. Consider the iteration k � 1 of BC-PnP in (6) with the step-size � = 1/(↵Lmax) with
↵ > 1. If Assumptions 1-5 are true, we have that
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where f = g + h, with h defined in (11), and � := (↵Lmax + Mmax).
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By expanding the first term on the left side of the inequality and simplifying, we obtain
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From the smoothness of g, we also have

g(xk)  g(xk�1) + rikg(xk�1)T(xk
ik � xk�1

ik
) +

Lmax

2
kxk

ik � xk�1
ik

k22. (22)

By combining (21) and (22), and setting � = 1/(↵Lmax), we get

f(xk) = g(xk) + h(xk) (23)

 g(xk�1) + rikg(xk�1)T(xk
ik � xk�1

ik
) +

Lmax

2
kxk

ik � xk�1
ik

k22 (24)

+ h(xk�1) � rikg(xk�1)T(xk
ik � xk�1

ik
) � 1

2�
kxk

ik � xk�1
ik

k22 +
�"2k
2

(25)

= f(xk�1) � (↵ � 1)
Lmax

2
kxk

ik � xk�1
ik

k22 +
�"2k
2

, (26)

where we used the fact that xk
j = xk�1

j for all j 6= ik.

Lemma 3. Suppose Assumptions 1, 4, and 5 are true. We then have
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D Background material

D.1 Supermartingale convergence theorem

Our analysis of the randomized BC-PnP algorithm relies on the classical result from the probability
theory known as Supermargingale Convergence Theorem. The theorem is extensively used in the
optimization literature (see Appendix A in [86] and Proposition 2 in [83]).
Theorem (Supermartingale theorem). Let F k, Gk, and Ek, be three sequences of random variables
and let Fk be sets of random variables such that Fk�1 ✓ Fk for all k � 1. Assume that

• F k, Gk, and Ek are functions of the random variables in Fk. Additionally, F k � 0, Gk � 0,
and Ek � 0 almost surely for k � 1.

• For each k � 1, we have

E[F k | Fk�1]  F k�1 � Gk�1 + Ek�1.

• We have almost surely
1X
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•
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• F k ! F1, where F1 is a nonegative random variable.

D.2 MMSE denoising as proximal operator

The relationship between MMSE estimation and regularized inversion has been established by
Gribonval in [66] and has been discussed in other contexts [82,87,88]. This relationship was formally
connected to PnP methods in [23], leading to their new interpretation for MMSE denoisers. In this
section, we review the key argument connecting MMSE denoising and proximal operators.

It is well known that the estimator (8) can be compactly expressed using the Tweedie’s formula
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Figure 4: Illustration of estimated CSM from several methods on CS-PMRI with the sampling factor
R = 6. The top and the bottom rows are the magnitude and the phase of the CSMs, respectively. The
quantities in the top-left corner of each image in the top row provide RMSE values for each method.
Ground-truth image was obtained using the fully sampled data corresponding to the ground truth
CSMs. This figure highlights the effectiveness of BC-PnP for estimating the measurement operator.

where hi is a (possibly nonconvex) function defined in (12). Our aim is to show that u⇤ = zi is the
unique stationary point and global minimizer of
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(u)), u 2 Rni .

By using the definition of hi in (12) and the Tweedie’s formula (28), we get
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The gradient of ' is then given by
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iHh�i(u)]rh�i(u) = [JD⇤
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where we used (30) in the second line and (28) in the third line. Now consider a scalar function
q(⌫) = '(zi + ⌫u) and its derivative

q0(⌫) = r'(zi + ⌫u)Tu = ⌫uT[JD⇤
�i

(zi + ⌫u)]u.

Positive definiteness of the Jacobian (30) implies q0(⌫) < 0 and q0(⌫) > 0 for ⌫ < 0 and ⌫ > 0,
respectively. Thus, ⌫ = 0 is the global minimizer of q. Since u 2 Rni is an arbitrary vector, we have
that ' has no stationary point beyond u⇤ = zi and that '(zi) < '(u) for any u 6= zi.

E Additional Technical Details

We present some technical details and results that were omitted from the main paper. We used the
following root mean squared error (RMSE) for quantitatively comparing different algorithms

RMSE(bz, z) =
kbz � zk2

kzk2
(31)

where bz and z represents the estimation and ground truth respectively. We ran BC-PnP and its
ablated variants using a maximum number of 500 iterations with the stopping criterion measuring the
relative norm difference between iterations to be less than 10�5. We trained denoisers for images
and measurement operators to optimize the MSE loss by using the Adam [89] optimizer. We set the
learning rate of Adam to 10�5. We conducted all experiments on a machine equipped with an AMD
Ryzen Threadripper 3960X 24-Core Processor and 4 NVIDIA GeForce RTX 3090 GPUs.
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Figure 5: Illustration of results from several well-known methods, including those were omitted from
the main paper, on CS-PMRI with the sampling factor R = 8 (top row) and R = 6 (bottom row). The
quantities in the top-left corner of each image provide the RMSE and SSIM values for each method.
The squares at the bottom of each image shows the error and the corresponding zoomed area in the
image. Note the excellent performance of BC-PnP that uses a learned deep denoiser on the CSMs.

E.1 Additional Details for CS-PMRI

Figure 4 illustrates the visual results of the estimated CSM for an acceleration factor of R = 6. The
widely used ESPIRiT algorithm estimates CSM directly from the ACS of the raw measurement,
leading to imaging artifacts highlighted by yellow arrows under a high acceleration factor. Although
PnP-GD✓ can reduce such imaging artifacts by jointly estimating images and CSMs, its performance
is suboptimal compared to BC-PnP. Figure 4 shows the effectiveness and superior performance of
BC-PnP in estimating CSMs, which we attribute to its ability to use a DL denoiser as the CSM prior.

Figure 5 visually illustrates results from several well-known methods, including those were omitted
from the main paper, on CS-PMRI with acceleration factors R = 8 and R = 6. ESPIRiT-TV
leads to the loss of details due to the well-known “staircasing effect”. While Unet can outperform
ESPIRiT-TV by learning a prior end-to-end from a training dataset, its performance is suboptimal
compared with ISTA-Net+ that incorporates the pre-estimated measurement operator into the network
architecture. PnP and PnP-GD✓ use pre-trained DL denoiser as image priors, leading competitive
performance against ISTA-Net+. Figure 5 demonstrates that BC-PnP can achieve quantitatively and
qualitatively superior performance over several baselines by jointly estimating images and CSMs.

Figure 6 shows ground truth MR images corresponding to the fully-sampled data that was used to
generate measurement on the CS-PMRI experiments.

E.2 Additional Details for Blind Image Deblurring

Figure 7 presents visual results from several well-known methods, including those were omitted from
the main paper, on blind image deblurring with the Gaussian kernel. Pan-DCP estimates a deblur
kernel from the blurry measurement and then reconstructs the image using a non-DL image prior.
SelfDeblur jointly trains two deep image priors (DIPs) on the image and the blur kernel, respectively,
but note how its reconstructions are translated compared to the ground truth. DeblurGANv2 enables
debluring of an image without the knowledge of the blur kernel, but its performance is noticeably
suboptimal. While USRNet reconstructs sharp images given a pre-estimated kernel, the details in
the corresponding images are inconsistent relative to the ground truth (see the texture of the tiger
skin highlighted by yellow arrows). Note how BC-PnP using a deep denoiser on the unknown kernel
outperforms several baselines and matches the performance of PnP that knows the true kernel.
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Figure 6: Ground truth images that were used to generate the measurements in CS-PMRI.
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Figure 7: Results from several well-known methods, including those were omitted from the main
paper, on blind image deblurring with the Gaussian kernel. The squares at the top of each image
show the estimated kernels. The quantities in the top-left corner of each image provide the RMSE and
SSIM values for each method. The squares at the bottom of each image highlight the error and the
corresponding zoomed image region. Note how BC-PnP using a deep denoiser on the unknown kernel
performs as well as the oracle PnP that knows the ground truth kernel. Note also the effectiveness of
BC-PnP for estimating the blur kernel.

Figure 8 shows the images that were used to generate measurements for blind image deblurring.
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Figure 8: Ground truth images used for generating measurements for blind image deblurring.
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