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1 Proof of equations in the main text

1.1 The derivative of Kullback–Leibler divergence

Derivation of Eq.(2) in the main text,

∇θDKL [ptrue(x) ‖ pθ(x)] , (1a)

= −E
x∼ptrue(x)

1

pθ(x)
∇θpθ(x), (1b)

= −E
x∼ptrue(x)

1

pθ(x)
E
z∼pθ(z|x)

[∇θpθ(x, z)

pθ(z|x)

]

, (1c)

= −E
x∼ptrue(x)Ez∼pθ(z|x)

[∇θpθ(x, z)

pθ(x, z)

]

, (1d)

= −E
x∼ptrue(x)Ez∼pθ(z|x) [∇θ ln pθ(x, z)] . (1e)

1.2 The derivative of log-partition function

Considering that the sum of the probability equals to 1, we can obtain,

1 =

∫

p(xl|xl+1)dxl, (2a)

=

∫

exp
[

η
T
l φ(xl) + g(xl)−A(ηl)

]

dxl, (2b)

=

∫

exp
[

η
T
l φ(xl) + g(xl)

]

dxl

exp [A(ηl)]
. (2c)
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Then, we take the derivative of exp [A(ηl)] with respect to ηl, obtaining,

A′(ηl) =
(exp [A(ηl)])

′

exp [A(ηl)]
, (3a)

=

(∫

exp
[

η
T
l φ(xl) + g(xl)

]

dxl

)′

exp [A(ηl)]
, (3b)

=

∫

φ(xl) exp
[

η
T
l φ(xl) + g(xl)

]

dxl

exp [A(ηl)]
, (3c)

=

∫

φ(xl) exp
[

η
T
l φ(xl) + g(xl)−A(ηl)

]

dxl, (3d)

= E
xl∼pθ(xl|xl+) [φ(xl)] . (3e)

1.3 Second-order Langevin dynamic

In this section, we provide a proof that the stationary distribution p̃(z) of the second-order Langevin
dynamic, as described in the main text, is equivalent to the posterior distribution pθ(z|x).

τz
dz

dt
= ∇z ln pθ(z|x)− v +

√
2τzξ, (4)

τv
dv

dt
= −mv

2
+m

√
2τvξ, (5)

where ξ is Gaussian white noise satisfying 〈ξξT 〉 = Iδ(t− t′). Following the anti-symmetric matrix
decomposition strategy [1], the above dynamic can be reorganised to,

d

dt

(

z

v

)

= (D +Q)

(

∇z ln pθ(z|x)
−τvv/(4mτz)

)

+
√
2Dξ, (6)

where ξ is Gaussian white noise satisfying 〈ξξT 〉 = Iδ(t− t′) and

D =

(

I/τz 2mIτv
2m/τv 4m2τz/τ

2
v

)

, Q =

(

0 2mIτv
−2m/τv 0

)

. (7)

The Fokker-Planck equation of the above dynamics is written as,

∂

∂t
p(z,v, t) = ∇⊤

[

(D +Q)

(

∇z ln pθ(z|x)
−τvv/(4mτz)

)

p(z,v, t)

]

+∇⊤ [D∇p(z,v, t)] . (8)

By utilizing the property,

∇⊤ [Q∇p(z,v, t)] = 0, (9)

Eq.(8) can be rewritten as,

∂

∂t
p(z,v, t) = ∇⊤

{

(D +Q)

[(

∇z ln pθ(z|x)
−τvv/(4mτz)

)

p(z,v, t) +∇p(z,v, t)

]}

. (10)

By letting the left-hand side of the above equation to be zero, we get that the stationary distribution
p̃(z,v) satisfy,

(

∇z ln pθ(z|x)
−τvv/(4mτz)

)

p(z,v) +∇p(z,v) = 0, (11)

which gives the solution,

p̃(z,v) = pθ(z|x)N (v; 0, 4mτz/τv). (12)

The marginal stationary distribution of z is then calculated to be,

p̃(z) =

∫

p̃(z,v)dv = pθ(z|x). (13)
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2 Analysis of Hessian matrix

In this section, we provide a theoretical lower bound for λ1(H) and an upper bound for det(H)
based on the assumption that φ(xl) = xl and g(xl) = −x

T
l xl. Then we demonstrate that HEE-L

can only converge to unimodal distributions.

We define the total energy Ft = − ln pθ(x0:L). Considering

∂2

∂xl∂xl+k

Ft =











I + θTl−1θl−1 , k = 0
−θl , k = 1
−θl−1 , k = −1
0 , |k| > 1

(14)

therefore, the Hessian matrix Ht = ∆x0:L
Ft is calculated as,

Ht = (I +D)T (I +D) (15)

where

D =











0 −θ0
0 −θ1

· ·
0 −θL−1

0











(16)

Thus, the lower bound of singular values of I +D is given by (see Theorem 8.13 in [2]),

σ1(I +D) ≥ σ1(I)− σmax(D) (17)

where σ1(·) and σmax(·) denote the smallest and greatest singular value, respectively. Then we
assume that θl is matrix with sub-gaussian entries, and n1 = · · · = nL = N/L then we have,

E [σmax(D)] = E [maxl≤L σmax(θl)] ,

≤ K
√
lnLE [σmax(θL)] , Exercise 2.5.10 in [3]

≤ K
√

N lnL
L

, Theorem 4.4.5 in [3]

(18)

where K is a small constant. Thus, the lower bound of λ1(Ht) is calculated as

λ1(Ht) = σ2
1(I +D) Eq.(15)

≥
(

1−K
√

N lnL
L

)2

Eq.(18)
(19)

Thus, the lower bound of λ1(H) is calculated as (Theorem 4.3.15 in [4]),

λ1(H) ≥ λ1(Ht). (20)

And the upper bound of det(H) is calculated as,

det(H) =
∏N

i=1 λi(H)

≤ ∏N

i=1 λi+n0
(Ht) Theorem 4.3.15 in [4]

= 1/
∏n0

i=1 λi(Ht) Utilizing det(Ht) = 1
≤ 1/ [λ1(Ht)]

n0

(21)

The above analysis reveals that λ1(Ht) increase with the decrease of L. Additionally, as the value
of λ1(Ht) increases, the lower bound of λ1(H) and the upper bound of det(H) will decrease and
increase, respectively.
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Then, we prove that the Hessian matrix Ho = −∆x0
ln pθ(x0) is positive-definite, indicating that

HEE-L is capable of approximating only unimodal distributions.

Ho = −∆x0
ln pθ(x0), (22a)

= −∆x0
ln

∫

pθ(x0:L)dx1:L, (22b)

=
−1

[pθ(x0)]
2

∫

dx′
1:L

∫

dx1:L

[

pθ(x
′
0:L)∆x0

pθ(x0:L)−∇x0
pθ(x0:L)∇T

x
′

0
pθ(x

′
0:L)

]

,(22c)

=
−2

[pθ(x0)]
2

∫∫

dx1:Ldx
′
1:L [P (x0:L,x

′
0:L) + P (x′

0:L,x0:L)] , (22d)

≻ −2

[pθ(x0)]
2

∫∫

dx1:Ldx
′
1:L [P (x0:L,x0:L) + P (x′

0:L,x
′
0:L)] , (22e)

=
−1

[pθ(x0)]
2

∫∫

dx1:Ldx
′
1:L [pθ(x0:L)]

2
∆x0

ln pθ(x0:L), (22f)

≻ 0 (22g)

where P (x0:L,x
′
0:L) = pθ(x

′
0:L)∆x0

pθ(x0:L) − ∇x0
pθ(x0:L)∇T

x
′

0

pθ(x
′
0:L). In Eq.(22e), we use

the property

∆x0
pθ(x0:L) = ∆

x
′

0
pθ(x

′
0:L), (23a)

∇x0
pθ(x0:L)∇T

x0
pθ(x0:L) +∇

x
′

0
pθ(x

′
0:L)∇T

x
′

0
pθ(x

′
0:L) ≻ 2∇x0

pθ(x0:L)∇T
x
′

0
pθ(x

′
0:L)(23b)

In Eq.(22g), we utilize the property that −∆x0
ln pθ(x0:L) is a principal submatrix of Ht, which is

also a positive-definite matrix.

3 Experimental details

Table 1 lists experimental settings for 2D synthetic datasets, FashionMNIST and CIFAR10.

Settings 2D synthetic datasets FashionMNIST CIFAR10

f(xl) xl xl xl

g(xl) −x
T
l xl −x

T
l xl −x

T
l Wlxl − Tr(WT

l Wl)
L 5 5 10
nl linspace(10, 10, L) linspace(1000, 100, L) linspace(3000, 100, L)
τz linspace(1, 10, L) linspace(1, 10, L) linspace(10, 10, L)
τx 1 1 10
τv 0.5 ∗ τz 0.5 ∗ τz 0.5 ∗ τz
m 0.5 0.5 0.5
τu 0.1 0.1 0.1
τθ 10 10 100
sparse connection False False True (20%)
parameters 400 400K 4M

Table 1: Experimental settings

We conducted all experiments on a GPU (RTX A6000). The inference, learning, and generation
dynamics were simulated using the Euler expansion with a step size of dt = 0.01τx. In the infer-
ence and learning phase, each data point was presented to the network for 300τx, with each batch
consisting of 30K steps. The FashionMNIST model was trained with a batch size of 512, taking
approximately 0.5 hours to complete one epoch. The CIFAR10 model was trained with a batch size
of 128, taking approximately 2 hours to complete one epoch. And the parameters Wl and bl adopts
the gradient method described by Eq.(4) in the main text.

For joint generation, we randomly initialized the neuronal activities and performed the joint genera-
tion dynamic for 300τx. The average value of neuronal activity x0 in the last 100τx was used as the
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generated output. For marginal generation, we also randomly initialized the neuronal activities and
performed the marginal generation dynamic for 100τx. The average value of neuronal activity x0 in
the last 50τx was used as the generated output.
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