
Bypassing spike sorting: Density-based decoding using
spike localization from dense multielectrode probes

Yizi Zhang1∗ Tianxiao He1,2∗ Julien Boussard1 Charlie Windolf1 Olivier Winter3
Eric Trautmann1 Noam Roth4 Hailey Barrell4 Mark Churchland1 Nicholas A. Steinmetz4

The International Brain Laboratory3 Erdem Varol2 Cole Hurwitz1 Liam Paninski1

1Columbia University 2New York University 3The International Brain Laboratory
4 University of Washington in Seattle

Abstract

Neural decoding and its applications to brain computer interfaces (BCI) are es-
sential for understanding the association between neural activity and behavior. A
prerequisite for many decoding approaches is spike sorting, the assignment of
action potentials (spikes) to individual neurons. Current spike sorting algorithms,
however, can be inaccurate and do not properly model uncertainty of spike assign-
ments, therefore discarding information that could potentially improve decoding
performance. Recent advances in high-density probes (e.g., Neuropixels) and
computational methods now allow for extracting a rich set of spike features from
unsorted data; these features can in turn be used to directly decode behavioral cor-
relates. To this end, we propose a spike sorting-free decoding method that directly
models the distribution of extracted spike features using a mixture of Gaussians
(MoG) encoding the uncertainty of spike assignments, without aiming to solve the
spike clustering problem explicitly. We allow the mixing proportion of the MoG
to change over time in response to the behavior and develop variational inference
methods to fit the resulting model and to perform decoding. We benchmark our
method with an extensive suite of recordings from different animals and probe
geometries, demonstrating that our proposed decoder can consistently outperform
current methods based on thresholding (i.e. multi-unit activity) and spike sorting.
Open source code is available at https://github.com/yzhang511/density_decoding.

1 Introduction

Decoding methods for large-scale neural recordings are opening up new ways to understand the
neural mechanisms underlying cognition and behavior in diverse species (Urai et al., 2022). The
emergence of high-density multi-electrode array (HD-MEA) devices introduced a tremendous
increase in the number of extracellular channels that can be recorded simultaneously (Jun et al.,
2017; Steinmetz et al., 2021), leading to scalable and high-bandwith brain computer interfaces (BCI)
systems (Musk et al., 2019; Paulk et al., 2022).

Traditional neural decoding methods assume that spiking activity has already been correctly
spike-sorted. As a result, these methods are not appropriate for situations where sorting cannot be
performed with high precision. Despite intensive efforts towards automation, current spike sorting
algorithms still require manual supervision to ensure sorting quality (Steinmetz et al., 2018). Even
after careful curation, current spike sorters suffer from many sources of errors including erroneous
spike assignment (Deng et al., 2015). The dense spatial resolution of HD probes makes some known
issues of spike sorting even more evident. With the increased density of the recording channels, the

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/yzhang511/density_decoding

probability of visibly overlapping spikes (spike collisions) is higher (Buccino et al., 2022). Even for
the same HD dataset, different spike sorters have low agreement on the isolated units and can find a
significant number of poorly sorted and noisy units (Buccino et al., 2020). Consequently, only sin-
gle units that pass quality control metrics are included in many neural coding studies (IBL et al., 2022).

Because the spike-sorting problem remains unresolved, alternative approaches that do not rely on
sorted single-units for decoding have been proposed. A popular choice is multi-unit threshold
crossing that uses spiking activity on each electrode for decoding (Fraser et al., 2009; Trautmann et al.,
2019). However, this approach ignores the fact that the signal on each electrode is a combination
of signals from different neurons, thus making inefficient use of the data (Todorova et al., 2014).
Ventura (2008) proposed a spike-sorting free decoding paradigm that estimates neuronal tuning
curves from electrode tuning curves and then infers the behavior of interest using the estimated tuning
curves and newly observed electrode spike trains. More recently, Chen et al. (2012); Kloosterman
et al. (2014); Deng et al. (2015); Rezaei et al. (2021) developed spike feature decoding methods
that use marked point processes to characterize the relationship between the behavior variable and
features of unsorted spike waveforms. However, these decoders based on state-space models make
explicit assumptions about the underlying system dynamics which reduce their flexibility in capturing
complex relationships in the data. Moreover, these methods mainly utilize simple waveform features
for decoding such as the maximum amplitude on each electrode and do not take advantage of HD
spike features such as the estimated spike location.

To leverage the spatial spread and density of HD probes, Hurwitz et al. (2019); Boussard et al. (2021)
developed spike localization methods. These methods estimate the source location of a detected
spike; this is a low-dimensional feature that is informative about the firing neuron’s identity. We
propose a probabilistic model-based decoding method that scales to HD-MEA devices and utilizes
these novel localization features in conjunction with additional waveform features. We use a mixture
of Gaussians (MoG) model to encode the uncertainty associated with spike assignments in the form
of parametric distributions of the spike features. Unlike traditional MoG models with a fixed mixing
proportion, our method allows the mixing proportion to depend on the behavior of interest and
change over time. This is motivated by the theory that behavioral covariates that modulate neurons’
firing rates also contain information about spike identities and that such tuning information should be
incorporated into spike sorting and neural decoding in order to obtain unbiased and consistent tuning
function estimates (Ventura, 2009). To infer the functional relationship between spike features and
behavioral correlates, we employ automatic differentiation variational inference (ADVI) (Kucukelbir
et al., 2017) and coordinate ascent variational inference (CAVI) (Blei et al., 2017), which enable us to
perform efficient and accurate inference while considering the behavior-modulated MoG model.

We apply our method to a large number of HD recordings and decode various types of behavioral
correlates. Experimental results show that our decoder consistently outperforms decoders based on
multi-unit threshold crossings and single-units sorted by Kilosort 2.5 (Pachitariu et al., 2023). We
further validate the robustness of our method by applying it to recordings with different levels of
sorting quality, HD probes with varying geometry, and recordings from multiple animal species. Con-
sistent with previous results, our findings indicate that relying solely on “good” units, as determined
by sorting quality metrics, leads to information loss and suboptimal decoding performance. This
observation motivates our transition to a spike sorting-free decoding framework which enables us to
extract more information from the spiking activity and improve decoding performance.

2 Method

Consider an electrophysiological recording comprised of K trials, where each trial is divided into T
equally spaced time bins. Let {sitk}ntk

i=1, sitk ∈ RD denote a set of spike features, where i indexes
the i-th spike, ntk represents the number of spikes collected in the t-th time bin of the k-th trial, and
D is the dimension of spike features. For example, the spike feature sitk = (xitk, zitk, aitk) ∈ R3

includes the spike location along the x- and z-axis of the probe, and its maximum peak-to-peak (max
ptp) amplitude. Let yk ∈ RT be the observed time-varying behavior in the trial k, e.g., the speed of a
rotating wheel controlled by a mouse. When the behavior in the trial k does not vary over time, it
can take on either a binary (yk ∈ {0, 1}) or scalar (yk ∈ R) value, e.g., the mouse responds to a

2

scalar-valued stimulus by making a binary decision.

The proposed decoding method comprises an encoder and a decoder model. During the training
of the model, the encoder captures the relationship between the observed spike feature distribution
and the observed behavior. During the testing phase, the decoder utilizes the learned relationship
from the encoder to predict the unobserved behavior based on newly observed spike features. In the
following section, we present a general formulation of the encoding-decoding paradigm and provide
more detailed implementations in the supplementary materials.

time T

c)
encoder decoder

decoder

decoded behavior

encoder

behavior

 b)

…

…

…

…

spike features

co
m

po
ne

nt
s
C

firing rates
time T

trials K

co
m

po
ne

nt
s
C

trials K
behavior
decoder

weight matrix

estimated
behavior
from
thresholding

train trials

test trials

training time test time

neural
recordings

spike features

1
cm

am
plitude (s.u.)

30

22

14

7

0

spike localization features

10
0

um

NP1 a)

Figure 1: Decoding paradigm and graphical model. (a) Spike localization features, (x, z), the
locations of spikes along the width and depth of the NP1 probe, and waveform features, a, the
maximum peak-to-peak (max ptp) amplitudes of spikes. Amplitude is measured in standard units
(s.u.). Spike features from the entire probe are shown, and we focus on a specific segment of the
probe. (b) During the training phase, the encoder takes the observed spike features s and behavior
y from the train trials as inputs and then outputs the variational parameters θ which control the
dependence of the firing rate λ on the behavior y. At test time, the decoder utilizes the learned model
parameters θ obtained from the encoder and the observed spike features s from the test trials to
predict the corresponding behavior in the test trials. To ensure reliable decoding of behaviors, we
initially calculate the λ during training using the learned θ and observed behaviors y from the train
trials. Then, we compute the λ during test time using the learned θ and the estimated behavior ŷ
obtained through multi-unit thresholding from the test trials. Finally, we generate the weight matrix
W for both the train and test trials as input to the final behavior decoder, e.g., linear regression or
neural networks (Glaser et al., 2020; Livezey and Glaser, 2021). (c) In the encoder, the firing rates
of each MoG component λctk are modulated by the observed behavior ytk in the train trials. This
modulation affects the MoG mixing proportion πctk, which in turn determines the spike assignment
zitk that generates the observed spike features sitk in the train trials. In the decoder, the behavior ytk
in the test trials is unknown and considered as a latent variable to be inferred. The decoder uses the
observed spike features sitk from the test trials along with the fixed model parameters θc learned by
the encoder to infer the latent behavior ytk.

3

Encoder. The multivariate spike feature distribution is modeled using a mixture of Gaussian (MoG).
The encoder generative model is as follows:

λctk = λ(t, yk, θc), θc ∼ p(θc), (1)

zitk ∼ Categorical(zitk;πtk), πtk = {πctk}Cc=1, πctk =
λctk∑
c′ λc′tk

, (2)

sitk ∼ N (sitk; ηzitk), ηc = (µc,Σc), (3)

where λ(·) is a function that describes the firing rate’s dependence on behaviors yk, while p(θc)
represents a general prior on θc encompassing the model parameters for the mixture component c.
Intuitively, the behavior-dependent λ governs the mixing proportion π of the MoG, which determines
the specific component c from which a spike feature s is generated. As λ varies over time in response
to y, spikes that are spatially close and share similar waveform features may originate from different
MoG components at different time points within a trial. In our implementation, we parameterize λ
using a generalized linear model (GLM), but alternative models such as neural networks (NN) can
also be used; see the supplementary material for the GLM configuration.

We employ variational inference (VI) to learn the unknown quantities. In the standard MoG setting
(Blei et al., 2017), our goal is to infer the spike assignment z which indicates the latent component
from which the observation s originates. However, unlike the standard MoG, our spike assignment z
is influenced by the firing rates λ of the neurons which are modulated by the behavior y. Consequently,
learning the association between λ and y necessitates the estimation of the unknown model parameters
θ. Our objective is to simultaneously learn both the latent variables z and model parameters θ based
on the observed spike features s and behavior y. To accomplish this, we posit a mean-field Gaussian
variational approximation

q(z, θ) =
∏
c,t

q(zct)q(θc) (4)

for the posterior p(z, θ | s, y). Subsequently, we employ the CAVI or ADVI methods to maximize
the evidence lower bound (ELBO) and compute updates for z and θ. Analogous to the standard
Expectation-Maximization (EM) algorithm for MoG, the proposed CAVI and ADVI procedures
consist of an E step and a M step. The E step, which updates z, closely resembles that of the ordinary
MoG, while the M step, responsible for updating θ, differs. CAVI utilizes coordinate ascent to find θ
that maximizes the ELBO, while ADVI employs stochastic gradient ascent for θ updates. For detailed
information on the CAVI and ADVI model specifications, refer to Supplement 1 and 2.

Decoder. The decoder adopts the same generative model in Equation 1-3 as the encoder with two
distinctions: 1) yk is unobserved and considered a latent variable we aim to estimate, i.e., yk ∼ p(yk),
where p(yk) is a general prior, and 2) the model parameters θ are obtained from the encoder and
kept constant. In practice, the choice of prior relies on the nature of yk. For instance, if yk is
binary, we can sample from a Bernoulli distribution while a Gaussian process prior can capture the
temporal correlation between time steps if yk ∈ RT . The posterior p(z, y | s) is approximated using
a mean-field Gaussian variational approach

q(z, y) =
∏
c,t

q(zct)q(y). (5)

We employ standard CAVI or ADVI methods to infer z and decode y.

Robust behavior decoding. In practice, we found that direct decoding of y using the approximated
posterior q(y) in Equation 5 was not robust, leading to decoding results of inconsistent quality across
different datasets. Although the factorization described in Equation 5 may not fully exploit the
available information for predicting y, it is useful for learning about the spike assignment z. To
enhance decoding robustness, we compute a weight matrix from the MoG outputs as input to the
final behavior decoder. The weight matrix, denoted as W , has dimensions K × C × T and entries
Wkct :=

∑ntk

i=1 q(zikct), which capture the posterior probability of assigning spike i collected at time
t of the trial k into the component c. In scenarios such as spike sorting or multi-unit thresholding,
spikes are assigned deterministically to one of C sorted single units or thresholded channels. In this
case, W has one-hot rows, and each entry Wkct represents the number of spikes belonging to trial

4

k, time t and unit (channel) c. To obtain q(zikct), we rely on estimating the posterior πctk, which
requires either the observed ytk or the estimated ŷtk. During model training, we can substitute the
observed ytk into Equation 1 to calculate the posterior πctk for the train trials. At test time, we use
the estimated ŷtk obtained from multi-unit thresholding along with the learned encoder parameters θ
to calculate the posterior πctk for the test trials. With the posterior πctk in hand, we then estimate
q(z) to compute the weight matrix W for both the train and test trials, which serves as input to the
final behavior decoder. The choice of the behavior decoder depends on the user’s preference. For
instance, we can use logistic regression as the behavior decoder for binary yk, and ridge regression
for yk ∈ RT that exhibit temporal variations. Additional information regarding the selection of the
behavior decoder can be found in Supplement 5.

3 Experiments

We conducted experiments using both electrophysiological and behavior data obtained from the
International Brain Laboratory (IBL) (IBL et al., 2021). The electrophysiological recordings were
acquired using Neuropixels (NP) probes that were implanted in mice performing a decision-making
task. Each recording comprises multiple trials with several behavioral variables recorded during each
trial including the choice, face motion energy, and wheel speed; see Figure 2 (a) for details. Each
trial has a duration of 1.5 seconds and is divided into 30 time bins of 50 milliseconds length. The NP
probe spans multiple brain regions; an example of the brain parcellation can be seen in Figure 3. To
prepare the recordings for decoding, we first applied IBL’s standard destriping procedure (Chapuis
et al., 2022) to reduce artifacts. Then, we used a subtraction-based spike detection and denoising
method described in Boussard et al. (2023). After preprocessing, we computed the spike locations
(Boussard et al., 2021) to acquire spike features for decoding and then utilized registration techniques
(Windolf et al., 2022) to correct for motion drift in the recorded data. Further details about data
preprocessing can be found in Supplement 4. In all experiments, we used spike locations along the
width and depth of the NP probe, and maximum peak-to-peak amplitudes of spikes for decoding. We
selected this set of spike features based on empirical evidence from our experiments, which showed
their good decoding performance. Furthermore, previous studies (Boussard et al., 2023; Hilgen et al.,
2017) have also recognized that these features were highly informative about unit identity. Figure
1(a) illustrates the spike localization and waveform features that were utilized for decoding.

We evaluate the performance of our decoding method by comparing it to the following baselines: (1)
Spike-thresholded decoders which utilize the spiking activity on each electrode after a voltage-based
detection step. (2) Spike-sorted decoders that utilize all single-units found using Kilosort (KS) 2.5
(Pachitariu et al., 2016). (3) Spike-sorted decoders based on “good” units which consist of KS units
that have passed IBL’s quality control procedure (IBL et al., 2022). The parameters used for KS were
tuned across multiple IBL datasets as described by IBL’s spike sorting white paper (Chapuis et al.,
2022).

To assess the quality of decoding, we perform 5-fold cross validation (CV) and compute relevant
decoding metrics. The coefficient of determination (R2) is used to evaluate continuous behavior
decoding (e.g., motion energy and wheel speed) while accuracy is used for discrete behaviors (e.g.,
choice). To demonstrate the efficacy of our approach in a wide range of settings, we conduct the
following experiments.

Varying levels of spike sorting quality. Our objective is to compare the proposed decoding method
to spike-sorted decoders using datasets which have varying levels of spike sorting quality. We apply
our method to two datasets with high sorting quality (“good” sorting) and two with low sorting quality
(“bad” sorting). The quality of sorting is assessed using IBL’s quality metrics (Chapuis et al., 2022).
Although motion registration has been performed, we find that the recordings that have “bad” sortings
are more affected by motion drift then the recordings which have “good” sortings; see supplementary
materials.

Different brain regions from 20 datasets. To demonstrate the efficacy of our method across many
different datasets, we decode 20 IBL datasets (IBL et al., 2022). In these datasets, mice perform a
behavioral task while NP1 probes record activity from multiple brain regions. These brain regions

5

time (sec)
good vs. bad sorting example sessions

motion energy

b) d)

choice
(left / right)

stimulusa)

R2

oursthresh “good”
KS

all
KS

accuracyR2

wheel speed

time (sec)

time (sec) cumulative absolute drift (um/sec)

 missed spikes (%)

R2

motion
energy

wheel speed

“good” “bad”

motion energy
oursthresh “good”

KS
all
KS

wheel speed

oursthresh “good”
KS

all
KS

oursthresh “good”
KS

all
KS

“good” “bad”

choice

oursthresh “good”
KS

all
KS

oursthresh “good”
KS

all
KS

“good” “bad”

c)
motion energy

time (sec)

wheel speed

time (sec)

wheel
speed

observed all KS ours

0.7

0.6

0.5

0.4

0.3

0.7

0.6

0.5

0.4

0.3

0.0 2.5
log(contamination (%))

0.7

0.6

0.5

0.4

0.3
 25 50 75

20 sessions

R2

R2

R2: 0.491 R2: 0.696

R2: 0.377 R2: 0.474

R2: 0.401 R2: 0.519

R2: 0.150 R2: 0.270

motion
energy

 25 30 35

Figure 2: Density-based decoding is robust to varying levels of spike sorting quality. (a) We
decode various behaviors including choice, motion energy and wheel speed. In the experimental
setup, the mouse detects the presence of a visual stimulus to their left or right and indicates the
perceived location (choice) by turning a steering wheel in the corresponding direction. Motion
energy is calculated within a square region centered around the mouse’s whiskers. The example
behavior traces are distinguished by different colors for each trial. (b) We compare decoders using
two experimental sessions with “good” sorting quality (represented by the color green) and two
sessions with “bad” sorting quality (represented by the color purple) based on IBL’s quality metrics.
The box plots display various statistical measures including the minimum, maximum, first and third
quartiles, median (indicated by a gray dashed line), mean (indicated by a red solid line), and outliers
(represented by dots). These decoding metrics are obtained from a 5-fold CV and are averaged across
both “good” and “bad” sorting example sessions. (c) We compare the traces decoded by spike-sorted
decoders and our method on example sessions with “good” sorting quality (indicated by green) and
“bad” sorting quality (indicated by purple). (d) The scatter plots depict the decoding quality of motion
energy, measured by R2, with respect to various spike-sorting quality metrics. Each point represents
one of the 20 IBL sessions, and different colors and shapes are used to distinguish between the
type of decoder and sorting quality. The sorting quality metrics include “contamination,” which
estimates the fraction of unit contamination (Hill et al., 2011), “drift,” which measures the absolute
value of the cumulative position change in micrometers per second (um/sec) of a given KS unit, and
“missed spikes,” which approximates the fraction of missing spikes from a given KS unit (Hill et al.,
2011). These metrics are averaged across all KS units in a session. The scatter plots demonstrate
that decoding quality tends to decrease when sorting quality is compromised. However, our method
outperforms spike-sorted decoders even in the presence of these sorting issues.

6

are repeatedly targeted across all the datasets. To explore how behaviors are linked to specific brain
regions, we use spikes that are confined to a particular area of the mouse brain for decoding. We
collect decoding results from the posterior thalamic nucleus (PO), the lateral posterior nucleus (LP),
the dentate gyrus (DG), the cornu ammonis (CA1) and the anterior visual area of the visual cortex
(VISa).

Different probe geometry. Our method is capable of decoding electrophysiological data from a
variety of HD probes. To demonstrate this, we apply our method on Neuropixels 2.4 (NP2.4) and
Neuropixels 1.0 in nonhuman primates (NP1-NHP) datasets. The NP2.4 and NP1-NHP recordings
are preprocessed using an identical pipeline as employed for NP1; see Supplement 4 for details.
For spike sorting, the NP2.4 and NP1 adopt the same KS parameters as outlined in IBL’s spike
sorting procedure. Different KS parameters are utilized for NP1-NHP probes which are detailed in
Trautmann et al. (2023).

• NP2.4: Each NP2.4 probe consists of four shanks and a total of 384 channels (Steinmetz
et al., 2021). NP2.4 probes are more dense (i.e., more channels in a given area) than NP1.
The mice were trained in accordance with the IBL experiment protocols to perform a visual
decision-making task. The behavioral correlates we decode are choice, motion energy, and
wheel speed.

• NP1-NHP: NP1-NHP is designed for nonhuman primate species, such as macaques. The
NP1-NHP probe maintains the same number of channels as NP1 (384), but its overall length
is extended, resulting in a sparser configuration compared to NP1 (Trautmann et al., 2023).
During the experiment, the macaque underwent training in a sequential multi-target reaching
task (Marshall et al., 2022). The behavioral correlate we decode is the monkey’s arm force.
The probe was implanted in the macaque’s motor cortex.

Comparison to a state-of-the-art clusterless decoder. Although the lack of available code for
prior methods make comprehensive comparisons difficult, we benchmark our density-based decoder
against a state-of-the-art clusterless decoder on datasets from both HD probes and multiple tetrodes.
We compare our method to the clusterless point process decoder of Denovellis et al. (2021), which
utilizes a marked point process to connect spike features with behaviors. For more details of this
comparison, see Section 9 of the supplementary materials.

To decode the binary choice variable, we utilize the CAVI algorithm described in Supplement 2. For
continuous behaviors like motion energy, wheel speed, and arm force, we employ the ADVI algorithm
outlined in Supplement 1. We specify the maximum number of iterations as a hyperparameter in the
CAVI model as it requires analytical updates for the model parameters. Running the CAVI encoder
and decoder for fewer than 50 iterations yields satisfactory decoding outcomes. As for the ADVI
algorithm, we implement it in PyTorch and update the model parameters using the Adam optimizer
with a learning rate of 0.001 and a batch size of 6. The ADVI model is run for 1000 iterations. Open
source code is available at https://github.com/yzhang511/density_decoding.

4 Results

Varying levels of spike sorting quality. The performance of our method in comparison to the
spike-thresholded and spike-sorted decoders for both the “good” and “bad” sorting examples is
summarized in Figure 2. For the “good” sorting examples, our method has the highest decoding
performance for motion energy and wheel speed. For choice decoding, our approach is comparable
to decoding based on all KS single-units and better than decoders based on multi-unit thresholding
and “good” KS units. For the “bad” sorting sessions, the gap in decoding performance between
our method and other decoders is more pronounced. Example traces are illustrated in Figure 2 (c),
which demonstrate that the behavior traces decoded by our method closely match the observed traces
compared to decoded traces from the sorted decoders. In Figure 2 (d), we quantify the relationship
between sorting quality and decoding quality using data from 20 IBL sessions. For all three quality
metrics, the performance of our decoder and the spike-sorted decoder decreases as the quality of
the sorting decreases. Despite this decrease in performance, our method consistently has better
performance than the spike-sorted decoder even in the presence of significant motion drift as well as
a when there is a large fraction of missed spikes or contaminated units.

7

https://github.com/yzhang511/density_decoding

All

PO LP DG CA1 VISa

thresh “good”
KS

all
KS

ours thresh “good”
KS

all
KS

ours thresh “good”
KS

all
KS

ours thresh “good”
KS

all
KS

ours thresh “good”
KS

all
KS

ours thresh “good”
KS

all
KS

ours

All

PO LP DG CA1 VISa
R2

accuracy

All

PO LP DG CA1 VISa

wheel speed

choice

motion energy

VISaCA1LPPO DG

thresh “good”
KS

all
KS

ours thresh “good”
KS

all
KS

ours thresh “good”
KS

all
KS

ours thresh “good”
KS

all
KS

ours thresh “good”
KS

all
KS

ours thresh “good”
KS

all
KS

ours

R2

thresh “good”
KS

all
KS

ours thresh “good”
KS

all
KS

ours thresh “good”
KS

all
KS

ours thresh “good”
KS

all
KS

ours thresh “good”
KS

all
KS

ours thresh “good”
KS

all
KS

ours

a)

b)
All

R2

PO LP DG CA1 VISa

All

R2

1e6 1e6
1e6

1e6 1e6 1e6

PO LP DG CA1 VISa

Figure 3: Decoding comparisons broken down by brain regions. (a) We decoded 20 IBL datasets
acquired using NP1 probes which were inserted into mice performing a behavioral task. The locations
of the probe insertions in the mouse brain and the corresponding brain parcellations along the NP1
probe are shown. We compared the performance of all decoders across different recorded brain
regions. For the “All” region, spikes from all brain regions were utilized for decoding. In contrast, for
the “PO,” “LP,” “DG,” “CA1,” and “VISa” regions, only spikes from the respective regions were used
for decoding. The decoding performance were summarized using box plots showing metrics obtained
through a 5-fold CV and averaged across 20 IBL sessions. We observe a higher accuracy from PO,
LP, and VISa regions when decoding choice; decoding results are more comparable across regions
for the continuous behavioral variables. Our proposed decoder consistently achieves higher accuracy
in decoding the continuous variables. (b) We use scatter plots to quantify the relationship between
decoding quality, measured by R2 from decoding motion energy, and the number of components
used for decoding. In the case of “all KS” and “good KS”, the number of components corresponds to
the number of KS units. For our method, the number of components refers to the number of MoG
components used. For all methods, the decoding performance is higher when using more components
(in the regime of a small number of components). Our decoding method consistently outperforms
spike-sorted decoders based on KS 2.5 while tending to need fewer components.

8

macaque
brain

45
 m

m 10 mm

NP1NP1-NHP

R2
0.6

0.4

all
KS

oursthresh good
KS

motion
energy

observed all KS ours

b)

a)

NP2.4

R2

0.4

0.2 all
KS

oursthresh good
KS

wheel speed accuracy
0.80

0.75

0.70
all
KS

oursthresh good
KS

choice

all KS oursthresh

R2 arm force arm force

time (s)
R2: 0.307 R2: 0.658

Figure 4: Decoding performance generalizes across different animals and probe geometry.
(a) We compare all decoders on a NP2.4 dataset using box plots showing performance metrics
obtained from a 5-fold CV. Our method achieves much higher performance than all other decoders
on continuous behavior decoding with slightly worse choice decoding than the spike-sorted decoder.
(b) We utilize data from a single NP1-NHP recording session to decode the reaching force of a
monkey engaged in a path-tracking (pacman) behavioral task. The decoders are evaluated through
both quantitative analysis (box plots) and qualitative examination of the decoded traces. Each trial
within the NP1-NHP recording has a duration of 9.85 seconds. Our method outperforms all other
decoders on predicting the arm force.

Different brain regions from 20 datasets. The decoding results across various brain regions for
20 IBL sessions are summarized in Figure 3. Overall, our approach consistently achieves higher
R2 values compared to other competing methods in decoding both motion energy and wheel speed
across the five recorded brain regions. Notably, decoders based on “good” KS units exhibit poor
performance across all recorded brain regions when compared to decoders based on all KS units. This
observation highlights the importance of utilizing all available information for decoding behaviors
rather than solely relying on “good” units based on sorting quality metrics. The scatter plots in
Figure 3 (b) indicate a general trend where decoding quality tends to increase when more components
(i.e., KS units for the spike-sorted decoders and MoG components for our method) are available for
decoding. However, our method outperforms spike-sorted decoders even with a limited number of
components.

Different probe geometry. The decoding results for the NP2.4 and NP1-NHP geometries are
illustrated in Figure 4. For NP2.4, our approach significantly outperforms other competing methods
when decoding motion energy and wheel speed, while again, the approaches are more comparable
when decoding the discrete choice variable (our method performs slightly worse than the spike-
sorted decoder). For NP1-NHP, Figure 4 demonstrates that our method achieves better decoding
performance (R2 ≈ 0.6) compared to the spike-thresholded (R2 ≈ 0.2) and spike-sorted baselines
(R2 ≈ 0.3). “Good” KS units are not available in this scenario (the IBL quality criteria were not
applied to this primate dataset) and are therefore not included in the results.

Comparison to a state-of-the-art clusterless decoder. We compare our method to a state-of-the-
art clusterless point process decoder (Denovellis et al., 2021) in Table 1. Our method has higher
decoding performance than the point process decoder on both HD and simulated tetrode datasets for
all behavior variables. This performance improvement is likely due to the increased flexibility of our
decoder compared to state-space models that make stronger assumptions about the dynamics of the
decoded signals.

Computation time. In Figure 5, we provide a computation time comparison relative to real-time.
Our decoding step operates at a sub-real-time pace (0.3 times real-time). The total time after
preprocessing for our method is close to real-time.

9

Multiple tetrodes (position) NP1 (wheel speed) NP1 (motion energy)

Denovellis et al. (2021) 0.91 (± 0.01) 0.50 (± 0.16) 0.55 (± 0.15)

Density-Based 0.97 (± 0.03) 0.63 (± 0.12) 0.63 (± 0.14)

Table 1: Comparison to a state-of-the-art clusterless decoder. We evaluated the performance of
both methods using 5-fold cross-validation. We reported the mean correlation between the ground-
truth behavior and the decoded behavior along with the standard deviation. All tetrode data was
simulated. For the HD datasets, we averaged the results across three IBL datasets.

Figure 5: Computation time measured relative to real-time. “Preprocessing” includes destriping,
required by all decoders (IBL et al., 2022). “Total after preprocess” includes spike subtraction,
denoising, localization, registration and density-decoding. The computation time of the clusterless
point process decoder (Denovellis et al., 2021) is also provided.

5 Discussion

In this work, we introduce a probabilistic model-based neural decoding method that relates spike
feature distributions to behavioral correlates for more accurate behavior decoding. Our method
is designed for high-density recording devices such as Neuropixels probes, utilizing novel HD
spike features (i.e., spike locations) and maximum peak-to-peak amplitudes of the spikes. We
further develop an efficient variational approach to perform inference in this model. We benchmark
our method across a comprehensive set of HD recordings with varying levels of sorting quality,
different probe geometries, and distinct brain regions. We demonstrate that our decoding method
can consistently outperform spike-thresholded decoders and spike-sorted decoders across a wide
variety of experimental contexts. This motivates a shift towards a spike-feature based decoding
paradigm that avoids the need for spike sorting while also achieving comparable or superior decoding
performance to approaches relying on well-isolated single-units.

While our method shows promising results, it is essential to explore avenues for improvement.
Two potential improvements to our method include utilizing deep learning-based models to capture
complex functional associations between firing rates and behaviors and also introducing dependencies
among the mixture components to account for correlated neuronal firing patterns. An interesting
extension of this work would be to apply this spike-feature based paradigm to unsupervised learning
of neural dynamics which would enable us to estimate MoG “firing rates” conditioned on time-varying
latent variables. By addressing these challenges and expanding the scope of our method, we can
advance our understanding of neural activity and its relationship with behavior in both the supervised
and unsupervised settings.

6 Broader Impact

Neuroscience research aims to uncover how much behavior information can be decoded from neural
signals in specific brain regions. To do this fairly across regions without bias from spike sorting
quality, we need decoding methods that do not rely on spike sorting. However, we should recognize
the current decoders’ limitations to avoid drawing erroneous conclusions from the decoding results.
Our generative model, which improves predictive performance by conditioning on external variables,
is also relevant to the machine learning community.

10

Acknowledgement

This work was supported by grants from the Wellcome Trust (209558 and 216324), National Institutes
of Health (1U19NS123716 and K99MH128772) and the Simons Foundation. We thank Matt
Whiteway, Tatiana Engel, and Alexandre Pouget for helpful conversations and feedback on the
manuscript.

References
David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.

Journal of the American statistical Association, 112(518):859–877, 2017.

Julien Boussard, Erdem Varol, Hyun Dong Lee, Nishchal Dethe, and Liam Paninski. Three-
dimensional spike localization and improved motion correction for neuropixels recordings. Ad-
vances in Neural Information Processing Systems, 34:22095–22105, 2021.

Julien Boussard, Charlie Windolf, Cole Hurwitz, Hyun Dong Lee, Han Yu, Olivier Winter, and Liam
Paninski. Dartsort: A modular drift tracking spike sorter for high-density multi-electrode probes.
bioRxiv, page 553023, 2023.

Alessio P Buccino, Cole L Hurwitz, Samuel Garcia, Jeremy Magland, Joshua H Siegle, Roger
Hurwitz, and Matthias H Hennig. Spikeinterface, a unified framework for spike sorting. Elife, 9:
e61834, 2020.

Alessio Paolo Buccino, Samuel Garcia, and Pierre Yger. Spike sorting: new trends and challenges of
the era of high-density probes. Progress in Biomedical Engineering, 2022.

Mayo Faulkner Chapuis, Kenneth D Harris, Julia M Huntenburg, Cole Hurwitz, Hyun Dong Lee,
Liam Paninski, Cyrille Rossant, Noam Roth, Nicholas A Steinmetz, Charlie Windolf, et al. Spike
sorting pipeline for the international brain laboratory. channels, 10:6, 2022.

Zhe Chen, Fabian Kloosterman, Stuart Layton, and Matthew A Wilson. Transductive neural decoding
for unsorted neuronal spikes of rat hippocampus. pages 1310–1313, 2012.

Xinyi Deng, Daniel F Liu, Kenneth Kay, Loren M Frank, and Uri T Eden. Clusterless decoding of
position from multiunit activity using a marked point process filter. Neural computation, 27(7):
1438–1460, 2015.

Eric L Denovellis, Anna K Gillespie, Michael E Coulter, Marielena Sosa, Jason E Chung, Uri T Eden,
and Loren M Frank. Hippocampal replay of experience at real-world speeds. Elife, 10:e64505,
2021.

George W Fraser, Steven M Chase, Andrew Whitford, and Andrew B Schwartz. Control of a
brain–computer interface without spike sorting. Journal of neural engineering, 6(5):055004, 2009.

Joshua I Glaser, Ari S Benjamin, Raeed H Chowdhury, Matthew G Perich, Lee E Miller, and Konrad P
Kording. Machine learning for neural decoding. Eneuro, 7(4), 2020.

Gerrit Hilgen, Martino Sorbaro, Sahar Pirmoradian, Jens-Oliver Muthmann, Ibolya Edit Kepiro, Si-
mona Ullo, Cesar Juarez Ramirez, Albert Puente Encinas, Alessandro Maccione, Luca Berdondini,
et al. Unsupervised spike sorting for large-scale, high-density multielectrode arrays. Cell reports,
18(10):2521–2532, 2017.

Daniel N Hill, Samar B Mehta, and David Kleinfeld. Quality metrics to accompany spike sorting of
extracellular signals. Journal of Neuroscience, 31(24):8699–8705, 2011.

Cole Hurwitz, Kai Xu, Akash Srivastava, Alessio Buccino, and Matthias Hennig. Scalable spike
source localization in extracellular recordings using amortized variational inference. Advances in
Neural Information Processing Systems, 32, 2019.

International Brain Laboratory IBL, Kush Banga, Julius Benson, Niccolò Bonacchi, Sebastian A Brui-
jns, Rob Campbell, Gaëlle A Chapuis, Anne K Churchland, M Felicia Davatolhagh, Hyun Dong
Lee, et al. Reproducibility of in-vivo electrophysiological measurements in mice. bioRxiv, pages
2022–05, 2022.

11

The International Brain IBL, Valeria Aguillon-Rodriguez, Dora Angelaki, Hannah Bayer, Niccolo
Bonacchi, Matteo Carandini, Fanny Cazettes, Gaelle Chapuis, Anne K Churchland, Yang Dan,
et al. Standardized and reproducible measurement of decision-making in mice. Elife, 10, 2021.

James J Jun, Nicholas A Steinmetz, Joshua H Siegle, Daniel J Denman, Marius Bauza, Brian
Barbarits, Albert K Lee, Costas A Anastassiou, Alexandru Andrei, Çağatay Aydın, et al. Fully
integrated silicon probes for high-density recording of neural activity. Nature, 551(7679):232–236,
2017.

Fabian Kloosterman, Stuart P Layton, Zhe Chen, and Matthew A Wilson. Bayesian decoding using
unsorted spikes in the rat hippocampus. Journal of neurophysiology, 2014.

Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei. Automatic
differentiation variational inference. Journal of machine learning research, 2017.

Jesse A Livezey and Joshua I Glaser. Deep learning approaches for neural decoding across architec-
tures and recording modalities. Briefings in bioinformatics, 22(2):1577–1591, 2021.

Jeremy F Magland and Alex H Barnett. Unimodal clustering using isotonic regression: Iso-split.
arXiv preprint arXiv:1508.04841, 2015.

Najja J Marshall, Joshua I Glaser, Eric M Trautmann, Elom A Amematsro, Sean M Perkins, Michael N
Shadlen, LF Abbott, John P Cunningham, and Mark M Churchland. Flexible neural control of
motor units. Nature neuroscience, 25(11):1492–1504, 2022.

Elon Musk et al. An integrated brain-machine interface platform with thousands of channels. Journal
of medical Internet research, 21(10):e16194, 2019.

Marius Pachitariu, Nicholas Steinmetz, Shabnam Kadir, Matteo Carandini, et al. Kilosort: realtime
spike-sorting for extracellular electrophysiology with hundreds of channels. BioRxiv, page 061481,
2016.

Marius Pachitariu, Shashwat Sridhar, and Carsen Stringer. Solving the spike sorting problem with
kilosort. bioRxiv, pages 2023–01, 2023.

Angelique C Paulk, Yoav Kfir, Arjun R Khanna, Martina L Mustroph, Eric M Trautmann, Dan J
Soper, Sergey D Stavisky, Marleen Welkenhuysen, Barundeb Dutta, Krishna V Shenoy, et al.
Large-scale neural recordings with single neuron resolution using neuropixels probes in human
cortex. Nature Neuroscience, 25(2):252–263, 2022.

Mohammad Reza Rezaei, Kensuke Arai, Loren M Frank, Uri T Eden, and Ali Yousefi. Real-time
point process filter for multidimensional decoding problems using mixture models. Journal of
neuroscience methods, 348:109006, 2021.

Nicholas A Steinmetz, Christof Koch, Kenneth D Harris, and Matteo Carandini. Challenges and
opportunities for large-scale electrophysiology with neuropixels probes. Current opinion in
neurobiology, 50:92–100, 2018.

Nicholas A Steinmetz, Cagatay Aydin, Anna Lebedeva, Michael Okun, Marius Pachitariu, Marius
Bauza, Maxime Beau, Jai Bhagat, Claudia Böhm, Martijn Broux, et al. Neuropixels 2.0: A
miniaturized high-density probe for stable, long-term brain recordings. Science, 372(6539):
eabf4588, 2021.

Sonia Todorova, Patrick Sadtler, Aaron Batista, Steven Chase, and Valérie Ventura. To sort or not to
sort: the impact of spike-sorting on neural decoding performance. Journal of neural engineering,
11(5):056005, 2014.

Eric M Trautmann, Sergey D Stavisky, Subhaneil Lahiri, Katherine C Ames, Matthew T Kaufman,
Daniel J O’Shea, Saurabh Vyas, Xulu Sun, Stephen I Ryu, Surya Ganguli, et al. Accurate
estimation of neural population dynamics without spike sorting. Neuron, 103(2):292–308, 2019.

Eric M Trautmann, Janis K Hesse, Gabriel M Stine, Ruobing Xia, Shude Zhu, Daniel J O’Shea, Bill
Karsh, Jennifer Colonell, Frank F Lanfranchi, Saurabh Vyas, et al. Large-scale brain-wide neural
recording in nonhuman primates. bioRxiv, pages 2023–02, 2023.

12

Anne E Urai, Brent Doiron, Andrew M Leifer, and Anne K Churchland. Large-scale neural recordings
call for new insights to link brain and behavior. Nature neuroscience, 25(1):11–19, 2022.

Valérie Ventura. Spike train decoding without spike sorting. Neural computation, 20(4):923–963,
2008.

Valérie Ventura. Traditional waveform based spike sorting yields biased rate code estimates. Pro-
ceedings of the National Academy of Sciences, 106(17):6921–6926, 2009.

Charlie Windolf, Angelique C Paulk, Yoav Kfir, Eric Trautmann, Samuel Garcia, Domokos Meszéna,
William Muñoz, Richard Hardstone, Irene Caprara, Mohsen Jamali, et al. Robust online multiband
drift estimation in electrophysiology data. bioRxiv, pages 2022–12, 2022.

13

Supplementary Material

1 Decoding using automatic differentiation variational inference (ADVI)

In the method section of our paper, we describe the general encoding-decoding paradigm. In
this section of the supplementary material, we delve into a specific case that focuses on decoding
continuous behaviors, yk ∈ RT , that exhibit temporal variations. We introduce the use of ADVI,
which allows us to model the relationship between firing rates of MoG components and behavior
correlates using a generalized linear model (GLM).

Notation Definition

sitk spike feature i at time bin t in trial k
yk behavior in trial k
zitk MoG assignment of spike feature i at time bin t in trial k
ηc = (µc,Σc) mean and covariance matrix of MoG component c
πtk MoG mixing proportion at time bin t in trial k
ntk number of spikes collected at time bin t in trial k
C number of MoG components
T number of time bins within each trial
K number of trials in a session

λctk behavior-dependent firing rate of component c at time bin t in trial k
bc “baseline firing rate” of component c

ADVI βct “behavior-modulated firing rate” of component c at time bin t
ηbc = (µbc , σ

2
bc
) mean and variance of the variational posterior distribution for bc

ηβct = (µβct , σ
2
βct

) mean and variance of the variational posterior distribution for βct

ηytk
= (µytk

, σ2
ytk

) mean and variance of the variational posterior distribution for ytk

λct1, λct0 firing rate of component c at time bin t that switches between two states
ϕ variational paramter that represents the probability of yk = 1

CAVI ρictk unnormalized posterior probability of assigning sitk to component c
rictk normalized posterior probability of assigning sitk to component c
y∗k1, y

∗
k0 unnormalized posterior probability of yk = 1 and yk = 0

νk normalized posterior probability of yk = 1

Table 2: Table of notation.

1.1 ADVI-based encoder

Building upon the general model specification outlined in Equations 1-3, we can describe the
generative model of the encoder as follows:

λctk = exp(bc +βct · ytk), bc ∼ N (bc; 0, 1), βct ∼ N (βct; 0, 1), (6)

zitk ∼ Categorical(zitk;πtk), πtk = {πctk}Cc=1, πctk =
λctk∑
c′ λc′tk

, (7)

sitk ∼ N (sitk; ηzitk), ηc = (µc,Σc), (8)

where b and β are the unknown model parameters corresponding to θ in Equation 1, and are sampled
from a standard normal prior distribution. The latent spike assignment z depends on the mixing
proportion π of the MoG, which is influenced by the behavior y through the firing rate λ. Intuitively,
we can interpret λctk as the “firing rate” of component c at time t in trial k, while bc and βc describe
the “baseline firing rate” and “behavior-modulated firing rate” of component c, respectively.

To learn the latent variables z, b and β, we posit a mean-field Gaussian variational approximation

q(z, b, β) =
∏
c,t

q(zct)q(bc)q(βct) (9)

for the posterior distribution p(z, b, β | s, y). Obtaining exact updates for b and β is challenging
due to the normalization term for π in Equation 7. Therefore, we employ ADVI to maximize the

14

ELBO and utilize stochastic gradient ascent to update b and β. ADVI requires that the model be
differentiable with respect to the parameters, and with a normal prior, the latent variables b and
β reside in the real coordinate space and cause no issues with differentiability. The variational
approximations for b and β are

q(b) =
∏
c

q(bc; ηbc) =
∏
c

N (bc; ηbc), ηbc = (µbc , σ
2
bc), (10)

q(β) =
∏
c,t

q(βct; ηβct) =
∏
c,t

N (βct; ηβct), ηβct = (µβct , σ
2
βct

). (11)

A drawback of the parameterization in Equations 6-8 is that the spike assignment variables z are
discrete and not compatible with ADVI. An alternative, equivalent parameterization that addresses
these problems is to marginalize over z. The marginalized model is

λctk = exp(bc +βct · ytk), bc ∼ N (bc; 0, 1), βct ∼ N (βct; 0, 1), (12)

πctk =
λctk∑
c′ λc′tk

, πtk = {πctk}Cc=1, (13)

sitk =

C∑
c=1

πctk N (sitk; ηc), ηc = (µc,Σc). (14)

Under this parameterization, the ELBO for the encoder is

LADVI
enc := Eq(b,β)[log p(s, b, β | y)]− Eq(b,β)[log q(b, β)] (15)

= Eq(b,β)

[∑
k,t,c,i

logN (sitk; ηc) + log πctk + logN (bc; 0, 1) + logN (βct; 0, 1)
]

(16)

− Eq(b,β)

[∑
c,t

logN (bc; ηbc) + logN (βct; ηβct
)
]
.

1.2 ADVI-based decoder

The decoder adopts the same generative model as the encoder described in Equations 6-8 with
two exceptions: 1) The latent variable ytk is assumed to have a standard normal prior, i.e.,
ytk ∼ N (ytk; 0, 1), assuming independence at each time step t. Alternatively, a Gaussian process
prior can be chosen to capture temporal correlations between time steps. 2) The parameters b and β
are learned from the ADVI-based encoder and kept fixed in the decoder.

The mean-field Gaussian variational approximation for the posterior distribution p(z, y | s) is

q(z, y) =
∏
c,t

q(zct)q(yt), (17)

where

q(y) =
∏
k,t

q(ytk; ηytk
) =

∏
k,t

N (ytk; ηytk
), ηytk

= (µytk
, σ2

ytk
). (18)

To enable the use of ADVI, we can marginalize out the discrete latent variable z, thereby transforming
the MoG model into a differentiable form. Under the marginalized MoG parametrization in Equations
12-14, the ELBO of the decoder is

LADVI
dec := Eq(y)[log p(s, y)]− Eq(y)[log q(y)] (19)

= Eq(y)

[∑
k,t,c,i

logN (sitk; ηc) + log πctk + logN (ytk; 0, 1)
]

(20)

− Eq(y)

[∑
k,t

logN (ytk; ηytk
)
]
.

15

2 Decoding using coordinate ascent variational inference (CAVI)

We present a specific scenario for decoding binary variables, yk ∈ {0, 1}, where we derive exact
updates for the variational variables using CAVI.

2.1 CAVI-based encoder

Extending the general model described in Equations 1-3, the generative model of the encoder can be
defined as follows:

πctk =

(
λct1∑
c′ λc′t1

)yk
(

λct0∑
c′ λc′t0

)1−yk

, (21)

zitk ∼ Categorical(zitk;πtk), πtk = {πctk}Cc=1, (22)
sitk ∼ N (sitk; ηzitk), ηc = (µc,Σc), (23)

where z and λ are the latent variables that we aim to learn. The behavior-dependent firing rates of
each component c at time t vary based on the binary variable y, such that the components switch
between two behavioral states characterized by firing rates λct1 and λct0.

The log-likelihood of the encoder can be written as

log p(s, z | y) =
∑
k,t,c,i

zictk
{
logN (sitk; ηc) + yk(log λct1 − log Λt1) (24)

+ (1− yk)(log λct0 − log Λt0)
}
,

where Λt1 =
∑

c′ λc′t1 and Λt0 =
∑

c′ λc′t0. To approximate the posterior p(z | s, y), we employ
the mean-field variational approximation q(z) =

∏
c,t q(zct). The ELBO of the encoder is

LCAVI
enc := Eq(z)[log p(s, z | y)]− Eq(z)[log q(z)]. (25)

The exact update for q(z) is obtained by maximizing the ELBO with respect to q(z), which leads to
the following update equation:

q(zct) ∝ exp{Eq−ct
[log p(zct, z−ct, s | y)]}, (26)

where q−ct means
∏

c′ ̸=c

∏
t′ ̸=t q(zc′t′). Then,

q(zictk = 1) ∝ exp

{
logN (sitk; ηc) + yk log

(
λct1

Λt1

)
+ (1− yk) log

(
λct0

Λt0

)}
:= ρictk (27)

denotes the unnormalized posterior probability of assigning spike i collected at time t in trial k
to component c, while E[zictk] = ρictk/

∑
c′ ρic′tk := rictk represents the normalized posterior

probability.

After fixing q(z), the term in the ELBO which depends on λ, µ and Σ can be expressed as

L :=
∑
k,t,c,i

rictk
{
logN (sitk; ηc) + yk log

(
λct1

Λt1

)
+ (1− yk) log

(
λct0

Λt0

)}
.

16

Algorithm 1 CAVI-based encoder
Input: {sitk}, {yk}, i = 1 : ntk, t = 1 : T, k = 1 : K, number of components C.

Initialize {µc,Σc}, c = 1 : C.
while ELBO not converged do

for all k ∈ 1 : K do
for all t ∈ 1 : T do

for all i ∈ 1 : ntk do
Set q(zictk = 1) ∝ ρictk. ▷ eq. (27)

end for
end for

end for

for all c ∈ 1 : C do
Set µc = µ∗

c , Σc = Σ∗
c . ▷ eq. (36-39)

for all t ∈ 1 : T do
Set λct0 = λ∗

ct0, λct1 = λ∗
ct1. ▷ eq. (32-33)

end for
end for
Compute the ELBO LCAVI

enc . ▷ eq. (25)
end while
Return q(z), λ, µ, Σ.

We derive the update for λ by setting the gradients ∇λct1L and ∇λct0L to 0:

∇λct1L = ∇λct1

∑
k,i

rictk · yk(log λct1 − log Λt1) (28)

=

∑
k,i rictk · yk

λct1
−

∑
k,i

∑C
c′=1 ric′tk · yk
Λt1

= 0 (29)

=⇒
∑
k,i

rictk · yk(λct1 +
∑
c′ ̸=c

λc′t1) =
∑
k,i

C∑
c′=1

ric′tk · yk · λct1 (30)

=⇒
∑
k,i

yk(
∑
c′ ̸=c

ric′tk)λct1 =
∑
k,i

yk · rictk(
∑
c′ ̸=c

λc′t1) (31)

=⇒ λct1 =

∑
k,i yk · rictk(

∑
c′ ̸=c λc′t1)∑

k,i yk(
∑

c′ ̸=c ric′tk)
:= λ∗

ct1. (32)

∇λct0L = 0 =⇒ λct0 =

∑
k,i(1− yk)rictk(

∑
c′ ̸=c λc′t0)∑

k,i(1− yk)(
∑

c′ ̸=c ric′tk)
:= λ∗

ct0. (33)

Consider the gradient with respect to the ηc parameter,

∇ηc
L =

∑
k,t,i

rictk∇ηc
logN (sitk; ηc) (34)

=
∑
k,t,i

rictk∇ηc

1

2

(
log |Σ−1

c | − Tr{Σ−1
c (sitk − µc)(sitk − µc)

⊤}
)
. (35)

17

The closed-form updates for µc and Σc are

∇µcL =
∑
k,t,i

rictkΣ
−1
c (sitk − µc) = 0 (36)

=⇒ µc =
1

nc

∑
k,t,i

rictksitk := µ∗
c , nc =

∑
k,t,i

rictk. (37)

∇ΣcL =
1

2

∑
k,t,i

rictk(Σc − (sitk − µc)(sitk − µc)
⊤) = 0 (38)

=⇒ Σc =
1

nc

∑
k,t,i

rictk(sitk − µc)(sitk − µc)
⊤ := Σ∗

c . (39)

2.2 CAVI-based decoder

The CAVI-based decoder employs the same generative model as the CAVI-based encoder, with
the exception that the behavior-dependent firing rates λct1 and λct0 are learned by the encoder and
kept fixed, and the behavior y is treated as an unknown latent variable. We sample y from a prior
distribution, yk ∼ Bernoulli(ϕ), where ϕ is a variational parameter that represents the probability
that yk = 1. The log-likelihood can be expressed as follows

log p(s, z, y) =
∑
k,t,c,i

zictk{ logN (sitk; ηc) + yk(log λct1 − log Λt1) (40)

+ (1− yk)(log λct0 − log Λt0)}+ yk log ϕ+ (1− yk) log(1− ϕ).

We use the factorization q(z, y) = q(z)q(y) =
∏

c,t q(zct)q(y) to approximate the posterior distribu-
tion p(z, y | s). The ELBO of the decoder can be defined as

LCAVI
dec := Eq(z,y)[log p(s, z, y)]− Eq(z,y)[log q(z, y)]. (41)

Algorithm 2 CAVI-based decoder
Input: {sitk}, {λct0, λct1}, i = 1 : ntk, t = 1 : T, k = 1 : K, c = 1 : C.

Initialize {µc}, {Σc}.
while ELBO not converged do

for all k ∈ 1 : K do
Set q(yk = 1) ∝ y∗k1. ▷ eq. (44)
for all t ∈ 1 : T do

for all i ∈ 1 : ntk do
Set q(zictk = 1) ∝ ρictk. ▷ eq. (43)

end for
end for

end for

for all c ∈ 1 : C do
Set µc = µ∗

c , Σc = Σ∗
c . ▷ eq. (36-39)

end for
Set ϕ = ϕ∗. ▷ eq. (46)
Compute the ELBO LCAVI

dec . ▷ eq. (41)
end while
Return q(z, y), ϕ, µ, Σ.

The exact updates for q(z) and q(y) that guarantee an increase in the ELBO are

q(z) ∝ exp{Eq(y)[log p(s, z, y)]}, q(y) ∝ exp{Eq(z)[log p(s, z, y)]}, (42)

where

q(zictk = 1) ∝ exp{logN (sitk; ηc) + E[yk] log
(
λct1

Λt1

)
+ (1− E[yk]) log

(
λct0

Λt0

)
} := ρictk, (43)

18

and E[zictk] = ρictk/
∑

c′ ρic′tk := rictk are the unnormalized and normalized posterior probabilities
of assigning spike i collected at time t in trial k to component c, respectively. The unnormalized
posterior probabilities of yk = 1 and yk = 0 are

q(yk = 1) ∝ exp{
∑
t,c,i

E[zictk](log λct1 − log Λt1) + log ϕ} := y∗k1, (44)

q(yk = 0) ∝ exp{
∑
t,c,i

E[zictk](log λct0 − log Λt0) + log(1− ϕ)} := y∗k0,

and E[yk] = y∗k1/(y
∗
k1 + y∗k0) := νk represents the normalized posterior probability of yk = 1.

After fixing q(z) and q(y), the term in the ELBO which depends on ϕ, µ and Σ can be written as

L ′ :=
∑
k,t,c,i

rictk{logN (sitk; ηc) + νk(log λct1 − log Λt1) (45)

+ (1− νk)(log λct0 − log Λt0)}+ νk log ϕ+ (1− νk) log(1− ϕ).

Considering the gradient of the ELBO with respect to the ϕ parameter, we obtain its update:

∇ϕ L ′ = 0 =⇒ ϕ∗ =
1

K

K∑
k=1

νk. (46)

The updates for ηc are computed in a similar manner as described in Equations 36-39.

3 MoG initialization

We employ the following procedure to intialize the MoG model used in both the ADVI-based
and CAVI-based algorithms: 1) According to Figure 1 (a), the spike feature distribution is highly
multimodal. To determine the appropriate number of modes, we utilize isosplit (Magland and Barnett,
2015) to cluster the spike features. This step helps in splitting the set of spike features into distinct
clusters. 2) For each identified cluster, we compute the mean and variance of the spike features
belonging to that cluster, which serve as the parameters for the corresponding Gaussian component.
This automatic selection of the number of MoG components and the initialization of means and
covariance matrices facilitate the initialization of the ADVI-based and CAVI-based algorithms.

19

4 Data preprocessing

We provide a brief overview of our data preprocessing pipeline, which involves the following steps.

Destriping. During the data collection process, we encounter line noise due to voltage leakage on
the probe. This translates into large “stripes” of noise spanning the whole probe. To mitigate the
impact of these noise artifacts, we apply a destriping procedure (Chapuis et al., 2022).

Subtraction-based spike detection and denoising. We employ the iterative subtraction-based
procedure for spike detection and collision-correction described in Boussard et al. (2023).

Spike localization. We employ the method of Boussard et al. (2021) to estimate the location of
each denoised spike.

Drift registration. Probe motion (or drift) in the electrophysiology data poses a challenge for
downstream analyses. Decentralized registration (Windolf et al., 2022) is applied to track and correct
for motion drift in the high-density probe recordings.

“bad” sorting exampleb)“good” sorting examplea)

Figure 6: Motion drift in “good” and “bad” sorting recordings. (a) The motion-registered spike
raster plot of a “good” sorting example that is less affected by drift. (b) The spike raster plot of a
“bad” sorting example, which is still affected by drift even after registration.

5 Behavior decoder

To decode binary behaviors, such as the mouse’s left or right choices, we utilize L2-penalized logistic
regression. For decoding dynamic behaviors, such as wheel speed, we employ a sliding-window
algorithm to aggregate the entries of the weight matrix, Wkct, over time. Within the time window
[t− δ, t+ δ], where δ is the window size, we stack 2δ weight matrix entries, {Wkct}Cc=1, for time
point t in trial k. This aggregated weight matrix is then used as input for ridge regression to predict the
behavior ytk at time t. The window size δ and the regularization strength are model hyper-parameters,
set through cross-validation to achieve the optimal decoding performance.

20

6 Model interpretation

In this section, we provide visualizations to gain insights into the effectiveness of our proposed decoder.
We quantify the posterior entropy of each spike assignment in Figure 7 (a). Spike assignments with
higher entropy correspond to a spread of posterior probabilities among multiple MoG components. In
contrast, traditional spike sorting or thresholding methods result in deterministic spike assignments,
leading to lower entropy and empirically reduced decoding performance. In Figure 7 (b), we compare
the trial-averaged weight matrices (W) used for decoding between spike-sorted, spike-thresholded,
and our proposed decoders.

 (spike-thresholded)a) b) (spike-sorted)

K
S

 u
ni

t

time (s)

co
m

po
ne

nt

 (ours)

time (s)time (s)

ch
an

ne
l

Figure 7: Model interpretation. (a) The posterior entropy of the spike assignment is high, when the
posterior probability of spike assignment, q(zikct), is spread out among several MoG components
instead of being concentrated at a single component. The scatter plot shows that low-amplitude spikes
that are difficult to assign have higher posterior entropy than high-amplitude spikes. (b) Visualizations
of the averaged weight matrices W ’s across trials in an example IBL session. For “W (spike-sorted
and spike-thresholded)”, the W matrix has one-hot rows and each entry Wkct is the spike count that
belongs to KS unit (channel) c and time bin t in trial k. The purple crosses indicate the “good” KS
units. For “W (ours)”, Wkct is the sum of posterior probabilities of spike assignments, and the MoG
mixing proportion π depends on the behavior y and changes over time. The arrangement of KS units
(channels or MoG components) on the heat maps is based on the depth of the NP probe, ensuring
comparability across the displayed W matrices.

7 Decoding across brain regions

In addition to the previously mentioned five brain regions (PO, LP, DG, CA1, VISa) depicted in
Figure 3, we expanded our analysis to include two additional brain regions situated in the cerebellum:
the arbor vitae (ARB) and the ansiform cruciform lobule (ANCR). We specifically include the
cerebellum in our analysis due to the frequent occurrence of spike sorting issues in this area. In Figure
8 and 9, we present a comparison between our decoder and the spike-sorted decoder that utilizes
all KS units across all the brain regions studied. According to Figure 8, our method consistently
outperforms the decoder that relies on all KS units across all brain regions and the majority of IBL
sessions. Furthermore, Figure 9 specifically demonstrates that our method consistently achieves
superior decoding performance in the recorded regions of the cerebellum, where spike sorting quality
issues are commonly encountered. This highlights the robustness and reliability of our method,
particularly in challenging recording conditions.

21

All

PO

LP

DG

CA1

VISa

Figure 8: Decoding comparisons across brain regions in the thalamus, hippocampus and visual
cortex. We compare our decoder to the spike-sorted decoder using all KS units across various brain
regions and behavioral tasks. Each point in the scatter plot represents one session from the 20 IBL
session previously described in the experiments section. Sessions with “good” sorting quality are
depicted in green, while sessions with “bad” sorting quality are shown in purple. The majority of the
sessions lie above the gray diagonal line, indicating that our method consistently outperforms the
decoder relying on all KS units.

22

All

ARB

ANCR

Figure 9: Decoding comparisons across brain regions in the cerebellum. We evaluate our decoder
against the spike-sorted decoder utilizing all KS units across various brain regions in the cerebellum.
The scatter plot visualizes the results for each IBL session in the study, with all sessions depicted
in purple indicating “bad” sorting quality. Note that the probes used in the cerebellum sessions
were not uniformly implanted in the same set of brain regions. As a result, the number of available
sessions for decoding in certain cerebellum regions is limited. Notably, the majority of sessions
are positioned above the gray diagonal line, indicating that our method consistently achieves better
decoding performance compared to the decoder relying on all KS units. This outcome highlights the
robustness of our method, particularly in the context of the cerebellum where spike sorting quality
issues are prevalent.

23

8 Ablation study

We conduct an ablation study to investigate the importance of various components in our decoding
paradigm. Specifically, we examine how the integration of dynamic (behavior-dependent) mixing
proportions in the MoG and higher-dimensional spike features influence decoding performance.
Additionally, we analyze how the inclusion criteria for spike waveforms can affect decoding outcomes.

Effects of dynamic MoG mixing proportion. Table 3 presents a comparison between the ordinary
MoG with a fixed mixing proportion (referred to as “fixed π”) and our proposed model with a
dynamic mixing proportion (referred to as “dynamic π”). The results indicate that this approach leads
to improved decoding performance compared to using a fixed mixing proportion in the MoG model.

Motion energy (R2) Wheel speed (R2) Choice (accuracy)

Fixed π Dynamic π Fixed π Dynamic π Fixed π Dynamic π

All 0.664 (± 0.034) 0.742 (± 0.028) 0.470 (± 0.062) 0.564 (± 0.045) 0.948 (± 0.038) 0.957 (± 0.036)
PO 0.365 (± 0.031) 0.488 (± 0.046) 0.520 (± 0.019) 0.670 (± 0.015) 0.844 (± 0.016) 0.861 (± 0.035)
LP 0.145 (± 0.015) 0.464 (± 0.054) 0.114 (± 0.032) 0.342 (± 0.027) 0.917 (± 0.026) 0.931 (± 0.022)
DG 0.280 (± 0.033) 0.492 (± 0.042) 0.221 (± 0.040) 0.381 (± 0.035) 0.669 (± 0.084) 0.722 (± 0.050)
CA1 0.407 (± 0.021) 0.538 (± 0.038) 0.308 (± 0.051) 0.428 (± 0.030) 0.621 (± 0.062) 0.626 (± 0.064)
VISa 0.488 (± 0.046) 0.490 (± 0.047) 0.318 (± 0.056) 0.364 (± 0.074) 0.857 (± 0.065) 0.874 (± 0.066)

Table 3: Effects of dynamic mixing proportion of the MoG on decoding performance.

Effects of higher-dimensional spike features. In Table 4, we provide a comparison of decoding
performance using two different sets of spike features. The first set includes spike location along
the width and depth dimensions of the probe (denoted as x and z) as well as the maximum peak-to-
peak amplitude of the spike (denoted as a). The second set includes the first and second principal
components (PCs) of the spike waveforms (denoted as u1 and u2) in addition to x, z and a. The
spike features are visually represented using scatter plots in Figure 10. We report the mean and
standard deviation of the decoding accuracy (R2) obtained from a 5-fold CV on a single session.
Table 4 provides insights regarding the inclusion of additional waveform PC features for decoding.
The findings suggest that the incorporation of these additional PC features does not contribute to
significant improvements in decoding performance.

Motion energy (R2) Wheel speed (R2) Choice (accuracy)

(x, z, a) (x, z, a, u1, u2) (x, z, a) (x, z, a, u1, u2) (x, z, a) (x, z, a, u1, u2)

All 0.531 (± 0.026) 0.529 (± 0.026) 0.484 (± 0.042) 0.478 (± 0.045) 0.917 (± 0.019) 0.917 (± 0.019)
PO 0.462 (± 0.038) 0.457 (± 0.039) 0.469 (± 0.061) 0.464 (± 0.051) 0.853 (± 0.019) 0.853 (± 0.025)
LP 0.490 (± 0.026) 0.489 (± 0.029) 0.479 (± 0.035) 0.473 (± 0.013) 0.864 (± 0.022) 0.849 (± 0.036)
DG 0.335 (± 0.028) 0.321 (± 0.037) 0.273 (± 0.030) 0.264 (± 0.025) 0.675 (± 0.038) 0.679 (± 0.049)
CA1 0.449 (± 0.027) 0.440 (± 0.046) 0.329 (± 0.044) 0.328 (± 0.040) 0.755 (± 0.045) 0.758 (± 0.053)
VISa 0.270 (± 0.021) 0.237 (± 0.017) 0.225 (± 0.024) 0.206 (± 0.013) 0.725 (± 0.048) 0.732 (± 0.054)

Table 4: Effects of incorporating higher-dimensional spike features on decoding performance.

24

Figure 10: Visualizations of spike features employed for decoding. Spike localization features,
(x, z), the locations of spikes along the width and depth of the NP1 probe, and waveform features, a,
the maximum peak-to-peak (max ptp) amplitudes of spikes. Amplitude is measured in standard units
(s.u.). u1 and u2 denote the first and second principal components (PCs) of the spike waveforms.

25

Effects of inclusion criteria for spike waveforms. To investigate whether the density-based
decoder is performing better by using additional spikes that a spike sorter would miss, we conducted
an experiment using different inclusion criteria for spike waveforms. We fitted our model using
only spikes detected by Kilosort 2.5, and compared its performance to decoders using spike-sorted
outputs and our subtraction-based spike detection on choice and motion energy decoding. The results
are summarized in Table 5. As shown in the table, our decoder can achieve comparable or better
decoding performance than the spike-sorted decoder when modeling the same spikes. This suggests
that the gain in decoding performance can be attributed to the density-based approach, instead of the
spike inclusion criteria.

Choice (accuracy) Motion energy (R2)

Density-based (subtraction spikes) 0.876 (± 0.068) 0.589 (± 0.111)
Density-based (KS spikes) 0.876 (± 0.079) 0.579 (± 0.121)
Sorted (KS spikes) 0.887 (± 0.078) 0.503 (± 0.117)

Table 5: Effects of inclusion criteria for spike waveforms on decoding performance.

9 Comparison to a state-of-the-art clusterless decoder

In this section, we outline the specific experimental setup for evaluating our density-based decoder
in comparison with the clusterless point process decoder (Denovellis et al., 2021) on both multiple
tetrodes and high-density (HD) probes data.

Application to tetrodes. We utilized the code provided in the GitHub repository1 of the clusterless
point process decoder (Denovellis et al., 2021) to generate simulated neural and behavioral data. This
synthetic dataset was designed to mimic recordings from 5 tetrodes, with each tetrode containing
4 channels. Spike amplitudes from each channel of these multiple tetrodes were selected as the
spike features for both decoding methods. The objective of the decoding was to estimate the
animal’s position from these simulated spike features. As the original simulated position was too
straightforward to decode, we intentionally distorted it by blending it with real position data sourced
from the GitHub repository2. Moreover, we introduced random Gaussian noise to the simulated
position for added complexity.

Application to HD probes. We evaluated both decoders on decoding wheel speed and motion
energy from spike features extracted from NP1 probes across three IBL datasets. To preprocess the
data, we followed the pipeline outlined above, extracting spike localization features and maximum
peak-to-peak amplitudes as common features for both decoders.

We only focus on continuous behaviors for decoding since the clusterless point process decoder
is designed exclusively for continuous behaviors. Notably, due to its continuous time nature, the
clusterless point process decoder directly decoded behaviors without time binning. In contrast, our
density-based model required time binning of both behavioral and spike feature data into equal-sized
time intervals. Consequently, we used the time-binned behaviors for decoding with the density-based
approach. We employed 5-fold cross-validation to assess the decoding performance of both decoders.
We used a random walk as the state transition for the clusterless point process decoder, and used the
estimated variance from the animal’s behavior to set the variance of the random walk. The clusterless
point process decoder uses a grid-based approximation of the inferred behavior, discretizing the
behavior space into place bins; see Section “Decoding” in Denovellis et al. (2021). We determine
place bin size based on the square root of the observed behavior variance. Denovellis et al. (2021)
use kernel density estimation (KDE) to estimate the distributions of both the behavior variable and
the spike features used for decoding. We set the KDE bandwidth that determines the amount of
smoothing done for spike features to be 1.0, and the bandwidth for behavior to be the square root of
the observed behavior variance; see Section “Encoding - clusterless” in Denovellis et al. (2021).

1https://github.com/Eden-Kramer-Lab/replay_trajectory_classification
2https://github.com/nelpy/example-analyses/blob/master/LinearTrackDemo.ipynb

26

https://github.com/Eden-Kramer-Lab/replay_trajectory_classification
https://github.com/nelpy/example-analyses/blob/master/LinearTrackDemo.ipynb

10 Simulation for model validation

We conducted simulations to illustrate the principles of our method. The simulation aimed to show that
our encoding model can learn the relationship between spike features and behaviors. We performed
two tasks, decoding a binary variable, yk, simulated from a Bernoulli distribution, and decoding a
continuous variable, yk, simulated from a Gaussian process. To mimic the data-generating process,
we selected Gaussian components with “templates” extracted from a real dataset. The encoding
model parameters, b and β, were also taken from learned parameters in the same dataset. Given b, β
and yk, we simulated the “firing rates” λ for each Gaussian component in the mixture, as described in
the Method section of our paper. Next, we generated spike features based on these simulated “firing
rates,” and applied the encoding model to infer the behavior-dependent λ. Figure 11 displays the
learned λ for each component c, time t, and trial k. The learned “firing rates” closely resembled
the simulated ones, indicating the model’s ability to recover the primary associations between spike
features and behaviors. With such associations, the decoding model can decode behaviors.

simulated simulated learned a) b)

time (second)
0 1.0

time (second)
0 1.0

time (second)
0 1.0

co
m

p
o

n
en

t

co
m

p
o

n
en

t

time (second)
0 1.0

learned

Figure 11: Our encoding model recovers the relationship between the simulated spiking activity
and the simulated behavior correlate. Panel (a) shows a comparison of the simulated firing rates
conditioned on the binary behavior variable with the learned firing rates by our encoding model. In
Panel (b), we compare the simulated firing rates conditioned on the continuous behavior variable with
the learned firing rates from our encoding model.

27

11 Relationship to spike sorting

We conducted experiments to investigate the biological interpretation of our MoG units and the
correspondence between single cells identified by KS and our MoG units. The agreement matrix
between “hard” KS spike assignments and “soft” MoG assignments is shown in Figure 12. We
calculated the conditional probability of spikes belonging to each MoG component, given that these
spikes belong to the corresponding KS unit. Notably, KS units with large amplitudes are less likely to
be split into multiple Gaussian components. This shows a reasonable correspondence between the
Gaussian components and the spike-sorted units.

Prob.

Amplitude
(s.u.)

Figure 12: Correspondence between Kilosort and MoG spike assignment. Units are ordered
by their depth on the Neuropixel probe. The color bar shows the conditional probability of spikes
belonging to each MoG component, given that these spikes belong to the corresponding KS unit. The
mean amplitude of each KS unit is shown at the bottom.

28

	Introduction
	Method
	Experiments
	Results
	Discussion
	Broader Impact

