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Abstract

Generative processes that involve solving differential equations, such as diffusion1

models, frequently necessitate balancing speed and quality. ODE-based samplers2

are fast but plateau in performance while SDE-based samplers deliver higher sam-3

ple quality at the cost of increased sampling time. We attribute this difference to4

sampling errors: ODE-samplers involve smaller discretization errors while stochas-5

ticity in SDE contracts accumulated errors. Based on these findings, we propose a6

novel sampling algorithm called Restart in order to better balance discretization7

errors and contraction. The sampling method alternates between adding substantial8

noise in additional forward steps and strictly following a backward ODE. Empiri-9

cally, Restart sampler surpasses previous SDE and ODE samplers in both speed10

and accuracy. Restart not only outperforms the previous best SDE results, but11

also accelerates the sampling speed by 10-fold / 2-fold on CIFAR-10 / ImageNet12

64×64. In addition, it attains significantly better sample quality than ODE samplers13

within comparable sampling times. Moreover, Restart better balances text-image14

alignment/visual quality versus diversity than previous samplers in the large-scale15

text-to-image Stable Diffusion model pre-trained on LAION 512×512.16

1 Introduction17

Deep generative models based on differential equations, such as diffusion models and Poission18

flow generative models, have emerged as powerful tools for modeling high-dimensional data, from19

image synthesis [23, 9, 13, 27, 28] to biological data [10, 26]. These models use iterative backward20

processes that gradually transform a simple distribution (e.g., Gaussian in diffusion models) into a21

complex data distribution by solving a differential equations. The associated vector fields (or drifts)22

driving the evolution of the differential equations are predicted by neural networks. The resulting23

sample quality can be often improved by enhanced simulation techniques but at the cost of longer24

sampling times.25

Prior samplers for simulating these backward processes can be categorized into two groups: ODE-26

samplers whose evolution beyond the initial randomization is deterministic, and SDE-samplers27

where the generation trajectories are stochastic. Several works [23, 12, 13] show that these samplers28

demonstrate their advantages in different regimes, as depicted in Fig. 1(b). ODE solvers [22, 16, 13]29

result in smaller discretization errors, allowing for decent sample quality even with larger step sizes30

(i.e., fewer number of function evaluations (NFE)). However, their generation quality plateaus rapidly.31

In contrast, SDE achieves better quality in the large NFE regime, albeit at the expense of increased32

sampling time. To better understand these differences, we theoretically analyze SDE performance: the33

stochasticity in SDE contracts accumulated error, which consists of both the discretization error along34

the trajectories as well as the approximation error of the learned neural network relative to the ground35

truth drift (e.g., score function in diffusion model [23]). The approximation error dominates when36

NFE is large (small discretization steps), explaining the SDE advantage in this regime. Intuitively,37

the stochastic nature of SDE helps "forget" accumulated errors from previous time steps.38
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Figure 1: (a) Illustration of the implementation of drift and noise terms in ODE, SDE, and Restart. (b)
Sample quality versus number of function evaluations (NFE) for different approaches. ODE (Green)
provides fast speeds but attains only mediocre quality, even with a large NFE. SDE (Yellow) obtains
good sample quality but necessitates substantial sampling time. In contrast to ODE and SDE, which
have their own winning regions, Restart (Red) achieves the best quality across all NFEs.

Inspired by these findings, we propose a novel sampling algorithm called Restart, which combines39

the advantages of ODE and SDE. As illustrated in Fig. 1(a), the Restart sampling algorithm involves40

K repetitions of two subroutines in a pre-defined time interval: a Restart forward process that adds41

a substantial amount of noise, akin to "restarting" the original backward process, and a Restart42

backward process that runs the backward ODE. The Restart algorithm separates the stochasticity43

from the drifts, and the amount of added noise in the Restart forward process is significantly larger44

than the small single-step noise interleaving with drifts in previous SDEs such as [23, 13], thus45

amplifying the contraction effect on accumulated errors. By repeating the forward-backward cycle46

K times, the contraction effect introduced in each Restart iteration is further strengthened. The47

deterministic backward processes allow Restart to reduce discretization errors, thereby enabling step48

sizes comparable to ODE. To maximize the contraction effects in practice, we typically position the49

Restart interval towards the end of the simulation, where the accumulated error is larger. Additionally,50

we apply multiple Restart intervals to further reduce the initial errors in more challenging tasks.51

Experimentally, Restart consistently surpasses previous ODE and SDE solvers in both quality and52

speed over a range of NFEs, datasets, and pre-trained models. Specifically, Restart accelerates the53

previous best-performing SDEs by 10× fewer steps for the same FID score on CIFAR-10 using54

VP [23] (2× fewer steps on ImageNet 64 × 64 with EDM [13]), and outperforms ODE solvers55

even in the small NFE regime. When integrated into previous state-of-the-art pre-trained models,56

Restart further improves performance, achieving FID scores of 1.88 on unconditional CIFAR-1057

with PFGM++ [28], and 1.36 on class-conditional ImageNet 64× 64 with EDM. To the best of our58

knowledge, these are the best FID scores obtained on commonly used UNet architectures for diffusion59

models without additional training. We also apply Restart to the practical application of text-to-image60

Stable Diffusion model [19] pre-trained on LAION 512 × 512. Restart more effectively balances61

text-image alignment/visual quality (measured by CLIP/Aesthetic scores) and diversity (measured by62

FID score) with a varying classifier-free guidance strength, compared to previous samplers.63

Our contributions can be summarized as follows: (1) We investigate ODE and SDE solvers and64

theoretically demonstrate the contraction effect of stochasticity via an upper bound on the Wasserstein65

distance between generated and data distributions (Sec 3); (2) We introduce the Restart sampling,66

which better harnesses the contraction effect of stochasticity while allowing for fast sampling. The67

sampler results in a smaller Wasserstein upper bound (Sec 4); (3) Our experiments are consistent with68

the theoretical bounds and highlight Restart’s superior performance compared to previous samplers69

on standard benchmarks in terms of both quality and speed. Additionally, Restart improves the70

trade-off between key metrics on the Stable Diffusion model (Sec 5).71

2 Background on Generative Models with Differential Equations72

Many recent successful generative models have their origin in physical processes, including diffusion73

models [9, 23, 13] and Poisson flow generative models [27, 28]. These models involve a forward74

process that transforms the data distribution into a chosen smooth distribution, and a backward75

process that iteratively reverses the forward process. For instance, in diffusion models, the forward76
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process is the diffusion process with no learned parameters:77

dx =
√

2σ̇(t)σ(t)dWt,

where σ(t) is a predefined noise schedule increasing with t, and Wt ∈ Rd is the standard Wiener78

process. For simplicity, we omit an additional scaling function for other variants of diffusion models79

as in EDM [13]. Under this notation, the marginal distribution at time t is the convolution of data80

distribution p0 = pdata and a Gaussian kernel, i.e., pt = p0 ∗N (0, σ2(t)Id×d). The prior distribution81

is set to N (0, σ2(T )Id×d) since pT is approximately Gaussian with a sufficiently large T . Sampling82

of diffusion models is done via a reverse-time SDE [1] or a marginally-equivalent ODE [23]:83

(SDE) dx = −2σ̇(t)σ(t)∇x log pt(x)dt+
√

2σ̇(t)σ(t)dWt (1)
(ODE) dx = −σ̇(t)σ(t)∇x log pt(x)dt (2)

where ∇x log pt(x) in the drift term is the score of intermediate distribution at time t. W.l.o.g we set84

σ(t) = t in the remaining text, as in [13]. Both processes progressively recover p0 from the prior85

distribution pT while sharing the same time-dependent distribution pt. In practice, we train a neural86

network sθ(x, t) to estimate the score field ∇x log pt(x) by minimizing the denoising score-matching87

loss [25]. We then substitute the score ∇x log pt(x) with sθ(x, t) in the drift term of above backward88

SDE (Eq. (1))/ODE (Eq. (2)) for sampling.89

Recent work inspired by electrostatics has not only challenged but also integrated diffusion models,90

notably PFGM/PFGM++, enhances performance in both image and antibody generation [27, 28, 10].91

They interpret data as electric charges in an augmented space, and the generative processes involve92

the simulations of differential equations defined by electric field lines. Similar to diffusion models,93

PFGMs train a neural network to approximate the electric field in the augmented space.94

3 Explaining SDE and ODE performance regimes95

To sample from the aforementioned generative models, a prevalent approach employs general-purpose96

numerical solvers to simulate the corresponding differential equations. This includes Euler and Heun’s97

2nd method [2] for ODEs (e.g., Eq. (2)), and Euler-Maruyama for SDEs (e.g., Eq. (1)). Sampling98

algorithms typically balance two critical metrics: (1) the quality and diversity of generated samples,99

often assessed via the Fréchet Inception Distance (FID) between generated distribution and data100

distribution [7] (lower is better), and (2) the sampling time, measured by the number of function101

evaluations (NFE). Generally, as the NFE decreases, the FID score tends to deteriorate across all102

samplers. This is attributed to the increased discretization error caused by using a larger step size in103

numerical solvers.104

However, as illustrated in Fig. 1(b) and observed in previous works on diffusion models [23, 22, 13],105

the typical pattern of the quality vs time curves behaves differently between the two groups of106

samplers, ODE and SDE. When employing standard numerical solvers, ODE samplers attain a decent107

quality with limited NFEs, whereas SDE samplers struggle in the same small NFE regime. However,108

the performance of ODE samplers quickly reaches a plateau and fails to improve with an increase in109

NFE, whereas SDE samplers can achieve noticeably better sample quality in the high NFE regime.110

This dilemma raises an intriguing question: Why do ODE samplers outperform SDE samplers in the111

small NFE regime, yet fall short in the large NFE regime?112

The first part of the question is relatively straightforward to address: given the same order of numerical113

solvers, simulation of ODE has significantly smaller discretization error compared to the SDE. For114

example, the first-order Euler method for ODE results in a local error of O(δ2), whereas the first-order115

Euler-Maruyama method for SDEs yeilds a local error of O(δ
3
2 ) (see e.g., Theorem 1 of [4]), where116

δ denotes the step size. As O(δ
3
2 ) ≫ O(δ2), ODE simulations exhibit lower sampling errors than117

SDEs, likely causing the better sample quality with larger step sizes in the small NFE regime.118

In the large NFE regime the step size δ shrinks and discretization errors become less significant119

for both ODEs and SDEs. In this regime it is the approximation error — error arising from an120

inaccurate estimation of the ground-truth vector field by the neural network sθ — starts to dominate121

the sampling error. We denote the discretized ODE and SDE using the learned field sθ as ODEθ and122

SDEθ, respectively. In the following theorem, we evaluate the total errors from simulating ODEθ123

and SDEθ within the time interval [tmin, tmax] ⊂ [0, T ]. This is done via an upper bound on the124

Wasserstein-1 distance between the generated and data distributions at time tmin. We characterize the125

accumulated initial sampling errors up until tmax by total variation distances. Below we show that the126
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inherent stochasticity of SDEs aids in contracting these initial errors at the cost of larger additional127

sampling error in [tmin, tmax]. Consequently, SDE results in a smaller upper bound as the step size δ128

nears 0 (pertaining to the high NFE regime).129

Theorem 1 (Informal). Let tmax be the initial noise level and pt denote the true distribution at noise130

level t. Let pODEθ
t , pSDEθ

t denote the distributions of simulating ODEθ, SDEθ respectively. Assume131

that ∀t ∈ [tmin, tmax], ∥xt∥ < B/2 for any xt in the support of pt, p
ODEθ
t or pSDEθ

t . Then132

W1(p
ODEθ
tmin

, ptmin) ≤ B · TV
(
p

ODEθ
tmax

, ptmax

)
+O(δ + ϵapprox) · (tmax − tmin)

W1(p
SDEθ
tmin

, ptmin)︸ ︷︷ ︸
total error

≤
(
1− λe−U

)
B · TV (p

SDEθ
tmax

, ptmax)︸ ︷︷ ︸
upper bound on contracted error

+O(
√

δtmax + ϵapprox) (tmax − tmin)︸ ︷︷ ︸
upper bound on additional sampling error

In the above, U = BL1/tmin + L2
1t

2
max/t

2
min, λ < 1 is a contraction factor, L1 and ϵapprox are133

uniform bounds on ∥tsθ(xt, t)∥ and the approximation error ∥t∇x log pt(x)− tsθ(x, t)∥ for all xt, t,134

respectively. O() hides polynomial dependency on various Lipschitz constants and dimension.135

We defer the formal version and proof of Theorem 1 to Appendix A.1. As shown in the theorem,136

the upper bound on the total error can be decomposed into upper bounds on the contracted error137

and additional sampling error. TV (p
ODEθ
tmax

, ptmax) and TV (p
SDEθ
tmax

, ptmax) correspond to the initial errors138

accumulated from both approximation and discretization errors during the simulation of the backward139

process, up until time tmax. In the context of SDE, this accumulated error undergoes contraction by a140

factor of 1− λe−BL1/tmin−L2
1t

2
max/t

2
min within [tmin, tmax], due to the effect of adding noise. Essentially,141

the minor additive Gaussian noise in each step can drive the generated distribution and the true142

distribution towards each other, thereby neutralizing a portion of the initial accumulated error.143

The other term related to additional sampling error includes the accumulation of discretization and144

approximation errors in [tmin, tmax]. Despite the fact that SDE incurs a higher discretization error than145

ODE (O(
√
δ) versus O(δ)), the contraction effect on the initial error is the dominant factor impacting146

the upper bound in the large NFE regime where δ is small. Consequently, the upper bound for SDE is147

significantly lower. This provides insight into why SDE outperforms ODE in the large NFE regime,148

where the influence of discretization errors diminishes and the contraction effect dominates. In149

light of the distinct advantages of SDE and ODE, it is natural to ask whether we can combine their150

strengths. Specifically, can we devise a sampling algorithm that maintains a comparable level of151

discretization error as ODE, while also benefiting from, or even amplifying, the contraction effects152

induced by the stochasticity of SDE? In the next section, we introduce a novel algorithm, termed153

Restart, designed to achieve these two goals simultaneously.154

4 Harnessing stochasticity with Restart155

In this section, we present the Restart sampling algorithm, which incorporates stochasticity during156

sampling while enabling fast generation. We introduce the algorithm in Sec 4.1, followed by a157

theoretical analysis in Sec 4.2. Our analysis shows that Restart achieves a better Wasserstein upper158

bound compared to those of SDE and ODE in Theorem 1 due to greater contraction effects.159

4.1 Method160

In the Restart algorithm, simulation performs a few repeated back-and-forth steps within a pre-defined161

time interval [tmin, tmax] ⊂ [0, T ], as depicted in Figure 1(a). This interval is embedded into the162

simulation of the original backward ODE referred to as the main backward process, which runs from163

T to 0. In addition, we call the backward process within the Restart interval [tmin, tmax] as the Restart164

backward process, to distinguish it from the main backward process.165

Starting with samples at time tmin, which are generated by following the main backward process,166

the Restart algorithm adds a large noise to transit the samples from tmin to tmax with the help of167

the forward process. The forward process does not require any evaluation of the neural network168

sθ(x, t), as it is generally defined by an analytical perturbation kernel capable of transporting169

distributions from tmin to tmax. For instance, in the case of diffusion models, the perturbation kernel is170

N (0, (σ(tmax)
2−σ(tmin)

2)Id×d). The added noise in this step induces a more significant contraction171

compared to the small, interleaved noise in SDE. The step acts as if partially restarting the main172

backward process by increasing the time. Following this step, Restart simulates the backward ODE173

4



from tmax back to tmin using the neural network predictions as in regular ODE. We repeat these174

forward-backward steps within [tmin, tmax] interval K times in order to further derive the benefit from175

contraction. Specifically, the forward and backward processes in the ith iteration (i ∈ {0, . . . ,K−1})176

proceed as follows:177

(Restart forward process) xi+1
tmax

= xi
tmin

+ εtmin→tmax (3)

(Restart backward process) xi+1
tmin

= ODEθ(x
i+1
tmax

, tmax → tmin) (4)

where the initial x0
tmin

is obtained by simulating the ODE until tmin: x0
tmin

= ODEθ(xT , T → tmin),178

and the noise εtmin→tmax is sampled from the corresponding perturbation kernel from tmin to tmax.179

The Restart algorithm not only adds substantial noise in the Restart forward process (Eq. (3)), but180

also separates the stochasticity from the ODE, leading to a greater contraction effect, which we181

will demonstrate theoretically in the next subsection. For example, we set [tmin, tmax] = [0.05, 0.3]182

for VP model [13] on CIFAR-10. Repetitive use of the forward noise effectively mitigates errors183

accumulated from the preceding simulation up until tmax. Furthermore, the Restart algorithm does184

not suffer from large discretization errors as it is mainly built from following the ODE in the Restart185

backward process (Eq. (4)). The effect is that the Restart algorithm is able to reduce the total sampling186

errors even in the small NFE regime. Detailed pseudocode for the Restart sampling process can be187

found in Algorithm 2, Appendix B.2.188

4.2 Analysis189

We provide a theoretical analysis of the Restart algorithm under the same setting as Theorem 1.190

In particular, we prove the following theorem, which shows that Restart achieves a much smaller191

contracted error in the Wasserstein upper bound than SDE (Theorem 1), thanks to the separation of192

the noise from the drift, as well as the large added noise in the Restart forward process (Eq. (3)). The193

repetition of the Restart cycle K times further leads to a enhanced reduction in the initial accumulated194

error. We denote the intermediate distribution in the ith Restart iteration, following the discretized195

trajectories and the learned field sθ, as p
Restartθ(i)
t∈[tmin,tmax]

.196

Theorem 2 (Informal). Under the same setting of Theorem 1, assume K ≤ C
L2(tmax−tmin)

for some197

universal constant C. Then198

W1(p
Restartθ(K)
tmin

, ptmin)︸ ︷︷ ︸
total error

≤B · (1− λ)K TV (p
Restartθ(0)
tmax

, ptmax)︸ ︷︷ ︸
upper bound on contracted error

+(K + 1) ·O (δ + ϵapprox) (tmax − tmin)︸ ︷︷ ︸
upper bound on additional sampling error

where λ < 1 is the same contraction factor as Theorem 1. O() hides polynomial dependency on199

various Lipschitz constants, dimension.200

Proof sketch. To bound the total error, we introduce an auxiliary process q
Restartθ(i)
t∈[tmin,tmax]

, which initiates201

from true distribution ptmax and performs the Restart iterations. This process differs from p
Restartθ(i)
t∈[tmin,tmax]

202

only in its initial distribution at tmax (ptmax versus pRestartθ(0)
tmax

). We bound the total error by the following203

triangular inequality:204

W1(p
Restartθ(K)
tmin

, ptmin)︸ ︷︷ ︸
total error

≤ W1(p
Restartθ(K)
tmin

, q
Restartθ(K)
tmin

)︸ ︷︷ ︸
contracted error

+W1(q
Restartθ(K)
tmin

, ptmin)︸ ︷︷ ︸
additional sampling error

To bound the contracted error, we construct a careful coupling process between two individual205

trajectories sampled from p
Restartθ(i)
tmin

and q
Restartθ(i)
tmin

, i = 0, . . . ,K − 1. Before these two trajectories206

converge, the Gaussian noise added in each Restart iteration is chosen to maximize the probability of207

the two trajectories mapping to an identical point, thereby maximizing the mixing rate in TV. After208

converging, the two processes evolve under the same Gaussian noise, and will stay converged as their209

drifts are the same. Lastly, we convert the TV bound to W1 bound by multiplying B. The bound on210

the additional sampling error echoes the ODE analysis in Theorem 1: since the noise-injection and211

ODE-simulation stages are separate, we do not incur the higher discretization error of SDE.212

We defer the formal version and proof of Theorem 2 to Appendix A.1. The first term in RHS bounds213

the contraction on the initial error at time tmax and the second term reflects the additional sampling214

error of ODE accumulated during repetitive Restart iteration. Comparing the Wasserstein upper215

bound of SDE and ODE in Theorem 1, we make the following three observations: (1) Each Restart216

iteration has a smaller contraction factor 1− λ compared to the one in SDE, since Restart separates217
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the large additive noise (Eq. (3)) from the ODE (Eq. (4)). (2) Restart backward process (Eq. (4))218

has the same order of discretization error O(δ) as the ODE, compared to O(
√
δ) in SDE. Hence, the219

Restart allows for small NFE due to ODE-level discretization error. (3) The contracted error further220

diminishes exponentially with the number of repetitions K though the additional error increases221

linearly with K. It suggests that there is a sweet spot of K that strikes a balance between reducing222

the initial error and increasing additional sampling error. Ideally, one should pick a larger K when223

the initial error at time tmax greatly outweigh the incurred error in the repetitive backward process224

from tmax to tmin. We provide empirical evidences in Sec 5.2.225

While Theorem 1 and Theorem 2 compare the upper bounds on errors of different methods, we226

provide empirical validation in Section 5.1 by directly calculating these errors, showing that the227

Restart algorithm indeed yields a smaller total error due to its superior contraction effects.228

4.3 Practical considerations229

The Restart algorithm offers several degrees of freedom, including the time interval [tmin, tmax] and230

the number of restart iterations K. Here we provide a general recipe of parameter selection for231

practitioners, taking into account factors such as the complexity of the generative modeling tasks and232

the capacity of the network. Additionally, we discuss a stratified, multi-level Restart approach that233

further aids in reducing simulation errors along the whole trajectories for more challenging tasks.234

Where to Restart? Theorem 2 shows that the Restart algorithm effectively reduces the accumulated235

error at time tmax by a contraction factor in the Wasserstein upper bound. These theoretical findings236

inspire us to position the Restart interval [tmin, tmax] towards the end of the main backward process,237

where the accumulated error is more substantial. In addition, our empirical observations suggest that a238

larger time interval tmax−tmin is more beneficial for weaker/smaller architectures or more challenging239

datasets. Even though a larger time interval increases the additional sampling error, the benefits of240

the contraction significantly outweighs the downside, consistent with our theoretical predictions. We241

leave the development of principled approaches for optimal time interval selection for future works.242

Multi-level Restart For challenging tasks that yield significant approximation errors, the backward243

trajectories may diverge substantially from the ground truth even at early stage. To prevent the ODE244

simulation from quickly deviating from the true trajectory, we propose implementing multiple Restart245

intervals in the backward process, alongside the interval placed towards the end. Empirically, we246

observe that a 1-level Restart is sufficient for CIFAR-10, while for more challenging datasets such as247

ImageNet [5], a multi-level Restart results in enhanced performance [5].248

5 Experiments249

In Sec 5.1, we first empirically verify the theoretical analysis relating to the Wasserstein upper250

bounds. We then evaluate the performance of different sampling algorithms on standard image251

generation benchmarks, including CIFAR-10 [14] and ImageNet 64 × 64 [5] in Sec 5.2. Lastly,252

we employ Restart on text-to-image generation, using Stable Diffusion model [19] pre-trained on253

LAION-5B [21] with resolution 512× 512, in Sec 5.3.254

5.1 Additional sampling error versus contracted error255

Our proposed Restart sampling algorithm demonstrates a higher contraction effect and smaller256

addition sampling error compared to SDE, according to Theorem 1 and Theorem 2. Although our257

theoretical analysis compares the upper bounds of the total, contracted and additional sampling errors,258

we further verify their relative values through a synthetic experiment.259

Setup We construct a 20-dimensional dataset with 2000 points sampled from a Gaussian mixture,260

and train a four-layer MLP to approximate the score field ∇x log pt. We implement the ODE, SDE,261

and Restart methods within a predefined time range of [tmin, tmax] = [1.0, 1.5], where the process262

outside this range is conducted via the first-order ODE. To compute various error types, we define263

the distributions generated by three methods as outlined in the proof of Theorem 2 and directly264

gauge the errors at end of simulation t = 0 instead of t = tmin: (1) the generated distribution as265

pSampler
0 , where Sampler ∈ {ODEθ, SDEθ,Restartθ(K)}; (2) an auxiliary distribution qSampler

0 initiating266

from true distribution ptmax at time tmax. The only difference between pSampler
0 and qSampler

0 is their initial267

distribution at tmax (pODEθ
tmax

versus ptmax ); and (3) the true data distribution p0. In line with Theorem 2,268
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Figure 2: Additional sampling error versus (a) contracted error, where the Pareto frontier is plotted
and (b) total error, where the scatter plot is provided. (c) Pareto frontier of NFE versus total error.

we use Wasserstein-1 distance W1(p
Sampler
0 , qSampler

0 ) / W1(q
Sampler
0 , p0) to measure the contracted error269

/ additional sampling error, respectively. Ultimately, the total error corresponds to W1(p
Sampler
0 , p0).270

Detailed information about dataset, metric and model can be found in the Appendix C.5.271

Results In our experiment, we adjust the parameters for all three processes and calculate the total,272

contracted, and additional sampling errors across all parameter settings. Figure 2(a) depicts the Pareto273

frontier of additional sampling error versus contracted error. We can see that Restart consistently274

achieves lower contracted error for a given level of additional sampling error, compared to both the275

ODE and SDE methods, as predicted by theory. In Figure 2(b), we observe that the Restart method276

obtains a smaller total error within the additional sampling error range of [0.8, 0.85]. During this277

range, Restart also displays a strictly reduced contracted error, as illustrated in Figure 2(a). This278

aligns with our theoretical analysis, suggesting that the Restart method offers a smaller total error due279

to its enhanced contraction effects. From Figure 2(c), Restart also strikes an better balance between280

efficiency and quality, as it achieves a lower total error at a given NFE.281

5.2 Experiments on standard benchmarks282
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Figure 3: FID versus NFE on (a) unconditional generation on CIFAR-10 with VP; (b) class-
conditional generation on ImageNet with EDM.

To evaluate the sample quality and inference speed, we report the FID score [7] (lower is better) on 50K283

samplers and the number of function evaluations (NFE). We borrow the pretrained VP/EDM/PFGM++284

models on CIFAR-10 or ImageNet 64 × 64 from [13, 28]. We also use the EDM discretization285

scheme [13] (see Appendix B.1 for details) during sampling.286

For the proposed Restart sampler, the hyperparameters include the number of steps in the main/Restart287

backward processes, the number of Restart iteration K, as well as the time interval [tmin, tmax]. We288

pick the tmin and tmax from the list of time steps in EDM discretization scheme with a number of steps289

18. For example, for CIFAR-10 (VP) with NFE=75, we choose tmin=0.06, tmax=0.30,K=10, where290

0.30/0.06 is the 12th/14th time step in the EDM scheme. We also adopt EDM scheme for the Restart291

backward process in [tmin, tmax]. In addition, we apply the multi-level Restart strategy (Sec 4.3) to292

mitigate the error at early time steps for the more challenging ImageNet 64× 64. We provide the293

detailed Restart configurations in Appendix C.2.294

For SDE, we compare with the previously best-performing stochastic samplers proposed by [13]295

(Improved SDE). We use their optimal hyperparameters for each dataset. We also report the FID296
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scores of the adaptive SDE [12] (Gonna Go Fast) on CIFAR-10 (VP). Since the vanilla reverse-297

diffusion SDE [23] has a significantly higher FID score, we omit its results from the main charts and298

defer them to Appendix D. For ODE samplers, we compare with the Heun’s 2nd order method [2]299

(Heun), which arguably provides an excellent trade-off between discretization errors and NFE [13].300

To ensure a fair comparison, we use Heun’s method as the sampler in the main/Restart backward301

processes in Restart. One could employ faster, albeit more complex, ODE solvers such as the302

DPM-solver [16] to further accelerate Restart. We reserve this exploration for future works.303

We report the FID score versus NFE in Figure 3(a) and Table 1 on CIFAR-10, and Figure 3(b)304

on ImageNet 64 × 64 with EDM. Our main findings are: (1) Restart outperforms other SDE or305

ODE samplers in balancing quality and speed, across datasets and models. As demonstrated in306

the figures, Restart achieves a 10-fold / 2-fold acceleration compared to previous best SDE results307

on CIFAR-10 (VP) / ImageNet 64 × 64 (EDM) at the same FID score. In comparison to ODE308

sampler (Heun), Restart obtains a better FID score, with the gap increasing significantly with NFE.309

(2) For stronger models such as EDM and PFGM++, Restart further improve over the ODE baseline310

on CIFAR-10. In contrast, the Improved SDE negatively impacts performance of EDM, as also311

observed in [13]. It suggests that Restart incorporates stochasticity more effectively. (3) Restart312

establishes new state-of-the-art FID scores for UNet architectures without additional training. In313

particular, Restart achieves FID scores of 1.36 on class-cond. ImageNet 64× 64 with EDM, and 1.88314

on uncond. CIFAR-10 with PFGM++.315

Table 1: Uncond.
CIFAR-10 with EDM
and PFGM++

NFE FID

EDM-VP [13]

ODE (Heun) 63 1.97
35 1.97

Improved SDE 63 2.27
35 2.45

Restart 43 1.90

PFGM++ [28]

ODE (Heun) 63 1.91
35 1.91

Restart 43 1.88
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Figure 4: FID score with a
varying number of Restart itera-
tions K.

Theorem 4 shows that each Restart iteration316

reduces the contracted errors while increasing317

the additional sampling errors in the backward318

process. In Fig. 4, we explore the choice of319

the number of Restart iterations K on CIFAR-320

10. We find that FID score initially improves321

and later worsens with increasing iterations K,322

with a smaller turning point for stronger EDM323

model. This supports the theoretical analysis324

that sampling errors will eventually outweigh325

the contraction benefits as K increases, and326

EDM only permits fewer Restart iterations327

due to smaller accumulated errors. It also328

suggests that, as a rule of thumb, we should329

apply greater Restart strength (e.g., larger K)330

for weaker or smaller architectures and vice versa.331

5.3 Experiments on large-scale text-to-image model332
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(a) FID versus CLIP score
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(b) FID versus Aesthetic score

Figure 5: FID score versus (a) CLIP ViT-g/14 score and (b) Aesthetic score for text-to-image
generation at 512×512 resolution, using Stable Diffusion v1.5 with a varying classifier-free guidance
weight w = 2, 3, 5, 8.

We further apply Restart to the text-to-image Stable Diffusion v1.5 1 pre-trained on LAION-5B [21] at333

a resolution of 512×512. We employ the commonly used classifier-free guidance [8, 20] for sampling,334

wherein each sampling step entails two function evaluations – the conditional and unconditional335

predictions. Following [18, 20], we use the COCO [15] validation set for evaluation. We assess336

1https://huggingface.co/runwayml/stable-diffusion-v1-5
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(a) Restart (Steps=66) (b) DDIM (Steps=100) (c) DDPM (Steps=100)

Figure 6: Visualization of generated images with classifier-free guidance weight w = 8, using four
text prompts (“A photo of an astronaut riding a horse on mars.", "A raccoon playing table tennis",
"Intricate origami of a fox in a snowy forest" and "A transparent sculpture of a duck made out of
glass") and the same random seeds.

text-image alignment using the CLIP score [6] with the open-sourced ViT-g/14 [11], and measure337

diversity via the FID score. We also evaluate visual quality through the Aesthetic score, as rated338

by the LAION-Aesthetics Predictor V2 [24]. Following [17], we compute all evaluation metrics339

using 5K captions randomly sampled from the validation set and plot the trade-off curves between340

CLIP/Aesthetic scores and FID score, with the classifier-free guidance weight w in {2, 3, 5, 8}.341

We compare with commonly used ODE sampler DDIM [22] and the stochastic sampler DDPM [9].342

For Restart, we adopt the DDIM solver with 30 steps in the main backward process, and Heun in the343

Restart backward process, as we empirically find that Heun performs better than DDIM in the Restart.344

In addition, we select different sets of the hyperparameters for each guidance weight. For instance,345

when w = 8, we use [tmin, tmax]=[0.1, 2],K=2 and 10 steps in Restart backward process. We defer346

the detailed Restart configuration to Appendix C.2, and the results of Heun to Appendix D.1.347

As illustrated in Fig. 8(a) and Fig. 8(b), Restart achieves better FID scores in most cases, given the348

same CLIP/Aesthetic scores, using only 132 function evaluations (i.e., 66 sampling steps). Remark-349

ably, Restart achieves substantially lower FID scores than other samplers when CLIP/Aesthetic scores350

are high (i.e., with larger w values). Conversely, Restart generally obtains a better text-image align-351

ment/visual quality given the same FID. We also observe that DDPM generally obtains comparable352

performance with Restart in FID score when CLIP/Aesthetic scores are low, with Restart being more353

time-efficient. These findings suggest that Restart balances diversity (FID score) against text-image354

alignment (CLIP score) or visual quality (Aesthetic score) more effectively than previous samplers.355

In Fig. 6, we visualize the images generated by Restart, DDIM and DDPM with w = 8. Compared356

to DDIM, the Restart generates images with superior details (e.g., the rendition of duck legs by357

DDIM is less accurate) and visual quality. Compared to DDPM, Restart yields more photo-realistic358

images (e.g., the astronaut). We provide extended of text-to-image generated samples in Appendix E.359

6 Conclusion and future direction360

In this paper, we introduce the Restart sampling for generative processes involving differential361

equations, such as diffusion models and PFGMs. By interweaving a forward process that adds a362

significant amount of noise with a corresponding backward ODE, Restart harnesses and even enhances363

the individual advantages of both ODE and SDE. Theoretically, Restart provides greater contraction364

effects of stochasticity while maintaining ODE-level discretization error. Empirically, Restart achieves365

a superior balance between quality and time, and improves the text-image alignment/visual quality366

and diversity trade-off in the text-to-image Stable Diffusion models.367

A current limitation of the Restart algorithm is the absence of a principled way for hyperparameters368

selection, including the number of iterations K and the time interval [tmin, tmax]. At present, we369

adjust these parameters based on the heuristic that weaker/smaller models, or more challenging tasks,370

necessitate a stronger Restart strength. In the future direction, we anticipate developing a more371

principled approach to automating the selection of optimal hyperparameters for Restart based on the372

error analysis of models, in order to fully unleash the potential of the Restart framework.373
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Appendix453

A Proofs of Main Theoretical Results454

In this section, we provide proofs of our main results. We define below some crucial notations455

which we will use throughout. We use ODE(. . . ) to denote the backwards ODE under exact score456

∇ log pt(x). More specifically, given any x ∈ Rd and s > r > 0, let xt denote the solution to the457

following ODE:458

dxt = −t∇ log pt(xt)dt. (5)

ODE(x, s → r) is defined as "the value of xr when initialized at xs = x". It will also be useful to459

consider a "time-discretized ODE with drift tsθ(x, t)": let δ denote the discretization step size and let460

k denote any integer. Let δ denote a step size, let xt denote the solution to461

dxt = −tsθ(xkδ, kδ)dt, (6)

where for any t, k is the unique integer such that t ∈ ((k − 1)δ, kδ]. We verify that the dynamics of462

Eq. (6) is equivalent to the following discrete-time dynamics for t = kδ, k ∈ Z:463

x(k−1)δ = xkδ −
1

2

(
((k − 1)δ)

2 − (kδ)2
)
sθ(xkδ, kδ).

We similarly denote the value of xr when initialized at xs = x as ODEθ(x, s → r). Analogously, we464

let SDE(x, s → r) and SDEθ(x, s → r) denote solutions to465

dyt = −2t∇ log pt(yt)dt+
√
2tdBt

dyt = −2tsθ(yt, t)dt+
√
2tdBt

respectively. Finally, we will define the Restartθ process as follows:466

(Restartθ forward process) xi+1
tmax

= xi
tmin

+ εitmin→tmax

(Restartθ backward process) xi+1
tmin

= ODEθ(x
i+1
tmax

, tmax → tmin), (7)

where εitmin→tmax
∼ N

(
0,
(
t2max − t2min

)
I
)
. We use Restartθ(x,K) to denote xK

tmin
in the above467

processes, initialized at x0
tmin

= x. In various theorems, we will refer to a function Q(r) : R+ →468

[0, 1/2), defined as the Gaussian tail probability Q(r) = Pr(a ≥ r) for a ∼ N (0, 1).469

A.1 Main Result470

Theorem 3. [Formal version of Theorem 1] Let tmax be the initial noise level. Let the initial random471

variables xtmax = ytmax
, and472

xtmin = ODEθ(xtmax , tmax → tmin)

ytmin
= SDEθ(ytmax

, tmax → tmin),

Let pt denote the true population distribution at noise level t. Let pODEθ
t , pSDEθ

t denote the distributions473

for xt, yt respectively. Assume that for all x, y, s, t, sθ(x, t) satisfies ∥tsθ(x, t)− tsθ(x, s)∥ ≤474

L0|s − t|, ∥tsθ(x, t)∥ ≤ L1, ∥tsθ(x, t)− tsθ(y, t)∥ ≤ L2 ∥x− y∥, and the approximation error475

∥tsθ(x, t)− t∇ log pt(x)∥ ≤ ϵapprox. Assume in addition that ∀t ∈ [tmin, tmax], ∥xt∥ < B/2 for any476

xt in the support of pt, p
ODEθ
t or pSDEθ

t , and K ≤ C
L2(tmax−tmin)

for some universal constant C. Then477

W1(p
ODEθ
tmin

, ptmin) ≤ B · TV
(
pODEθ
tmax

, ptmax

)
+ eL2(tmax−tmin) · (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) (8)

W1(p
SDEθ
tmin

, ptmin) ≤ B ·
(
1− λe−BL1/tmin−L2

1t
2
max/t

2
min

)
TV (pSDEθ

tmax
, ptmax)

+ e2L2(tmax−tmin)
(
ϵapprox + δL0 + L2

(
δL1 +

√
2δdtmax

))
(tmax − tmin) (9)

where λ := 2Q

(
B

2
√

t2max−t2min

)
.478
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Proof. Let us define xtmax ∼ ptmax , and let xtmin = ODE(xtmax , tmax → tmin). We verify that xtmin479

has density ptmin . Let us also define x̂tmin = ODEθ(xtmax , tmax → tmin). We would like to bound480

the Wasserstein distance between x̄tmin and xtmin (i.e., pODEθ
tmin

and ptmin ), by the following triangular481

inequality:482

W1(x̄tmin , xtmin) ≤ W1(x̄tmin , x̂tmin) +W1(x̂tmin , xtmin) (10)
By Lemma 2, we know that483

∥x̂tmin − xtmin∥ ≤ e(tmax−tmin)L2 (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) ,

where we use the fact that ∥x̂tmax − xtmax∥ = 0. Thus we immediately have484

W1(x̂tmin , xtmin) ≤ e(tmax−tmin)L2 (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) (11)
On the other hand,485

W1(x̂tmin , xtmin) ≤B · TV (x̂tmin , xtmin)

≤B · TV (x̂tmax , xtmax) (12)
where the last equality is due to the data-processing inequality. Combining Eq. (11) , Eq. (12) and the486

triangular inequality Eq. (10), we arrive at the upper bound for ODE (Eq. (8)). The upper bound for487

SDE (Eq. (9)) shares a similar proof approach. First, let ytmax ∼ ptmax . Let ŷtmin = SDEθ(ytmax , tmax →488

tmin). By Lemma 5,489

TV
(
ŷtmin , ytmin

)
≤

(
1− 2Q

(
B

2
√
t2max − t2min

)
· e−BL1/tmin−L2

1t
2
max/t

2
min

)
· TV

(
ŷtmax , ytmax

)
On the other hand, by Lemma 4,490

E [∥ŷtmin − ytmin∥] ≤e2L2(tmax−tmin)
(
ϵapprox + δL0 + L2

(
δL1 +

√
2δdtmax

))
(tmax − tmin) .

The SDE triangular upper bound on W1(ȳtmin , ytmin) follows by multiplying the first inequality by B (to491

bound W1(ȳtmin , ŷtmin)) and then adding the second inequality (to bound W1(ytmin , ŷtmin)). Notice492

that by definition, TV
(
ŷtmax , ytmax

)
= TV

(
ytmax , ytmax

)
. Finally, because of the assumption that493

K ≤ C
L2(tmax−tmin)

for some universal constant, we summarize the second term in the Eq. (8) and494

Eq. (9) into the big O in the informal version Theorem 1.495

Theorem 4. [Formal version of Theorem 2] Consider the same setting as Theorem 3. Let pRestartθ,i
tmin

496

denote the distributions after ith Restart iteration, i.e., the distribution of xi
tmin

= Restartθ(x0
tmin

, i).497

Given initial x0
tmax

∼ pRestart,0
tmax

, let x0
tmin

= ODEθ(x
0
tmax

, tmax → tmin). Then498

W1(p
Restartθ,K
tmin

, ptmin) ≤B · (1− λ)
K
TV (pRestart,0

tmax
, ptmax)︸ ︷︷ ︸

upper bound on contracted error

+ e(K+1)L2(tmax−tmin)(K + 1) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin)︸ ︷︷ ︸
upper bound on additional sampling error

(13)

where λ = 2Q

(
B

2
√

t2max−t2min

)
.499

Proof. Let x0
tmax

∼ ptmax . Let xK
tmin

= Restart(x0
tmin

,K). We verify that xK
tmin

has density ptmin . Let us500

also define x̂0
tmin

= ODEθ(x
0
tmax

, tmax → tmin) and x̂K
tmin

= Restartθ(x̂0
tmin

,K).501

By Lemma 1,502

TV
(
xK
tmin

, x̂K
tmin

)
≤

(
1− 2Q

(
B

2
√
t2max − t2min

))K

TV
(
x0
tmin

, x̂0
tmin

)
≤

(
1− 2Q

(
B

2
√
t2max − t2min

))K

TV
(
x0
tmax

, x̂0
tmax

)
=

(
1− 2Q

(
B

2
√
t2max − t2min

))K

TV
(
x0
tmax

, x0
tmax

)
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The second inequality holds by data processing inequality. The above can be used to bound the503

1-Wasserstein distance as follows:504

W1

(
xK
tmin

, x̂K
tmin

)
≤ B · TV

(
xK
tmin

, x̂K
tmin

)
≤

(
1− 2Q

(
B

2
√

t2max − t2min

))K

TV
(
x0
tmax

, x0
tmax

)
(14)

On the other hand, using Lemma 3,505

W1

(
xK
tmin

, x̂K
tmin

)
≤
∥∥xK

tmin
− x̂K

tmin

∥∥
≤e(K+1)L2(tmax−tmin)(K + 1) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) (15)

We arrive at the result by combining the two bounds above (Eq. (14), Eq. (15)) with the following506

triangular inequality,507

W1(x̄
K
tmin

, xK
tmin

) ≤ W1(x̄
K
tmin

, x̂K
tmin

) +W1(x̂
K
tmin

, xK
tmin

)

508

A.2 Mixing under Restart with exact ODE509

Lemma 1. Consider the same setup as Theorem 4. Consider the Restartθ process defined in510

equation 7. Let511

xi
tmin

= Restartθ(x0
tmin

, i)

yitmin
= Restartθ(y0tmin

, i).

Let pRestartθ(i)
t and q

Restartθ(i)
t denote the densities of xi

t and yit respectively. Then512

TV
(
p

Restartθ(K)
tmin

, q
Restartθ(K)
tmin

)
≤ (1− λ)

K
TV

(
p

Restartθ(0)
tmin

, q
Restartθ(0)
tmin

)
,

where λ = 2Q

(
B

2
√

t2max−t2min

)
.513

Proof. Conditioned on xi
tmin

, yitmin
, let xi+1

tmax
= xi

tmin
+
√
t2max − t2minξ

x
i and yi+1

tmax
= yitmin

+514 √
t2max − t2minξ

y
i . We now define a coupling between xi+1

tmin
and yi+1

tmin
by specifying the joint dis-515

tribution over ξxi and ξyi .516

If xi
tmin

= yitmin
, let ξxi = ξyi , so that xi+1

tmin
= yi+1

tmin
. On the other hand, if xi

tmin
̸= yitmin

, let xi+1
tmax

and yi+1
tmax

517

be coupled as described in the proof of Lemma 7, with x′ = xi+1
tmax

, y′ = yi+1
tmax

, σ =
√
t2max − t2min.518

Under this coupling, we verify that,519

E
[
1
{
xi+1
tmin

̸= yi+1
tmin

}]
≤E

[
1
{
xi+1
tmax

̸= yi+1
tmax

}]
≤E

[(
1− 2Q

(∥∥xi
tmin

− yitmin

∥∥
2
√
t2max − t2min

))
1
{
xi
tmin

̸= yitmin

}]

≤

(
1− 2Q

(
B

2
√
t2max − t2min

))
E
[
1
{
xi
tmin

̸= yitmin

}]
.

Applying the above recursively,520

E
[
1
{
xK
tmin

̸= yKtmin

}]
≤

(
1− 2Q

(
B

2
√

t2max − t2min

))K

E
[
1
{
x0
tmin

̸= y0tmin

}]
.

The conclusion follows by noticing that TV
(
p

Restartθ(K)
tmin

, q
Restartθ(K)
t

)
≤ Pr

(
xK
tmin

̸= yKtmin

)
=521

E
[
1
{
xK
tmin

̸= yKtmin

}]
, and by selecting the initial coupling so that Pr

(
x0
tmin

̸= y0tmin

)
=522

TV
(
p

Restartθ(0)
tmin

, q
Restartθ(0)
tmin

)
.523
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A.3 W1 discretization bound524

Lemma 2 (Discretization bound for ODE). Let xtmin = ODE (xtmax , tmax → tmin) and let xtmin =525

ODEθ (xtmax , tmax → tmin). Assume that for all x, y, s, t, sθ(x, t) satisfies ∥tsθ(x, t)− tsθ(x, s)∥ ≤526

L0|s− t|, ∥tsθ(x, t)∥ ≤ L1 and ∥tsθ(x, t)− tsθ(y, t)∥ ≤ L2 ∥x− y∥. Then527

∥xtmin − xtmin∥ ≤ e(tmax−tmin)L2 (∥xtmax − xtmax∥+ (δ(L2L1 + L0) + ϵapprox) (tmax − tmin))

Proof. Consider some fixed arbitrary k, and recall that δ is the step size. Recall that by definition of528

ODE and ODEθ, for t ∈ ((k − 1)δ, kδ],529

dxt = −t∇ log pt(xt)dt

dxt = −tsθ(xkδ, kδ)dt.

For t ∈ [tmin, tmax], let us define a time-reversed process x←t := x−t. Let v(x, t) := ∇ log p−t(x).530

Then for t ∈ [−tmax,−tmin]531

dx←t = tv(x←t , t)ds.

Similarly, define x←t := x−t and v(x, t) := sθ (x,−t). It follows that532

dx←t = tv(x←kδ, kδ)ds,

where k is the unique (negative) integer satisfying t ∈ [kδ, (k + 1)δ). Following these definitions,533

d

dt
∥x←t − x←t ∥

≤∥tv(x←t , t)− tv(x←t , t)∥
+ ∥tv(x←t , t)− tv(x←t , t)∥
+ ∥tv(x←t , t)− tv(x←t , kδ)∥
+ ∥tv(x←t , kδ)− tv(x←kδ, kδ)∥

≤ϵapprox + L2 ∥x←t − x←t ∥+ δL0 + L2 ∥x←t − x←kδ∥
≤ϵapprox + L2 ∥x←t − x←t ∥+ δL0 + δL2L1.

Applying Gronwall’s Lemma over the interval t ∈ [−tmax,−tmin],534

∥xtmin − xtmin∥
=
∥∥x←−tmin

− x←−tmin

∥∥
≤eL2(tmax−tmin)

(∥∥x←−tmax
− x←−tmax

∥∥+ (ϵapprox + δL0 + δL2L1) (tmax − tmin)
)

=eL2(tmax−tmin) (∥xtmax − xtmax∥+ (ϵapprox + δL0 + δL2L1) (tmax − tmin)) .

535

Lemma 3. Given initial x0
tmax

, let x0
tmin

= ODE
(
x0
tmax

, tmax → tmin
)
, and let x̂0

tmin
=536

ODEθ

(
x0
tmax

, tmax → tmin
)
. We further denote the variables after K Restart iterations as xK

tmin
=537

Restart(x0
tmin

,K) and x̂K
tmin

= Restartθ(x̂0
tmin

,K), with true field and learned field respectively. Then538

there exists a coupling between xK
tmin

and x̂K
tmin

such that539 ∥∥xK
tmin

− x̂K
tmin

∥∥ ≤ e(K+1)L2(tmax−tmin)(K + 1) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) .

Proof. We will couple xi
tmin

and x̂i
tmin

by using the same noise εitmin→tmax
in the Restart forward process540

for i = 0 . . .K − 1 (see Eq. (7)). For any i, let us also define yi,jtmin
:= Restartθ

(
xi
tmin

, j − i
)
, and this541

process uses the same noise εitmin→tmax
as previous ones. From this definition, yK,K

tmin
= xK

tmin
. We can542

thus bound543 ∥∥xK
tmin

, x̂K
tmin

∥∥ ≤
∥∥∥y0,Ktmin

− x̂K
tmin

∥∥∥+ K−1∑
i=0

∥∥∥yi,Ktmin
− yi+1,K

tmin

∥∥∥ (16)
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Using the assumption that tsθ(·, t) is L2 Lipschitz,544 ∥∥∥y0,i+1
tmin

− x̂i+1
tmin

∥∥∥
=
∥∥∥ODEθ(y

0,i
tmax

, tmax → tmin)− ODEθ(x̂
i
tmax

, tmax → tmin)
∥∥∥

≤eL2(tmax−tmin)
∥∥∥y0,itmax

− x̂i
tmax

∥∥∥
=eL2(tmax−tmin)

∥∥∥y0,itmin
− x̂i

tmin

∥∥∥ ,
where the last equality is because we add the same additive Gaussian noise εitmin→tmax

to y0,itmin
and x̂i

tmin
545

in the Restart forward process. Applying the above recursively, we get546 ∥∥∥y0,Ktmin
− x̂K

tmin

∥∥∥ ≤eKL2(tmax−tmin)
∥∥∥y0,0tmin

− x̂0
tmin

∥∥∥
≤eKL2(tmax−tmin)

∥∥x0
tmin

− x̂0
tmin

∥∥
≤e(K+1)L2(tmax−tmin) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) , (17)

where the last line follows by Lemma 2 when setting xtmax = x̄tmax . We will now bound547 ∥∥∥yi,Ktmin
− yi+1,K

tmin

∥∥∥ for some i ≤ K. It follows from definition that548

yi,i+1
tmin

= ODEθ

(
xi
tmax

, tmax → tmin
)

yi+1,i+1
tmin

= xi+1
tmin

= ODE
(
xi
tmax

, tmax → tmin
)
.

By Lemma 2,549 ∥∥∥yi,i+1
tmin

− yi+1,i+1
tmin

∥∥∥ ≤ eL2(tmax−tmin) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin)

For the remaining steps from i+ 2 . . .K, both yi,· and yi+1,· evolve with ODEθ in each step. Again550

using the assumption that tsθ(·, t) is L2 Lipschitz,551 ∥∥∥yi,Ktmin
− yi+1,K

tmin

∥∥∥ ≤ e(K−i)L2(tmax−tmin) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin)

Summing the above for i = 0...K − 1, and combining with Eq. (16) and Eq. (17) gives552 ∥∥xK
tmin

− x̂K
tmin

∥∥ ≤ e(K+1)L2(tmax−tmin)(K + 1) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) .

553

Lemma 4. Consider the same setup as Theorem 3. Let xtmin = SDE (xtmax , tmax → tmin) and let554

xtmin = SDE (xtmax , tmax → tmin). Then there exists a coupling between xt and xt such that555

E [∥xtmin − xtmin∥] ≤ e2L2(tmax−tmin)E [∥xtmax − xtmax∥]

+ e2L2(tmax−tmin)
(
ϵapprox + δL0 + L2

(
δL1 +

√
2δdtmax

))
(tmax − tmin)

Proof. Consider some fixed arbitrary k, and recall that δ is the stepsize. By definition of SDE and556

SDEθ, for t ∈ ((k − 1)δ, kδ],557

dxt = −2t∇ log pt(xt)dt+
√
2tdBt

dxt = −2tsθ(xkδ, kδ)dt+
√
2tdBt.

Let us define a coupling between xt and xt by identifying their respective Brownian motions. It558

will be convenient to define the time-reversed processes x←t := x−t, and x←t := x−t, along with559

v(x, t) := ∇ log p−t(x) and v(x, t) := sθ(x,−t). Then there exists a Brownian motion B←t , such560

that for t ∈ [−tmax,−tmin],561

dx←t = −2tv(x←t , t)dt+
√
−2tdB←t

dx←t = −2tv(x←kδ, kδ)dt+
√
−2tdB←t

⇒ d(x←t − x←t ) = −2t (v(x←t , t)− v(x←kδ, kδ)) dt,
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where k is the unique negative integer such that t ∈ [kδ, (k + 1)δ). Thus562

d

dt
E [∥x←t − x←t ∥]

≤2 (E [∥tv(x←t , t)− tv(x←t , t)∥] + E [∥tv(x←t , t)− tv(x←t , t)∥])
+ 2 (E [∥tv(x←t , t)− tv(x←t , kδ)∥] + E [∥tv(x←t , kδ)− tv(x←kδ, kδ)∥])

≤2 (ϵapprox + L2E [∥x←t − x←t ∥] + δL0 + L2E [∥x←t − x←kδ∥])

≤2
(
ϵapprox + L2E [∥x←t − x←t ∥] + δL0 + L2

(
δL1 +

√
2δdtmax

))
.

By Gronwall’s Lemma,563

E [∥xtmin − xtmin∥]
=E

[∥∥x←−tmin
− x←−tmin

∥∥]
≤e2L2(tmax−tmin)

(
E
[∥∥x←−tmax

− x←−tmax

∥∥]+ (ϵapprox + δL0 + L2

(
δL1 +

√
2δdtmax

))
(tmax − tmin)

)
=e2L2(tmax−tmin)

(
E [∥xtmax − xtmax∥] +

(
ϵapprox + δL0 + L2

(
δL1 +

√
2δdtmax

))
(tmax − tmin)

)
564

A.4 Mixing Bounds565

Lemma 5. Consider the same setup as Theorem 3. Assume that δ ≤ tmin. Let566

xtmin = SDEθ (xtmax , tmax → tmin)

ytmin = SDEθ (ytmax , tmax → tmin) .

Then there exists a coupling between xs and ys such that567

TV (xtmin , ytmin) ≤

(
1− 2Q

(
B

2
√

t2max − t2min

)
· e−BL1/tmin−L2

1t
2
max/t

2
min

)
TV (xtmax , ytmax)

Proof. We will construct a coupling between xt and yt. First, let (xtmax , ytmax) be sampled from the568

optimal TV coupling, i.e., Pr(xtmax ̸= ytmax) =
1
2TV (xtmax , ytmax). Recall that by definition of SDEθ,569

for t ∈ ((k − 1)δ, kδ],570

dxt = −2tsθ(xkδ, kδ)dt+
√
2tdBt.

Let us define a time-rescaled version of xt: xt := xt2 . We verify that571

dxt = −sθ(x(kδ)2 , kδ)dt+ dBt,

where k is the unique integer satisfying t ∈ [((k − 1)δ)2, k2δ2). Next, we define the time-reversed572

process x←t := x−t, and let v(x, t) := sθ(x,−t). We verify that there exists a Brownian motion Bx
t573

such that, for t ∈ [−t2max,−t2min],574

dx←t = vxt dt+ dBx
t ,

where vxt = sθ(x
←
−(kδ)2 ,−kδ), where k is the unique positive integer satisfying −t ∈ (((k −575

1)δ)2, (kδ)2]. Let dy←t = vyt dt+ dBy
t , be defined analogously. For any positive integer k and for576

any t ∈ [−(kδ)2,−((k − 1)δ)2), let us define577

zt = x←−k2δ2 − y←−k2δ2 + (2k − 1)δ2
(
vx−(kδ)2 − vy−(kδ)2

)
+
(
Bx

t −Bx
−(kδ)2

)
−
(
By

t −By
−(kδ)2

)
.

Let γt := zt
∥zt∥ . We will now define a coupling between dBx

t and dBy
t as578

dBy
t =

(
I − 21 {t ≤ τ}γtγT

t

)
dBx

t ,
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where 1 {} denotes the indicator function, i.e. 1 {t ≤ τ} = 1 if t ≤ τ , and τ is a stopping time given579

by the first hitting time of zt = 0. Let rt := ∥zt∥. Consider some t ∈
(
−i2δ2,−(i− 1)2δ2

)
, and580

Let j := tmax
δ (assume w.l.o.g that this is an integer), then581

rt − r−t2max
≤

j∑
k=i

(2k − 1)δ2
∥∥∥(vx−(kδ)2 − vy−(kδ)2)

∥∥∥+ ∫ t

−t2max

1 {t ≤ τ}2dB1
s

≤
j∑

k=i

(
k2 − (k − 1)2

)
δ22L1/ (tmin) +

∫ t

−t2max

1 {t ≤ τ}2dB1
t

=

∫ −(i−1)δ2
−t2max

2L1

tmin
ds+

∫ t

−t2max

1 {t ≤ τ}2dB1
s ,

where dB1
s = ⟨γt, dBx

s − dBy
s ⟩ is a 1-dimensional Brownian motion. We also verify that582

r−t2max
=
∥∥z−t2max

∥∥
=
∥∥∥x←−t2max

− y←−t2max
+ (2j − 1)δ2

(
vx−t2max

− vy−t2max

)
+
(
Bx

t −Bx
−t2max

)
−
(
By

t −By
−t2max

)∥∥∥
≤
∥∥∥x←−t2max

+ (2j − 1)δ2vx−t2max
+
(
Bx
−(j−1)2δ2 −Bx

−t2max

)∥∥∥
+
∥∥∥y←−t2max

+ (2j − 1)δ2vy−t2max
+
(
Bx
−(j−1)2δ2 −Bx

t +By
t −By

−t2max

)∥∥∥ ≤ B

where the third relation is by adding and subtracting Bx
−(j−1)2δ2 −Bx

t and using triangle inequality.583

The fourth relation is by noticing that x←−t2max
+ (2j − 1)δ2vx−t2max

+
(
Bx
−(j−1)2δ2 −Bx

−t2max

)
=584

x←−(j−1)2δ2 and that y←−t2max
+(2j−1)δ2vy−t2max

+
(
Bx
−(j−1)2δ2 −Bx

t +By
t −By

−t2max

)
d
= y←−(j−1)2δ2 ,585

and then using our assumption in the theorem statement that all processes are supported on a ball of586

radius B/2.587

We now define a process st defined by dst = 2L1/tmindt+2dB1
t , initialized at s−t2max

= B ≥ r−t2max
.588

We can verify that, up to time τ , rt ≤ st with probability 1. Let τ ′ denote the first-hitting time of st589

to 0, then τ ≤ τ ′ with probability 1. Thus590

Pr(τ ≤ −t2min) ≥Pr(τ ′ ≤ −t2min) ≥ 2Q

(
B

2
√

t2max − t2min

)
· e−BL1/tmin−L2

1t
2
max/t

2
min

where we apply Lemma 6. The proof follows by noticing that, if τ ≤ −t2min, then xtmin = ytmin . This591

is because if τ ∈ [−k2δ2,−(k − 1)2δ2], then x←−(k−1)2δ2 = y←−(k−1)2δ2 , and thus x←t = y←t for all592

t ≥ −(k − 1)2δ2, in particular, at t = −t2min.593

594

Lemma 6. Consider the stochastic process595

drt = dB1
t + cdt.

Assume that r0 ≤ B/2. Let τ denote the hitting time for rt = 0. Then for any T ∈ R+,596

Pr(τ ≤ T ) ≥ 2Q

(
B

2
√
T

)
· e−ac− c2T

2 ,

where Q is the tail probability of a standard Gaussian defined in Definition 1.597

Proof. We will use he following facts in our proof:598

1. For x ∼ N (0, σ2), Pr(x > r) = 1
2

(
1− erf

(
r√
2σ

))
= 1

2erfc
(

r√
2σ

)
.599

2.
∫ T

0

a exp
(
− a2

2t

)
√
2πt3

dt = erfc
(

a√
2T

)
= 2Pr (N (0, T ) > a) = 2Q

(
a√
T

)
by definition of Q.600
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Let drt = dB1
t + cdt, with r0 = a. The density of the hitting time τ is given by601

p(τ = t) = f(a, c, t) =
a exp

(
− (a+ct)2

2t

)
√
2πt3

. (18)

(see e.g. [3]). From item 2 above,602 ∫ T

0

f(a, 0, t)dt = 2Q

(
a√
T

)
.

In the case of a general c ̸= 0, we can bound (a+ct)2

2t = a2

2t + ac+ c2t
2 . Consequently,603

f(a, c, t) ≥ f(a, 0, t) · e−ac− c2t
2 .

Therefore,604

Pr(τ ≤ T ) =

∫ T

0

f(a, c, t)dt ≥
∫ T

0

f(a, 0, t)dte−c = 2Q

(
B

2
√
T

)
· e−ac− c2T

2 .

605

A.5 TV Overlap606

Definition 1. Let x be sampled from standard normal distribution N (0, 1). We define the Gaussian607

tail probability Q(a) := Pr(x ≥ a).608

Lemma 7. We verify that for any two random vectors ξx ∼ N (0, σ2I) and ξy ∼ N (0, σ2I), each609

belonging to Rd, the total variation distance between x′ = x+ ξx and y′ = y + ξy is given by610

TV (x′, y′) = 1− 2Q (r) ≤ 1− 2r

r2 + 1

1√
2π

e−r
2/2,

where r = ∥x−y∥
2σ , and Q(r) = Pr(ξ ≥ r), when ξ ∼ N (0, 1).611

Proof. Let γ := x−y
∥x−y∥ . We decompose x′, y′ into the subspace/orthogonal space defined by γ:612

x′ = x⊥ + ξ⊥x + x∥ + ξ∥x

y′ = y⊥ + ξ⊥y + y∥ + ξ∥y

where we define613

x∥ := γγTx x⊥ := x− x∥

y∥ := γγT y y⊥ := y − y∥

ξ∥x := γγT ξx ξ⊥x := ξx − ξ∥x

ξ∥y := γγT ξy ξ⊥y := ξy − ξ∥y

We verify the independence ξ⊥x ⊥⊥ ξ
∥
x and ξ⊥y ⊥⊥ ξ

∥
y as they are orthogonal decompositions of the614

standard Gaussian. We will define a coupling between x′ and y′ by setting ξ⊥x = ξ⊥y . Under this615

coupling, we verify that616 (
x⊥ + ξ⊥x

)
−
(
y⊥ + ξ⊥y

)
= x− y − γγT (x− y) = 0

Therefore, x′ = y′ if and only if x∥ + ξ
∥
x = y∥ + ξ

∥
y . Next, we draw (a, b) from the optimal coupling617

between N (0, 1) and N (∥x−y∥σ , 1). We verify that x∥ + ξ
∥
x and y∥ + ξ

∥
y both lie in the span of618

γ. Thus it suffices to compare
〈
γ, x∥ + ξ

∥
x

〉
and

〈
γ, y∥ + ξ

∥
y

〉
. We verify that

〈
γ, x∥ + ξ

∥
x

〉
=619
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〈
γ, y∥

〉
+
〈
γ, x∥ − y∥

〉
+
〈
γ, ξ
∥
x

〉
∼ N (

〈
γ, y∥

〉
+∥x− y∥ , σ2)

d
=
〈
γ, y∥

〉
+σb. We similarly verify620

that
〈
γ, y∥ + ξ

∥
y

〉
=
〈
γ, y∥

〉
+
〈
γ, ξ
∥
y

〉
∼ N (

〈
γ, y∥

〉
, σ2)

d
=
〈
γ, y∥

〉
+ σa.621

Thus TV (x′, y′) = TV (σa, σb) = 1− 2Q
(
∥x−y∥

2σ

)
. The last inequality follows from622

Pr(N (0, 1) ≥ r) ≥ r

r2 + 1

1√
2π

e−r
2/2

623

B More on Restart Algorithm624

B.1 EDM Discretization Scheme625

[13] proposes a discretization scheme for ODE given the starting tmax and end time tmin. Denote the626

number of steps as N , then the EDM discretization scheme is:627

ti<N =

(
t
1
ρ
max +

i

N − 1
(t

1
ρ

min − t
1
ρ
max)

)ρ

with t0 = tmax and tN−1 = tmin. ρ is a hyperparameter that determines the extent to which steps near628

tmin are shortened. We adopt the value ρ = 7 suggested by [13] in all of our experiments. We apply629

the EDM scheme to creates a time discretization in each Restart interval [tmax, tmin] in the Restart630

backward process, as well as the main backward process between [0, T ] (by additionally setting631

tmin = 0.002 and tN = 0 as in [13]). It is important to note that tmin should be included within the632

list of time steps in the main backward process to seamlessly incorporate the Restart interval into the633

main backward process. We summarize the scheme as a function in Algorithm 1.634

Algorithm 1 EDM_Scheme(tmin, tmax, N, ρ = 7)

1: return
{
(t

1
ρ
max +

i
N−1 (t

1
ρ

min − t
1
ρ
max))ρ

}N−1

i=0

B.2 Restart Algorithm635

We present the pseudocode for the Restart algorithm in Algorithm 2. In this pseudocode, we describe636

a more general case that applies l-level Restarting strategy. For each Restart segment, the include637

the number of steps in the Restart backward process NRestart, the Restart interval [tmin, tmax] and the638

number of Restart iteration K. We further denote the number of steps in the main backward process639

as Nmain. We use the EDM discretization scheme (Algorithm 1) to construct time steps for the main640

backward process (t0 = T, tNmain = 0) as well as the Restart backward process, when given the641

starting/end time and the number of steps.642

Although Heun’s 2nd order method [2] (Algorithm 3) is the default ODE solver in the pseudocode, it643

can be substituted with other ODE solvers, such as Euler’s method or the DPM solver [16].644

The provided pseudocode in Algorithm 2 is tailored specifically for diffusion models [13]. To645

adapt Restart for other generative models like PFGM++ [28], we only need to modify the Gaussian646

perturbation kernel in the Restart forward process (line 10 in Algorithm 2) to the one used in647

PFGM++.648

C Experimental Details649

In this section, we discuss the configurations for different samplers in details. All the experiments are650

conducted on eight NVIDIA A100 GPUs.651

C.1 Configurations for Baselines652

We select Vanilla SDE [23], Improved SDE [13], Gonna Go Fast [12] as SDE baselines and653

the Heun’s 2nd order method [2] (Alg 3) as ODE baseline on standard benchmarks CIFAR-10 and654
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Algorithm 2 Restart sampling

1: Input: Score network sθ, time steps in main backward process ti∈{0,Nmain}, Restart parameters
{(NRestart,j ,Kj , tmin,j , tmax,j)}lj=1

2: Round tmin,j∈{1,l} to its nearest neighbor in ti∈{0,Nmain}
3: Sample x0 ∼ N (0, T 2I)
4: for i = 0 . . . Nmain − 1 do ▷ Main backward process
5: xti+1

= OneStep_Heun(sθ, ti, ti+1) ▷ Running single step ODE
6: if ∃j ∈ {1, . . . , l}, ti+1 = tmin,j then
7: tmin = tmin,j , tmax = tmax,j ,K = Kj , NRestart = NRestart,j
8: x0

tmin
= xti+1

9: for k = 0 . . .K − 1 do ▷ Restart for K iterations
10: εtmin→tmax ∼ N (0, (t2max − t2min)I)

11: xk+1
tmax

= xk
tmin

+ εtmin→tmax ▷ Restart forward process
12: {t̄m}NRestart−1

m=0 = EDM_Scheme(tmin, tmax, NRestart)
13: for m = 0 . . . NRestart − 1 do ▷ Restart backward process
14: xk+1

t̄m+1
= OneStep_Heun(sθ, t̄m, t̄m+1)

15: end for
16: end for
17: end if
18: end for
19: return xtNmain

Algorithm 3 OneStep_Heun(sθ, xti , ti, ti+1)

1: di = tisθ(xti , ti)
2: xti+1 = xti − (ti+1 − ti)di
3: if ti+1 ̸= 0 then
4: d′i = ti+1sθ(xti+1

, ti+1)

5: xti+1
= xti − (ti+1 − ti)(

1
2di +

1
2d
′
i)

6: end if
7: return xti+1

ImageNet 64×64. We choose DDIM [22], Heun’s 2nd order method, and DDPM [9] for comparison655

on Stable Diffusion model.656

Vanilla SDE denotes the reverse-time SDE sampler in [23]. For Improved SDE, we use the recom-657

mended dataset-specific hyperparameters (e.g., Smax, Smin, Schurn) in Table 5 of the EDM paper [13].658

They obtained these hyperparameters by grid search. Gonna Go Fast [12] applied an adaptive step659

size technique based on Vanilla SDE and we directly report the FID scores listed in [12] for Gonna660

Go Fast on CIFAR-10 (VP). For fair comparison, we use the EDM discretization scheme [13] for661

Vanilla SDE, Improved SDE, Heun as well as Restart.662

We borrow the hyperparameters such as discretization scheme or initial noise scale on Stable Diffusion663

models in the diffuser 2 code repository. We directly use the DDIM and DDPM samplers implemented664

in the repo. We apply the same set of hyperparameters to Heun and Restart.665

C.2 Configurations for Restart666

We report the configurations for Restart for different models and NFE on standard benchmarks667

CIFAR-10 and ImageNet 64 × 64. The hyperparameters of Restart include the number of steps668

in the main backward process Nmain, the number of steps in the Restart backward process NRestart,669

the Restart interval [tmin, tmax] and the number of Restart iteration K. In Table 3 (CIFAR-10, VP)670

we provide the quintuplet (Nmain, NRestart, tmin, tmax,K) for each experiment. Since we apply the671

multi-level Restart strategy for ImageNet 64× 64, we provide Nmain as well as a list of quadruple672

{(NRestart,i,Ki, tmin,i, tmax,i)}li=1 (l is the number of Restart interval depending on experiments) in673

Table 5. In order to integrate the Restart time interval to the main backward process, we round tmin,i674

2https://github.com/huggingface/diffusers
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to its nearest neighbor in the time steps of main backward process, as shown in line 2 of Algorithm 2.675

We apply Heun method for both main/backward process. The formula for NFE calculation is676

NFE = 2 ·Nmain − 1︸ ︷︷ ︸
main backward process

+
∑l

i=1 Ki︸︷︷︸
number of repetitions

· (2 · (NRestart,i − 1))︸ ︷︷ ︸
per iteration in ith Restart interval

in this case. Inspired by677

[13], we inflate the additive noise in the Restart forward process by multiplying Snoise = 1.003 on678

ImageNet 64× 64, to counteract the over-denoising tendency of neural networks. We also observe679

that setting γ = 0.05 in Algorithm 2 of EDM [13] would sligtly boost the Restart performance on680

ImageNet 64× 64 when t ∈ [0.01, 1].681

We further include the configurations for Restart on Stable Diffusion models in Table 10, with a682

varying guidance weight w. Similar to ImageNet 64× 64, we use multi-level Restart with a fixed683

number of steps Nmain = 30 in the main backward process. We utilize the Euler method for the684

main backward process and the Heun method for the Restart backward process, as our empirical685

observations indicate that the Heun method doesn’t yield significant improvements over the Euler686

method, yet necessitates double the steps. The number of steps equals to Nmain +
∑l

i=1 Ki · (2 ·687

(NRestart,i − 1)) in this case. We set the total number of steps to 66, including main backward process688

and Restart backward process.689

Given the prohibitively large search space for each Restart quadruple, a comprehensive enumeration690

of all possibilities is impractical due to computational limitations. Instead, we adjust the configuration691

manually, guided by the heuristic that weaker/smaller models or more challenging tasks necessitate692

a stronger Restart strength (e.g., larger K, wider Restart interval, etc). On average, we select the693

best configuration from 5 sets for each experiment; these few trials have empirically outperformed694

previous SDE/ODE samplers. We believe that developing a systematic approach for determining695

Restart configurations could be of significant value in the future.696

C.3 Pre-trained Models697

For CIFAR-10 dataset, we use the pre-trained VP and EDM models from the EDM repository 3, and698

PFGM++ (D = 2048) model from the PFGM++ repository 4. For ImageNet 64× 64, we borrow the699

pre-trained EDM model from EDM repository as well.700

C.4 Classifier-free Guidance701

We follow the convention in [20], where each step in classifier-free guidance is as follows:702

s̃θ(x, c, t) = wsθ(x, c, t) + (1− w)sθ(x, t)

where c is the conditions, andsθ(x, c, t)/sθ(x, t) is the conditional/unconditional models, sharing703

parameters. Increasing w would strength the effect of guidance, usually leading to a better text-image704

alignment [20].705

C.5 More on the Synthetic Experiment706

C.5.1 Discrete Dataset707

We generate the underlying discrete dataset S with |S| = 2000 as follows. Firstly, we sample 2000708

points, denoted as S1, from a mixture of two Gaussians in R4. Next, we project these points onto R20.709

To ensure a variance of 1 on each dimension, we scale the coordinates accordingly. This setup aims710

to simulate data points that primarily reside on a lower-dimensional manifold with multiple modes.711

The specific details are as follows: S1 ∼ 0.3N(a, s2I) + 0.7(−a, s2I), where a = (3, 3, 3, 3) ⊂ R4712

and s = 1. Then, we randomly select a projection matrix P ∈ R20×4, where each entry is drawn713

from N(0, 1), and compute S2 = PS1. Finally, we scale each coordinate by a constant factor to714

ensure a variance of 1.715

3https://github.com/NVlabs/edm
4https://github.com/Newbeeer/pfgmpp
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Figure 7: Comparison of additional sampling error versus (a) contracted error (plotting the Pareto
frontier) and (b) total error (using a scatter plot). (c) Pareto frontier of NFE versus total error.

C.5.2 Model Architecture716

We employ a common MLP architecture with a latent size of 64 to learn the score function. The717

training method is adapted from [13], which includes the preconditioning technique and denoising718

score-matching objective [25].719

C.5.3 Varying Hyperparameters720

To achieve the best trade-off between contracted error and additional sampling error, and optimize721

the NFE versus FID (Fréchet Inception Distance) performance, we explore various hyperparameters.722

[13] shows that the Vanilla SDE can be endowed with additional flexibility by varying the coefficient723

β(t) (Eq.(6) in [13]). Hence, regarding SDE, we consider NFE values from {20, 40, 80, 160, 320},724

and multiply the original β(t) = σ̇(t)/σ(t) [13] with values from {0, 0.25, 0.5, 1, 1.5, 2, 4, 8}. It725

is important to note that larger NFE values do not lead to further performance improvements. For726

restarts, we tried the following two settings: first we set the number of steps in Restart backward727

process to 40 and vary the number of Restart iterations K in the range {0, 5, 10, 15, 20, 25, 30, 35}.728

We also conduct a grid search with the number of Restart iterations K ranging from 5 to 25 and the729

number of steps in Restart backward process varying from 2 to 7. For ODE, we experiment with the730

number of steps set to {20, 40, 80, 160, 320, 640}.731

Additionally, we conduct an experiment for Improved SDE in EDM. We try different values of Schurn732

in the range of {0, 1, 2, 4, 8, 16, 32, 48, 64}. We also perform a grid search where the number of steps733

ranged from 20 to 320 and Schurn takes values of [0.2× steps, 0.5× steps, 20, 60]. The plot combines734

the results from SDE and is displayed in Figure 7.735

To mitigate the impact of randomness, we collect the data by averaging the results from five runs with736

the same hyperparameters. To compute the Wasserstein distance between two discrete distributions,737

we use minimum weight matching.738

C.5.4 Plotting the Pareto frontier739

We generate the Pareto frontier plots as follows. For the additional sampling error versus contracted740

error plot, we first sort all the data points based on their additional sampling error and then connect741

the data points that represent prefix minimums of the contracted error. Similarly, for the NFE versus742

FID plot, we sort the data points based on their NFE values and connect the points where the FID is a743

prefix minimum.744

D Extra Experimental Results745

D.1 Numerical Results746

In this section, we provide the corresponding numerical reuslts of Fig. 3(a) and Fig. 3(b), in Ta-747

ble 2, 3 (CIFAR-10 VP) and Table 4, 5 (ImageNet 64 × 64 EDM), respectively. We also include748

the performance of Vanilla SDE in those tables. For the evaluation, we compute the Fréchet dis-749

tance between 50000 generated samples and the pre-computed statistics of CIFAR-10 and ImageNet750

64× 64. We follow the evaluation protocol in EDM [13] that calculates each FID scores three times751

with different seeds and report the minimum.752
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We also provide the numerical results on the Stable Diffusion model [19], with a classifier guidance753

weight w = 2, 3, 5, 8 in Table 6, 7, 8, 9. As in [17], we report the zero-shot FID score on 5K random754

prompts sampled from the COCO validation set. We evaluate CLIP score [6] with the open-sourced755

ViT-g/14 [11], Aesthetic score by the more recent LAION-Aesthetics Predictor V2 5. We average the756

CLIP and Aesthetic scores over 5K generated samples. The number of function evaluations is two757

times the sampling steps in Stable Diffusion model, since each sampling step involves the evaluation758

of the conditional and unconditional model.759

Table 2: CIFAR-10 sample quality (FID score) and number of function evaluations (NFE) on VP [23]
for baselines

NFE FID

ODE (Heun) [13] 1023 2.90
511 2.90
255 2.90
127 2.90
63 2.89
35 2.97

Vanilla SDE [23] 1024 2.79
512 4.01
256 4.79
128 12.57

Gonna Go Fast [12] 1000 2.55
329 2.70
274 2.74
179 2.59
147 2.95
49 72.29

Improved SDE [13] 1023 2.35
511 2.37
255 2.40
127 2.58
63 2.88
35 3.45

Table 3: CIFAR-10 sample quality (FID score), number of function evaluations (NFE) and configura-
tions on VP [23] for Restart

NFE FID Configuration
(Nmain, NRestart,i,Ki, tmin,i, tmax,i)

519 2.11 (20, 9, 30, 0.06, 0.20)
115 2.21 (18, 3, 20, 0.06, 0.30)
75 2.27 (18, 3, 10, 0.06, 0.30)
55 2.45 (18, 3, 5, 0.06, 0.30)
43 2.70 (18, 3, 2, 0.06, 0.30)

5https://github.com/christophschuhmann/improved-aesthetic-predictor
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Table 4: ImageNet 64× 64 sample quality (FID score) and number of function evaluations (NFE) on
EDM [13] for baselines

NFE FID (50k)

ODE (Heun) [13] 1023 2.24
511 2.24
255 2.24
127 2.25
63 2.30
35 2.46

Vanilla SDE [23] 1024 1.89
512 3.38
256 11.91
128 59.71

Improved SDE [13] 1023 1.40
511 1.45
255 1.50
127 1.75
63 2.24
35 2.97

Table 5: ImageNet 64× 64 sample quality (FID score), number of function evaluations (NFE) and
configurations on EDM [13] for Restart

NFE FID (50k) Configuration
Nmain, {(NRestart,i,Ki, tmin,i, tmax,i)}li=1

623 1.36
36, {(10, 3, 19.35, 40.79),(10, 3, 1.09, 1.92),

(7, 6, 0.59, 1.09), (7, 6, 0.30, 0.59),
(7, 25, 0.06, 0.30)}

535 1.39
36, {(6, 1, 19.35, 40.79),(6, 1, 1.09, 1.92),

(7, 6, 0.59, 1.09), (7, 6, 0.30, 0.59),
(7, 25, 0.06, 0.30)}

385 1.41
36, {(3, 1, 19.35, 40.79),(6, 1, 1.09, 1.92),

(6, 5, 0.59, 1.09), (6, 5, 0.30, 0.59),
(6, 20, 0.06, 0.30)}

203 1.46
36, {(4, 1, 19.35, 40.79),(4, 1, 1.09, 1.92),

(4, 5, 0.59, 1.09), (4, 5, 0.30, 0.59),
(6, 6, 0.06, 0.30)}

165 1.51
18, {(3, 1, 19.35, 40.79),(4, 1, 1.09, 1.92),

(4, 5, 0.59, 1.09), (4, 5, 0.30, 0.59),
(4, 10, 0.06, 0.30)}

99 1.71
18, {(3, 1, 19.35, 40.79),(4, 1, 1.09, 1.92),

(4, 4, 0.59, 1.09), (4, 1, 0.30, 0.59),
(4, 4, 0.06, 0.30)}

67 1.95 18, {(5, 1, 19.35, 40.79),(5, 1, 1.09, 1.92),
(5, 1, 0.59, 1.09), (5, 1, 0.06, 0.30)}

39 2.38 14, {(3, 1, 19.35, 40.79),
(3, 1, 1.09, 1.92), (3, 1, 0.06, 0.30)}
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Table 6: Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight w = 2

Steps FID (5k) ↓ CLIP score ↑ Aesthetic score ↑
DDIM [22] 50 16.08 0.2905 5.13

100 15.35 0.2920 5.15

Heun 51 18.80 0.2865 5.14
101 18.21 0.2871 5.15

DDPM [9] 100 13.53 0.3012 5.20
200 13.22 0.2999 5.19

Restart 66 13.16 0.2987 5.19

Table 7: Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight w = 3

Steps FID (5k) ↓ CLIP score ↑ Aesthetic score ↑
DDIM [22] 50 14.28 0.3056 5.22

100 14.30 0.3056 5.22

Heun 51 15.63 0.3022 5.20
101 15.40 0.3026 5.21

DDPM [9] 100 15.72 0.3129 5.28
200 15.13 0.3131 5.28

Restart 66 14.48 0.3079 5.25

Table 8: Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight w = 5

Steps FID (5k) ↓ CLIP score ↑ Aesthetic score ↑
DDIM [22] 50 16.60 0.3154 5.31

100 16.80 0.3157 5.31

Heun 51 16.26 0.3135 5.28
101 16.38 0.3136 5.29

DDPM [9] 100 19.62 0.3197 5.36
200 18.88 0.3200 5.35

Restart 66 16.21 0.3179 5.33

Table 9: Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight w = 8

Steps FID (5k) ↓ CLIP score ↑ Aesthetic score ↑
DDIM [22] 50 19.83 0.3206 5.37

100 19.82 0.3200 5.37

Heun 51 18.44 0.3186 5.35
101 18.72 0.3185 5.36

DDPM [9] 100 22.58 0.3223 5.39
200 21.67 0.3212 5.38

Restart 47 18.40 0.3228 5.41

D.2 Study on Adjusting tmin760

We also investigate the impact of varying tmin when tmax = tmin +0.3. Fig. ?? reveals that FID scores761

achieve a minimum at a tmin close to 0 on VP, indicating higher accumulated errors at the end of762
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Table 10: Restart (Steps=66) configurations on Stable Diffusion v1.5

w
Configuration

Nmain, {(NRestart,i,Ki, tmin,i, tmax,i)}li=1

2 30, {(5, 2, 1, 9), (5, 2, 5, 10)}
3 30, {(2, 10, 0.1, 3)}
5 30, {(2, 10, 0.1, 2)}
8 30, {(2, 10, 0.1, 2)}
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Figure 8: FID score versus (a) CLIP ViT-g/14 score and (b) Aesthetic score for text-to-image
generation at 512× 512 resolution, using Stable Diffusion v1.5 with varying classifier-free guidance
weight w = 2, 3, 5, 8.

sampling and poor neural estimations at small t. Note that the Restart interval 0.3 is about twice763

the length of the one in Table 1 and Restart does not outperform the ODE baseline on EDM. This764

suggests that, as a rule of thumb, we should apply greater Restart strength (e.g., larger K, tmax − tmin)765

for weaker or smaller architectures and vice versa.766

E Extended Generated Images767

In this section, we provide extended generated images by Restart, DDIM, Heun and DDPM on768

text-to-image Stable Diffusion v1.5 model [19]. We showcase the samples of four sets of text prompts769

in Fig. 10, Fig. 11, Fig. 12, Fig. 13, with a classifier-guidance weight w = 8.770
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Figure 9: Adjusting tmin in Restart on VP/EDM
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(a) Restart (Steps=66) (b) DDIM (Steps=100)

(c) Heun (Steps=101) (d) DDPM (Steps=100)

Figure 10: Generated images with text prompt="A photo of an astronaut riding a horse on mars" and
w = 8.
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(a) Restart (Steps=66) (b) DDIM (Steps=100)

(c) Heun (Steps=101) (d) DDPM (Steps=100)

Figure 11: Generated images with text prompt="A raccoon playing table tennis" and w = 8.

F Broader Impact771

The field of deep generative models incorporating differential equations is rapidly evolving and holds772

significant potential to shape our society. Nowadays, a multitude of photo-realistic images generated773

by text-to-image Stable Diffusion models populate the internet. Our work introduces Restart, a novel774

sampling algorithm that outperforms previous samplers for diffusion models and PFGM++. With775

applications extending across diverse areas, the Restart sampling algorithm is especially suitable776

for generation tasks demanding high quality and rapid speed. Yet, it is crucial to recognize that777

the utilization of such algorithms can yield both positive and negative repercussions, contingent on778

their specific applications. On the one hand, Restart sampling can facilitate the generation of highly779

realistic images and audio samples, potentially advancing sectors such as entertainment, advertising,780

and education. On the other hand, it could also be misused in deepfake technology, potentially leading781

to social scams and misinformation. In light of these potential risks, further research is required to782

develop robustness guarantees for generative models, ensuring their use aligns with ethical guidelines783

and societal interests.784
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(a) Restart (Steps=66) (b) DDIM (Steps=100)

(c) Heun (Steps=101) (d) DDPM (Steps=100)

Figure 12: Generated images with text prompt="Intricate origami of a fox in a snowy forest" and
w = 8.
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(a) Restart (Steps=66) (b) DDIM (Steps=100)

(c) Heun (Steps=101) (d) DDPM (Steps=100)

Figure 13: Generated images with text prompt="A transparent sculpture of a duck made out of glass"
and w = 8.
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