
Appendix453

A Proofs of Main Theoretical Results454

In this section, we provide proofs of our main results. We define below some crucial notations455

which we will use throughout. We use ODE(. . . ) to denote the backwards ODE under exact score456

r log pt(x). More specifically, given any x 2 Rd and s > r > 0, let xt denote the solution to the457

following ODE:458

dxt = �tr log pt(xt)dt. (5)

ODE(x, s ! r) is defined as "the value of xr when initialized at xs = x". It will also be useful to459

consider a "time-discretized ODE with drift ts✓(x, t)": let � denote the discretization step size and let460

k denote any integer. Let � denote a step size, let xt denote the solution to461

dxt = �ts✓(xk�, k�)dt, (6)

where for any t, k is the unique integer such that t 2 ((k � 1)�, k�]. We verify that the dynamics of462

Eq. (6) is equivalent to the following discrete-time dynamics for t = k�, k 2 Z:463

x(k�1)� = xk� �
1

2

⇣
((k � 1)�)2 � (k�)2

⌘
s✓(xk�, k�).

We similarly denote the value of xr when initialized at xs = x as ODE✓(x, s ! r). Analogously, we464

let SDE(x, s ! r) and SDE✓(x, s ! r) denote solutions to465

dyt = �2tr log pt(yt)dt+
p
2tdBt

dyt = �2ts✓(yt, t)dt+
p
2tdBt

respectively. Finally, we will define the Restart✓ process as follows:466

(Restart✓ forward process) x
i+1
tmax

= x
i
tmin

+ "
i
tmin!tmax

(Restart✓ backward process) x
i+1
tmin

= ODE✓(x
i+1
tmax

, tmax ! tmin), (7)

where "
i
tmin!tmax

⇠ N
�
0,
�
t
2
max � t

2
min
�
I
�
. We use Restart✓(x,K) to denote x

K
tmin

in the above467

processes, initialized at x0
tmin

= x. In various theorems, we will refer to a function Q(r) : R+ !468

[0, 1/2), defined as the Gaussian tail probability Q(r) = Pr(a � r) for a ⇠ N (0, 1).469

A.1 Main Result470

Theorem 3. [Formal version of Theorem 1] Let tmax be the initial noise level. Let the initial random471

variables xtmax = ytmax
, and472

xtmin = ODE✓(xtmax , tmax ! tmin)

ytmin
= SDE✓(ytmax

, tmax ! tmin),

Let pt denote the true population distribution at noise level t. Let pODE✓
t , p

SDE✓
t denote the distributions473

for xt, yt respectively. Assume that for all x, y, s, t, s✓(x, t) satisfies kts✓(x, t)� ts✓(x, s)k 474

L0|s � t|, kts✓(x, t)k  L1, kts✓(x, t)� ts✓(y, t)k  L2 kx� yk, and the approximation error475

kts✓(x, t)� tr log pt(x)k  ✏approx. Assume in addition that 8t 2 [tmin, tmax], kxtk < B/2 for any476

xt in the support of pt, pODE✓
t or pSDE✓

t , and K  C
L2(tmax�tmin)

for some universal constant C. Then477

W1(p
ODE✓
tmin

, ptmin)  B · TV
⇣
p

ODE✓
tmax

, ptmax

⌘

+ e
L2(tmax�tmin) · (�(L2L1 + L0) + ✏approx) (tmax � tmin) (8)

W1(p
SDE✓
tmin

, ptmin)  B ·
⇣
1� �e

�BL1/tmin�L2
1t

2
max/t

2
min

⌘
TV (pSDE✓

tmax
, ptmax)

+ e
2L2(tmax�tmin)

⇣
✏approx + �L0 + L2

⇣
�L1 +

p
2�dtmax

⌘⌘
(tmax � tmin) (9)

where � := 2Q

✓
B

2
p

t2max�t2min

◆
.478
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Proof. Let us define xtmax ⇠ ptmax , and let xtmin = ODE(xtmax , tmax ! tmin). We verify that xtmin479

has density ptmin . Let us also define x̂tmin = ODE✓(xtmax , tmax ! tmin). We would like to bound480

the Wasserstein distance between x̄tmin and xtmin (i.e., pODE✓
tmin

and ptmin ), by the following triangular481

inequality:482

W1(x̄tmin , xtmin)  W1(x̄tmin , x̂tmin) +W1(x̂tmin , xtmin) (10)
By Lemma 2, we know that483

kx̂tmin � xtmink  e
(tmax�tmin)L2 (�(L2L1 + L0) + ✏approx) (tmax � tmin) ,

where we use the fact that kx̂tmax � xtmaxk = 0. Thus we immediately have484

W1(x̂tmin , xtmin)  e
(tmax�tmin)L2 (�(L2L1 + L0) + ✏approx) (tmax � tmin) (11)

On the other hand,485

W1(x̂tmin , xtmin) B · TV (x̂tmin , xtmin)

B · TV (x̂tmax , xtmax) (12)
where the last equality is due to the data-processing inequality. Combining Eq. (11) , Eq. (12) and the486

triangular inequality Eq. (10), we arrive at the upper bound for ODE (Eq. (8)). The upper bound for487

SDE (Eq. (9)) shares a similar proof approach. First, let ytmax ⇠ ptmax . Let ŷtmin = SDE✓(ytmax , tmax !488

tmin). By Lemma 5,489

TV
�
ŷtmin , ytmin

�

 
1� 2Q

 
B

2
p
t2max � t2min

!
· e�BL1/tmin�L2

1t
2
max/t

2
min

!
· TV

�
ŷtmax , ytmax

�

On the other hand, by Lemma 4,490

E [kŷtmin � ytmink] e
2L2(tmax�tmin)

⇣
✏approx + �L0 + L2

⇣
�L1 +

p
2�dtmax

⌘⌘
(tmax � tmin) .

The SDE triangular upper bound on W1(ȳtmin , ytmin) follows by multiplying the first inequality by B (to491

bound W1(ȳtmin , ŷtmin)) and then adding the second inequality (to bound W1(ytmin , ŷtmin)). Notice492

that by definition, TV
�
ŷtmax , ytmax

�
= TV

�
ytmax , ytmax

�
. Finally, because of the assumption that493

K  C
L2(tmax�tmin)

for some universal constant, we summarize the second term in the Eq. (8) and494

Eq. (9) into the big O in the informal version Theorem 1.495

Theorem 4. [Formal version of Theorem 2] Consider the same setting as Theorem 3. Let pRestart✓,i
tmin

496

denote the distributions after ith Restart iteration, i.e., the distribution of xi
tmin

= Restart✓(x0
tmin

, i).497

Given initial x0
tmax

⇠ p
Restart,0
tmax

, let x0
tmin

= ODE✓(x
0
tmax

, tmax ! tmin). Then498

W1(p
Restart✓,K
tmin

, ptmin) B · (1� �)K TV (pRestart,0
tmax

, ptmax)| {z }
upper bound on contracted error

+ e
(K+1)L2(tmax�tmin)(K + 1) (�(L2L1 + L0) + ✏approx) (tmax � tmin)| {z }

upper bound on additional sampling error
(13)

where � = 2Q

✓
B

2
p

t2max�t2min

◆
.499

Proof. Let x0
tmax

⇠ ptmax . Let xK
tmin

= Restart(x0
tmin

,K). We verify that xK
tmin

has density ptmin . Let us500

also define x̂
0
tmin

= ODE✓(x0
tmax

, tmax ! tmin) and x̂
K
tmin

= Restart✓(x̂0
tmin

,K).501

By Lemma 1,502

TV
�
x
K
tmin

, x̂
K
tmin

�

 
1� 2Q

 
B

2
p
t2max � t2min

!!K

TV
�
x
0
tmin

, x̂
0
tmin

�


 
1� 2Q

 
B

2
p
t2max � t2min

!!K

TV
�
x
0
tmax

, x̂
0
tmax

�

=

 
1� 2Q

 
B

2
p
t2max � t2min

!!K

TV
�
x
0
tmax

, x
0
tmax

�
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The second inequality holds by data processing inequality. The above can be used to bound the503

1-Wasserstein distance as follows:504

W1

�
x
K
tmin

, x̂
K
tmin

�
 B · TV

�
x
K
tmin

, x̂
K
tmin

�

 
1� 2Q

 
B

2
p

t2max � t2min

!!K

TV
�
x
0
tmax

, x
0
tmax

�

(14)

On the other hand, using Lemma 3,505

W1

�
x
K
tmin

, x̂
K
tmin

�

��xK

tmin
� x̂

K
tmin

��

e
(K+1)L2(tmax�tmin)(K + 1) (�(L2L1 + L0) + ✏approx) (tmax � tmin) (15)

We arrive at the result by combining the two bounds above (Eq. (14), Eq. (15)) with the following506

triangular inequality,507

W1(x̄
K
tmin

, x
K
tmin

)  W1(x̄
K
tmin

, x̂
K
tmin

) +W1(x̂
K
tmin

, x
K
tmin

)

508

A.2 Mixing under Restart with exact ODE509

Lemma 1. Consider the same setup as Theorem 4. Consider the Restart✓ process defined in510

equation 7. Let511

x
i
tmin

= Restart✓(x0
tmin

, i)

y
i
tmin

= Restart✓(y0tmin
, i).

Let pRestart✓(i)
t and q

Restart✓(i)
t denote the densities of xi

t and y
i
t respectively. Then512

TV

⇣
p

Restart✓(K)
tmin

, q
Restart✓(K)
tmin

⌘
 (1� �)K TV

⇣
p

Restart✓(0)
tmin

, q
Restart✓(0)
tmin

⌘
,

where � = 2Q

✓
B

2
p

t2max�t2min

◆
.513

Proof. Conditioned on x
i
tmin

, y
i
tmin

, let x
i+1
tmax

= x
i
tmin

+
p
t2max � t2min⇠

x
i and y

i+1
tmax

= y
i
tmin

+514 p
t2max � t2min⇠

y
i . We now define a coupling between x

i+1
tmin

and y
i+1
tmin

by specifying the joint dis-515

tribution over ⇠xi and ⇠
y
i .516

If xi
tmin

= y
i
tmin

, let ⇠xi = ⇠
y
i , so that xi+1

tmin
= y

i+1
tmin

. On the other hand, if xi
tmin

6= y
i
tmin

, let xi+1
tmax

and y
i+1
tmax

517

be coupled as described in the proof of Lemma 7, with x
0 = x

i+1
tmax

, y
0 = y

i+1
tmax

,� =
p

t2max � t2min.518

Under this coupling, we verify that,519

E
⇥ �

x
i+1
tmin

6= y
i+1
tmin

 ⇤

E
⇥ �

x
i+1
tmax

6= y
i+1
tmax

 ⇤

E
" 

1� 2Q

 ��xi
tmin

� y
i
tmin

��

2
p
t2max � t2min

!!
�
x
i
tmin

6= y
i
tmin

 
#


 
1� 2Q

 
B

2
p
t2max � t2min

!!
E
⇥ �

x
i
tmin

6= y
i
tmin

 ⇤
.

Applying the above recursively,520

E
⇥ �

x
K
tmin

6= y
K
tmin

 ⇤

 
1� 2Q

 
B

2
p

t2max � t2min

!!K

E
⇥ �

x
0
tmin

6= y
0
tmin

 ⇤
.

The conclusion follows by noticing that TV

⇣
p

Restart✓(K)
tmin

, q
Restart✓(K)
t

⌘
 Pr

�
x
K
tmin

6= y
K
tmin

�
=521

E
⇥ �

x
K
tmin

6= y
K
tmin

 ⇤
, and by selecting the initial coupling so that Pr

�
x
0
tmin

6= y
0
tmin

�
=522

TV

⇣
p

Restart✓(0)
tmin

, q
Restart✓(0)
tmin

⌘
.523
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A.3 W1 discretization bound524

Lemma 2 (Discretization bound for ODE). Let xtmin = ODE (xtmax , tmax ! tmin) and let xtmin =525

ODE✓ (xtmax , tmax ! tmin). Assume that for all x, y, s, t, s✓(x, t) satisfies kts✓(x, t)� ts✓(x, s)k 526

L0|s� t|, kts✓(x, t)k  L1 and kts✓(x, t)� ts✓(y, t)k  L2 kx� yk. Then527

kxtmin � xtmink  e
(tmax�tmin)L2 (kxtmax � xtmaxk+ (�(L2L1 + L0) + ✏approx) (tmax � tmin))

Proof. Consider some fixed arbitrary k, and recall that � is the step size. Recall that by definition of528

ODE and ODE✓, for t 2 ((k � 1)�, k�],529

dxt = �tr log pt(xt)dt

dxt = �ts✓(xk�, k�)dt.

For t 2 [tmin, tmax], let us define a time-reversed process x t := x�t. Let v(x, t) := r log p�t(x).530

Then for t 2 [�tmax,�tmin]531

dx
 
t = tv(x t , t)ds.

Similarly, define x
 
t := x�t and v(x, t) := s✓ (x,�t). It follows that532

dx
 
t = tv(x k�, k�)ds,

where k is the unique (negative) integer satisfying t 2 [k�, (k + 1)�). Following these definitions,533

d

dt
kx t � x

 
t k

ktv(x t , t)� tv(x t , t)k
+ ktv(x t , t)� tv(x t , t)k
+ ktv(x t , t)� tv(x t , k�)k
+ ktv(x t , k�)� tv(x k�, k�)k

✏approx + L2 kx t � x
 
t k+ �L0 + L2 kx t � x

 
k�k

✏approx + L2 kx t � x
 
t k+ �L0 + �L2L1.

Applying Gronwall’s Lemma over the interval t 2 [�tmax,�tmin],534

kxtmin � xtmink
=
��x �tmin

� x
 
�tmin

��

e
L2(tmax�tmin)

���x �tmax
� x
 
�tmax

��+ (✏approx + �L0 + �L2L1) (tmax � tmin)
�

=e
L2(tmax�tmin) (kxtmax � xtmaxk+ (✏approx + �L0 + �L2L1) (tmax � tmin)) .

535

Lemma 3. Given initial x
0
tmax

, let x
0
tmin

= ODE
�
x
0
tmax

, tmax ! tmin
�
, and let x̂

0
tmin

=536

ODE✓

�
x
0
tmax

, tmax ! tmin
�
. We further denote the variables after K Restart iterations as x

K
tmin

=537

Restart(x0
tmin

,K) and x̂
K
tmin

= Restart✓(x̂0
tmin

,K), with true field and learned field respectively. Then538

there exists a coupling between x
K
tmin

and x̂
K
tmin

such that539

��xK
tmin

� x̂
K
tmin

��  e
(K+1)L2(tmax�tmin)(K + 1) (�(L2L1 + L0) + ✏approx) (tmax � tmin) .

Proof. We will couple xi
tmin

and x̂
i
tmin

by using the same noise "itmin!tmax
in the Restart forward process540

for i = 0 . . .K � 1 (see Eq. (7)). For any i, let us also define yi,jtmin
:= Restart✓

�
x
i
tmin

, j � i
�
, and this541

process uses the same noise "
i
tmin!tmax

as previous ones. From this definition, yK,K
tmin

= x
K
tmin

. We can542

thus bound543

��xK
tmin

, x̂
K
tmin

�� 
���y0,Ktmin

� x̂
K
tmin

���+
K�1X

i=0

���yi,Ktmin
� y

i+1,K
tmin

��� (16)
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Using the assumption that ts✓(·, t) is L2 Lipschitz,544

���y0,i+1
tmin

� x̂
i+1
tmin

���

=
���ODE✓(y

0,i
tmax

, tmax ! tmin)� ODE✓(x̂
i
tmax

, tmax ! tmin)
���

e
L2(tmax�tmin)

���y0,itmax
� x̂

i
tmax

���

=e
L2(tmax�tmin)

���y0,itmin
� x̂

i
tmin

��� ,

where the last equality is because we add the same additive Gaussian noise "itmin!tmax
to y

0,i
tmin

and x̂
i
tmin

545

in the Restart forward process. Applying the above recursively, we get546
���y0,Ktmin

� x̂
K
tmin

��� e
KL2(tmax�tmin)

���y0,0tmin
� x̂

0
tmin

���

e
KL2(tmax�tmin)

��x0
tmin

� x̂
0
tmin

��

e
(K+1)L2(tmax�tmin) (�(L2L1 + L0) + ✏approx) (tmax � tmin) , (17)

where the last line follows by Lemma 2 when setting xtmax = x̄tmax . We will now bound547 ���yi,Ktmin
� y

i+1,K
tmin

��� for some i  K. It follows from definition that548

y
i,i+1
tmin

= ODE✓

�
x
i
tmax

, tmax ! tmin
�

y
i+1,i+1
tmin

= x
i+1
tmin

= ODE
�
x
i
tmax

, tmax ! tmin
�
.

By Lemma 2,549
���yi,i+1

tmin
� y

i+1,i+1
tmin

���  e
L2(tmax�tmin) (�(L2L1 + L0) + ✏approx) (tmax � tmin)

For the remaining steps from i+ 2 . . .K, both y
i,· and y

i+1,· evolve with ODE✓ in each step. Again550

using the assumption that ts✓(·, t) is L2 Lipschitz,551

���yi,Ktmin
� y

i+1,K
tmin

���  e
(K�i)L2(tmax�tmin) (�(L2L1 + L0) + ✏approx) (tmax � tmin)

Summing the above for i = 0...K � 1, and combining with Eq. (16) and Eq. (17) gives552

��xK
tmin

� x̂
K
tmin

��  e
(K+1)L2(tmax�tmin)(K + 1) (�(L2L1 + L0) + ✏approx) (tmax � tmin) .

553

Lemma 4. Consider the same setup as Theorem 3. Let xtmin = SDE (xtmax , tmax ! tmin) and let554

xtmin = SDE (xtmax , tmax ! tmin). Then there exists a coupling between xt and xt such that555

E [kxtmin � xtmink]  e
2L2(tmax�tmin)E [kxtmax � xtmaxk]

+ e
2L2(tmax�tmin)

⇣
✏approx + �L0 + L2

⇣
�L1 +

p
2�dtmax

⌘⌘
(tmax � tmin)

Proof. Consider some fixed arbitrary k, and recall that � is the stepsize. By definition of SDE and556

SDE✓, for t 2 ((k � 1)�, k�],557

dxt = �2tr log pt(xt)dt+
p
2tdBt

dxt = �2ts✓(xk�, k�)dt+
p
2tdBt.

Let us define a coupling between xt and xt by identifying their respective Brownian motions. It558

will be convenient to define the time-reversed processes x t := x�t, and x
 
t := x�t, along with559

v(x, t) := r log p�t(x) and v(x, t) := s✓(x,�t). Then there exists a Brownian motion B
 
t , such560

that for t 2 [�tmax,�tmin],561

dx
 
t = �2tv(x t , t)dt+

p
�2tdB t

dx
 
t = �2tv(x k�, k�)dt+

p
�2tdB t

) d(x t � x
 
t ) = �2t (v(x t , t)� v(x k�, k�)) dt,
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where k is the unique negative integer such that t 2 [k�, (k + 1)�). Thus562

d

dt
E [kx t � x

 
t k]

2 (E [ktv(x t , t)� tv(x t , t)k] + E [ktv(x t , t)� tv(x t , t)k])
+ 2 (E [ktv(x t , t)� tv(x t , k�)k] + E [ktv(x t , k�)� tv(x k�, k�)k])

2 (✏approx + L2E [kx t � x
 
t k] + �L0 + L2E [kx t � x

 
k�k])

2
⇣
✏approx + L2E [kx t � x

 
t k] + �L0 + L2

⇣
�L1 +

p
2�dtmax

⌘⌘
.

By Gronwall’s Lemma,563

E [kxtmin � xtmink]
=E

⇥��x �tmin
� x
 
�tmin

��⇤

e
2L2(tmax�tmin)

⇣
E
⇥��x �tmax

� x
 
�tmax

��⇤+
⇣
✏approx + �L0 + L2

⇣
�L1 +

p
2�dtmax

⌘⌘
(tmax � tmin)

⌘

=e
2L2(tmax�tmin)

⇣
E [kxtmax � xtmaxk] +

⇣
✏approx + �L0 + L2

⇣
�L1 +

p
2�dtmax

⌘⌘
(tmax � tmin)

⌘

564

A.4 Mixing Bounds565

Lemma 5. Consider the same setup as Theorem 3. Assume that �  tmin. Let566

xtmin = SDE✓ (xtmax , tmax ! tmin)

ytmin = SDE✓ (ytmax , tmax ! tmin) .

Then there exists a coupling between xs and ys such that567

TV (xtmin , ytmin) 
 
1� 2Q

 
B

2
p
t2max � t2min

!
· e�BL1/tmin�L2

1t
2
max/t

2
min

!
TV (xtmax , ytmax)

Proof. We will construct a coupling between xt and yt. First, let (xtmax , ytmax) be sampled from the568

optimal TV coupling, i.e., Pr(xtmax 6= ytmax) =
1
2TV (xtmax , ytmax). Recall that by definition of SDE✓,569

for t 2 ((k � 1)�, k�],570

dxt = �2ts✓(xk�, k�)dt+
p
2tdBt.

Let us define a time-rescaled version of xt: xt := xt2 . We verify that571

dxt = �s✓(x(k�)2 , k�)dt+ dBt,

where k is the unique integer satisfying t 2 [((k � 1)�)2, k2�2). Next, we define the time-reversed572

process x t := x�t, and let v(x, t) := s✓(x,�t). We verify that there exists a Brownian motion B
x
t573

such that, for t 2 [�t
2
max,�t

2
min],574

dx
 
t = v

x
t dt+ dB

x
t ,

where v
x
t = s✓(x

 
�(k�)2 ,�k�), where k is the unique positive integer satisfying �t 2 (((k �575

1)�)2, (k�)2]. Let dy t = v
y
t dt+ dB

y
t , be defined analogously. For any positive integer k and for576

any t 2 [�(k�)2,�((k � 1)�)2), let us define577

zt = x
 
�k2�2 � y

 
�k2�2 + (2k � 1)�2

⇣
v
x
�(k�)2 � v

y
�(k�)2

⌘
+
⇣
B

x
t �B

x
�(k�)2

⌘
�
⇣
B

y
t �B

y
�(k�)2

⌘
.

Let �t := zt
kztk . We will now define a coupling between dB

x
t and dB

y
t as578

dB
y
t =

�
I � 2 {t  ⌧}�t�T

t

�
dB

x
t ,
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where {} denotes the indicator function, i.e. {t  ⌧} = 1 if t  ⌧ , and ⌧ is a stopping time given579

by the first hitting time of zt = 0. Let rt := kztk. Consider some t 2
�
�i

2
�
2
,�(i� 1)2�2

�
, and580

Let j := tmax
� (assume w.l.o.g that this is an integer), then581

rt � r�t2max


jX

k=i

(2k � 1)�2
���(vx�(k�)2 � v

y
�(k�)2)

���+

Z t

�t2max

{t  ⌧}2dB1
s


jX

k=i

�
k
2 � (k � 1)2

�
�
22L1/ (tmin) +

Z t

�t2max

{t  ⌧}2dB1
t

=

Z �(i�1)�2

�t2max

2L1

tmin
ds+

Z t

�t2max

{t  ⌧}2dB1
s ,

where dB
1
s = h�t, dBx

s � dB
y
s i is a 1-dimensional Brownian motion. We also verify that582

r�t2max
=
��z�t2max

��

=
���x �t2max

� y
 
�t2max

+ (2j � 1)�2
⇣
v
x
�t2max

� v
y
�t2max

⌘
+
⇣
B

x
t �B

x
�t2max

⌘
�
⇣
B

y
t �B

y
�t2max

⌘���


���x �t2max

+ (2j � 1)�2vx�t2max
+
⇣
B

x
�(j�1)2�2 �B

x
�t2max

⌘���

+
���y �t2max

+ (2j � 1)�2vy�t2max
+
⇣
B

x
�(j�1)2�2 �B

x
t +B

y
t �B

y
�t2max

⌘���  B

where the third relation is by adding and subtracting B
x
�(j�1)2�2 �B

x
t and using triangle inequality.583

The fourth relation is by noticing that x �t2max
+ (2j � 1)�2vx�t2max

+
⇣
B

x
�(j�1)2�2 �B

x
�t2max

⌘
=584

x
 
�(j�1)2�2 and that y �t2max

+(2j�1)�2vy�t2max
+
⇣
B

x
�(j�1)2�2 �B

x
t +B

y
t �B

y
�t2max

⌘
d
= y
 
�(j�1)2�2 ,585

and then using our assumption in the theorem statement that all processes are supported on a ball of586

radius B/2.587

We now define a process st defined by dst = 2L1/tmindt+ 2dB1
t , initialized at s�t2max

= B � r�t2max
.588

We can verify that, up to time ⌧ , rt  st with probability 1. Let ⌧ 0 denote the first-hitting time of st589

to 0, then ⌧  ⌧
0 with probability 1. Thus590

Pr(⌧  �t
2
min) �Pr(⌧ 0  �t

2
min) � 2Q

 
B

2
p

t2max � t2min

!
· e�BL1/tmin�L2

1t
2
max/t

2
min

where we apply Lemma 6. The proof follows by noticing that, if ⌧  �t
2
min, then xtmin = ytmin . This591

is because if ⌧ 2 [�k
2
�
2
,�(k � 1)2�2], then x

 
�(k�1)2�2 = y

 
�(k�1)2�2 , and thus x t = y

 
t for all592

t � �(k � 1)2�2, in particular, at t = �t
2
min.593

594

Lemma 6. Consider the stochastic process595

drt = dB
1
t + cdt.

Assume that r0  B/2. Let ⌧ denote the hitting time for rt = 0. Then for any T 2 R+,596

Pr(⌧  T ) � 2Q

✓
B

2
p
T

◆
· e�ac� c2T

2 ,

where Q is the tail probability of a standard Gaussian defined in Definition 1.597

Proof. We will use he following facts in our proof:598

1. For x ⇠ N (0,�2), Pr(x > r) = 1
2

⇣
1� erf

⇣
rp
2�

⌘⌘
= 1

2erfc

⇣
rp
2�

⌘
.599

2.
R T
0

a exp
⇣
� a2

2t

⌘

p
2⇡t3

dt = erfc

⇣
ap
2T

⌘
= 2Pr (N (0, T ) > a) = 2Q

⇣
ap
T

⌘
by definition of Q.600
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Let drt = dB
1
t + cdt, with r0 = a. The density of the hitting time ⌧ is given by601

p(⌧ = t) = f(a, c, t) =
a exp

⇣
� (a+ct)2

2t

⌘

p
2⇡t3

. (18)

(see e.g. [3]). From item 2 above,602

Z T

0
f(a, 0, t)dt = 2Q

✓
ap
T

◆
.

In the case of a general c 6= 0, we can bound (a+ct)2

2t = a2

2t + ac+ c2t
2 . Consequently,603

f(a, c, t) � f(a, 0, t) · e�ac� c2t
2 .

Therefore,604

Pr(⌧  T ) =

Z T

0
f(a, c, t)dt �

Z T

0
f(a, 0, t)dte�c = 2Q

✓
B

2
p
T

◆
· e�ac� c2T

2 .

605

A.5 TV Overlap606

Definition 1. Let x be sampled from standard normal distribution N (0, 1). We define the Gaussian607

tail probability Q(a) := Pr(x � a).608

Lemma 7. We verify that for any two random vectors ⇠x ⇠ N (0,�2I) and ⇠y ⇠ N (0,�2I), each609

belonging to Rd, the total variation distance between x
0 = x+ ⇠x and y

0 = y + ⇠y is given by610

TV (x0, y0) = 1� 2Q (r)  1� 2r

r2 + 1

1p
2⇡

e
�r2/2

,

where r = kx�yk
2� , and Q(r) = Pr(⇠ � r), when ⇠ ⇠ N (0, 1).611

Proof. Let � := x�y
kx�yk . We decompose x

0
, y
0 into the subspace/orthogonal space defined by �:612

x
0 = x

? + ⇠
?
x + x

k + ⇠
k
x

y
0 = y

? + ⇠
?
y + y

k + ⇠
k
y

where we define613

x
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x x

? := x� x
k

y
k := ��

T
y y
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?
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⇠
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T
⇠y ⇠

?
y := ⇠y � ⇠

k
y

We verify the independence ⇠
?
x ?? ⇠

k
x and ⇠

?
y ?? ⇠

k
y as they are orthogonal decompositions of the614

standard Gaussian. We will define a coupling between x
0 and y

0 by setting ⇠
?
x = ⇠

?
y . Under this615

coupling, we verify that616

�
x
? + ⇠

?
x

�
�
�
y
? + ⇠

?
y

�
= x� y � ��

T (x� y) = 0

Therefore, x0 = y
0 if and only if xk + ⇠

k
x = y

k + ⇠
k
y . Next, we draw (a, b) from the optimal coupling617

between N (0, 1) and N (kx�yk� , 1). We verify that xk + ⇠
k
x and y

k + ⇠
k
y both lie in the span of618

�. Thus it suffices to compare
D
�, x
k + ⇠

k
x

E
and

D
�, y
k + ⇠

k
y

E
. We verify that

D
�, x
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k
x

E
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D
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⌦
�, y
k↵+kx� yk ,�2)

d
=
⌦
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k↵+�b. We similarly verify620
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Thus TV (x0, y0) = TV (�a,�b) = 1� 2Q
⇣
kx�yk

2�

⌘
. The last inequality follows from622

Pr(N (0, 1) � r) � r

r2 + 1

1p
2⇡

e
�r2/2

623

B More on Restart Algorithm624

B.1 EDM Discretization Scheme625

[13] proposes a discretization scheme for ODE given the starting tmax and end time tmin. Denote the626

number of steps as N , then the EDM discretization scheme is:627

ti<N =

✓
t

1
⇢
max +

i

N � 1
(t

1
⇢

min � t

1
⇢
max)

◆⇢

with t0 = tmax and tN�1 = tmin. ⇢ is a hyperparameter that determines the extent to which steps near628

tmin are shortened. We adopt the value ⇢ = 7 suggested by [13] in all of our experiments. We apply629

the EDM scheme to creates a time discretization in each Restart interval [tmax, tmin] in the Restart630

backward process, as well as the main backward process between [0, T ] (by additionally setting631

tmin = 0.002 and tN = 0 as in [13]). It is important to note that tmin should be included within the632

list of time steps in the main backward process to seamlessly incorporate the Restart interval into the633

main backward process. We summarize the scheme as a function in Algorithm 1.634

Algorithm 1 EDM_Scheme(tmin, tmax, N, ⇢ = 7)

1: return
⇢
(t

1
⇢
max + i

N�1 (t
1
⇢

min � t

1
⇢
max))⇢

�N�1

i=0

B.2 Restart Algorithm635

We present the pseudocode for the Restart algorithm in Algorithm 2. In this pseudocode, we describe636

a more general case that applies l-level Restarting strategy. For each Restart segment, the include637

the number of steps in the Restart backward process NRestart, the Restart interval [tmin, tmax] and the638

number of Restart iteration K. We further denote the number of steps in the main backward process639

as Nmain. We use the EDM discretization scheme (Algorithm 1) to construct time steps for the main640

backward process (t0 = T, tNmain = 0) as well as the Restart backward process, when given the641

starting/end time and the number of steps.642

Although Heun’s 2nd order method [2] (Algorithm 3) is the default ODE solver in the pseudocode, it643

can be substituted with other ODE solvers, such as Euler’s method or the DPM solver [16].644

The provided pseudocode in Algorithm 2 is tailored specifically for diffusion models [13]. To645

adapt Restart for other generative models like PFGM++ [28], we only need to modify the Gaussian646

perturbation kernel in the Restart forward process (line 10 in Algorithm 2) to the one used in647

PFGM++.648

C Experimental Details649

In this section, we discuss the configurations for different samplers in details. All the experiments are650

conducted on eight NVIDIA A100 GPUs.651

C.1 Configurations for Baselines652

We select Vanilla SDE [23], Improved SDE [13], Gonna Go Fast [12] as SDE baselines and653

the Heun’s 2nd order method [2] (Alg 3) as ODE baseline on standard benchmarks CIFAR-10 and654

20



Algorithm 2 Restart sampling
1: Input: Score network s✓, time steps in main backward process ti2{0,Nmain}, Restart parameters

{(NRestart,j ,Kj , tmin,j , tmax,j)}lj=1
2: Round tmin,j2{1,l} to its nearest neighbor in ti2{0,Nmain}
3: Sample x0 ⇠ N (0, T 2I)
4: for i = 0 . . . Nmain � 1 do . Main backward process
5: xti+1 = OneStep_Heun(s✓, ti, ti+1) . Running single step ODE
6: if 9j 2 {1, . . . , l}, ti+1 = tmin,j then
7: tmin = tmin,j , tmax = tmax,j ,K = Kj , NRestart = NRestart,j
8: x

0
tmin

= xti+1

9: for k = 0 . . .K � 1 do . Restart for K iterations
10: "tmin!tmax ⇠ N (0, (t2max � t

2
min)I)

11: x
k+1
tmax

= x
k
tmin

+ "tmin!tmax . Restart forward process
12: {t̄m}NRestart�1

m=0 = EDM_Scheme(tmin, tmax, NRestart)
13: for m = 0 . . . NRestart � 1 do . Restart backward process
14: x

k+1
t̄m+1

= OneStep_Heun(s✓, t̄m, t̄m+1)
15: end for
16: end for
17: end if
18: end for
19: return xtNmain

Algorithm 3 OneStep_Heun(s✓, xti , ti, ti+1)

1: di = tis✓(xti , ti)
2: xti+1 = xti � (ti+1 � ti)di
3: if ti+1 6= 0 then
4: d

0
i = ti+1s✓(xti+1 , ti+1)

5: xti+1 = xti � (ti+1 � ti)(
1
2di +

1
2d
0
i)

6: end if
7: return xti+1

ImageNet 64⇥64. We choose DDIM [22], Heun’s 2nd order method, and DDPM [9] for comparison655

on Stable Diffusion model.656

Vanilla SDE denotes the reverse-time SDE sampler in [23]. For Improved SDE, we use the recom-657

mended dataset-specific hyperparameters (e.g., Smax, Smin, Schurn) in Table 5 of the EDM paper [13].658

They obtained these hyperparameters by grid search. Gonna Go Fast [12] applied an adaptive step659

size technique based on Vanilla SDE and we directly report the FID scores listed in [12] for Gonna660

Go Fast on CIFAR-10 (VP). For fair comparison, we use the EDM discretization scheme [13] for661

Vanilla SDE, Improved SDE, Heun as well as Restart.662

We borrow the hyperparameters such as discretization scheme or initial noise scale on Stable Diffusion663

models in the diffuser 2 code repository. We directly use the DDIM and DDPM samplers implemented664

in the repo. We apply the same set of hyperparameters to Heun and Restart.665

C.2 Configurations for Restart666

We report the configurations for Restart for different models and NFE on standard benchmarks667

CIFAR-10 and ImageNet 64 ⇥ 64. The hyperparameters of Restart include the number of steps668

in the main backward process Nmain, the number of steps in the Restart backward process NRestart,669

the Restart interval [tmin, tmax] and the number of Restart iteration K. In Table 3 (CIFAR-10, VP)670

we provide the quintuplet (Nmain, NRestart, tmin, tmax,K) for each experiment. Since we apply the671

multi-level Restart strategy for ImageNet 64⇥ 64, we provide Nmain as well as a list of quadruple672

{(NRestart,i,Ki, tmin,i, tmax,i)}li=1 (l is the number of Restart interval depending on experiments) in673

Table 5. In order to integrate the Restart time interval to the main backward process, we round tmin,i674

2https://github.com/huggingface/diffusers
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to its nearest neighbor in the time steps of main backward process, as shown in line 2 of Algorithm 2.675

We apply Heun method for both main/backward process. The formula for NFE calculation is676

NFE = 2 ·Nmain � 1| {z }
main backward process

+
Pl

i=1 Ki|{z}
number of repetitions

· (2 · (NRestart,i � 1))
| {z }

per iteration in ith Restart interval

in this case. Inspired by677

[13], we inflate the additive noise in the Restart forward process by multiplying Snoise = 1.003 on678

ImageNet 64⇥ 64, to counteract the over-denoising tendency of neural networks. We also observe679

that setting � = 0.05 in Algorithm 2 of EDM [13] would sligtly boost the Restart performance on680

ImageNet 64⇥ 64 when t 2 [0.01, 1].681

We further include the configurations for Restart on Stable Diffusion models in Table 10, with a682

varying guidance weight w. Similar to ImageNet 64⇥ 64, we use multi-level Restart with a fixed683

number of steps Nmain = 30 in the main backward process. We utilize the Euler method for the684

main backward process and the Heun method for the Restart backward process, as our empirical685

observations indicate that the Heun method doesn’t yield significant improvements over the Euler686

method, yet necessitates double the steps. The number of steps equals to Nmain +
Pl

i=1 Ki · (2 ·687

(NRestart,i � 1)) in this case. We set the total number of steps to 66, including main backward process688

and Restart backward process.689

Given the prohibitively large search space for each Restart quadruple, a comprehensive enumeration690

of all possibilities is impractical due to computational limitations. Instead, we adjust the configuration691

manually, guided by the heuristic that weaker/smaller models or more challenging tasks necessitate692

a stronger Restart strength (e.g., larger K, wider Restart interval, etc). On average, we select the693

best configuration from 5 sets for each experiment; these few trials have empirically outperformed694

previous SDE/ODE samplers. We believe that developing a systematic approach for determining695

Restart configurations could be of significant value in the future.696

C.3 Pre-trained Models697

For CIFAR-10 dataset, we use the pre-trained VP and EDM models from the EDM repository 3, and698

PFGM++ (D = 2048) model from the PFGM++ repository 4. For ImageNet 64⇥ 64, we borrow the699

pre-trained EDM model from EDM repository as well.700

C.4 Classifier-free Guidance701

We follow the convention in [20], where each step in classifier-free guidance is as follows:702

s̃✓(x, c, t) = ws✓(x, c, t) + (1� w)s✓(x, t)

where c is the conditions, ands✓(x, c, t)/s✓(x, t) is the conditional/unconditional models, sharing703

parameters. Increasing w would strength the effect of guidance, usually leading to a better text-image704

alignment [20].705

C.5 More on the Synthetic Experiment706

C.5.1 Discrete Dataset707

We generate the underlying discrete dataset S with |S| = 2000 as follows. Firstly, we sample 2000708

points, denoted as S1, from a mixture of two Gaussians in R4. Next, we project these points onto R20.709

To ensure a variance of 1 on each dimension, we scale the coordinates accordingly. This setup aims710

to simulate data points that primarily reside on a lower-dimensional manifold with multiple modes.711

The specific details are as follows: S1 ⇠ 0.3N(a, s2I) + 0.7(�a, s
2
I), where a = (3, 3, 3, 3) ⇢ R4712

and s = 1. Then, we randomly select a projection matrix P 2 R20⇥4, where each entry is drawn713

from N(0, 1), and compute S2 = PS1. Finally, we scale each coordinate by a constant factor to714

ensure a variance of 1.715

3https://github.com/NVlabs/edm
4https://github.com/Newbeeer/pfgmpp
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(a) (b) (c)

Figure 7: Comparison of additional sampling error versus (a) contracted error (plotting the Pareto
frontier) and (b) total error (using a scatter plot). (c) Pareto frontier of NFE versus total error.

C.5.2 Model Architecture716

We employ a common MLP architecture with a latent size of 64 to learn the score function. The717

training method is adapted from [13], which includes the preconditioning technique and denoising718

score-matching objective [25].719

C.5.3 Varying Hyperparameters720

To achieve the best trade-off between contracted error and additional sampling error, and optimize721

the NFE versus FID (Fréchet Inception Distance) performance, we explore various hyperparameters.722

[13] shows that the Vanilla SDE can be endowed with additional flexibility by varying the coefficient723

�(t) (Eq.(6) in [13]). Hence, regarding SDE, we consider NFE values from {20, 40, 80, 160, 320},724

and multiply the original �(t) = �̇(t)/�(t) [13] with values from {0, 0.25, 0.5, 1, 1.5, 2, 4, 8}. It725

is important to note that larger NFE values do not lead to further performance improvements. For726

restarts, we tried the following two settings: first we set the number of steps in Restart backward727

process to 40 and vary the number of Restart iterations K in the range {0, 5, 10, 15, 20, 25, 30, 35}.728

We also conduct a grid search with the number of Restart iterations K ranging from 5 to 25 and the729

number of steps in Restart backward process varying from 2 to 7. For ODE, we experiment with the730

number of steps set to {20, 40, 80, 160, 320, 640}.731

Additionally, we conduct an experiment for Improved SDE in EDM. We try different values of Schurn732

in the range of {0, 1, 2, 4, 8, 16, 32, 48, 64}. We also perform a grid search where the number of steps733

ranged from 20 to 320 and Schurn takes values of [0.2⇥ steps, 0.5⇥ steps, 20, 60]. The plot combines734

the results from SDE and is displayed in Figure 7.735

To mitigate the impact of randomness, we collect the data by averaging the results from five runs with736

the same hyperparameters. To compute the Wasserstein distance between two discrete distributions,737

we use minimum weight matching.738

C.5.4 Plotting the Pareto frontier739

We generate the Pareto frontier plots as follows. For the additional sampling error versus contracted740

error plot, we first sort all the data points based on their additional sampling error and then connect741

the data points that represent prefix minimums of the contracted error. Similarly, for the NFE versus742

FID plot, we sort the data points based on their NFE values and connect the points where the FID is a743

prefix minimum.744

D Extra Experimental Results745

D.1 Numerical Results746

In this section, we provide the corresponding numerical reuslts of Fig. 3(a) and Fig. 3(b), in Ta-747

ble 2, 3 (CIFAR-10 VP) and Table 4, 5 (ImageNet 64 ⇥ 64 EDM), respectively. We also include748

the performance of Vanilla SDE in those tables. For the evaluation, we compute the Fréchet dis-749

tance between 50000 generated samples and the pre-computed statistics of CIFAR-10 and ImageNet750

64⇥ 64. We follow the evaluation protocol in EDM [13] that calculates each FID scores three times751

with different seeds and report the minimum.752
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We also provide the numerical results on the Stable Diffusion model [19], with a classifier guidance753

weight w = 2, 3, 5, 8 in Table 6, 7, 8, 9. As in [17], we report the zero-shot FID score on 5K random754

prompts sampled from the COCO validation set. We evaluate CLIP score [6] with the open-sourced755

ViT-g/14 [11], Aesthetic score by the more recent LAION-Aesthetics Predictor V2 5. We average the756

CLIP and Aesthetic scores over 5K generated samples. The number of function evaluations is two757

times the sampling steps in Stable Diffusion model, since each sampling step involves the evaluation758

of the conditional and unconditional model.759

Table 2: CIFAR-10 sample quality (FID score) and number of function evaluations (NFE) on VP [23]
for baselines

NFE FID
ODE (Heun) [13] 1023 2.90

511 2.90
255 2.90
127 2.90
63 2.89
35 2.97

Vanilla SDE [23] 1024 2.79
512 4.01
256 4.79
128 12.57

Gonna Go Fast [12] 1000 2.55
329 2.70
274 2.74
179 2.59
147 2.95
49 72.29

Improved SDE [13] 1023 2.35
511 2.37
255 2.40
127 2.58
63 2.88
35 3.45

Table 3: CIFAR-10 sample quality (FID score), number of function evaluations (NFE) and configura-
tions on VP [23] for Restart

NFE FID Configuration
(Nmain, NRestart,i,Ki, tmin,i, tmax,i)

519 2.11 (20, 9, 30, 0.06, 0.20)
115 2.21 (18, 3, 20, 0.06, 0.30)
75 2.27 (18, 3, 10, 0.06, 0.30)
55 2.45 (18, 3, 5, 0.06, 0.30)
43 2.70 (18, 3, 2, 0.06, 0.30)

5https://github.com/christophschuhmann/improved-aesthetic-predictor
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Table 4: ImageNet 64⇥ 64 sample quality (FID score) and number of function evaluations (NFE) on
EDM [13] for baselines

NFE FID (50k)
ODE (Heun) [13] 1023 2.24

511 2.24
255 2.24
127 2.25
63 2.30
35 2.46

Vanilla SDE [23] 1024 1.89
512 3.38
256 11.91
128 59.71

Improved SDE [13] 1023 1.40
511 1.45
255 1.50
127 1.75
63 2.24
35 2.97

Table 5: ImageNet 64⇥ 64 sample quality (FID score), number of function evaluations (NFE) and
configurations on EDM [13] for Restart

NFE FID (50k) Configuration
Nmain, {(NRestart,i,Ki, tmin,i, tmax,i)}li=1

623 1.36
36, {(10, 3, 19.35, 40.79),(10, 3, 1.09, 1.92),

(7, 6, 0.59, 1.09), (7, 6, 0.30, 0.59),
(7, 25, 0.06, 0.30)}

535 1.39
36, {(6, 1, 19.35, 40.79),(6, 1, 1.09, 1.92),

(7, 6, 0.59, 1.09), (7, 6, 0.30, 0.59),
(7, 25, 0.06, 0.30)}

385 1.41
36, {(3, 1, 19.35, 40.79),(6, 1, 1.09, 1.92),

(6, 5, 0.59, 1.09), (6, 5, 0.30, 0.59),
(6, 20, 0.06, 0.30)}

203 1.46
36, {(4, 1, 19.35, 40.79),(4, 1, 1.09, 1.92),

(4, 5, 0.59, 1.09), (4, 5, 0.30, 0.59),
(6, 6, 0.06, 0.30)}

165 1.51
18, {(3, 1, 19.35, 40.79),(4, 1, 1.09, 1.92),

(4, 5, 0.59, 1.09), (4, 5, 0.30, 0.59),
(4, 10, 0.06, 0.30)}

99 1.71
18, {(3, 1, 19.35, 40.79),(4, 1, 1.09, 1.92),

(4, 4, 0.59, 1.09), (4, 1, 0.30, 0.59),
(4, 4, 0.06, 0.30)}

67 1.95 18, {(5, 1, 19.35, 40.79),(5, 1, 1.09, 1.92),
(5, 1, 0.59, 1.09), (5, 1, 0.06, 0.30)}

39 2.38 14, {(3, 1, 19.35, 40.79),
(3, 1, 1.09, 1.92), (3, 1, 0.06, 0.30)}
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Table 6: Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight w = 2

Steps FID (5k) # CLIP score " Aesthetic score "
DDIM [22] 50 16.08 0.2905 5.13

100 15.35 0.2920 5.15
Heun 51 18.80 0.2865 5.14

101 18.21 0.2871 5.15
DDPM [9] 100 13.53 0.3012 5.20

200 13.22 0.2999 5.19
Restart 66 13.16 0.2987 5.19

Table 7: Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight w = 3

Steps FID (5k) # CLIP score " Aesthetic score "
DDIM [22] 50 14.28 0.3056 5.22

100 14.30 0.3056 5.22
Heun 51 15.63 0.3022 5.20

101 15.40 0.3026 5.21
DDPM [9] 100 15.72 0.3129 5.28

200 15.13 0.3131 5.28
Restart 66 14.48 0.3079 5.25

Table 8: Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight w = 5

Steps FID (5k) # CLIP score " Aesthetic score "
DDIM [22] 50 16.60 0.3154 5.31

100 16.80 0.3157 5.31
Heun 51 16.26 0.3135 5.28

101 16.38 0.3136 5.29
DDPM [9] 100 19.62 0.3197 5.36

200 18.88 0.3200 5.35
Restart 66 16.21 0.3179 5.33

Table 9: Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight w = 8

Steps FID (5k) # CLIP score " Aesthetic score "
DDIM [22] 50 19.83 0.3206 5.37

100 19.82 0.3200 5.37
Heun 51 18.44 0.3186 5.35

101 18.72 0.3185 5.36
DDPM [9] 100 22.58 0.3223 5.39

200 21.67 0.3212 5.38
Restart 47 18.40 0.3228 5.41

D.2 Study on Adjusting tmin760

We also investigate the impact of varying tmin when tmax = tmin +0.3. Fig. ?? reveals that FID scores761

achieve a minimum at a tmin close to 0 on VP, indicating higher accumulated errors at the end of762
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Table 10: Restart (Steps=66) configurations on Stable Diffusion v1.5

w
Configuration

Nmain, {(NRestart,i,Ki, tmin,i, tmax,i)}li=1

2 30, {(5, 2, 1, 9), (5, 2, 5, 10)}
3 30, {(2, 10, 0.1, 3)}
5 30, {(2, 10, 0.1, 2)}
8 30, {(2, 10, 0.1, 2)}

(a) FID versus CLIP score (b) FID versus Aesthetic score

Figure 8: FID score versus (a) CLIP ViT-g/14 score and (b) Aesthetic score for text-to-image
generation at 512⇥ 512 resolution, using Stable Diffusion v1.5 with varying classifier-free guidance
weight w = 2, 3, 5, 8.

sampling and poor neural estimations at small t. Note that the Restart interval 0.3 is about twice763

the length of the one in Table 1 and Restart does not outperform the ODE baseline on EDM. This764

suggests that, as a rule of thumb, we should apply greater Restart strength (e.g., larger K, tmax � tmin)765

for weaker or smaller architectures and vice versa.766

E Extended Generated Images767

In this section, we provide extended generated images by Restart, DDIM, Heun and DDPM on768

text-to-image Stable Diffusion v1.5 model [19]. We showcase the samples of four sets of text prompts769

in Fig. 10, Fig. 11, Fig. 12, Fig. 13, with a classifier-guidance weight w = 8.770

Figure 9: Adjusting tmin in Restart on VP/EDM
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(a) Restart (Steps=66) (b) DDIM (Steps=100)

(c) Heun (Steps=101) (d) DDPM (Steps=100)

Figure 10: Generated images with text prompt="A photo of an astronaut riding a horse on mars" and
w = 8.
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(a) Restart (Steps=66) (b) DDIM (Steps=100)

(c) Heun (Steps=101) (d) DDPM (Steps=100)

Figure 11: Generated images with text prompt="A raccoon playing table tennis" and w = 8.

F Broader Impact771

The field of deep generative models incorporating differential equations is rapidly evolving and holds772

significant potential to shape our society. Nowadays, a multitude of photo-realistic images generated773

by text-to-image Stable Diffusion models populate the internet. Our work introduces Restart, a novel774

sampling algorithm that outperforms previous samplers for diffusion models and PFGM++. With775

applications extending across diverse areas, the Restart sampling algorithm is especially suitable776

for generation tasks demanding high quality and rapid speed. Yet, it is crucial to recognize that777

the utilization of such algorithms can yield both positive and negative repercussions, contingent on778

their specific applications. On the one hand, Restart sampling can facilitate the generation of highly779

realistic images and audio samples, potentially advancing sectors such as entertainment, advertising,780

and education. On the other hand, it could also be misused in deepfake technology, potentially leading781

to social scams and misinformation. In light of these potential risks, further research is required to782

develop robustness guarantees for generative models, ensuring their use aligns with ethical guidelines783

and societal interests.784
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(a) Restart (Steps=66) (b) DDIM (Steps=100)

(c) Heun (Steps=101) (d) DDPM (Steps=100)

Figure 12: Generated images with text prompt="Intricate origami of a fox in a snowy forest" and
w = 8.
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(a) Restart (Steps=66) (b) DDIM (Steps=100)

(c) Heun (Steps=101) (d) DDPM (Steps=100)

Figure 13: Generated images with text prompt="A transparent sculpture of a duck made out of glass"
and w = 8.

31


	Introduction
	Background on Generative Models with Differential Equations
	Explaining SDE and ODE performance regimes
	Harnessing stochasticity with Restart
	Method
	Analysis
	Practical considerations

	Experiments
	Additional sampling error versus contracted error
	Experiments on standard benchmarks
	Experiments on large-scale text-to-image model

	Conclusion and future direction
	Proofs of Main Theoretical Results
	Main Result
	Mixing under Restart with exact ODE
	W1 discretization bound
	Mixing Bounds
	TV Overlap

	More on Restart Algorithm
	EDM Discretization Scheme
	Restart Algorithm

	Experimental Details
	Configurations for Baselines
	Configurations for Restart
	Pre-trained Models
	Classifier-free Guidance
	More on the Synthetic Experiment
	Discrete Dataset
	Model Architecture
	Varying Hyperparameters
	Plotting the Pareto frontier


	Extra Experimental Results
	Numerical Results
	Study on Adjusting tmin

	Extended Generated Images
	Broader Impact

