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A The Best F1 Score1

This section describes the method for calculating the best F1 score (F1∗) from a set of anomaly scores2

a = {a1, ..., aT } and a set of labels y = {y1, ..., yT }. Firstly, given a and some arbitrary threshold3

θa, we can calculate ŷ = {ŷ1, ...ŷT }, where ŷt ≜ 1at≥θa . Secondly, ŷ is used to calculate TP,FP,4

and FN, which corresponds to the sets of time points for true positives, false positives, and false5

negatives.6

TP ≜ {t|ŷt = 1, yt = 1}, FP ≜ {t|ŷt = 1, yt = 0}, FN ≜ {t|ŷt = 0, yt = 1} (1)

Thirdly, we calculate the precision (P) and recall (R), and then calculate the F1 score, which is the7

harmonic mean between R and P.8

F1 ≜
2PR

P + R
, P ≜

n(TP)

n(TP) + n(FP)
, R ≜

n(TP)

n(TP) + n(FN)
(2)

Finally, we calculate F1∗ by using the threshold that yields the highest F1.9

F1∗(a; y) ≜ max
θa

F1(ŷ(a, θa); y) (3)

B Model Architecture10

Performers (an improved variant of Transformers) are competitive in terms of execution speed11

compared with other Transformer variants [1, 2], hence we use them as the basic building block of12

our models. For both Mpt and Mseq, we use a linear layer with input and output dimensions equal13

to D as the token embedding layer, a fixed positional embedding layer at the beginning, a feature14

redraw interval of 1, and a tanh activation function immediately before the output. GELUs [3] are15

used as the activation layer for all linear layers. We do not change any other predefined activation16

layer inside Performers.17

B.1 Performer-based autoencoder18

For the Performer-based autoencoder Mpt, the input with the shape (batch,W,D) is passed through19

a plain Performer with Nperf layers after the positional embedding step, where W represents the20

input window size. This is followed by a linear encoding layer that transforms the dimensionality21

from D to Dlat, resulting in the shape (batch,W,Dlat) for the latent variables. In the case of Mpt,22

there is no compression along the time domain. The latent variables then pass through another23

linear decoding layer that transforms the dimensionality from Dlat back to D, followed by another24

Performer with Nperf layers.25
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B.2 Performer-based stacked encoder26

For the Performer-based stacked encoder Mseq, the input with shape (batch,W0, D) is passed27

through a plain Performer with one layer after the positional embedding step, followed by a linear28

encoding layer that transforms the window size from W0 to W1, where W0 = 2γ (cf. section 2.6).29

It should be noted that unlike Mpt, compression is done along the time domain for Mseq. The30

one-layer Performer and linear layer are stacked Nenc times, where in the i-th stack, the window31

size is compressed from Wi−1 to Wi. WNenc
is equal to the target output window size δ. For both32

Mpt and Mseq, we optimize Nperf , Dlat, W , Nenc, Wi for i ∈ {0, ..., Nenc}, and δ for the best33

performance. Note that Mseq isn’t capable of reconstructing the first and last γ time points due to its34

architecture, hence we discard the first and last γ points reconstructed by Mpt so that rest of the time35

points have exactly two reconstructed values corresponding to using Mseq and Mpt, respectively.36

C Data Preprocessing and Training Details37

Table 1 shows the hyperparameters used for implementing NPSR on the experimented datasets. To38

ensure fair comparison, the same preprocessing method is applied to all algorithms for the same39

dataset. The search for hyperparameters is done manually, starting from some reasonable value (e.g.40

a learning rate of 10−4). The authors believe that there is still room for improvement by fine-tuning41

these hyperparameters. To speed up training, we load all training inputs and outputs, and testing42

inputs onto the GPU before training. We use a local GPU, which can be either GeForce RTX 307043

(8GB), 3080 (12GB) or 3090 (24GB). For an individual experiment using a single dataset and training44

method, the training time ranges from approximately 2 minutes to 12 hours. For single-entity datasets45

and multi-entity datasets that use the combined training method, we run the experiments for at least 346

times and confirm that the results are stable given different random seeds. For multi-entity datasets47

with entities trained individually, the results are averaged across all entities. Generally, datasets48

with single entities train faster than those with multiple entities. There are some additional remarks49

regarding the preprocessing of the datasets. For SWaT, we use SWaT_Dataset_Attack_v0.csv and50

SWaT_Dataset_Normal_v1.csv from the folder SWaT.A1 & A2_Dec 2015 (manually converted51

from *.xlsx). We corrected some original flaws in the dataset (e.g. redundant blank spaces in some52

labels), and set the 5th and 10th columns to all 0. For WADI, we use the 2017 year dataset. Columns53

with excessive NaNs (more than half of the entire length) are deleted. Other NaNs are forward-filled.54

After deleting all the columns with excessive NaNs, the 86th column is further set to all 0. For PSM,55

we forward-fill all NaNs. For MSL and SMD, two additional blank channels are added to make the56

number of channels divisible by the number of heads.57

Table 1: Implementation details. (c) stands for the combined training method (cf. section 3.2).

Parameter \ Dataset SWaT WADI PSM MSL MSL (c) SMAP SMAP (c) SMD SMD (c)

—————————— Preprocess ——————————
Downsample 10 10 10 1 1 1 1 2 2

Normalization Minmax Minmax Minmax Minmax Minmax Minmax Minmax Minmax Minmax
Stride 10 10 10 10 10 10 10 10 10

W (for Mpt) 100 100 100 100 100 50 50 50 50
W0 (for Mseq) 100 100 100 50 50 50 50 50 50

δ 20 20 20 6 6 6 6 6 6
clamping (test data) [-4,4] [-4,4] [-4,4] [-4,4] [-4,4] [-4,4] [-4,4] [-4,4] [-4,4]

—————————— Model architecture ——————————
# of heads 9 14 5 11 12 5 10 8 11

Dlat 10 10 10 10 10 10 10 10 10
ff_mult 4 4 4 4 4 4 4 4 4
Nperf 4 4 4 4 4 4 4 4 4
Nenc 8 8 8 8 8 8 8 8 8

—————————— Induced anomaly score ——————————
Gate function soft soft soft soft hard soft hard soft soft

d 16 16 64 128 128 64 64 16 1
Ratio of Ntrn for θN 99.85% 99.85% 99.85% 99.85% 97.5% 99.85% ∞ 99.85% 99.85%

—————————— Training ——————————
Learn rate 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4

Optimizer Adam Adam Adam Adam Adam Adam Adam Adam Adam
Batch size 64 64 64 64 64 64 64 64 64

Training epochs 100 100 80 40 20 50 20 40 10
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D The Point-adjusted Best F1 Score58

Analogous to F1∗, the point-adjusted best F1 score (F1∗PA) corresponds to F1∗ calculated after59

point-adjustment. Table 2 shows the F1∗ and F1∗PA of different algorithms, including NPSR, applied60

to several datasets.61

The results suggest that F1∗PA may not be reliable - on the SWaT, WADI, PSM, and MSL datasets,62

simple heuristic approaches (e.g. using the mean squared value of an input time point as the anomaly63

score) outperform all deep learning methods when evaluated using F1∗PA. Moreover, optimizing64

on F1∗PA does not necessarily guarantee a higher F1∗. NPSR is optimized on F1∗ by tuning the65

algorithm-specific parameters (e.g. d) and general parameters. To additionally optimize on F1∗PA, we66

simply added spikes to the induced anomaly score (Âspike(·)) with value ∞ for some fixed interval s.67

The results show that Âspike(·) can also achieve competitive F1∗PA values.68

Table 2: Point-adjusted best F1 score (F1∗PA) and best F1 score (F1∗) results on several datasets,
with bold text denoting the highest and underlined text denoting the second highest value. The deep
learning methods are sorted with older methods at the top and newer ones at the bottom.

Dataset SWaT WADI PSM MSL SMAP SMD

Metric F1∗PA F1∗ F1∗PA F1∗ F1∗PA F1∗ F1∗PA F1∗ F1∗PA F1∗ F1∗PA F1∗

Simple Heuristics
[4, 5, 6] 0.969 0.789 0.965 0.353 0.985 0.509 0.965 0.239 0.961 0.229 0.934 0.494

DAGMM [7] 0.853 0.750 0.209 0.121 0.761 0.483 0.701 0.199 0.712 0.333 0.723 0.238
LSTM-VAE [8] 0.805 0.776 0.380 0.227 0.809 0.455 0.854 0.212 0.756 0.235 0.808 0.435
MSCRED [9] 0.807 0.757 0.374 0.046 0.626 0.556 0.936 0.250 0.866 0.170 0.841 0.382

OmniAnomaly [10] 0.866 0.782 0.417 0.223 0.664 0.452 0.901 0.207 0.854 0.227 0.962 0.474
MAD-GAN [11] 0.815 0.770 0.556 0.370 0.658 0.471 0.917 0.267 0.865 0.175 0.915 0.220
MTAD-GAT [12] 0.860 0.784 0.602 0.437 0.780 0.571 0.908 0.275 0.901 0.296 0.908 0.400

USAD [13] 0.846 0.792 0.430 0.233 0.725 0.479 0.911 0.211 0.819 0.228 0.946 0.426
THOC [14] 0.881 0.612 0.506 0.130 0.895 - 0.937 0.190 0.952 0.240 0.541 0.168

UAE [4] 0.869 0.453 0.957 0.354 0.936 0.427 0.920 0.451 0.896 0.390 0.972 0.435
GDN [15] 0.935 0.810 0.855 0.570 0.923 0.552 0.903 0.217 0.708 0.252 0.716 0.529
GTA [16] 0.910 0.761 0.84 0.531 0.855 0.542 0.911 0.218 0.904 0.231 0.919 0.351

Anomaly Transformer
[17] 0.941 0.019 0.714 0.015 0.979 0.022 0.936 0.021 0.967 0.019 0.923 0.021

TranAD [18] 0.815 0.669 0.495 0.415 0.882 0.649 0.949 0.251 0.892 0.247 0.961 0.310

NPSR (combined) - - - - - - 0.960 0.261 0.978 0.511 0.850 0.252
NPSR 0.953 0.839 0.938 0.642 0.957 0.648 - 0.551 - 0.437 - 0.535

E Source of Data69

Table 3 shows the data sources used to produce Table 2, as well as the sources for section 3.3. The70

reference number is followed by a number between 1 and 3, where 1 indicates that the data comes71

from the original work, 2 indicates that the data comes from reproduced values from another literature,72

and 3 indicates that we have reproduced the values using public repositories..73

F Broader Impacts74

The detection of anomalies in time series data can minimize downtime and avert financial losses.75

Utilizing real-time monitoring of system conditions, anomaly detection techniques for time series data76

can automatically detect deviations from the expected system behavior, thereby avoiding potential77

risks and financial harm. This has the potential to reduce the need for manual monitoring of faults78

and to expedite decision-making processes. Additionally, it can promote the sustainability of AI by79

preventing energy wastage and system malfunction.80
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Table 3: Data sources for algorithms and datasets. **Reproduced by using the squared value of
channel 1 as the anomaly score.

Dataset SWaT WADI PSM MSL SMAP SMD

Metric F1∗PA F1∗ F1∗PA F1∗ F1∗PA F1∗ F1∗PA F1∗ F1∗PA F1∗ F1∗PA F1∗

Simple Heuristic [5] - 1 [5] - 1 [5] - 1 [5] - 1 [6] - 1 ** [6] - 1 [5] - 1 [6] - 1 [5] - 1 [6] - 1 [5] - 1
DAGMM [5] - 2 [18] - 3 [5] - 2 [5] - 2 [18] - 3 [18] - 3 [5] - 2 [5] - 2 [5] - 2 [5] - 2 [5] - 2 [5] - 2

LSTM-VAE [13] - 2 [13] - 2 [13] - 2 [13] - 2 [17] - 2 [19] - 3 [13] - 2 [5] - 2 [13] - 2 [5] - 2 [13] - 2 [5] - 2
MSCRED [18] - 2 [18] - 3 [18] - 2 [18] - 3 [18] - 3 [18] - 3 [18] - 2 [18] - 3 [18] - 2 [18] - 3 [18] - 2 [18] - 3

OmniAnomaly [5] - 2 [5] - 2 [5] - 2 [5] - 2 [18] - 3 [18] - 3 [10] - 1 [5] - 2 [10] - 1 [5] - 2 [10] - 1 [5] - 2
MAD-GAN [18] - 3 [11] - 1 [18] - 3 [11] - 1 [18] - 3 [18] - 3 [18] - 2 [18] - 3 [18] - 2 [18] - 3 [18] - 2 [18] - 3
MTAD-GAT [20] - 2 [12] - 3 [20] - 2 [12] - 3 [12] - 3 [12] - 3 [12] - 1 [12] - 3 [12] - 1 [12] - 3 [20] - 2 [12] - 3

USAD [13] - 1 [13] - 1 [13] - 1 [13] - 1 [18] - 3 [18] - 3 [13] - 1 [5] - 2 [13] - 1 [5] - 2 [13] - 1 [5] - 2
THOC [14] - 1 [5] - 2 [5] - 2 [5] - 2 [17] - 2 - [14] - 1 [5] - 2 [14] - 1 [5] - 2 [5] - 2 [5] - 2
UAE [4] - 1 [4] - 1 [4] - 1 [4] - 1 [4] - 3 [4] - 3 [4] - 1 [4] - 1 [4] - 1 [4] - 1 [4] - 1 [4] - 1
GDN [5] - 2 [15] - 1 [5] - 2 [15] - 1 [15] - 3 [15] - 3 [5] - 2 [5] - 2 [5] - 2 [5] - 2 [5] - 2 [5] - 2
GTA [16] - 1 [16] - 3 [16] - 1 [16] - 3 [16] - 3 [16] - 3 [16] - 1 [16] - 3 [16] - 1 [16] - 3 [16] - 3 [16] - 3

AnomalyTransformer [17] - 1 [17] - 3 [17] - 3 [17] - 3 [17] - 1 [17] - 3 [17] - 1 [17] - 3 [17] - 1 [17] - 3 [17] - 1 [17] - 3
TranAD [18] - 1 [18] - 3 [18] - 1 [18] - 3 [18] - 3 [18] - 3 [18] - 1 [18] - 3 [18] - 1 [18] - 3 [18] - 1 [18] - 3

G Limitations81

Despite exhibiting competitive performance against other models, the proposed NPSR algorithm has82

a few limitations. The point-based model used in training does not incorporate temporal informa-83

tion, which makes it challenging to effectively reconstruct low-dimensional datasets. This issue is84

particularly challenging for univariate time series since raw inputs would not work for point-based85

models. One possible solution to this problem is to increase dimensionality by aggregating multiple86

time points. However, the effectiveness of this approach is yet to be confirmed.87

Another limitation of NPSR is the absence of an automatic threshold-finding method, which makes it88

difficult to determine a suitable threshold when deploying the model. To address this issue, one can89

define a target false positive rate and estimate the threshold that achieves this target rate using the90

validation set since only normal data is needed.91
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