
A Properties of PMD468

We present lemmas relevant to the analysis of PMD. Key to the analysis is the Three-Point Descent469

Lemma, that relates the improvement of the proximal gradient update compared to an arbitrary point.470

It originally comes from [37] (Lemma 3.2) where a proof can be found, though we use a slightly471

modified version from [7] (Lemma 6).472

Lemma A.1 (Three-Point Descent Lemma, Lemma 6 in [7]). Suppose that C ⇢ Rn
is a closed convex473

set, � : C ! R is a proper, closed convex function, Dh(·, ·) is the Bregman divergence generated by474

a function h of Legendre type and rint domh \ C 6= ;. For any x 2 rint domh, let475

x+ = argmin
u2C

{�(u) +Dh(u, x)}. (14)

Then x+
2 rint dom h \ C and 8u 2 C,476

�(x+) +Dh(x
+, x)  �(u) +Dh(u, x)�Dh(u, x

+) (15)

The update (4) of PMD is an instance of the proximal minimisation (14) with C = �(A), x = ⇡k

s
477

and �(x) = �⌘khQk

s
, xi. Plugging these into (15), Lemma A.1 relates the decrease in the proximal478

objective of ⇡k+1
s

to any other policy, i.e. 8p 2 �(A),479

�⌘khQ
k

s
,⇡k+1

s
i+Dh(⇡

k+1
s

,⇡k

s
)  �⌘khQ

k

s
, pi+Dh(p,⇡

k

s
)�Dh(p,⇡

k+1
s

). (16)

This equation is key to the analysis in Section 6. In particular, it allows us to prove the following480

lemma regarding the monotonic improvement in action-value of PMD iterates. This is an extension481

of Lemma 7 in [7].482

Lemma A.2. Consider the policies produced by the iterative updates of PMD in (4). Then for any483

k � 0,484

Qk+1(s, a) � Qk(s, a), 8(s, a) 2 S ⇥A.

A.1 Proof of Lemma A.2485

We first present Lemma 7 from [7], from which Lemma A.2 almost immediately follows.486

Lemma A.3 (Descent Property of PMD, Lemma 7 in [7]). Consider the policies produced by the487

iterative updates of PMD in (4). Then for any k � 0488

hQk

s
,⇡k+1

s
� ⇡k

s
i � 0, 8s 2 S,

489

V k+1(⇢) � V k(⇢), 8⇢ 2 �(S).

Proof. From [7]. Recall that the Three-Point Descent Lemma states that 8p 2 �(A),490

�⌘khQ
k
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,⇡k+1
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,⇡k

s
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s
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s
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Using this with p = ⇡k

s
,491

Dh(⇡
k

s
,⇡k+1

s
) +Dh(⇡

k+1
s

,⇡k

s
)  ⌘khQ

k

s
,⇡k+1

s
� ⇡k

s
i

and since the Bregman divergences are none-negative and ⌘k > 0,492

0  hQk

s
,⇡k+1

s
� ⇡k

s
i

and the result follows by an application of the performance difference lemma (Appendix B)493

V k+1(⇢)� V k(⇢) =
1

1� �
E
s⇠d

k+1
⇢

h
hQk

s
,⇡k+1

s
� ⇡k

s
i

i

� 0.

Note that we use the performance difference lemma here because it gives a simple concise proof, but494

we do not actually need to. To maintain our claim that we avoid the use of the performance difference495

lemma, we can get the same result without it. We sketch how to do this as follows. From the first part496

of the lemma, we have497

hQk

s
,⇡k+1

s
i � hQk

s
,⇡k

s
i = V k(s),
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in all states s. Now note that the left hand side above is498

hQk

s
,⇡k+1

s
i =

X

a

⇡k+1(a|s)Qk(s, a)

=
X

a

⇡k+1(a|s)
⇣
r(s, a) + �

X

s0

p(s0|s, a)V k(s0)
⌘

and we can then apply hQk

s0 ,⇡
k+1
s0 i � V k(s0) at state s0:499

V k(s) 
X

a

⇡k+1(a|s)
⇣
r(s, a) + �

X

s0

p(s0|s, a)V k(s0)
⌘



X

a

⇡k+1(a|s)
⇣
r(s, a) + �

X

s0

p(s0|s, a)
X

a0

⇡k+1(a0|s0)
⇣
r(s0, a0) + �

X

s00

p(s00|s0, a0)V k(s00)
⌘⌘

and as proceed iteratively in the limit you get exactly V k+1(s). ⌅500

Since Lemma A.3 holds for any ⇢ 2 �(S), it guarantees that the value in each state is non-decreasing501

for an update of PMD, i.e for all s 2 S ,502

V k+1(s)� V k(s) � 0.

Using this, we get503

Qk+1(s, a)�Qk(s, a) = �
X

s02S
p(s0|s, a)

⇣
V k+1(s0)� V k(s0)

⌘
� 0,

which concludes the proof. ⌅504

A.2 Extension of Lemma A.2 to inexact setting:505

As in the exact case, we first present Lemma 12 from [7] which is the extension of Lemma A.3 to the506

inexact case. We note that in the inexact case, we lose the monotonic increase of values due to the507

inaccuracy in our estimate bQk of Qk

s
.508

Lemma A.4. Consider the policies produced by the iterative updates of IPMD in (9). For any k � 0,509

if k bQk

s
�Qk

s
k1  ⌧ , then510

h bQk

s
,⇡k+1

s
� ⇡k

s
i � 0, 8s 2 S,511

V k+1(⇢) � V k(⇢)�
2⌧

1� �
, 8⇢ 2 �(S).

Proof. From [7]. The Three-Point Descent Lemma applied to the IPMD update (9) gives 8p 2 �(A),512

�⌘kh bQk
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Using this with p = ⇡k

s
,513
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and since the Bregman divergences are none-negative and ⌘k > 0,514

0  h bQk

s
,⇡k+1

s
� ⇡k

s
i,

which proves the first inequality. Now we cannot use the above inequality directly with the perfor-515

mance difference lemma since bQk

s
is not the true action-value. Instead, we have516
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which concludes the proof. ⌅517
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Using the above lemma, we can state and prove the extension of Lemma A.2 to the inexact setting.518

Lemma A.5. Consider the policies produced by the iterative updates of IPMD in (9). For any k � 0,519

if k bQk

s
�Qk

s
k1  ⌧ , then520

bQk+1(s, a) � bQk(s, a)�
2⌧�

1� �
, 8(s, a) 2 S ⇥A.

Proof. As in the exact case, since Lemma A.4 holds for any ⇢ 2 �(S), it applies to each state, i.e for521

all s 2 S ,522

V k+1(s)� V k(s) � �
2⌧

1� �
.

Using this, we immediately have523

Qk+1(s, a)�Qk(s, a) = �
X

s02S
p(s0|s, a)

⇣
V k+1(s0)� V k(s0)

⌘
�

�2⌧�

1� �
,

which concludes the proof. ⌅524

B Performance difference lemma525

Lemma B.1 (Performance Difference Lemma). For any ⇡,⇡0
2 ⇧, we have526

V ⇡(⇢)� V ⇡
0
(⇢) =

1

1� �
Es⇠d⇡

⇢

h
hQ⇡

0

s
,⇡s � ⇡0

s
i

i
.

The performance difference lemma [14] is a property that relates the difference in values of policies527

to the policies themselves. The proof can be found in their paper under Lemma 6.1.528

C Guarantees of Theorem 4.1 for various step-size choices529

We give here two more choices of {ck}k2Z�0
for the step-size 5 of PMD and their corresponding530

guarantees from Theorem 4.1:531

• ci = c0 for some c0 > 0 yields a step-size with a constant component. The resulting bound532

is533

kV ?
� V k

k1  �k
kV ?

� V 0
k1 +

c0
1� �

,

which converges linearly up to some accuracy controlled by c0.534

• ci = �i+1c0 for some initial c0 > 0 will yield a step-size with a component that is535

geometrically increasing as in [7], though at a slower rate than the one discussed in Section536

4. The resulting bound is537

kV ?
� V k

k1  �k

⇣
kV ?

� V 0
k1 + kc0

⌘
,

which converges linearly with the sought-for �-rate, though in early iterations the k factor538

may dominate.539
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Figure 1: Example MDP used in the proof of Theorem 4.2

D Proof of Theorem 4.2540

Fix n > 0 and � 2 (0, (1 � �)�n). Consider the MDP shown in Figure 1. The state space is541

S = {s0, s1, s01, ..., sn, s
0
n
} and the action space is A = {a1, a2}. There is a chain of states of length542

n+ 1 with the states indexed from 0 to n. The left-most state (s0) is absorbing with reward +1. In543

the other states in the chain (si for i = 1, ..., n), the agent can take action a1 and move left (to si�1)544

with reward of 0, or take action a2 and move to an additional absorbing state unique to the state it is545

currently in (s0
i
) with reward ri = �i+1 + � (that the agent also receives in that state for all future546

time-steps). Summarising, we have for 1  i  n547

p(si�1|si, a1) = 1, r(si, a1) = 0,

p(s0
i
|si, a2) = 1, r(si, a2) = ri = �i+1 + �,

p(s0
i
|s0

i
, a) = 1, r(s0

i
, a) = ri = �i+1 + � 8a 2 A.

The value of � is carefully restricted so that the optimal action in all the states of the chain is a1. The548

proof will consist in showing that if the agent starts with an initial policy that places most probability549

mass on the sub-optimal action a2, then it has to learn that a1 is the optimal action in the state directly550

to the left before it can start switching from action a2 to a1 in the current state. And this can at best551

happen one iteration at a time starting starting from the left-most state. In particular, we consider ⇡0552

s.t ⇡0(a1|s) = ↵, ⇡0(a2|s) = 1� ↵ for all states and some ↵ s.t 0 < ↵  �(1� �). We make the553

following claim from which the result will follow straightforwardly.554

Claim: Fix k < n. The policies produced by PMD satisfy ⇡k(a1|si)  ↵ for k < i  n.555

We prove this claim by induction.556

Base Case: We want to show that ⇡1(a1|si)  ↵ for i > 1. We do this by showing that Q0(si, a1) 557

Q0(si, a2) for i > 1 so that the probability of ⇡1(a1|si) cannot increase w.r.t ⇡0(a1|si), which is ↵558
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(this follows from hQk

s
,⇡k+1

s
� ⇡k

s
i � 0 for all iterations of PMD). We have:559

Q0(si, a1) = �V 0(si�1)

= �
⇣
↵Q0(si�1, a1) + (1� ↵)Q0(si�1, a2)

⌘

 �
⇣
↵
�i�1

1� �
+

ri�1

1� �

⌘

(a)
 �

⇣
�(1� �)

�i�1

1� �
+

�i + �

1� �

⌘

=
�i+1

1� �
+

��(1 + �i�1
� �i)

1� �
(b)


�i+1

1� �
+

�

1� �

= Q0(si, a2),

where we used ↵  �(1� �) in (a) and �(1 + �i�1
� �i) < 1 for � 2 [0, 1) in (b). This concludes560

the base case.561

Inductive Step: Now assume that the claim is true for k and we want to show that ⇡k+1(a1|si)  ↵562

for i > k + 1. We do this in the same way as the base case by showing that Qk(si, a1)  Qk(si, a2)563

for i > k + 1 so that the probability of ⇡k+1(a1|si) cannot increase w.r.t ⇡k(a1|si), which is less564

than or equal to ↵ by the inductive hypothesis. We have:565

Qk(si, a1) = �V k(si�1)

= �
⇣
⇡k(a1|si�1)Q

k(si�1, a1) + ⇡k(a2|si�1)Q
k(si�1, a2)

⌘

(a)
 �

⇣
↵Qk(si�1, a1) +Qk(si�1, a2)
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 �
⇣
↵
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1� �
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1� �

⌘

(b)
 �

⇣
�(1� �)
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1� �
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�i + �

1� �

⌘

=
�i+1
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��(1 + �i�1
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1� �
(c)


�i+1

1� �
+

�

1� �

= Qk(si, a2),

where we used in (a) that ⇡k(a1|si�1)  ↵ for i > k + 1, which is true by the inductive hypothesis566

since i� 1 > k, in (b) that ↵  �(1� �) and in (c) that �(1 + �i�1
� �i) < 1 for � 2 [0, 1). This567

concludes the proof of the claim.568

Now using the claim569

V k(sk+1) = ⇡k(a1|sk+1)Q
k(sk+1, a1) + ⇡k(a2|sk+1)Q

k(sk+1, a2)

 ↵
�k+1

1� �
+

rk+1

1� �

= ↵
�k+1

1� �
+

�k+2 + �

1� �
,
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so570

V ?(sk+1)� V k(sk+1) �
�k+1

1� �
� ↵

�k+1

1� �
�

�k+2 + �
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�
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� �k+1
�
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�

2�

1� �
, (17)

where we used that ↵  �. Now note that571

V 0(s1) = ↵Q0(s1, a1) + (1� ↵)Q0(s1, a2)

= ↵
�

1� �
+ (1� ↵)

�2 + �

1� �
,

so572

V ?(s1)� V 0(s1) =
�

1� �
� ↵

�

1� �
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1� �
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�

1� �
� (1� ↵)
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1� �
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1� �
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� �
⌘


1� ↵
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⇣
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⌘

= �
1� ↵

1� �

⇣
1� �

⌘

= �(1� ↵)

 �

and by induction we can show this is the case for all states (above is base case), the inductive step is573

as follows (assuming V ?(sk)� V 0(sk)  �),574

V ?(sk+1)� V 0(sk+1) =
�k+1

1� �
� (1� ↵)

�k+2 + �

1� �
� ↵�V 0(sk)

= (1� ↵)
h�k+1
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� �
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i
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h
V ?(sk)� V 0(sk)

i

 (1� ↵)�k+1 + ↵�2
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and so575

kV ?
� V 0

k1  �,

which combining with (17) gives,576

V ?(sk+1)� V k(sk+1) � �k
kV ?

� V 0
k1 �

2�

1� �

=) kV ?
� V k

k1 � �k
kV ?

� V 0
k1 �

2�

1� �
,

which concludes the proof. ⌅577
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E Proof of Theorem 4.3578

Consider the same MDP as in the proof of Theorem 4.2 in Appendix D (see Figure 1). Denote579

c = 1��

8 and note that c <
p
�

1+
p
�

1��

2 since 1
4 <

p
�

1+
p
�

for � > 0.2.580

Suppose you consider NPG updates with initial policy ⇡0(a1|si) = ↵. Recall that NPG is the instance581

of PMD with relative entropy as the mirror map. It can be shown that NPG has the closed form update582

⇡k+1(a|s) =
⇡k(a|s)e⌘kQ

k(s,a)

P
a0 ⇡k(a0|s)e⌘kQ

k(s,a0)
.

We know from the proof of Theorem D that for any step-size regime, for i > k + 1583

Qk(si, a1)  Qk(si, a2).

Now, kV ?
� V 0

k1 = V ?(s1)� V 0(s1)  � �
�

1��
(see Section E.1 below). The idea of the proof584

is to show that satisfying the bound given in the statement of the theorem will imply that a certain585

condition on the step-size.586

Fix a state sk and let k0 be the first iteration where Qk0(sk, a1) > Qk0(sk, a2). By the above, we587

must have k  k0 + 1, or k0 � k � 1. By the proof of Theorem D, we also have ⇡k0(a1|sk)  ↵588

(before iteration k0, Q(sk, ·) favors a2, so ⇡k0(a1|sk) has not increased compared to ⇡0(a1|sk) = ↵).589

We want a �-contraction at every iteration, i.e. we assume the following is satisfied:590

V ?(sk)� V k0+1(sk)  �k0+1(kV ?
� V 0

k1 + c)  �k0+1(� �
�

1� �
+ c).

Now, by direct computation,591

V ?(sk)� V k0+1(sk) = ⇡k0+1(a1|sk)�(V
?(sk�1)� V k0+1(sk�1)) + ⇡k0+1(a2|s2)

�k
� rk

1� �

� ⇡k0+1(a2|s2)
�k

� rk
1� �

= ⇡k0+1(a2|s2)(�
k
�

�

1� �
).

Putting this together with the above (this is an implication as this is about the necessity rather than592

sufficiency), we must have:593
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k
�

�
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�
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= �

If we choose � < 1
2 (1� �)(1�

p
�)�k then � <

p
� and require594

⇡k0+1(a2|s2) 
p
�.
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To see this, start from � 
p
�, this is equivalent to595
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which is the condition for � we imposed initially.596

To achieve the above condition ⇡k0+1(a2|s2) 
p
�, recalling that ⇡k0(a2|s2) � 1� ↵, ⌘k0 has to597

satisfy598

⌘k0 �
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Qk0(sk, a1)�Qk0(sk, a2)

h
log((1� ↵)(1�

p
�)) +KL(⇡̃k0+1

sk
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)
i

To see this, again start from ⇡k0+1(a2|s2) 
p
�, this is equivalent to (use k0 = m for simplicity of599

notation) using the closed-form update of NPG:600

⇡m(a2|s2) exp(⌘mQm(sk, a2)) 
p
�(⇡m(a2|s2) exp(⌘mQm(sk, a2)) + ⇡m(a1|s2) exp(⌘mQm(sk, a1)))
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1
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⇡m(a1|s2)

⌘i

=) ⌘m �
1

Qm(sk, a1)�Qm(sk, a2)

h
log

⇣
(1� ↵)

1�
p
�

p
�

⌘
+KL(⇡̃m+1

sk
,⇡m

sk
)
i

=) ⌘m �
1

Qm(sk, a1)�Qm(sk, a2)

h
log

⇣
(1� ↵)(1�

p
�)
⌘
+KL(⇡̃m+1

sk
,⇡m

sk
)
i
.

As we take ↵ ! 0, the KL term will dominate. In particular, note ↵ < 1� � so 1� ↵ > � and601

(1� ↵)(1�
p
�) > �(1�

p
�)
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and if we further impose the condition ↵ < �2(1�
p
�)2 then602

(1� ↵)(1�
p
�) >

p
↵ >

q
⇡k0(a1|s2)

and the step-size needs to satisfy the following condition:603

⌘k0 �
1

Qk0(sk, a1)�Qk0(sk, a2)

h
log(

q
⇡k0(a1|s2)) +KL(⇡̃k0+1

sk
,⇡k0

sk
)
i

=
1

Qk0(sk, a1)�Qk0(sk, a2)

h
�

1

2
KL(⇡̃k0+1

sk
,⇡k0

sk
) +KL(⇡̃k0+1

sk
,⇡k0

sk
)
i

=
1

2(Qk0(sk, a1)�Qk0(sk, a2))
KL(⇡̃k0+1

sk
,⇡k0

sk
) (18)

Distinct Iterations: Note that the iteration k0(sk) where Q(·, sk) starts becoming bigger at a1 that604

a2 is distinct for each sk. Fix any sk and k0 = k0(sk). We have605

Qk0(sk, a1) < Qk0(sk, a2)

Qk0+1(sk, a2)  Qk0+1(sk, a1)

then ⇡k0+1(a1|sk)  ⇡k0(a1|sk)  ↵ (since Qt points towards a2 in sk for all t  k). Then606

applying exactly the same steps as in the proof of Theorem 4.2, we have607

Qk0+1(sk+1, a1) < Qk0+1(sk+1, a2),

meaning that k0(sk) is disctinct to k0(sk+1).608

Upper Bounding Q-value difference: We want to upper-bound the Q-value difference appearing in609

the step-size condition above. We have,610

Qk0(sk, a2) =
rk

1� �
=

�k+1 + �

1� �

Qk0(sk, a1) = �V k0(sk�1) 
�k

1� �
.

So,611

Qk0(sk, a1)�Qk0(sk, a2) 
�k

1� �
�

�k+1 + �

1� �

= �k
�

�

1� �

 �k.

Plugging this into the above bound (18), if the iterates of NPG are to satisfy the bound with the �-rate612

in the statement of the theorem, the step-size must at least satisfy the following condition:613

⌘k0 �
1

2�k
KL(⇡̃k0+1

sk
,⇡k0

sk
),

which concludes the proof. ⌅614

E.1 Largest sub-optimality gap at iteration 0615

In this section, we prove the claim that616

kV ?
� V 0

k1 = V ?(s1)� V 0(s1)  � �
�

1� �

Proof: First of all, V ?(s1)� V 0(s1) = ⇡0(a2|s1)
��r1

1��
= (1� ↵)(� �

�

1��
)  � �

�

1��
. For the617

first part, we proceed by induction. We will use throughout that618

�k
� rk

1� �
= �k

�
�

1� �
 V ?(s1)� V 0(s1) = (1� ↵)(� �

�

1� �
).
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This is true if (when LHS is the largest)619

�2
�

�

1� �
 (1� ↵)(� �

�

1� �
)

which holds when620

↵ 
�(1� �)2

�(1� �)� �

(= ↵  1� �

Base Case:621

V ?(s2)� V 0(s2) = ↵�(V ?(s1)� V 0(s1)) + (1� ↵)
�2

� r2
1� �

 ↵�(V ?(s1)� V 0(s1)) + (1� ↵)(V ?(s1)� V 0(s1))

 V ?(s1)� V 0(s1)

Inductive Step: Assume true for k. Then,622

V ?(sk+1)� V 0(sk+1) = ↵�(V ?(sk)� V 0(sk)) + (1� ↵)
�k+1

� rk+1

1� �

 ↵�(V ?(s1)� V 0(s1)) + (1� ↵)(V ?(s1)� V 0(s1))

 V ?(s1)� V 0(s1),

which concludes the proof. ⌅623
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F Inexact policy mirror descent and the generative model624

The following Lemma from [7] controls the accuracy of the estimator bQk

s
specified in (10) of Section625

5 with respect to H and Mk:626

Lemma F.1 (Lemma 15 in [7]). Consider using (10) to estimate Qk

s
for all state-action pairs for K627

iterations of IPMD. Then for � 2 (0, 1), if for all k  K,628

Mk �
��2H

2
log

�2K|S||A|

�

�
.

Then with probability at least 1� �, we have for all k  K,629

k bQk

s
�Qk

s
k1 

2�H

1� �
.

The proof of this result can be found in Lemma 15 of [7].630

F.1 Proof of Theorem 5.1631

This proof is similar to that of [7] (Theorem 14). It is also similar in structure to the proof of Theorem632

4.1 in Section 6.633

Fix a state s 2 S and an integer k � 0. For now let’s assume that our Q-estimates are ⌧ -accurate634

(⌧ > 0), i.e.635

kQk
� bQk

k1  ⌧

for all k � 0. With this assumption, we have from Lemma A.5 in Appendix A.1,636

Qk+1(s, a) � Qk(s, a)�
2�⌧

1� �
, 8(s, a) 2 S ⇥A.

Now proceeding in a similar way to Section 6,637

h bQk

s
,⇡?

s
� ⇡k+1

s
i = hQk

s
,⇡?

s
� ⇡k+1

s
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s
�Qk
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s
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s
i

� hQk

s
,⇡?

s
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s
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s
i � k bQk

s
�Qk

s
k1k⇡?

s
� ⇡k+1

s
k1

� hQk

s
,⇡?

s
i � hQk+1

s
,⇡k+1

s
i �

2�⌧

1� �
� 2⌧

� hQk

s
,⇡?

s
i � V k+1(s)�

4�⌧

1� �

= hQk

s
�Q?

s
,⇡?

s
i+ V ?(s)� V k+1(s)�

4�⌧

1� �

� �kQ?

s
�Qk

s
k1 + V ?(s)� V k+1(s)�

4�⌧

1� �

� ��kV ?
� V k

k1 + V ?(s)� V k+1(s)�
4�⌧

1� �
.

Now again proceeding exactly as in Section 6 with this extra ⌧ -term using the step-size condition638

(ck = �2k+1), we end up with639

kV ?
� V k+1

k1  �kV ?
� V k

k1 + �2k+1 +
4�⌧

1� �
.

Unravelling this recursion yields640

kV ?
� V k

k1  �k

⇣
kV ?

� V 0
k1 +

kX

i=1

��i�2(i�1)+1
⌘
+

4�⌧

1� �

k�1X
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�i

 �k

⇣
kV ?

� V 0
k1 +

1

1� �

⌘
+

4�⌧

(1� �)2
.
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Now using the properties of the estimator (10) in Lemma F.1, we have with probability 1� � for all641

0  k  K,642

⌧ =
2�H

1� �
,

giving643

kV ?
� V k

k1  �k

⇣
kV ?

� V 0
k1 +

1

1� �

⌘
+

8�H

(1� �)3


2

1� �
�k +

8�H

(1� �)3
.

This establishes the first bound. Now644

K >
1

1� �
log

4

(1� �)"
=)

2

1� �
�k

 "/2,

H �
1

1� �
log

16

(1� �)3"
=)

8�H

(1� �)3
 "/2

giving645

kV ?
� V k

k1  "/2 + "/2 = "

as required. In terms of M, we have646

M �
��2H

2
log

2K|S||A|

�

�
1

2

⇣ 16

(1� �)3"

⌘2
log

2K|S||A|

�

=
162

2(1� �)6"2
log

2K|S||A|

�

and the corresponding number of calls to the sampling model, i.e. the sample complexity is (what we647

have shown above is actually a lower bound but can choose K,H,M so that it is of the following648

order),649

|S| · |A| ·K ·H ·M = Õ
⇣

|S||A|

(1� �)8"2

⌘
,

where the notation Õ() hides poly-logarithmic factors. This completes the proof. ⌅650
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G MDP examples651

G.1 MDP on which distribution-mismatch coefficient scales with size of state space652

We construct an MDP on which653

✓⇢ =
1

1� �

���
d?
⇢

⇢

���
1
,

scales with |S|, and hence so does the iteration complexity of the bound of [7] for exact PMD.654

Consider an MDP with state-space S = {s1, s2, ..., sn} of size n and arbitrary action space A. s1 is655

an absorbing state giving out rewards of 1 at each time-step, regardless of the action taken, i.e656

p(s1|s1, a) = 1, r(s1, a) = 1 8a 2 A.

All others states have an action, say a1, that gives out a reward of 1 and with probability 1� � brings657

the agent to state s1 for some � > 0 and spreads the remaining � probability arbitrarily amongst the658

other states. The other actions have arbitrary rewards strictly less than 1 associated to them, and659

arbitrary transition probabilities that place 0 mass on state s1, i.e660

p(s1|s, a1) = 1� �, r(s, a1) = 1 8s 6= s1,

p(s1|s, a) = 0, r(s, a) < 1 8s 6= s1, 8a 6= a1.

Denote rmax = maxs 6=s1,a 6=a1 r(s, a) < 1. The following condition ensures that a1 is the optimal661

action in all states,662

� 
1� �

�
(1� rmax)

so that ⇡?(s) = a1 for all states s. To see this, consider si 6= s1, am 6= a1 and an arbitrary policy ⇡,663

Q⇡(si, a1) = 1 + �
⇣ 1� �

1� �
+

nX

j=2

p(sj |si, a1)V
⇡(sj)

⌘

� 1 + �
1� �

1� �

Q⇡(si, am) = r(si, am) + �
nX

j=2

p(sj |si, a1)V
⇡(sj)

 rmax + �
1

1� �

and solving664

rmax + �
1

1� �
 1 + �

1� �

1� �

will yield the condition above.665

Then for t � 1 (abusing notation, st denotes the state at time t),666

P⇡
?

(st = s1|s0 = s) =
X

s0

P⇡
?

(st = s1, st�1 = s0|s0 = s)

=
X

s0

p(s1|s
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(st�1 = s0|s0 = s)

�

X

s0
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and667

d?
⇢
(s1) = (1� �)

X

s

⇢(s)
1X

t=0

�tP⇡
?

(st = s1|s0 = s)

� (1� �)
X

s

⇢(s)
1X

t=1

�t(1� �)

� (1� �)
X

s

⇢(s)
�

1� �
(1� �)

= �(1� �).

Now668

���
d?
⇢

⇢

���
1

�
d?
⇢
(s1)

⇢(s1)
�

�(1� �)

⇢(s1)

and depending on what ⇢ you consider, ✓⇢ can be arbitrarily large. In particular, the natural choice of669

the uniform starting-state distribution ⇢(s) = 1/n leads to670

✓⇢ � n
�(1� �)

(1� �)

which gives an iteration complexity under the result of [7] for an "-optimal policy that is671

n
�(1� �)

(1� �)
log

2

(1� �)"
.

Recall that n = |S|, so this iteration complexity scales linearly with the size of the state space.672

G.2 Family of MDPs on which sub-optimality gaps can be made arbitrarily small673

We present how to construct a family of MDPs on which �k(s) defined in Section 4 can be made674

arbitrarily small.675

Consider an arbitrary MDP M with state space S and action space A. For each state-action pair676

(s, a) 2 S ⇥A, create a duplicate action a0 s.t the transitions from that action in that state are the677

same as for the original pair, i.e678

p(s0|s, a) = p(s0|s, a0) 8s0 2 S

and the reward is shifted down by � > 0 from the original reward, i.e679

r(s, a0) = r(s, a)� �.

This results in a new MDP M
0 with an augmented action space A0, that is twice the size of the action680

space of the original MDP M. In terms of action-value of an arbitrary policy ⇡, this results in681

Q⇡

M0(s, a)�Q⇡

M0(s, a0) = �,

where the notation Q⇡

M0 refers to action-values in the MDP M
0. In terms of sub-optimality gaps, this682

gives683

�⇡(s)  �.

Choosing � small enough, we can make the step-size of [9] arbitrarily large, at least in early iterations.684

The step-size condition (5) of Theorem 4.1 will be less affected by this issue as it does not depend685

directly on �k(s), and not at all in the first iteration. Beyond its generality to PMD, this illustrates686

the benefit of our result restricted to NPG over the result of [9].687
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