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Supplementary material

This supplementary material provides additional experimental results (Appendix A) and dataset
details (Appendix B).

A Additional experimental results

A.1 Sensitivity to λ

In Fig. A, we show the sensitivity to a hyperparameter λ in Eq.(6) of the main paper, which controls
the weight of OOD regularization loss. We use MCM and GL-MCM as test-time detection methods
for LoCoOP. We report average FPR95 and AUROC scores on four OOD datasets in a 16-shot setting.
We found that, when λ is smaller than 1, LoCoOp outperforms CoOp for both MCM and GL-MCM.
In this paper, we set λ to 0.25. However, we observe that LoCoOp is not sensitive to λ so much
except for λ = 1.

A.2 Detailed results on few-shot OOD detection

In this section, we show the detailed results of few-shot OOD detection with different numbers of
ID samples. Fig. 2 in the main paper shows the average FPR and AUROC scores, and we omit the
detailed results due to space limitations. In Table A, we show the results of 2, 4, and 8 shots detection
results on all OOD datasets in detail. These results demonstrate that LoCoOp is the most effective
method among comparison methods.

A.3 The effectiveness of LoCoOp on small-scale datasets

In this section, we show the effectiveness of LoCoOp on small-scale datasets. As for the datasets, we
use ImageNet-100 (a 100-class subset of ImageNet) as the ID dataset. As for the OOD datasets, we
adopt the same ones as the ImageNet-1K OOD datasets. In Table B, we show the OOD detection
result. From this result, we find that LoCoOp outperforms CoOp on ImageNet-100.

A.4 Relationship between the OOD detection performance and ID accuracy

In Table C, we show the ID classification accuracies for the OOD detection methods. We discuss the
relationships between ID accuracy and OOD detection performance in the following three points.

1. Why do zero-shot and prompt learning methods outperform fully supervised methods in
OOD detection performance while their ID accuracies are considerably lower?

The key point in OOD detection is to avoid incorrectly assigning a high confidence score to OOD
samples. In this respect, zero-shot and prompt learning methods calculate OOD scores based on
the similarity between the text and the image, so models are less likely to produce unnaturally high
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Figure A: Analysis of the sensitivity to a hyper-parameter λ

Table A: Few-shot OOD detection with different numbers of ID samples.

iNaturalist SUN Places Texture Average

Method FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Prompt learning two-shot (two label per class)
CoOpMCM 38.89 92.12 39.38 91.58 44.18 88.98 44.92 89.16 41.85 90.46
CoOpGL 21.17 95.36 35.00 91.08 42.25 88.32 49.23 85.79 36.91 90.14
LoCoOpMCM (ours) 35.38 92.76 33.95 93.31 41.15 90.38 45.07 89.76 38.89 91.55
LoCoOpGL (ours) 23.39 95.14 24.32 94.89 34.15 91.53 47.36 88.27 32.30 92.46

four-shot (four labels per class)
CoOpMCM 35.36 92.60 37.06 92.27 45.38 89.15 43.74 89.68 40.39 90.92
CoOpGL 18.95 95.52 29.58 92.90 38.72 89.64 48.03 85.87 33.82 90.98
LoCoOpMCM (ours) 29.45 93.93 33.06 93.24 41.13 90.32 44.15 90.54 36.95 92.01
LoCoOpGL (ours) 18.49 96.07 22.85 95.00 32.38 91.86 44.72 89.10 29.61 93.01

eight-shot (eight labels per class)
CoOpMCM 35.17 92.96 34.45 92.50 41.17 89.76 43.29 89.92 38.52 91.29
CoOpGL 15.23 96.69 27.78 93.08 35.93 90.22 48.26 85.91 31.80 91.47
LoCoOpMCM (ours) 27.12 94.60 33.87 93.23 40.53 90.53 42.49 90.98 36.00 92.34
LoCoOpGL (ours) 16.34 96.47 22.40 94.96 31.86 91.83 42.20 89.81 28.20 93.27

confidence scores for OOD samples. On the other hand, most fully-supervised methods do not use
the language, and use the probability distribution through the last fc layer to calculate OOD scores.
Therefore, even if the ID accuracy is high, there is a higher possibility that the model will produce
an incorrect high confidence score for an OOD sample due to some reasons (e.g., noisy activation
signal [6]).

2. Why does LoCoOp have higher ID accuracy than CoOp in a 1-shot setting?

This is because CoOp does not have enough training samples in a 1-shot setting. As shown in Fig.
2 (main), CoOp and LoCoOp require about 16-shot image-label pairs to reach the upper score. On
the other hand, even in a 1-shot setting, LoCoOp can learn from many OOD features, so LoCoOp
outperforms CoOp in ID accuracy in a 1-shot setting.

3. Why does LoCoOp have lower ID accuracy than CoOp in a 16-shot setting?

In a 16-shot setting (sufficient training data for prompting methods), excluding OOD nuisances that
are correlated with ID objects will degrade the ID accuracy. For example, in some images of dogs, the
presence of green grass in the background may help identify the image as a dog. Therefore, learning
to remove the background information could make it difficult to rely on such background information
to determine that the image is a dog. However, this study reveals that excluding such backgrounds
improves OOD detection performance.
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Table B: Few-shot OOD detection on ImageNet-100.

iNaturalist SUN Places Texture Average

Method FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

16-shot (16 label per class)
CoOpMCM 16.66 97.05 7.58 98.48 13.72 97.18 20.33 95.78 14.57 97.12
CoOpGL 8.11 98.22 8.38 98.24 14.41 96.95 24.37 94.32 13.82 96.93
LoCoOpMCM (ours) 14.98 97.34 6.20 98.72 11.11 97.71 18.42 96.18 12.68 97.49
LoCoOpGL (ours) 8.44 98.21 4.77 99.01 9.47 98.03 20.41 95.41 10.77 97.67

Table C: The relationship between ID accuracy and OOD detection performance.

Average ID acc.
Method FPR95↓ AUROC↑

Zero-shot
MCM 42.82 90.76 67.01
GL-MCM 35.47 90.83 67.01
Fine-tuned
ODIN 47.75 88.80 79.64
ViM 50.20 87.82 79.64
KNN 42.19 90.97 79.64
NPOS 37.93 91.22 79.42
Prompt learning one-shot (one label per class)
CoOpMCM 44.81 90.03 66.23
CoOpGL 44.81 90.03 66.23
LoCoOpMCM 40.17 91.53 66.88
LoCoOpGL 33.52 92.14 66.88

16-shot (16 labels per class)
CoOpMCM 36.83 91.93 72.10
CoOpGL 30.67 91.82 72.10
LoCoOpMCM 33.98 92.69 71.70
LoCoOpGL 28.66 93.52 71.70

B Dataset details

B.1 ID dataset

We use ImageNet-1K [2] as the ID data. We download the dataset via the official URL link https:
//www.image-net.org/. For the few-shot training, we follow the few-shot evaluation protocol
adopted in CLIP [5] and CoOp [10], using 1, 2, 4, 8, and 16 shots for training, respectively. The
average results over three runs are reported for comparison. For evaluation, we use the ImageNet
validation dataset, which consists of 50,000 images with 1,000 classes following existing studies [4, 3].

B.2 OOD dataset

We use the following four datasets as OOD datasets following existing studies [4, 3]. We download
all OOD datasets via https://github.com/deeplearning-wisc/large_scale_ood.

iNaturalist. iNaturalist [7] contains 859,000 plant and animal images across over 5,000 different
species. We evaluate on 10,000 images randomly sampled from 110 classes that are disjoint from
ImageNet-1K following [3].

SUN. SUN [8] contains over 130,000 images of scenes spanning 397 categories.We evaluate on
10,000 images randomly sampled from 50 classes that are disjoint from ImageNet-1K following [3].

Places. Places [9] is another scene dataset with similar concept coverage as SUN. We evaluate on
10,000 images randomly sampled from 50 classes that are disjoint from ImageNet-1K following [3].

TEXTURE. TEXTURE [1] contains 5,640 real-world texture images under 47 categories. We use
the entire dataset for evaluation following [3].
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