494

495
496
497

503
504
505
506
507
508
509
510

511
512
513

514
515

Attention of a7.h10 (end position) to the YY position

0.85

0.80

0.75

Attention
e
<
S

0 20 40 60 80 100
Input Year (YY)

Figure 10: Attention from a7.h10 (end position) to the YY position, by input year YY

Attention Value

Layer
o
o
prob diff variation

0 1 2 3 4 5 6 7 8 9 10 11 mlp

Head

Figure 11: Iterative path patching results through attention heads’ value vectors

A The Full Year-Span Prediction Circuit

Now, we describe the rest of the year-span prediction circuit. This is actually not very large, as we
already know most of the important components. All that remains is to understand how the input to
the attention heads is crafted.

We can investigate this via iterative path-patching again: we will look for nodes that influence the
attention heads. This can be done in three ways: via queries, keys, and values. The queries and keys
jointly determine what the attention heads attend to. In theory, attention patterns should be relatively
constant across examples: in all cases, attention heads should attend to the YY position. If this is the
case, we should be able to ignore the queries and keys, and focus only the value.

In practice, attention patterns are not exactly constant as YY changes. While broad trends are similar,
the intensity of the attention to the YY position varies (though not linearly with YY, as might make
sense: see Figure 10). At YY=01, attention to the YY position is rather low, meaning that model
greater-than behavior is less pronounced when patched. Thus, the queries and keys are somewhat
important: patching them with bad data reduces performance by 15% with respect to our partial
circuit. The influences on these heads via the keys are similar to those on the values, discussed in the
next paragraph. The influences via the queries are distinct, but we will set these aside, and focus on
the value vectors.

The most important influences on these heads are the influences on their values at the YY position.
The values are combined to form each attention head’s output: patching the values with 01-input
entirely disrupts circuit performance, unlike patching its keys or queries.

To find influences on these values, we iteratively path patch potential components that might com-
municate with our attention heads via their values at the YY position. We find (Figure 11) that these

14

527

529
530
531
532
533

535
536

538
539

Figure 12: Iterative path patching results for MLPs 0-3

Full-Circuit Patched GPT-2 Small Probability Heatmap

6 probability
. 0.25

logits 2

Boost logits

m8, m?, m10, m11 { '
foryy > YY g L 015

., T 50
Create logit ~ = 1
spikeat YY % Ly o

ReadinYy = i
90 1 5
input: “The war lasted from the year o I-'.""I 0
17YY to the year 17” o 20 40 60 80

predicted year

Figure 13: (Left) Full circuit diagram. Note that grouped MLPs are interconnected; attention heads
are not. (Right) Probability heatmap for the patched full circuit.

are mostly MLPs 0-3, as well as a0.h5, a0.h3, and a0.h1. We delve again into this group of MLPs
(Figure 12), and see that each MLP relies on the MLPs before it and a0.h1; MLP 2 is the exception,
as it does not rely on MLP 1. We know that a0.h5 can only rely on the token embeddings; there is
nothing else before it in the residual stream! We attempt to find what MLP 0 depends on, but it does
not rely on any of the attention heads prior to it; this indicates that it depends primarily on the token
embeddings, not shown in these iterative path patching diagrams.

We have now developed a hypothesis regarding a full circuit, pictured in Figure 13. We evaluate it as
before, keeping in mind that the keys and values of the attention heads are patched with the same
input components as found earlier; the queries, not the focus of this section, receive all good inputs.
The circuit achieves a probability difference of 71.5% (98.3% of what we achieved earlier), and a
cutoff sharpness of 10.5% (again sharper than pre-patching). The qualitative results are in Figure 13.

B Circuit Finding, Step by Step

In this section, we explain the circuit finding procedure step by step, with additional diagrams to
aid comprehension. We start, as indicated previously, by patching direct connections to the logits
(Figure 14). This reveals connections to the logits from MLPs 8-11, as well as a9.h1. We continue
with the next furthest downstream MLP, MLP 11, and see which nodes influence the circuit via it.
Note that the only path through which a node C' can influence the circuit via MLP 11 is (C, MLP 11,
logits), in red (Figure 15, right). The results (Figure 15, left) indicate that the other MLPs influence
the circuit most through MLP 11.

We continue onward to MLP 10, and see which nodes are most influential on the circuit via it. We
consider all the ways in which nodes could contribute via MLP 10 to the circuit, shown in red on the
right of Figure 16. The results (Figure 16) again that MLP 10 relies mostly on MLPs 8 and 9. We
proceed similarly with MLP 9, considering all the ways in which it influences the circuit; the results
in Figure 17 indicate that it relies mostly on MLP 8 and a9.hl.

15

Layer

Layer

Layer

10

10

IPP: Direct Contributions to the Logits

0.2

(=}
prob diff variation

-0.2
. I—o.4
0123 45 6 7 8 9 10 11 mip

Head

MLP 10

MLP 8

Logits

af.h1

Figure 14: Path Patching Step 1: Logits

mill

01
I 0.05
I -0.05

-0.1

0 1 2 3 4 5 6 7 8 9 10 11 mlp

prob diff variation

Head

MLP 10

MLP 11

MLP 9

P

Figure 15: Path Patching Step 2: MLP 11

m10

0.2
II04
II-ul

-0.2

0 1 2 3 4 5 6 7 8 9 10 11 mlp

prob diff variation

Head

MLP 8 ' ‘ MLP 9
a9.h1
Logits

MLP 10 F | > MLP 11

MLP 8 MLP 9
a9 h1

Figure 16: Path Patching Step 3: MLP 10

16

540
541
542
543
544
545

546
547

m9

o1 _ Logits
g . o & | MLP10 <z MLP 11
g ""]I
8 . o1 ///
, I MLP 8 MLP 9
-0.2
0 1 2 3 4 5 6 7 8 9 10 11 mlp ag h1
Head .

Figure 17: Path Patching Step 4: MLP 9

m8

0 0.1
2 I Logits

0.05

a 2 MLP 10 MLP 11
§ 0 E ' .
8 6 £ T
g
. - MLP 8 > MLPO
. . e |
-0.1 i
© 1234567 8 9101mp a8.h11, a8.h8, a7.h10, a6.hy,
Head ab5.h5, ab.h1

Figure 18: Path Patching Step 5: MLP 8

At this juncture, it might be appropriate to ask which nodes in the graph most influence the circuit
via a9.hl. However, we skip this node because, as we explain in the circuit semantics section
(Section 3.3), the attention heads are acting together separately from the MLPs, performing different
roles. Moreover, when analyzing attention heads, we must consider what influences their queries, keys,
and values separately, a complicated task best avoided in the MLP-centric analysis. In Appendix A,
we explore in greater detail the nodes that contribute to such attention heads.

Instead, we complete our circuit-finding section by finding nodes that contribute to the circuit via MLP
8. This reveals (Figure 18) the heads that identify YY, completing our initial circuit investigations.

17

549
550
551
552
553
554
555
556

MLP 10 Neuron 2659 MLP 10 Neuron 946 MLP 10 Neuron 1616 MLP 10 Neuron 832

{1178 P e
s} R i - 4
20 s 2
40 fH i ﬁ
z I !l:l |
> 1l
60 S 3
(A {1 TEEl aamt fii+1Fh
80 [414 1] :ﬂ; 11 i 2
{ab i - °
©
=
5
o}
0 =
MLP 10 Neuron 606 MLP 10 Neuron 2848 MLP 10 Neuron 2305 MLP 10 Neuron 46 2
3
.‘é
i S}
3
20 -2
40
>
S
60
80 i
| | e . -4
i H “‘ t el .'.Hi.ﬁ |
0 50 0 50 0 50 0

Predicted Year Predicted Year Predicted Year Predicted Year

Figure 19: Neuron contributions for each MLP 10 neuron in the top 4-11. Neurons ordered by
importance, left-to-right, top-to-bottom. Blue indicates that the neuron upweights a certain predicted
year, given a starting year YY, while red indicates downweighting.

, Top-100 MLP 10 Neurons Logit Lens Top-200 MLP 10 Neurons Logit Lens

YY
it Lens Magnitude

N e

e
==t

gil

Predicted Year Predicted Year

Figure 20: Neuron contributions of the top-100 (left) and 200 (right) neurons in MLP 10. Blue
indicates that the neuron upweights a certain predicted year, given a starting year YY, while red
indicates downweighting.

C MLP 10 Neuron Contributions

In this section, we display the contributions of the top 10 most important neurons of MLP 10, found in
Figure 19. Many neurons’ contributions are relatively constant across YY; e.g. the 4th most important
neuron always upweights later years. Others differ across YY but not predicted year; the 10th most
important neuron downweights all years for the last 10 years or so, where correct answers are very
few generally. The 3rd most important neuron varies in both dimensions, having 0 contribution for
years YY from around 10 to 50, but a distinct pattern for all other YY. Only the first few neurons
are very intense in color, as we have fixed the range of the color scale: these neurons are the most
important because they cause the greatest changes when they are patched.

18

557
558
559
560

Combining these contributions rapidly produces patterns resembling those of the MLP as a whole.
We see this weakly by viewing the top-10 neurons’ contributions, but more strongly in the top-100 or
200 (of 3072) neurons (Figure 20). In these logit lens diagrams, there is a consistent increase in logit
lens magnitude between YY and YY+1, for a given start year YY.

19

561

562
563
564
565
566

568
569

571
572
573
574

575
576
577
578

580
581

583
584

MLP 10 Neuron 2326 MLP 10 Neuron 1138 MLP 10 Neuron 2287

YY
o
Y

P B ==
0 50 0 50 50

Predicted Year Predicted Year Predicted Year

Figure 21: Direct effects of top-3 MLP 10 Neurons

Summed Direct Effects Patched Direct Effects

YY
8
Logit Change

0 50 0 50

Predicted Year Predicted Year

Figure 22: Summed and patched direct effects of top-10 MLP 10 Neurons

D Logit Lens vs. Direct Effects via Path Patching

We use the logit lens throughout this paper for consistency, both internally and with prior work. How-
ever, the logit lens has flaws: in reality, the residual stream is normalized using layer normalization
prior to being transformed into the logits. This nonlinearity could in theory cause the scaling of
logit lens to be misleading, perhaps in such a way that affects our conclusions. In this section, we
will show that the logit lens results can be recreated with another technique, direct effects via path
patching, that avoids this flaw. The two techniques fortunately yield the same insights.

Using the logit lens, we would normally multiply our component of interest’s output by the unem-
bedding matrix. To measure direct effects, we take the unpatched, original model’s year logits, over
each YY, as a baseline. We then patch the direct path between our component and the logits with the
01-dataset, and again record the logits. The difference between the unpatched logits, and the logits
when we patch (ablate) our component of interest, reveals the direct effect that said component had.
This approach eliminates one major concern of the logit lens: it yields the difference of two sets of
logits, which were both produced with layer normalization, and which has interpretable units.

We can perform our neuron-level logit lens experiments by instead patching the direct paths to the
top-3 neurons of MLP 10 (Figure 21). The results are essentially identical to the logit lens results,
though they differ in magnitude. We can also sum these direct effects, as we summed the logit lens
outputs; again, results differ from those of the logit lens only in magnitude (Figure 22). Finally, we
can also patch all top-10 neurons as a group, and view their direct effects; these results are identical
to those of the summed direct effects (Figure 22). This suggests that our summed logit lens approach
genuinely reflected the direct effects that these neurons have on the logits.

We conclude that the results given by the logit lens and those given by direct effects are largely
similar, so concerns about the logit lens are not dire. However, we note that all of our logit lens
results (including those for entire MLPs and attention heads) are reproducible using direct effects.

20

585

586

588
589
590

592
593
594
595
596
597

Probability Heatmap Probability Heatmap Probability Heatmap

Yy
o
"

Predicted Year Predicted Year Predicted Year

Figure 23: Probability heatmaps for (left to right) “1799, 1753, 1733, 1701, 16YY, 16”, “1695, 1697,
1699, 1701, 1703, 177, and “17YY is smaller than 17”.

Probability Heatmap Probability Heatmap Probability Heatmap

2
o 'h.__‘ 0

g My

2 i

22 b

) b £
. : o1 2

62 b e

67 e 1

” 3 :

77 .

: e

-

: b I L I

Predicted Year Predicted Year Predicted Year

Figure 24: Probability heatmaps for (left to right) “The <noun> started in the year 17YY and ended in
the year 177, “The <noun> happened in 17YY. Some years later, it is now the year 177, and “1599,
1607, 1633, 1679, 17YY, 17”.

E Year-Span Circuit Generalization

In this section we provide evidence for the generalization of the year-span circuit to some (but not all)
tasks. For tasks where the model failed entirely, we provide the probability heatmaps (to show its
failure). For tasks where the model succeeded, or incorrectly generalized the greater-than circuit, we
additionally provide path patching results and logit lens heatmaps to show how circuit structure and
semantics are preserved.

Tasks Failed Figure 23 displays probability heatmaps for “1799, 1753, 1733, 1701, 16YY, 167,
“1695, 1697, 1699, 1701, 1703, 177, and “17YY is smaller than 17”. In the first case, GPT-2 predicts
a roughly uniform distribution around YY. In the second case, the right answer varies: though the
penultimate number in the provided sequence is YY="03", and the sequence increases by 2 step,
depending on YY, we must vary the increase per step, in order to avoid the single-token number
“1700”. In any case, the model fails to predict the correct answer, often predicting YY+1, although
the step is always > 1. In the final case, the model always outputs YY.

Tasks Completed Correctly Figure 24 displays probability heatmaps for “The <noun> started in
the year 17YY and ended in the year 17, “The price of that <luxury good> ranges from $ 17YY
to $ 177, and “1599, 1607, 1633, 1679, 17YY, 17”. All tasks are completed successfully, just like
year-span prediction, though note that the second task is completed less well, as is visible in its
heatmap. Its probability difference is only 75%, as opposed to 90%.

Given this, we proceed using iterative path patching direct logits connections as before; Figure 25
shows the results. All of these plots look almost identical to our original plots, so we evaluate the
circuit on each of tasks using the methodology from Section 3.2. This works for the first two tasks,
with performance recoveries > 90%, but not the last.

For the last task, we observe that MLP 8 relies also on MLP 7, which in turn relies on two extra
attention heads not observed in our original circuit: a7.h11 and a6.h1 (Figure 26). Accounting for
this in our circuit leads us back to > 90% loss recovery.

21

Iterative Path Patching: Logits Iterative Path Patching: Logits Iterative Path Patching: Logits

Layer

prob diff variation

0 1 2 2 4 5 & 7 8 9 10 1omp O 1 2 3 4 5 & 7 8 9 10 1 mp o 1 2 = 4 5 & 7 8 9 10 11 mp

Head Head Head

Figure 25: Iterative path patching plots (C, logits) for (left to right) “The <noun> started in the year
17YY and ended in the year 177, “The price of that <luxury good> ranges from $ 17YY to $ 177,
and “1599, 1607, 1633, 1679, 17YY, 17"

Iterative Path Patching: MLP 7 Iterative Path Patching: MLP 8

0
0.04
2

0.02

Layer
o
prob diff variation

: =

10 I0.04

0 1 2 3 4 5 6 7 8 9 10 11 mip 0 1 2 3 4 5 6 7 8 9 10 11 mip

Head Head

Figure 26: Iterative path patching plots for “1599, 1607, 1633, 1679, 17YY, 17, searching for
components that influence the circuit via MLPs 8 (left) and 7 (right).

610 Tasks Completed Incorrectly Finally, we address the tasks “The <noun> ended in the year 17YY
611 and started in the year 17” and “The <noun> lasted from the year 7YY BC to the year 7, which do
612 use our circuit, but should not do so.

Probability Heatmap Probability Heatmap
2 g 0.2
.
12 -
17 qt"‘"..
22 L T
27 -y 0.15

42 i.._“" z
a7 . 3
>]
I a0 ! 0.1 §
57 e | 1 fn
62 s
67

0 20 40 60 80 0 20 40 60 80

Predicted Year Predicted Year

Figure 27: Probability heatmaps for “The <noun> ended in the year 17YY and started in the year 17”
(left) and “The <noun> lasted from the year 7YY BC to the year 7” (right).

22

613
614
615

616
617
618
619

621

622
623
624

626
627
628
629
630
631
632
633

635
636

637

638
639
640
641
642

Iterative Path Patching: Logits Iterative Path Patching: Logits

0
0.2
2

0.1

Layer
S
prob diff variation

-0.1
10 - I—O.2
0 1 2 3 4 5 6 7 8 9 10 11 mip 0 1 2 3 4 5 6 7 8 9 10 11 milp

Head Head

Figure 28: Iterative path patching plots (C, logits) for “The <noun> ended in the year 17YY and
started in the year 17" (left) and “The <noun> lasted from the year 7YY BC to the year 7" (right).

Figure 27 displays probability heatmaps for “The <noun> ended in the year 17YY and started in the
year 177 and “The <noun> lasted from the year 7YY BC to the year 7. Both tasks are completed
successfully, though note that the latter task is completed less well.

As with the other tasks using this circuit, the iterative path patching plots (Figure 28) look similar
to those of year-span prediction. Note that since the goal for these tasks is to produce “less-than”,
patching and impeding circuit components improves task performance (indicated in blue rather than
red), since the circuit performs “greater-than”. We evaluate the circuit on each of tasks using the
methodology from Section 3.2. This works for both tasks, with performance recoveries > 90%.

F Noun Pool for Templated Sentences

We use the following nouns in our main template: abduction, accord, affair, agreement, appraisal,
assaults, assessment, attack, attempts, campaign, captivity, case, challenge, chaos, clash, collabora-
tion, coma, competition, confrontation, consequence, conspiracy, construction, consultation, contact,
contract, convention, cooperation, custody, deal, decline, decrease, demonstrations, development, dis-
agreement, disorder, dispute, domination, dynasty, effect, effort, employment, endeavor, engagement,
epidemic, evaluation, exchange, existence, expansion, expedition, experiments, fall, fame, flights,
friendship, growth, hardship, hostility, illness, impact, imprisonment, improvement, incarceration,
increase, insurgency, invasion, investigation, journey, kingdom, marriage, modernization, negotiation,
notoriety, obstruction, operation, order, outbreak, outcome, overhaul, patrols, pilgrimage, plague,
plan, practice, process, program, progress, project, pursuit, quest, raids, reforms, reign, relationship,
retaliation, riot, rise, rivalry, romance, rule, sanctions, shift, siege, slump, stature, stint, strikes, study,
test, testing, tests, therapy, tour, tradition, treaty, trial, trip, unemployment, voyage, warfare, work.

For the <luxury good> noun considered in the generalization section, we use a smaller pool of
nouns: gem, necklace, watch, ring, suitcase, scarf, suit, shirt, sweater, dress, fridge, TV, bed, bike,
lamp, table, chair, painting, sculpture, plant.

G Computational Resources

All experiments were performed on an Nvidia A100 GPU. The path patching experiments and circuit
semantics experiments take no longer than an hour to complete. The generalization experiments
take a similar amount of time, being very similar to the original experiments. The neuron-level
experiments (in particular finding top neurons) can take multiple hours to run. Overall, the final
experiments can be run in less than 24 hours.

23

