Appendix of CEIL

Anonymous Author(s)
Affiliation
Address

email

1 Additional Derivation

(Repeat from the main paper.) To gain more insight into Equation 4 that captures the quality of IL (the
degree of similarity to the expert data), we define D(-, -) as the sum of reverse KL and forward KL
divergence, i.e., D(q,p) = Dxr(q||p) + DxL(p||q), and derive an alternative form for Equation 4:

argmin D(mg(7|2"), 7(T)) = argmax I(z";) — Z(2"; Tp) — DxL(7e(T), mE(T)),

Y Jbp

where Z(x;y) denotes the mutual information (MI) between x and y, which measures the predictive
power of y on x (or vice-versa), the latent variables are defined as 7g := 7 ~ 7g(7), 79 == T ~
p(z*)mo(7|2*), and 7o (T) = By [mg(7]2%)].
Below is our derivation:
min D(my(7|2"), 7p(T))
=min By [Dke(mo(7]27) |me(T)) + Dxu(7e ()70 (T]27))]

= Hzlln]Ep(z*)ﬂg(ﬂz*) [log WQ(T‘Z*) - log TrE(T)]

+ Epz*)re(r) [l_ogwE(T) — log mp(7|2")]
= rrzun Ep(z+)mo (+|2+) _log (Z;E'Z)ZF)O(ﬂ —log WE(T)]
+ Ep(z#)rs () :log me(T) —log W}
= 100 Epayma(ria) |0 pl()?;*g) +log :Z((?)] ~ Epar)ms(r) {log p](,?;g) +log :Z((:))

= max I(z*;7r) — Z(2";79) — Dxp(mo(7), 7r(T)) + C,

where g := T ~ 7g(T), T9 := T ~ p(2*)m(7|2*), and C'is a constant.

2 More Comparisons and Ablation Studies

2.1 Offline Comparison on D4RL Expert Domain Dataset

In Table|l} we provide the normalized return of our method and baseline methods on the reward-free
DA4RL [4]] expert dataset. Consistently, we can observe that CEIL achieves a significant improvement
over the baseline methods in both S-off-LfD and S-off-LfO settings. Compared to the state-of-the-art
offline IL baselines, CEIL also shows competitive results on the challenging cross-domain offline IL
settings (C-off-LfD and C-off-LfO).

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Table 1: Normalized scores (averaged over 30 trails for each task) on D4RL expert dataset. Scores
within two points of the maximum score are highlighted. hop: Hopper-v2. hal: HalfCheetah-v2. wal:
Walker2d-v2. ant: Ant-v2.

hop hal wal ant
expert expert expert expert Sum

ORIL (TD3+BC) 97.5 91.8 14.5 76.8 280.6
SQIL (TD3+BC) 255 14.4 8.0 44.3 92.1

IQ-Learn 373 99 466 859 1797
SoffLp ValueDICE 656 29 282 905 187.1
DemoDICE 107.3 871 1048 1142 4133
SMODICE 1110 935 1082 1220 4347
CEIL 1060 960 1156 1178 4354
ORIL (TD3+BC) 642 921 122 443 2128
SoffLf0 SMODICE 1113 937 1080 1220 435.0
CEIL 103.3 968 110.0 1264 4365

ORIL (TD3+BC) 24.4 78.3 29.3 32.1 164.1
SQIL (TD3+BC) 12.2 19.9 8.8 21.2 62.0

1Q-Learn 259 312 317 558 1446
C-offLfp ValueDICE 186 98 83 223 590
DemoDICE 1115 887 1079 1225 430.6
SMODICE 111 938 1082 1209 4340
CEIL 1058 971 1086 1122 4237
ORIL (TD3+BC) 225 766 112 282 1386
C-oft1fo SMODICE 1112 937 1081 1177 4307
CEIL 1130 90.1 1087 1252 437.0

Table 2: Normalized scores (evaluated on the expert dataset over 30 trails for each task) on 2
cross-domain offline IL settings: C-off-LfD and C-off-LfO. Scores within two points of the maximum
score are highlighted. m: medium. mr: medium-replay. me: medium-expert. e: expert.

Hopper-v2 HalfCheetah-v2

sum
m mr me € m mr me €

ORIL (TD3+BC) 74.7 16.7 45.0 214 2.2 08 -03 -22 1583
SQIL (TD3+BC) 336 21.6 14.5 145 182 7.5 209 209 151.8

1Q-Learn 11.8 9.7 17.1 17.1 7.7 7.8 9.5 9.5 90.2
C-off.Lfp ValueDICE 495 242 55.7 493 322 329 387 287 3112
DemoDICE 832 315 81.6 28.5 09 -1.1 -17 -24 2206
SMODICE 80.1 26.1 78.0 54.3 28 -1.0 1.0 -23 239.1
CEIL 874 743 81.2 824 440 304 250 17.1 4419
ORIL (TD3+BC) 623 18.7 57.0 28.2 0.2 1.1 -03 -23 1650
C-off-LfO SMODICE 776 22.5 80.2 71.0 20 -09 0.8 -23 2509
CEIL 56.4 58.6 56.7 65.2 5.5 36.5 5.0 5.0 288.7
Walker2d-v2 Ant-v2
sum
m mr me e m mr me e

ORIL (TD3+BC) 22.0 245 23.9 33.1 16.0 18.6 2.5 04 141.0
SQIL (TD3+BC) 324 149 10.3 103 714 63.6 60.1 60.1 323.1

IQ-Learn 8.4 5.0 10.2 102 194 184 161 16.1 103.8
C-off-LfD ValueDICE 31.7 219 229 27.7 705 685 693 685 3809
DemoDICE 12.8 315 12.9 86.9 157 242 23 14 187.7
SMODICE 43.6 16.1 62.0 853 237 229 23 59 2499
CEIL 102.8 948 1019 100.7 820 77.0 764 79.8 7153
ORIL (TD3+BC) 224 152 17.8 126 13.6 20.7 55 -62 101.6
C-off-LfO SMODICE 424 17.0 55.5 88.7 157 226 25 -63 238.1
CEIL 679 12.0 68.4 50.8 31.7 57.0 180 -19 304.0

17

18
19
20
21
22
23
24
25
26

27

28
29
30
31
32
33

34

35
36
37

38

39
40
41
42
43
44

45

46
47
48
49

C-off-LfD C-off-LfO

2 1

- -

c c o

[T 9} IIII

> -2 >

o o

o <4

<% S 3

-4

£ S

= = -2

-6
[) S oo oo S oo oo S oo o [S o oo)
EEgefeegtbEceglEERS EegdEeetEegrEELS
Sa s o gLt 2B 5L 2 ce i § Safom g L2825 L3 ce s G
) £ c © 2 © © S ¢ o £ c © 2 © c € ¢
<22 < c 2z C g <2 < < E © ©

Figure 1: Normalized performance improvement (left: C-off-LfD, right: C-off-LfO) when we ablate
the cross-domain regularization (Equation 9 in the main paper) in cross-domain IL settings. We can
observe the general trend (in 26 out of 32 tasks) that ablating the cross-domain regularization causes
negative performance improvement. hop: Hopper-v2. hal: HalfCheetah-v2. wal: Walker2d-v2. ant:
Ant-v2. m: medium. me: medium-expert. mr: medium-replay. e: expert.

2.2 Generalizability on Cross-domain Offline IL Settings

In the standard cross-domain IL setting, the goal is to extract expert-relevant information from the
mismatched expert demonstrations/observations (expert domain) and to mimic such expert behaviors
in the training environment (training domain). Thus, we validate the performance of the learned
policy in the training environment (i.e., the environment where the offline data was collected). Here,
we also study the generalizability of the learned policy by evaluating the learned policy in the expert
environment (i.e., the environment where the mismatched expert data was collected). We provide
the normalized scores (evaluated in the expert domain) in Table @ We can find that across a range
of cross-domain offline IL tasks, CEIL consistently demonstrates better (zero-shot) generalizability
compared to baselines.

2.3 Ablating the Cross-domain Regularization

We now conduct ablation studies to evaluate the importance of cross-domain regularization in
Equation 9 (in the main paper). In Figure [T we provide the performance improvement when we
ablate the cross-domain regularization in two cross-domain offline IL tasks (C-off-LfD and C-off-LfO).
We can find that in 26 out of 32 cross-domain tasks, ablating the regularization can cause performance
to decrease (negative performance improvement), thus verifying the benefits of encouraging task-
relevant embeddings.

2.4 Aggregate Results

According to Agarwal et al. [[1]], we report the aggregate statistics (for 16 offline IL tasks) in Figure 2}
We can find that CEIL provides competitive performance consistently across a range of offline IL
settings (S-off-LfD, S-off-LfO, C-off-LfD, and C-off-LfO) and outperforms prior offline baselines.

2.5 Varying the Number of Expert Trajectories

As a complement to the experimental results in the main paper, we continue to compare the per-
formance of CEIL and baselines on more tasks when we vary the number of expert trajectories.
Considering offline IL settings, we provide the results in Table 3] for the number of expert trajectories
of 5, 10, 15, and 20 respectively. We can find that when varying the number of expert behaviors,
CEIL can still obtain higher scores compared to baselines, which is consistent with the findings in
Figure 3 in the main paper.

2.6 Limitation (Failure Modes in Online LfO Setting)

Meanwhile, we find that in the online LfO settings, CEIL’s performance deteriorates severely on a
few tasks, as shown in Figure@ (Walker2d). In LfD (either on single-domain or on cross-domain
IL) settings, CEIL can consistently achieve expert-level performance, but when migrating to LfO
settings, CEIL suffers collapsing performance under the same number of environmental interactions.

50
51
52

(a) S-off-LfD

1Q-Learn
SQIL(TD3+BC) ™
ORIL(TD3+BC)
ValueDICE
DemoDICE
SMODICE
CEIL

Median

QM

Mean

Optimality Gap
t
I

(b) S-off-LfO

30 60 90
normalized return

25 50 75 100
normalized return

25 50 75 100
normalized return

20 40 60 80
normalized return

Median IQM Mean Optimality Gap
ORIL(TD3+BC) === = = =
SMODICE I | 1 1
CEIL — =E= == EH=
45 60 75 45 60 75 50 60 70 30 40 50 60

(c) C-off-LfD

IQ-Learn
SQIL(TD3+BC)
ORIL(TD3+BC)

ValueDICE
DemoDICE
SMODICE
CEIL

normalized return

Median

normalized return

IQM

normalized return

Mean

I
=

normalized return

Optimality Gap

(d) C-off-LfO

25 50 75
normalized return

Median

ORIL(TD3+BC) ==

SMODICE
CEIL

20 40 60
normalized return

80

IQM

20 40 60 80

normalized return
Mean

40 60 80
normalized return
Optimality Gap

=

20

40 60
normalized return

80

30 45 60
normalized return

45 60
normalized return

30

45 60
normalized return

Figure 2: Aggregate median, IQM, mean, and optimality gap over 16 offline IL tasks. Higher
median, higher IQM, and higher mean and lower optimality gap are better. The shaded bar shows
95% stratified bootstrap confidence intervals. We can see that CEIL achieves consistently better
performance across a wide range of offline IL settings.

S-on-LfD C-on-LfD 1000 S-on-LfO 1000 C-on-LfO
4000
4000 750 750
£ S £ £
2 2 2 500 2 500
& 2000 & 2000 & &
0 0 %
0 0 01— — 0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Rollout steps (k) Rollout steps (k) Rollout steps (k) Rollout steps (k)
— CEIL — GAIL — IQ-Learn —— ValueDICE —— CEIL — GAIfO — 1Q-Learn
AIRL — SQIL (legend for S/C-on-LfD) AIRL (state only) (legend for S/C-on-LfO)

Figure 3: Return curves in Walker2d-v2 (from left to right: S-on-LfD, C-on-LfD, S-on-LfO, and
C-on-LfO), where the shaded area represents a 95% confidence interval over 30 trails. We can see
that CEIL consistently achieves expert-level performance in LfD (S-on-LfD and C-on-LfD) tasks.
Due to the lack of explicit exploration in online LfO settings, CEIL exhibits drastic performance
degradation (in S-on-LfO and C-on-LfO) under the same environmental interaction steps.

We believe that this is due to the lack of expert actions in LfO settings, which causes the agent to stay
in the collapsed state region and therefore deteriorates performance. Thus, we believe a rich direction
for future research is to explore the online exploration ability.

53

54

55
56
57
58
59

60
61
62

63
64
65

66
67
68
69
70

71
72
73
74
75

76
77
78
79

Table 3: Normalized scores (averaged over 30 trails for each task) when we vary the number of the expert
demonstrations (#5, #10, #15, and #20). Scores within two points of the maximum score are highlighted
Hopper-v2 Halfcheetah-v2 Walker2d-v2 Ant-v2

Offline IL settings sum
m mr me m mr me m mr me m mr me

ORIL (TD3+BC) 42.1 267 512 451 27 79.6 441 229 383 256 245 6.0 4088

v SQIL(TD3+BC) 452 274 59 145 157 118 12.2 72 13.6 206 23.6 -5.7 192.0
o) 1Q-Learn 172 154 217 64 48 62 131 10.6 51 228 272 187 1692
S ValueDICE 598 8.1 726 20 09 12 2.8 0.0 74 273 327 302 3169
u“:; DemoDICE 502 265 637 419 387 595 663 388 101.6 828 688 1124 7512
« SMODICE 541 349 647 426 384 638 622 406 554 86.0 69.7 1124 7247

CEIL 945 451 808 451 433 339 103.1 811 994 998 1014 8.0 9125

ORIL (TD3+BC) 42.0 21.6 534 450 2.1 821 441 274 804 473 240 449 5141
S SQIL (TD3+BC) 50.0 342 74 88 109 82 200 152 9.7 353 362 119 2476
¥ IQ-Learn 11.3 186 201 41 65 6.6 183 12.8 122 307 539 237 2187
% ValueDICE 56.0 64.1 542 -02 26 24 4.7 4.0 09 314 723 495 3418
« DemoDICE 53.6 258 649 421 369 60.6 647 361 1002 874 67.1 1143 7535
m? SMODICE 556 303 666 426 380 660 645 446 538 869 695 1134 7318

CEIL 1132 53.0 963 64.0 43.6 440 1204 823 1042 1193 70.0 90.1 1000.4

ORIL (TD3+BC) 389 223 468 447 1.9 838 379 42 699 594 223 124 4446
2 SQIL (TD3+BC) 42.8 444 52 68 17.1 9.1 169 135 69 212 172 126 2136
* IQ-Learn 14.6 82 293 40 34 5.1 73 14.5 11.4 542 152 616 2286
% ValueDICE 663 583 536 23 23 1.2 52 -0.1 170 452 720 743 3978
«« DemoDICE 522 296 673 419 376 581 664 429 1035 86.6 683 1143 768.7
? SMODICE 559 257 727 425 376 664 670 432 551 86.7 69.7 1182 740.6
“ CEIL 1164 56.7 103.7 804 43.0 43.8 1203 848 1038 1268 87.0 90.6 1057.3

ORIL (TD3+BC) 509 221 727 447 302 875 47.1 267 1026 465 314 619 6243
S SQIL (TD3+BC) 326 606 255 132 253 144 256 156 80 636 584 443 387.1
¥ IQ-Learn 21.3 199 249 50 75 75 223 19.6 185 384 243 553 2645
g ValueDICE 738 836 508 1.9 24 32 246 264 441 791 824 752 5475
« DemoDICE 548 327 654 428 370 556 @ 68.1 397 950 856 69.0 1088 754.6
? SMODICE 56.1 287 68.0 427 377 669 662 40.7 582 874 699 1134 7359
“ CEIL (ours) 1104 103.0 106.8 40.0 303 639 118.6 1108 117.0 1263 122.0 1143 1163.5

3 Implementation Details

3.1 Imitation Learning Tasks

In our paper, we conduct experiments across a variety of IL problem domains: single/cross-domain
IL, online/offline IL, and LfD/LfO IL settings. By arranging and combining these IL. domains, we
obtain 8 IL tasks in all: S-on-LfD, S-on-LfO, S-off-LfD, S-off-LfO, C-on-LfD, C-on-LfO, C-off-LfD,
and C-off-LfO, where S/C denotes single/cross-domain IL, on/off denotes online/offline IL, and
LfD/LfO denote learning from demonstrations/observations respectively.

S-on-LfD. We have access to a limited number of expert demonstrations and an online interactive
training environment. The goal of S-on-LfD is to learn an optimal policy that mimics the provided
demonstrations in the training environment.

S-on-LfO. We have access to a limited number of expert observations (state-only demonstrations)
and an online interactive training environment. The goal of S-on-LfO is to learn an optimal policy
that mimics the provided observations in the training environment.

S-off-LfD. We have access to a limited number of expert demonstrations and a large amount of
pre-collected offline (reward-free) data. The goal of S-off-LfD is to learn an optimal policy that
mimics the provided demonstrations in the environment in which the offline data was collected. Note
that here the environment that was used to collect the expert demonstrations and the environment that
was used to collect the offline data are the same environment.

S-off-LfO. We have access to a limited number of expert observations and a large amount of pre-
collected offline (reward-free) data. The goal of S-off-LfO is to learn an optimal policy that mimics
the provided observations in the environment in which the offline data was collected. Note that here
the environment that was used to collect the expert observations and the environment that was used to
collect the offline data are the same environment.

C-on-LfD. We have access to a limited number of expert demonstrations and an online interactive
training environment. The goal of C-on-LfD is to learn an optimal policy that mimics the provided
demonstrations in the training environment. Note that here the environment that was used to collect
the expert demonstrations and the online training environment are not the same environment.

80
81
82
83
84

85
86
87
88
89

90
91
92
93
94

95

96
97
98
99
100
101
102
103
104
105

106
107

109

110
111

112
113
114
115
116

117
118
119

Figure 4: MuJoCo environments and our modified versions. From left to right: Ant-v2, HalfCheetah-
v2, Hopper-v2, Walker2d-v2, our modified Ant-v2, our modified HalfCheetah-v2, our modified
Hopper-v2, and our modified Walker2d-v2.

C-on-LfO. We have access to a limited number of expert observations (state-only demonstrations)
and an online interactive training environment. The goal of C-on-LfO is to learn an optimal policy
that mimics the provided observations in the training environment. Note that here the environment
that was used to collect the expert observations and the online training environment are not the same
environment.

C-off-LfD. We have access to a limited number of expert demonstrations and a large amount of
pre-collected offline (reward-free) data. The goal of C-off-LfD is to learn an optimal policy that
mimics the provided demonstrations in the environment in which the offline data was collected. Note
that here the environment that was used to collect the expert demonstrations and the environment that
was used to collect the offline data are not the same environment.

C-off-LfO. We have access to a limited number of expert observations and a large amount of pre-
collected offline (reward-free) data. The goal of C-off-LfO is to learn an optimal policy that mimics
the provided observations in the environment in which the offline data was collected. Note that here
the environment that was used to collect the expert observations and the environment that was used to
collect the offline data are not the same environment.

3.2 Online IL Environments, Offline IL Datasets, and One-shot tasks

Our experiments are conducted in four popular MuJoCo environments (Figure [d): Hopper-v2,
HalfCheetah-v2, Walker2d-v2, and Ant-v2. For offline IL tasks, we take the standard (reward-free)
D4RL dataset [4] (medium, medium-replay, medium-expert, and expert domains) as the offline
dataset. For cross-domain (online/offline) IL tasks, we collect the expert behaviors (demonstrations
or observations) on a modified MuJoCo environment. Specifically, we change the height of the
agent’s torso (as shown in Figure d). We refer the reader to our code submission, which includes our
modified MuJoCo assets. For one-shot IL tasks, we train the policy only in the single-domain IL
settings (S-on-LfD, S-on-LfO, S-off-LfD, and S-off-LfO). Then we collect only one expert trajectory
in the modified MuJoCo environment, and roll out the fine-tuned/inferred policy in the modified
environment to test the one-shot performance.

Collecting expert behaviors. In our implementation, we use the publicly available rlkitp_-] imple-
mentation of SAC to learn an expert policy and use the learned policy to collect expert behaviors
(demonstrations in LfD or observations in LfO).

3.3 CEIL Implementation Details

Trajectory self-consistency loss. To learn the embedding function f, and a corresponding contextual
policy 7y (als, z), we minimize the following trajectory self-consistency loss:

T, fo = Tgll]{i —Erpnn () Esa)~rr l0g To(als, fo(Ti))]
where 7.7 denotes a trajectory segment with window size of 7T'. In the online setting, we sample
trajectory 7 from the experience replay buffer D(7); in the offline setting, we sample trajectory T
directly from the given offline data D (7). Meanwhile, if we can access the expert actions (i.e., LfD
settings), we also incorporate the expert demonstrations into the empirical expectation (i.e., storing
the expert demonstrations into the online/offline experience D(1)).

In our implementation, we use a 4-layer MLP (with ReLU activation) to encode the tra-
jectory T.r and a 4-layer MLP (with ReLU activation) to predict the action respectively.
To regularize the learning of the encoder function f4, we additionally introduce a decoder

"https://github.com/rail-berkeley/rlkit.

120
121
122
123
124

125
126

127
128
129
130
131
132
133
134
135
136
137
138

139

140

141

network (4-layer MLP with ReLU activation) my(s’[s, f4(71.7)) to predict the next states:
ming r, ~Er oD(r) Esas) e 1087 (8'[S, f3(T1.7))]. Further, to circumvent issues of
"posterior collapse” [15]], we encourage learning quantized latent embeddings. In a similar spirit
to VQ-VAE [15]], we incorporate ideas from vector quantization (VQ) and introduce the following
regularization: miny, ||sg(ze(71.7)] — €||* + ||ze(T1.7) — sg[e]||?, where e is a dictionary of vector
quantization embeddings (we set the size of this embedding dictionary to be 4096), z.(71.7) is
defined as the nearest dictionary embedding to f(71.7), and sg[-] denotes the stop-gradient operator.

Out-level embedding inference. In Section 4.2 (main paper), we approximate Jvi with Jyy,) =
Ep(a)ms(r)mo (ro|2=) |— 112" — fo(TE)|I? + ||l2* — f(79)||*], where we replace the mutual infor-
mation with —||z* — f4(7)||? by leveraging the learned embedding function f,;. Empirically, we
find that we can ignore the second loss ||z* — f,(79)]||, and directly conduct outer-level embedding
inference with maxz- ¢, By)rp(rp) [—112° — fo(TE)||?]. Meanwhile, this simplification makes
the support constraints (R(z*) in Equation 7 in the main paper) for the offline OOD issues naturally
satisfied, since max,« Ep(,)rp(rp) [—[12* — fo(7£)||*] and min,- R(z*) are equivalent.

Cross-domain IL regularization. To encourage fy to capture the task-relevant embeddings
and ignore the domain-specific factors, we set the regularization R(fy) in Equation 5 to be:
R(fs) = Z(fs(7); n), where we couple each trajectory 7 in {75} U {75} with alabel n € {0, 1},
indicating whether it is noised. In our implementation, we apply MINE [2] to estimate the
mutual information and conduct encoder regularization. Specifically, we estimate Z(z;n) with

I(z;m) = sups Epzn) [f5(2,1n)] — logEp(z)pm) [exp (f5(2z,1n))] and regularize the encoder f,
with max, Z(fs(7);n), where we model fs with a 4-layer MLP (using ReLU activations).

Hyper-parameters. In Table |4} we list the hyper-parameters used in the experiments.

Table 4: CEIL hyper-parameters.

Parameter Value
size of the embedding dictionary 4096
size of the embedding dimension 16
trajectory window size 2
encoder: optimizer Adam
encoder: learning rate 3e-4

encoder:

learning rate scheduler

CosineAnnealingWarmRestarts(T_0 = 1000,T_mult=1, eta_min=1e-5)

encoder: number of hidden layers 4
encoder: number of hidden units per layer 512
encoder: nonlinearity ReLU
policy: optimizer Adam
policy: learning rate 3e-4
policy: learning rate scheduler CosineAnnealingWarmRestarts(T_0 = 1000,T_mult=1, eta_min=1e-5)
policy: number of hidden layers 4
policy: number of hidden units per layer 512
policy: nonlinearity ReLU
decoder: optimizer Adam
decoder: learning rate 3e-4
decoder: learning rate scheduler CosineAnnealingWarmRestarts(T_0 = 1000,T_mult=1, eta_min=1e-5)
decoder: number of hidden layers 4
decoder: number of hidden units per layer 512
decoder: nonlinearity ReLU
Table 5: Baseline methods and their code-bases.
Baselines Code-bases
GAIL, GAIfO, AIRL https://github.com/HumanCompatible Al/imitation
SAIL https://github.com/FangchenLiu/SAIL
1Q-Learn, SQIL https://github.com/Div99/1Q-Learn
ValueDICE https://github.com/google-research/google-research/tree/master/value_dice
DemoDICE https://github.com/KAIST-AILab/imitation-dice

SMODICE, ORIL

https://github.com/JasonMa2016/SMODICE

142

143
144

145
146
147
148
149

150
151
152

153
154
155
156

157
158

159
160
161
162
163

164

165
166
167
168
169
170

171
172
173

174
175
176
177

178
179

3.4 Baselines Implementation Details

We summarize our code-bases of our baseline implementations in Table [5|and describe each baseline
as follows:

Generative Adversarial Imitation Learning (GAIL). GAIL [8] is a GAN-based online LfD method
that trains a policy (generator) to confuse a discriminator trained to distinguish between generated
transitions and expert transitions. While the goal of the discriminator is to maximize the objective
below, the policy is optimized via an RL algorithm to match the expert occupancy measure (minimize
the objective below):

J(m, D) = Er [log(D(s,a))] + Exy, [1 —log(D(s,a))] — AH ().

We used the implementation by Gleave et al. [7]] on the GitHub pageE], where there are two modifica-
tions introduced with respect to the original paper: 1) a higher output of the discriminator represents
better, 2) PPO is used to optimize the policy instead of TRPO.

Generative Adversarial Imitation from Observations (GAIfO). GAIfO [[14]] is an online LfO
method that applies the principle of GAIL and utilizes a state-only discriminator to judge whether

the generated trajectory matches the expert trajectory in terms of states. We provide the objective of
GAIfO as follows:

J(m, D) =E, [log(D(s,s"))] + Exp [1 — log(D(s,s))] — AH (7).

Based on the implementation of GAIL, we implement GAIfO by changing the input of the discrimi-
nator to state transitions.

Adpversarial Inverse Reinforcement Learning (AIRL). AIRL [3] is an online LfD/LfO method
using an adversarial learning framework similar to GAIL. It modifies the form of the discriminator to
explicitly disentangle the task-relevant information from the transition dynamics. To make the policy
more generalized and less sensitive to dynamics, AIRL proposes to learn a parameterized reward
function using the output of the discriminator:

f0,¢>(57 a, 8/) = 99(87(1) + /\h¢(8/) - h¢(5)7
exp(fg@(s, a,s"))
eXp(fO,d)(sv a, 3/)) + 7T(CL|S) .
Similarly to GAIL, we used the code provided by Gleave et al. [[7], and the RL algorithm is also PPO.

State Alignment-based Imitation Learning (SAIL). SAIL [11]] is an online LfO method capable of
solving cross-domain tasks. SAIL aims to minimize the divergence between the policy rollout and
the expert trajectory from both local and global perspectives: 1) locally, a KL divergence between the
policy action and the action predicted by a state planner and an inverse dynamics model, 2) globally, a
Wasserstein divergence of state occupancy between the policy and the expert. The policy is optimized
using:

J(m) = =Dw(n(s)l|7E(s)) = ADkr(m(|st)|me(:|st))

T D(si11) = Epp (D
_]Ew(s,,,at,sm)(z: (8¢41) - (s) (5)) — \Dg1 <7T(. |5t)||ginv(' |St,f(3t))>,

t=1

Dy 4(s,a,s") =

where D is a state-based discriminator trained via J(D) = E,_ [D(s)] — E, [D(s)], f is the
pretrained VAE-based state planner, and g;,y is the inverse dynamics model trained by supervised
regression.

In the online setting, we use the official implementation published by the author where SAIL is
optimized using PPO with the reward definition: 7(s, s¢+1) = % [D(s141) — Er,(5)D(s)]. Besides,
we further implement SAIL in the offline setting by using TD3+BC [5] to maximize the reward
defined above.

In our experiments, we empirically discover that SAIL is computationally expensive. While SAIL
is able to learn tasks in the typical IL setting (S-on-LfD), our early experimental results find that

*https://github.com/HumanCompatible Al/imitation
*https://github.com/FangchenLiu/SAIL

180
181
182

183
184
185
186
187

189
190
191

192
193
194
195
196
197

199
200
201
202

204
205
206
207

208

210
211
212
213

214
215
216

SAIL(TD3+BC) with heavy hyperparameter tuning failed on the offline setting. This indicates that
SAIL is rather sensitive to the dataset composition, which also coincides with the results gathered
in Ma et al. [12]. Thus, we do not include SAIL in our comparison results.

Soft-Q Imitation Learning (SQIL). SQIL [13] is a simple but effective single-domain LfD IL
algorithm that is easy to implement with both online and offline Q-learning algorithms. The main
idea of SQIL is to give sparse rewards (+1) only to those expert transitions and zero rewards (0) to
those experiences in the replay buffer. The Q-function of SQIL is updated using the squared soft
Bellman Error:

§3(D,r) & % Z <Q(s,a) — (r + vlog (Z exp(Q(s’,a’))))>2.

(s,a,s")€D a’€eA
The overall objective of the Q-function is to maximize the following objective:

J(Q) = —0*(Dp, 1) — 6*(Dy, 0).

In our experiments, the online imitation policy is optimized using SAC which is also used in the
original paper. To make a fair comparison among the offline IL baselines, the offline policy is
optimized via TD3+BC.

Offline Reinforced Imitation Learning (ORIL). ORIL [16] is an offline single-domain IL method
that solves both LfD and LfO tasks. To relax the hard-label assumption (like the sparse rewards
made in SQIL), ORIL treats the experiences stored in the replay buffer as unlabelled data that could
potentially include both successful and failed trajectories. More specifically, ORIL aims to train a
reward function to distinguish between the expert and the suboptimal data without explicitly knowing
the negative labels. By incorporating Positive-unlabeled learning (PU-learning), the objective of the
reward model can be written as follows (for the LfD setting):

j(R) = nEﬂE(s,a) [1Og(R(57 a))] + EF(S7G) UOg(l - R(Sv a))} - nE‘frE(s7a) [IOg(l - R(Sv a))])

where 7 is the relative proportion of the expert data and we set it as 0.5 throughout our experiments.
In the original paper, the policy learning algorithm of ORIL is Critic Regularized Regression (CRR),
while in this paper, we implemented ORIL using TD3+BC for fair comparisons. Besides, we adapted
ORIL to the LfO setting by learning a state-only reward function:

J(R) = n]ETrE(S,s/) [IOg(R(S’ Sl))] + EW(S,S’) [IOg(l - R(Sa 3/))} - U]EWE(s,s') [IOg(l - R(Sv 5/))] .

Inverse soft-Q learning (IQ-Learn). 1Q-Learn [[6] is an IRL-based method that can solve IL tasks in
the online/offline and LfD/L{O settings. It proposes to directly learn a Q-function from demonstrations
and avoid the intermediate step of reward learning. Unlike GAIL optimizing a min-max objective
defined in the reward-policy space, IQ-Learn solves the expert matching problem directly in the
policy-Q space. The Q-function is trained to maximize the objective:

EWE(s,a,s’) [Q(Sv CL) - 'YVTF(S/)] - Eﬂ'(s,a,s’) [Q(Sv CL) - ’yvﬂ(s/)] - 1/’(7")»
where V7™ (s) £ Eqn(.js) [Q(s,a) — log m(als)], 1(r) is a regularization term calculated over the
expert distribution. Then, the policy is learned by SAC.

We use the code provided in the official 1Q-learn repositoryE] and reproduce the online-LfD results
reported in the original paper. For online tasks, we empirically find that penalizing the Q-value on the
initial states gives the best and most stabilized performance. The learning objective of the Q-function
for the online tasks is:

\7(@) = EﬂE(S,a,S’) [Q(S, a) — ’YVW(SI)] - (1- 'Y)Epo [VW(SO)] —(r).

In the offline setting, we find that using the above objective easily leads to an overfitting issue, causing
collapsed performance. Thus, we follow the instruction provided in the paper and only penalize the
expert samples:

T(Q) = Erp(s,as) [Qs,0) =7V ()] = Erp(s,a,) [V (8) = AV ()] = o(r)
= EWE(s,a,s’) [Q(S, CL) - Vﬂ-(s)} - w(r)

*https://github.com/Div99/IQ-Learn

217
218
219
220
221

222
223

224
225

226
227

228
229

230
231

232
233
234

236

237
238

240

Imitation Learning via Off-Policy Distribution Matching (ValueDICE). ValueDICE [10] is a
DICE-base(ﬂ LD algorithm which minimizes the divergence of state-action distributions between
the policy and the expert. In contrast to the state-conditional distribution of actions 7 (+|s) used in the
above methods, the state-action distribution, d” (s, a) : S x A — [0, 1], can uniquely characterize a
one-to-one correspondence,

o0

d"(s,a) = (1 —7) Z’ytPr(st =s,a; = a|so ~ po,ar ~ w(s;), Sp41 ~ P(s4,a4)).
=0

Thus, the plain expert matching objective can be reformulated and expressed in the Donsker-Varadhan
representation:

J(m) = =Dkr(d"(s, a)||d™ (s, a))

— z:SIQgIHRlog E(s,a)~d=e [exp(z(s,a))] — E; q)ndr [2(5,a)] .

The objective above can be expanded further by defining (s, a) = v(s,a) — B"v(s, a) and using a
zero-reward Bellman operator B™ to derive the following (adversarial) objective:

jDICE(7T7 U) = log IE(s,a)wd"!’ﬂ [exp (U(Sa a) - BWU(S, a))] - (1 - ’Y)ESONPO#IONW('ISO) [U(SOa aO)] .

We use the official Tensorflow implementatiotﬁ in our experiments. In the online setting, the rollouts
collected are used as an additional replay regularization. The overall objective in the online setting is:

jﬁnlig‘E(ﬂﬂj)
= —Dgr((1— a)d"(s,a) + ad™(s,a)|| (1 — a)d™® (s,a) + ad"P (s, a))
=108 B (s a)mami= [exp (v(s,a) — B™v(s,a))] — (1 — a)(1 =) Esympo, apmr(-|so) [V(50, @0)]
—aE(s,q)~dnB [v(s,a) — B™v(s,a)],

where d™* £ (1 — a)d™® + ad®P and « is a non-negative regularization coefficient (we set o as
0.1 following the specification of the paper).

In the offline setting, ValueDICE only differs in the source of sampling data. We change the online
replay buffer to the offline pre-collected dataset.

Offline Imitation Learning with Supplementary Imperfect Demonstrations (DemoDICE).
DemoDICE [9] is a DICE-based offline LfD method that assumes to have access to an offline dataset
collected by a behavior policy 7. Using this supplementary dataset, the expert matching objective of
DemoDICE is instantiated over ValueDICE:

—Drr(d"(s,a)[[d™ (s, a)) — aDk(d" (s, a)[[d™ (s, a)),
where « is a positive weight for the constraint.

The above optimization objective can be transformed into three tractable components: 1) a reward
function 7(s, a) derived by pre-training a binary discriminator D : S x A — [0, 1]:
1
r(s,a) og(D*(sja)),

D*(s,a) = argmax = Eg=p [log D(s,a)] + E4=s [log(1 — D(s,a))],
D

2) a value function optimization objective:

7(s,a) + Egps,a)(v(s)) —v(s)

T () = =(1 = 7)Eswp, [v(s)] = (1 + @) log E, g)name |exp(T+a

)|
and 3) a policy optimization step:

\7(7(-) = H’E(s,a)r\adﬂfj [U*(Sa a) 10g7r(a|s)] 5

v*(s,a) = argmax J (v).

SDICE refers to stationary DIstribution Estimation Correction
Shttps://github.com/google-research/google-research/tree/master/value_dice

10

241

242
243
244

245
246

247
248
249
250

251

252

253

254
255

256

257
258

263
264

265
266

271

We report the offline results using the official Tensorflow implementatiorﬂ

State Matching Offline DIstribution Correction Estimation (SMODICE). SMODICE [12] pro-
poses to solve offline IL tasks in LfO and cross-domain settings and it optimizes the following state
occupancy objective:

—Dgr(d"(s)[|d™ (s))-

To incorporate the offline dataset, SMODICE derives an f-divergence regularized state-occupancy
objective:

E lo (dL(s)) + —D¢(d"(s,a)||d™ (s, a))
s~d™ (s) g dre (S) f)) .
Intuitively, the first term can be interpreted as matching the offline states towards the expert states,
while the second regularization term constrains the policy close to the offline distribution of state-
action occupancy. Similarly, we can divide the objective into three steps: 1) deriving a state-based
reward by learning a state-based discriminator:

r(s,a) = _IOg(D*l(s) —1),
D*(s,a) = arg;nax = Egr5 [log D(s)] + E4=s [log(1 — D(s))],

2) learning a value function using the learned reward:
T () = (1= 7)Esnp, [0(5)] =108 By aynams [fx(7(5,a) + Egrnp(s,a) (v(s') — v(s))]
and 3) training the policy via weighted regression:

I (7) = E(sqymars [fL(r(s,a) + By op(s,a) (v (s)) —v*(s)) logm(als)]
v*(s,a) = argmax J (v),

where f, is the Fenchel conjugate of f-divergence (please refer to Ma et al. [[12] for more details).

We conduct experiments using the official Pytorch implementation[ﬂ where the f-divergence used is
X'2-divergence. On the LfD tasks, we change the input of the discriminator to state-action pairs.

References

[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in neural
information processing systems, 34:29304-29320, 2021.

[2] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio,
Aaron Courville, and R Devon Hjelm. Mine: mutual information neural estimation. arXiv
preprint arXiv:1801.04062, 2018.

[3] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse
reinforcement learning. arXiv preprint arXiv:1710.11248, 2017.

[4] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[5] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132-20145, 2021.

[6] Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Ig-learn:
Inverse soft-q learning for imitation. Advances in Neural Information Processing Systems, 34:
4028-4039, 2021.

"https://github.com/K AIST-AILab/imitation-dice
8https://github.com/JasonMa2016/SMODICE

11

272
273
274

275
276

277
278
279

280
281

282

284
285
286

287

289
290

291
292

294
295

[7] Adam Gleave, Mohammad Taufeeque, Juan Rocamonde, Erik Jenner, Steven H. Wang, Sam
Toyer, Maximilian Ernestus, Nora Belrose, Scott Emmons, and Stuart Russell. imitation: Clean
imitation learning implementations, 2022.

[8] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

[9] Geon-Hyeong Kim, Seokin Seo, Jongmin Lee, Wonseok Jeon, HyeongJoo Hwang, Hongseok
Yang, and Kee-Eung Kim. Demodice: Offline imitation learning with supplementary imperfect
demonstrations. In International Conference on Learning Representations, 2022.

[10] Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribu-
tion matching. arXiv preprint arXiv:1912.05032, 2019.

[11] Fangchen Liu, Zhan Ling, Tongzhou Mu, and Hao Su. State alignment-based imitation learning.
arXiv preprint arXiv:1911.10947, 2019.

[12] Yecheng Jason Ma, Andrew Shen, Dinesh Jayaraman, and Osbert Bastani. Smodice: Versatile
offline imitation learning via state occupancy matching. arXiv e-prints, pages arXiv—2202,
2022.

[13] Siddharth Reddy, Anca D Dragan, and Sergey Levine. Sqil: Imitation learning via reinforcement
learning with sparse rewards. arXiv preprint arXiv:1905.11108, 2019.

[14] Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observa-
tion. arXiv preprint arXiv:1807.06158, 2018.

[15] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

[16] Konrad Zolna, Alexander Novikov, Ksenia Konyushkova, Caglar Gulcehre, Ziyu Wang, Yusuf
Aytar, Misha Denil, Nando de Freitas, and Scott Reed. Offline learning from demonstrations
and unlabeled experience. arXiv preprint arXiv:2011.13885, 2020.

12

	Additional Derivation
	More Comparisons and Ablation Studies
	Offline Comparison on D4RL Expert Domain Dataset
	Generalizability on Cross-domain Offline IL Settings
	Ablating the Cross-domain Regularization
	Aggregate Results
	Varying the Number of Expert Trajectories
	Limitation (Failure Modes in Online LfO Setting)

	Implementation Details
	Imitation Learning Tasks
	Online IL Environments, Offline IL Datasets, and One-shot tasks
	CEIL Implementation Details
	Baselines Implementation Details

