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1 Additional Derivation1

(Repeat from the main paper.) To gain more insight into Equation 4 that captures the quality of IL (the2

degree of similarity to the expert data), we define D(·, ·) as the sum of reverse KL and forward KL3

divergence, i.e., D(q, p) = DKL(q∥p) +DKL(p∥q), and derive an alternative form for Equation 4:4

argmin
z∗

D(πθ(τ |z∗), πE(τ )) = argmax
z∗

I(z∗; τE)− I(z∗; τθ)︸ ︷︷ ︸
JMI

−DKL(πθ(τ ), πE(τ ))︸ ︷︷ ︸
JD

,

where I(x;y) denotes the mutual information (MI) between x and y, which measures the predictive5

power of y on x (or vice-versa), the latent variables are defined as τE := τ ∼ πE(τ ), τθ := τ ∼6

p(z∗)πθ(τ |z∗), and πθ(τ ) = Ez∗ [πθ(τ |z∗)].7

Below is our derivation:8

min
z∗

D(πθ(τ |z∗), πE(τ ))

= min
z∗

Ep(z∗) [DKL(πθ(τ |z∗)∥πE(τ )) +DKL(πE(τ )∥πθ(τ |z∗))]

= min
z∗

Ep(z∗)πθ(τ |z∗) [log πθ(τ |z∗)− log πE(τ )]

+ Ep(z∗)πE(τ ) [log πE(τ )− log πθ(τ |z∗)]

= min
z∗

Ep(z∗)πθ(τ |z∗)

[
log

p(z∗|τ )πθ(τ )
p(z∗)

− log πE(τ )

]
+ Ep(z∗)πE(τ )

[
log πE(τ )− log

p(z∗|τ )πθ(τ )
p(z∗)

]
= min

z∗
Ep(z∗)πθ(τ |z∗)

[
log

p(z∗|τ )
p(z∗)

+ log
πθ(τ )

πE(τ )

]
− Ep(z∗)πE(τ )

[
log

p(z∗|τ )
p(z∗)

+ log
πθ(τ )

πE(τ )

]
= max

z∗
I(z∗; τE)− I(z∗; τθ)−DKL(πθ(τ ), πE(τ )) + C,

where τE := τ ∼ πE(τ ), τθ := τ ∼ p(z∗)πθ(τ |z∗), and C is a constant.9

2 More Comparisons and Ablation Studies10

2.1 Offline Comparison on D4RL Expert Domain Dataset11

In Table 1, we provide the normalized return of our method and baseline methods on the reward-free12

D4RL [4] expert dataset. Consistently, we can observe that CEIL achieves a significant improvement13

over the baseline methods in both S-off-LfD and S-off-LfO settings. Compared to the state-of-the-art14

offline IL baselines, CEIL also shows competitive results on the challenging cross-domain offline IL15

settings (C-off-LfD and C-off-LfO).16
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Table 1: Normalized scores (averaged over 30 trails for each task) on D4RL expert dataset. Scores
within two points of the maximum score are highlighted. hop: Hopper-v2. hal: HalfCheetah-v2. wal:
Walker2d-v2. ant: Ant-v2.

hop hal wal ant
sumexpert expert expert expert

S-off-LfD

ORIL (TD3+BC) 97.5 91.8 14.5 76.8 280.6
SQIL (TD3+BC) 25.5 14.4 8.0 44.3 92.1
IQ-Learn 37.3 9.9 46.6 85.9 179.7
ValueDICE 65.6 2.9 28.2 90.5 187.1
DemoDICE 107.3 87.1 104.8 114.2 413.3
SMODICE 111.0 93.5 108.2 122.0 434.7
CEIL 106.0 96.0 115.6 117.8 435.4

S-off-LfO
ORIL (TD3+BC) 64.2 92.1 12.2 44.3 212.8
SMODICE 111.3 93.7 108.0 122.0 435.0
CEIL 103.3 96.8 110.0 126.4 436.5

C-off-LfD

ORIL (TD3+BC) 24.4 78.3 29.3 32.1 164.1
SQIL (TD3+BC) 12.2 19.9 8.8 21.2 62.0
IQ-Learn 25.9 31.2 31.7 55.8 144.6
ValueDICE 18.6 9.8 8.3 22.3 59.0
DemoDICE 111.5 88.7 107.9 122.5 430.6
SMODICE 111.1 93.8 108.2 120.9 434.0
CEIL 105.8 97.1 108.6 112.2 423.7

C-off-LfO
ORIL (TD3+BC) 22.5 76.6 11.2 28.2 138.6
SMODICE 111.2 93.7 108.1 117.7 430.7
CEIL 113.0 90.1 108.7 125.2 437.0

Table 2: Normalized scores (evaluated on the expert dataset over 30 trails for each task) on 2
cross-domain offline IL settings: C-off-LfD and C-off-LfO. Scores within two points of the maximum
score are highlighted. m: medium. mr: medium-replay. me: medium-expert. e: expert.

Hopper-v2 HalfCheetah-v2
sum

m mr me e m mr me e

C-off-LfD

ORIL (TD3+BC) 74.7 16.7 45.0 21.4 2.2 0.8 -0.3 -2.2 158.3
SQIL (TD3+BC) 33.6 21.6 14.5 14.5 18.2 7.5 20.9 20.9 151.8
IQ-Learn 11.8 9.7 17.1 17.1 7.7 7.8 9.5 9.5 90.2
ValueDICE 49.5 24.2 55.7 49.3 32.2 32.9 38.7 28.7 311.2
DemoDICE 83.2 31.5 81.6 28.5 0.9 -1.1 -1.7 -2.4 220.6
SMODICE 80.1 26.1 78.0 54.3 2.8 -1.0 1.0 -2.3 239.1
CEIL 87.4 74.3 81.2 82.4 44.0 30.4 25.0 17.1 441.9

C-off-Lf O
ORIL (TD3+BC) 62.3 18.7 57.0 28.2 0.2 1.1 -0.3 -2.3 165.0
SMODICE 77.6 22.5 80.2 71.0 2.0 -0.9 0.8 -2.3 250.9
CEIL 56.4 58.6 56.7 65.2 5.5 36.5 5.0 5.0 288.7

Walker2d-v2 Ant-v2
sum

m mr me e m mr me e

C-off-LfD

ORIL (TD3+BC) 22.0 24.5 23.9 33.1 16.0 18.6 2.5 0.4 141.0
SQIL (TD3+BC) 32.4 14.9 10.3 10.3 71.4 63.6 60.1 60.1 323.1
IQ-Learn 8.4 5.0 10.2 10.2 19.4 18.4 16.1 16.1 103.8
ValueDICE 31.7 21.9 22.9 27.7 70.5 68.5 69.3 68.5 380.9
DemoDICE 12.8 31.5 12.9 86.9 15.7 24.2 2.3 1.4 187.7
SMODICE 43.6 16.1 62.0 85.3 23.7 22.9 2.3 -5.9 249.9
CEIL 102.8 94.8 101.9 100.7 82.0 77.0 76.4 79.8 715.3

C-off-LfO
ORIL (TD3+BC) 22.4 15.2 17.8 12.6 13.6 20.7 5.5 -6.2 101.6
SMODICE 42.4 17.0 55.5 88.7 15.7 22.6 2.5 -6.3 238.1
CEIL 67.9 12.0 68.4 50.8 31.7 57.0 18.0 -1.9 304.0
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Figure 1: Normalized performance improvement (left: C-off-LfD, right: C-off-LfO) when we ablate
the cross-domain regularization (Equation 9 in the main paper) in cross-domain IL settings. We can
observe the general trend (in 26 out of 32 tasks) that ablating the cross-domain regularization causes
negative performance improvement. hop: Hopper-v2. hal: HalfCheetah-v2. wal: Walker2d-v2. ant:
Ant-v2. m: medium. me: medium-expert. mr: medium-replay. e: expert.

2.2 Generalizability on Cross-domain Offline IL Settings17

In the standard cross-domain IL setting, the goal is to extract expert-relevant information from the18

mismatched expert demonstrations/observations (expert domain) and to mimic such expert behaviors19

in the training environment (training domain). Thus, we validate the performance of the learned20

policy in the training environment (i.e., the environment where the offline data was collected). Here,21

we also study the generalizability of the learned policy by evaluating the learned policy in the expert22

environment (i.e., the environment where the mismatched expert data was collected). We provide23

the normalized scores (evaluated in the expert domain) in Table 2. We can find that across a range24

of cross-domain offline IL tasks, CEIL consistently demonstrates better (zero-shot) generalizability25

compared to baselines.26

2.3 Ablating the Cross-domain Regularization27

We now conduct ablation studies to evaluate the importance of cross-domain regularization in28

Equation 9 (in the main paper). In Figure 1, we provide the performance improvement when we29

ablate the cross-domain regularization in two cross-domain offline IL tasks (C-off-LfD and C-off-LfO).30

We can find that in 26 out of 32 cross-domain tasks, ablating the regularization can cause performance31

to decrease (negative performance improvement), thus verifying the benefits of encouraging task-32

relevant embeddings.33

2.4 Aggregate Results34

According to Agarwal et al. [1], we report the aggregate statistics (for 16 offline IL tasks) in Figure 2.35

We can find that CEIL provides competitive performance consistently across a range of offline IL36

settings (S-off-LfD, S-off-LfO, C-off-LfD, and C-off-LfO) and outperforms prior offline baselines.37

2.5 Varying the Number of Expert Trajectories38

As a complement to the experimental results in the main paper, we continue to compare the per-39

formance of CEIL and baselines on more tasks when we vary the number of expert trajectories.40

Considering offline IL settings, we provide the results in Table 3 for the number of expert trajectories41

of 5, 10, 15, and 20 respectively. We can find that when varying the number of expert behaviors,42

CEIL can still obtain higher scores compared to baselines, which is consistent with the findings in43

Figure 3 in the main paper.44

2.6 Limitation (Failure Modes in Online LfO Setting)45

Meanwhile, we find that in the online LfO settings, CEIL’s performance deteriorates severely on a46

few tasks, as shown in Figure 3 (Walker2d). In LfD (either on single-domain or on cross-domain47

IL) settings, CEIL can consistently achieve expert-level performance, but when migrating to LfO48

settings, CEIL suffers collapsing performance under the same number of environmental interactions.49
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Figure 2: Aggregate median, IQM, mean, and optimality gap over 16 offline IL tasks. Higher
median, higher IQM, and higher mean and lower optimality gap are better. The shaded bar shows
95% stratified bootstrap confidence intervals. We can see that CEIL achieves consistently better
performance across a wide range of offline IL settings.
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Figure 3: Return curves in Walker2d-v2 (from left to right: S-on-LfD, C-on-LfD, S-on-LfO, and
C-on-LfO), where the shaded area represents a 95% confidence interval over 30 trails. We can see
that CEIL consistently achieves expert-level performance in LfD (S-on-LfD and C-on-LfD) tasks.
Due to the lack of explicit exploration in online LfO settings, CEIL exhibits drastic performance
degradation (in S-on-LfO and C-on-LfO) under the same environmental interaction steps.

We believe that this is due to the lack of expert actions in LfO settings, which causes the agent to stay50

in the collapsed state region and therefore deteriorates performance. Thus, we believe a rich direction51

for future research is to explore the online exploration ability.52
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Table 3: Normalized scores (averaged over 30 trails for each task) when we vary the number of the expert
demonstrations (#5, #10, #15, and #20). Scores within two points of the maximum score are highlighted

Offline IL settings
Hopper-v2 Halfcheetah-v2 Walker2d-v2 Ant-v2

sum
m mr me m mr me m mr me m mr me

S-
of

f-
L

fD
#5

ORIL (TD3+BC) 42.1 26.7 51.2 45.1 2.7 79.6 44.1 22.9 38.3 25.6 24.5 6.0 408.8
SQIL (TD3+BC) 45.2 27.4 5.9 14.5 15.7 11.8 12.2 7.2 13.6 20.6 23.6 -5.7 192.0
IQ-Learn 17.2 15.4 21.7 6.4 4.8 6.2 13.1 10.6 5.1 22.8 27.2 18.7 169.2
ValueDICE 59.8 80.1 72.6 2.0 0.9 1.2 2.8 0.0 7.4 27.3 32.7 30.2 316.9
DemoDICE 50.2 26.5 63.7 41.9 38.7 59.5 66.3 38.8 101.6 82.8 68.8 112.4 751.2
SMODICE 54.1 34.9 64.7 42.6 38.4 63.8 62.2 40.6 55.4 86.0 69.7 112.4 724.7
CEIL 94.5 45.1 80.8 45.1 43.3 33.9 103.1 81.1 99.4 99.8 101.4 85.0 912.5

S-
of

f-
L

fD
#1

0

ORIL (TD3+BC) 42.0 21.6 53.4 45.0 2.1 82.1 44.1 27.4 80.4 47.3 24.0 44.9 514.1
SQIL (TD3+BC) 50.0 34.2 7.4 8.8 10.9 8.2 20.0 15.2 9.7 35.3 36.2 11.9 247.6
IQ-Learn 11.3 18.6 20.1 4.1 6.5 6.6 18.3 12.8 12.2 30.7 53.9 23.7 218.7
ValueDICE 56.0 64.1 54.2 -0.2 2.6 2.4 4.7 4.0 0.9 31.4 72.3 49.5 341.8
DemoDICE 53.6 25.8 64.9 42.1 36.9 60.6 64.7 36.1 100.2 87.4 67.1 114.3 753.5
SMODICE 55.6 30.3 66.6 42.6 38.0 66.0 64.5 44.6 53.8 86.9 69.5 113.4 731.8
CEIL 113.2 53.0 96.3 64.0 43.6 44.0 120.4 82.3 104.2 119.3 70.0 90.1 1000.4

S-
of

f-
L

fD
#1

5

ORIL (TD3+BC) 38.9 22.3 46.8 44.7 1.9 83.8 37.9 4.2 69.9 59.4 22.3 12.4 444.6
SQIL (TD3+BC) 42.8 44.4 5.2 6.8 17.1 9.1 16.9 13.5 6.9 21.2 17.2 12.6 213.6
IQ-Learn 14.6 8.2 29.3 4.0 3.4 5.1 7.3 14.5 11.4 54.2 15.2 61.6 228.6
ValueDICE 66.3 58.3 53.6 2.3 2.3 1.2 5.2 -0.1 17.0 45.2 72.0 74.3 397.8
DemoDICE 52.2 29.6 67.3 41.9 37.6 58.1 66.4 42.9 103.5 86.6 68.3 114.3 768.7
SMODICE 55.9 25.7 72.7 42.5 37.6 66.4 67.0 43.2 55.1 86.7 69.7 118.2 740.6
CEIL 116.4 56.7 103.7 80.4 43.0 43.8 120.3 84.8 103.8 126.8 87.0 90.6 1057.3

S-
of

f-
L

fD
#2

0

ORIL (TD3+BC) 50.9 22.1 72.7 44.7 30.2 87.5 47.1 26.7 102.6 46.5 31.4 61.9 624.3
SQIL (TD3+BC) 32.6 60.6 25.5 13.2 25.3 14.4 25.6 15.6 8.0 63.6 58.4 44.3 387.1
IQ-Learn 21.3 19.9 24.9 5.0 7.5 7.5 22.3 19.6 18.5 38.4 24.3 55.3 264.5
ValueDICE 73.8 83.6 50.8 1.9 2.4 3.2 24.6 26.4 44.1 79.1 82.4 75.2 547.5
DemoDICE 54.8 32.7 65.4 42.8 37.0 55.6 68.1 39.7 95.0 85.6 69.0 108.8 754.6
SMODICE 56.1 28.7 68.0 42.7 37.7 66.9 66.2 40.7 58.2 87.4 69.9 113.4 735.9
CEIL (ours) 110.4 103.0 106.8 40.0 30.3 63.9 118.6 110.8 117.0 126.3 122.0 114.3 1163.5

3 Implementation Details53

3.1 Imitation Learning Tasks54

In our paper, we conduct experiments across a variety of IL problem domains: single/cross-domain55

IL, online/offline IL, and LfD/LfO IL settings. By arranging and combining these IL domains, we56

obtain 8 IL tasks in all: S-on-LfD, S-on-LfO, S-off-LfD, S-off-LfO, C-on-LfD, C-on-LfO, C-off-LfD,57

and C-off-LfO, where S/C denotes single/cross-domain IL, on/off denotes online/offline IL, and58

LfD/LfO denote learning from demonstrations/observations respectively.59

S-on-LfD. We have access to a limited number of expert demonstrations and an online interactive60

training environment. The goal of S-on-LfD is to learn an optimal policy that mimics the provided61

demonstrations in the training environment.62

S-on-LfO. We have access to a limited number of expert observations (state-only demonstrations)63

and an online interactive training environment. The goal of S-on-LfO is to learn an optimal policy64

that mimics the provided observations in the training environment.65

S-off-LfD. We have access to a limited number of expert demonstrations and a large amount of66

pre-collected offline (reward-free) data. The goal of S-off-LfD is to learn an optimal policy that67

mimics the provided demonstrations in the environment in which the offline data was collected. Note68

that here the environment that was used to collect the expert demonstrations and the environment that69

was used to collect the offline data are the same environment.70

S-off-LfO. We have access to a limited number of expert observations and a large amount of pre-71

collected offline (reward-free) data. The goal of S-off-LfO is to learn an optimal policy that mimics72

the provided observations in the environment in which the offline data was collected. Note that here73

the environment that was used to collect the expert observations and the environment that was used to74

collect the offline data are the same environment.75

C-on-LfD. We have access to a limited number of expert demonstrations and an online interactive76

training environment. The goal of C-on-LfD is to learn an optimal policy that mimics the provided77

demonstrations in the training environment. Note that here the environment that was used to collect78

the expert demonstrations and the online training environment are not the same environment.79
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Figure 4: MuJoCo environments and our modified versions. From left to right: Ant-v2, HalfCheetah-
v2, Hopper-v2, Walker2d-v2, our modified Ant-v2, our modified HalfCheetah-v2, our modified
Hopper-v2, and our modified Walker2d-v2.

C-on-LfO. We have access to a limited number of expert observations (state-only demonstrations)80

and an online interactive training environment. The goal of C-on-LfO is to learn an optimal policy81

that mimics the provided observations in the training environment. Note that here the environment82

that was used to collect the expert observations and the online training environment are not the same83

environment.84

C-off-LfD. We have access to a limited number of expert demonstrations and a large amount of85

pre-collected offline (reward-free) data. The goal of C-off-LfD is to learn an optimal policy that86

mimics the provided demonstrations in the environment in which the offline data was collected. Note87

that here the environment that was used to collect the expert demonstrations and the environment that88

was used to collect the offline data are not the same environment.89

C-off-LfO. We have access to a limited number of expert observations and a large amount of pre-90

collected offline (reward-free) data. The goal of C-off-LfO is to learn an optimal policy that mimics91

the provided observations in the environment in which the offline data was collected. Note that here92

the environment that was used to collect the expert observations and the environment that was used to93

collect the offline data are not the same environment.94

3.2 Online IL Environments, Offline IL Datasets, and One-shot tasks95

Our experiments are conducted in four popular MuJoCo environments (Figure 4): Hopper-v2,96

HalfCheetah-v2, Walker2d-v2, and Ant-v2. For offline IL tasks, we take the standard (reward-free)97

D4RL dataset [4] (medium, medium-replay, medium-expert, and expert domains) as the offline98

dataset. For cross-domain (online/offline) IL tasks, we collect the expert behaviors (demonstrations99

or observations) on a modified MuJoCo environment. Specifically, we change the height of the100

agent’s torso (as shown in Figure 4). We refer the reader to our code submission, which includes our101

modified MuJoCo assets. For one-shot IL tasks, we train the policy only in the single-domain IL102

settings (S-on-LfD, S-on-LfO, S-off-LfD, and S-off-LfO). Then we collect only one expert trajectory103

in the modified MuJoCo environment, and roll out the fine-tuned/inferred policy in the modified104

environment to test the one-shot performance.105

Collecting expert behaviors. In our implementation, we use the publicly available rlkit1 imple-106

mentation of SAC to learn an expert policy and use the learned policy to collect expert behaviors107

(demonstrations in LfD or observations in LfO).108

3.3 CEIL Implementation Details109

Trajectory self-consistency loss. To learn the embedding function fϕ and a corresponding contextual110

policy πθ(a|s, z), we minimize the following trajectory self-consistency loss:111

πθ, fϕ = min
πθ,fϕ

−Eτ1:T∼D(τ1:T )E(s,a)∼τ1:T
[log πθ(a|s, fϕ(τ1:T ))] ,

where τ1:T denotes a trajectory segment with window size of T . In the online setting, we sample112

trajectory τ from the experience replay buffer D(τ ); in the offline setting, we sample trajectory τ113

directly from the given offline data D(τ ). Meanwhile, if we can access the expert actions (i.e., LfD114

settings), we also incorporate the expert demonstrations into the empirical expectation (i.e., storing115

the expert demonstrations into the online/offline experience D(τ )).116

In our implementation, we use a 4-layer MLP (with ReLU activation) to encode the tra-117

jectory τ1:T and a 4-layer MLP (with ReLU activation ) to predict the action respectively.118

To regularize the learning of the encoder function fϕ, we additionally introduce a decoder119

1https://github.com/rail-berkeley/rlkit.
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network (4-layer MLP with ReLU activation) π′
θ(s

′|s, fϕ(τ1:T )) to predict the next states:120

minπ′
θ,fϕ

−Eτ1:T∼D(τ1:T )E(s,a,s′)∼τ1:T
[log π′

θ(s
′|s, fϕ(τ1:T ))]. Further, to circumvent issues of121

"posterior collapse" [15], we encourage learning quantized latent embeddings. In a similar spirit122

to VQ-VAE [15], we incorporate ideas from vector quantization (VQ) and introduce the following123

regularization: minfϕ ||sg[ze(τ1:T )]− e||2 + ||ze(τ1:T )− sg[e]||2, where e is a dictionary of vector124

quantization embeddings (we set the size of this embedding dictionary to be 4096), ze(τ1:T ) is125

defined as the nearest dictionary embedding to fϕ(τ1:T ), and sg[·] denotes the stop-gradient operator.126

Out-level embedding inference. In Section 4.2 (main paper), we approximate JMI with JMI(fϕ) ≜127

Ep(z∗)πE(τE)πθ(τθ|z∗)

[
−∥z∗ − fϕ(τE)∥2 + ∥z∗ − fϕ(τθ)∥2

]
, where we replace the mutual infor-128

mation with −∥z∗ − fϕ(τ )∥2 by leveraging the learned embedding function fϕ. Empirically, we129

find that we can ignore the second loss ∥z∗ − fϕ(τθ)∥2, and directly conduct outer-level embedding130

inference with maxz∗,fϕ Ep(z∗)πE(τE)

[
−∥z∗ − fϕ(τE)∥2

]
. Meanwhile, this simplification makes131

the support constraints (R(z∗) in Equation 7 in the main paper) for the offline OOD issues naturally132

satisfied, since maxz∗ Ep(z∗)πE(τE)

[
−∥z∗ − fϕ(τE)∥2

]
and minz∗ R(z∗) are equivalent.133

Cross-domain IL regularization. To encourage fϕ to capture the task-relevant embeddings134

and ignore the domain-specific factors, we set the regularization R(fϕ) in Equation 5 to be:135

R(fϕ) = I(fϕ(τ );n), where we couple each trajectory τ in {τE} ∪ {τE′} with a label n ∈ {0,1},136

indicating whether it is noised. In our implementation, we apply MINE [2] to estimate the137

mutual information and conduct encoder regularization. Specifically, we estimate I(z;n) with138

Î(z;n) := supδ Ep(z,n) [fδ(z,n)] − logEp(z)p(n) [exp (fδ(z,n))] and regularize the encoder fϕ139

with maxfϕ Î(fϕ(τ );n), where we model fδ with a 4-layer MLP (using ReLU activations).140

Hyper-parameters. In Table 4, we list the hyper-parameters used in the experiments.141

Table 4: CEIL hyper-parameters.

Parameter Value

size of the embedding dictionary 4096
size of the embedding dimension 16
trajectory window size 2

encoder: optimizer Adam
encoder: learning rate 3e-4
encoder: learning rate scheduler CosineAnnealingWarmRestarts(T_0 = 1000,T_mult=1, eta_min=1e-5)
encoder: number of hidden layers 4
encoder: number of hidden units per layer 512
encoder: nonlinearity ReLU

policy: optimizer Adam
policy: learning rate 3e-4
policy: learning rate scheduler CosineAnnealingWarmRestarts(T_0 = 1000,T_mult=1, eta_min=1e-5)
policy: number of hidden layers 4
policy: number of hidden units per layer 512
policy: nonlinearity ReLU

decoder: optimizer Adam
decoder: learning rate 3e-4
decoder: learning rate scheduler CosineAnnealingWarmRestarts(T_0 = 1000,T_mult=1, eta_min=1e-5)
decoder: number of hidden layers 4
decoder: number of hidden units per layer 512
decoder: nonlinearity ReLU

Table 5: Baseline methods and their code-bases.

Baselines Code-bases

GAIL, GAIfO, AIRL https://github.com/HumanCompatibleAI/imitation
SAIL https://github.com/FangchenLiu/SAIL
IQ-Learn, SQIL https://github.com/Div99/IQ-Learn
ValueDICE https://github.com/google-research/google-research/tree/master/value_dice
DemoDICE https://github.com/KAIST-AILab/imitation-dice
SMODICE, ORIL https://github.com/JasonMa2016/SMODICE
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3.4 Baselines Implementation Details142

We summarize our code-bases of our baseline implementations in Table 5 and describe each baseline143

as follows:144

Generative Adversarial Imitation Learning (GAIL). GAIL [8] is a GAN-based online LfD method145

that trains a policy (generator) to confuse a discriminator trained to distinguish between generated146

transitions and expert transitions. While the goal of the discriminator is to maximize the objective147

below, the policy is optimized via an RL algorithm to match the expert occupancy measure (minimize148

the objective below):149

J (π,D) = Eπ [log(D(s, a))] + EπE
[1− log(D(s, a))]− λH(π).

We used the implementation by Gleave et al. [7] on the GitHub page2, where there are two modifica-150

tions introduced with respect to the original paper: 1) a higher output of the discriminator represents151

better, 2) PPO is used to optimize the policy instead of TRPO.152

Generative Adversarial Imitation from Observations (GAIfO). GAIfO [14] is an online LfO153

method that applies the principle of GAIL and utilizes a state-only discriminator to judge whether154

the generated trajectory matches the expert trajectory in terms of states. We provide the objective of155

GAIfO as follows:156

J (π,D) = Eπ [log(D(s, s′))] + EπE
[1− log(D(s, s′))]− λH(π).

Based on the implementation of GAIL, we implement GAIfO by changing the input of the discrimi-157

nator to state transitions.158

Adversarial Inverse Reinforcement Learning (AIRL). AIRL [3] is an online LfD/LfO method159

using an adversarial learning framework similar to GAIL. It modifies the form of the discriminator to160

explicitly disentangle the task-relevant information from the transition dynamics. To make the policy161

more generalized and less sensitive to dynamics, AIRL proposes to learn a parameterized reward162

function using the output of the discriminator:163

fθ,ϕ(s, a, s
′) = gθ(s, a) + λhϕ(s

′)− hϕ(s),

Dθ,ϕ(s, a, s
′) =

exp(fθ,ϕ(s, a, s
′))

exp(fθ,ϕ(s, a, s′)) + π(a|s)
.

Similarly to GAIL, we used the code provided by Gleave et al. [7], and the RL algorithm is also PPO.164

State Alignment-based Imitation Learning (SAIL). SAIL [11] is an online LfO method capable of165

solving cross-domain tasks. SAIL aims to minimize the divergence between the policy rollout and166

the expert trajectory from both local and global perspectives: 1) locally, a KL divergence between the167

policy action and the action predicted by a state planner and an inverse dynamics model, 2) globally, a168

Wasserstein divergence of state occupancy between the policy and the expert. The policy is optimized169

using:170

J (π) = −DW(π(s)∥πE(s))− λDKL(π(·|st)∥πE(·|st))

= Eπ(st,at,st+1)

( T∑
t=1

D(st+1)− EπE(s)D(s)

T

)
− λDKL

(
π
(
· |st

)
∥ginv

(
· |st, f(st)

))
,

where D is a state-based discriminator trained via J (D) = EπE
[D(s)] − Eπ [D(s)], f is the171

pretrained VAE-based state planner, and ginv is the inverse dynamics model trained by supervised172

regression.173

In the online setting, we use the official implementation published by the authors3, where SAIL is174

optimized using PPO with the reward definition: r(st, st+1) =
1
T

[
D(st+1)− EπE(s)D(s)

]
. Besides,175

we further implement SAIL in the offline setting by using TD3+BC [5] to maximize the reward176

defined above.177

In our experiments, we empirically discover that SAIL is computationally expensive. While SAIL178

is able to learn tasks in the typical IL setting (S-on-LfD), our early experimental results find that179

2https://github.com/HumanCompatibleAI/imitation
3https://github.com/FangchenLiu/SAIL
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SAIL(TD3+BC) with heavy hyperparameter tuning failed on the offline setting. This indicates that180

SAIL is rather sensitive to the dataset composition, which also coincides with the results gathered181

in Ma et al. [12]. Thus, we do not include SAIL in our comparison results.182

Soft-Q Imitation Learning (SQIL). SQIL [13] is a simple but effective single-domain LfD IL183

algorithm that is easy to implement with both online and offline Q-learning algorithms. The main184

idea of SQIL is to give sparse rewards (+1) only to those expert transitions and zero rewards (0) to185

those experiences in the replay buffer. The Q-function of SQIL is updated using the squared soft186

Bellman Error:187

δ2(D, r) ≜ 1

|D|
∑

(s,a,s′)∈D

(
Q(s, a)−

(
r + γ log

( ∑
a′∈A

exp(Q(s′, a′))
)))2

.

The overall objective of the Q-function is to maximize the following objective:188

J (Q) = −δ2(DE , 1)− δ2(Dπ, 0).

In our experiments, the online imitation policy is optimized using SAC which is also used in the189

original paper. To make a fair comparison among the offline IL baselines, the offline policy is190

optimized via TD3+BC.191

Offline Reinforced Imitation Learning (ORIL). ORIL [16] is an offline single-domain IL method192

that solves both LfD and LfO tasks. To relax the hard-label assumption (like the sparse rewards193

made in SQIL), ORIL treats the experiences stored in the replay buffer as unlabelled data that could194

potentially include both successful and failed trajectories. More specifically, ORIL aims to train a195

reward function to distinguish between the expert and the suboptimal data without explicitly knowing196

the negative labels. By incorporating Positive-unlabeled learning (PU-learning), the objective of the197

reward model can be written as follows (for the LfD setting):198

J (R) = ηEπE(s,a) [log(R(s, a))] + Eπ(s,a) [log(1−R(s, a))]− ηEπE(s,a) [log(1−R(s, a))] ,

where η is the relative proportion of the expert data and we set it as 0.5 throughout our experiments.199

In the original paper, the policy learning algorithm of ORIL is Critic Regularized Regression (CRR),200

while in this paper, we implemented ORIL using TD3+BC for fair comparisons. Besides, we adapted201

ORIL to the LfO setting by learning a state-only reward function:202

J (R) = ηEπE(s,s′) [log(R(s, s
′))] + Eπ(s,s′) [log(1−R(s, s′))]− ηEπE(s,s′) [log(1−R(s, s′))] .

Inverse soft-Q learning (IQ-Learn). IQ-Learn [6] is an IRL-based method that can solve IL tasks in203

the online/offline and LfD/LfO settings. It proposes to directly learn a Q-function from demonstrations204

and avoid the intermediate step of reward learning. Unlike GAIL optimizing a min-max objective205

defined in the reward-policy space, IQ-Learn solves the expert matching problem directly in the206

policy-Q space. The Q-function is trained to maximize the objective:207

EπE(s,a,s′) [Q(s, a)− γV π(s′)]− Eπ(s,a,s′) [Q(s, a)− γV π(s′)]− ψ(r),

where V π(s) ≜ Ea∼π(·|s) [Q(s, a)− log π(a|s)], ψ(r) is a regularization term calculated over the208

expert distribution. Then, the policy is learned by SAC.209

We use the code provided in the official IQ-learn repository4 and reproduce the online-LfD results210

reported in the original paper. For online tasks, we empirically find that penalizing the Q-value on the211

initial states gives the best and most stabilized performance. The learning objective of the Q-function212

for the online tasks is:213

J (Q) = EπE(s,a,s′) [Q(s, a)− γV π(s′)]− (1− γ)Eρ0
[V π(s0)]− ψ(r).

In the offline setting, we find that using the above objective easily leads to an overfitting issue, causing214

collapsed performance. Thus, we follow the instruction provided in the paper and only penalize the215

expert samples:216

J (Q) = EπE(s,a,s′) [Q(s, a)− γV π(s′)]− EπE(s,a,s′) [V
π(s)− γV π(s′)]− ψ(r)

= EπE(s,a,s′) [Q(s, a)− V π(s)]− ψ(r).

4https://github.com/Div99/IQ-Learn
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Imitation Learning via Off-Policy Distribution Matching (ValueDICE). ValueDICE [10] is a217

DICE-based5 LfD algorithm which minimizes the divergence of state-action distributions between218

the policy and the expert. In contrast to the state-conditional distribution of actions π(·|s) used in the219

above methods, the state-action distribution, dπ(s, a) : S ×A → [0, 1], can uniquely characterize a220

one-to-one correspondence,221

dπ(s, a) ≜ (1− γ)

∞∑
t=0

γtPr(st = s, at = a |s0 ∼ ρ0, at ∼ π(st), st+1 ∼ P (st, at)).

Thus, the plain expert matching objective can be reformulated and expressed in the Donsker-Varadhan222

representation:223

J (π) = −DKL(d
π(s, a)∥dπE (s, a))

= min
x:S×A→R

logE(s,a)∼dπE [exp(x(s, a))]− E(s,a)∼dπ [x(s, a)] .

The objective above can be expanded further by defining x(s, a) = v(s, a)− Bπv(s, a) and using a224

zero-reward Bellman operator Bπ to derive the following (adversarial) objective:225

JDICE(π, v) = logE(s,a)∼dπE

[
exp

(
v(s, a)− Bπv(s, a)

)]
− (1− γ)Es0∼ρ0,a0∼π(·|s0) [v(s0, a0)] .

We use the official Tensorflow implementation6 in our experiments. In the online setting, the rollouts226

collected are used as an additional replay regularization. The overall objective in the online setting is:227

Jmix
DICE(π, v)

= −DKL

(
(1− α)dπ(s, a) + αdRB(s, a)∥(1− α)dπE (s, a) + αdRB(s, a)

)
= logE(s,a)∼dmix

[
exp

(
v(s, a)− Bπv(s, a)

)]
− (1− α)(1− γ)Es0∼ρ0, a0∼π(·|s0) [v(s0, a0)]

−αE(s,a)∼dRB [v(s, a)− Bπv(s, a)] ,

where dmix ≜ (1− α)dπE + αdRB and α is a non-negative regularization coefficient (we set α as228

0.1 following the specification of the paper).229

In the offline setting, ValueDICE only differs in the source of sampling data. We change the online230

replay buffer to the offline pre-collected dataset.231

Offline Imitation Learning with Supplementary Imperfect Demonstrations (DemoDICE).232

DemoDICE [9] is a DICE-based offline LfD method that assumes to have access to an offline dataset233

collected by a behavior policy πβ . Using this supplementary dataset, the expert matching objective of234

DemoDICE is instantiated over ValueDICE:235

−DKL(d
π(s, a)∥dπE (s, a))− αDKL(d

π(s, a)∥dπβ (s, a)),

where α is a positive weight for the constraint.236

The above optimization objective can be transformed into three tractable components: 1) a reward237

function r(s, a) derived by pre-training a binary discriminator D : S ×A → [0, 1]:238

r(s, a) = − log(
1

D∗(s, a)
− 1),

D∗(s, a) = argmax
D

= EdπE [logD(s, a)] + Edπβ [log(1−D(s, a))] ,

2) a value function optimization objective:239

J (v) = −(1− γ)Es∼ρ0 [v(s)]− (1 + α) logE(s,a)∼dπβ

[
exp(

r(s, a) + Es′∼P (s,a)(v(s
′))− v(s)

1 + α
)

]
,

and 3) a policy optimization step:240

J (π) = E(s,a)∼dπβ [v∗(s, a) log π(a|s)] ,
v∗(s, a) = argmax

v
J (v).

5DICE refers to stationary DIstribution Estimation Correction
6https://github.com/google-research/google-research/tree/master/value_dice
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We report the offline results using the official Tensorflow implementation7.241

State Matching Offline DIstribution Correction Estimation (SMODICE). SMODICE [12] pro-242

poses to solve offline IL tasks in LfO and cross-domain settings and it optimizes the following state243

occupancy objective:244

−DKL(d
π(s)∥dπE (s)).

To incorporate the offline dataset, SMODICE derives an f-divergence regularized state-occupancy245

objective:246

Es∼dπ(s)

[
log(

dπβ (s)

dπE (s)
)

]
+−Df (d

π(s, a)∥dπβ (s, a)).

Intuitively, the first term can be interpreted as matching the offline states towards the expert states,247

while the second regularization term constrains the policy close to the offline distribution of state-248

action occupancy. Similarly, we can divide the objective into three steps: 1) deriving a state-based249

reward by learning a state-based discriminator:250

r(s, a) = − log(
1

D∗(s)
− 1),

D∗(s, a) = argmax
D

= EdπE [logD(s)] + Edπβ [log(1−D(s))] ,

2) learning a value function using the learned reward:251

J (v) = −(1− γ)Es∼ρ0 [v(s)]− logE(s,a)∼dπβ

[
f∗(r(s, a) + Es′∼P (s,a)(v(s

′))− v(s))
]
,

and 3) training the policy via weighted regression:252

J (π) = E(s,a)∼dπβ

[
f ′∗(r(s, a) + Es′∼P (s,a)(v

∗(s′))− v∗(s)) log π(a|s)
]
,

v∗(s, a) = argmax
v

J (v),

where f∗ is the Fenchel conjugate of f-divergence (please refer to Ma et al. [12] for more details).253

We conduct experiments using the official Pytorch implementation 8, where the f-divergence used is254

X 2-divergence. On the LfD tasks, we change the input of the discriminator to state-action pairs.255
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