
Model-free Posterior Sampling via Learning Rate
Randomization

Daniil Tiapkin1,2 Denis Belomestny3,2 Daniele Calandriello4 Éric Moulines1,5
Remi Munos4 Alexey Naumov2 Pierre Perrault6 Michal Valko4 Pierre Ménard7

1CMAP, École Polytechnique 2HSE University 3Duisburg-Essen University
4Google DeepMind 5Mohamed Bin Zayed University of AI, UAE 6IDEMIA 7ENS Lyon

{daniil.tiapkin,eric.moulines}@polytechnique.edu
denis.belomestny@uni-due.de

{dcalandriello,munos,valkom}@google.com anaumov@hse.ru
pierre.perrault@outlook.com pierre.menard@ens-lyon.fr

Abstract

In this paper, we introduce Randomized Q-learning (RandQL), a novel random-
ized model-free algorithm for regret minimization in episodic Markov Decision
Processes (MDPs). To the best of our knowledge, RandQL is the first tractable
model-free posterior sampling-based algorithm. We analyze the performance of
RandQL in both tabular and non-tabular metric space settings. In tabular MDPs,
RandQL achieves a regret bound of order Õ(

√
H5SAT), where H is the planning

horizon, S is the number of states, A is the number of actions, and T is the number
of episodes. For a metric state-action space, RandQL enjoys a regret bound of or-
der Õ(H5/2T (dz+1)/(dz+2)), where dz denotes the zooming dimension. Notably,
RandQL achieves optimistic exploration without using bonuses, relying instead on a
novel idea of learning rate randomization. Our empirical study shows that RandQL
outperforms existing approaches on baseline exploration environments.

1 Introduction

In reinforcement learning (RL, Sutton and Barto 1998), an agent learns to interact with an unknown
environment by acting, observing the next state, and receiving a reward. The agent’s goal is to
maximize the sum of the collected rewards. To achieve this, the agent can choose to use model-based
or model-free algorithms. In model-based algorithms, the agent builds a model of the environment by
inferring the reward function and the transition kernel that produces the next state. The agent then
plans in this model to find the optimal policy. In contrast, model-free algorithms directly learn the
optimal policy, which is the mapping of a state to an optimal action, or equivalently, the optimal
Q-values, which are the mapping of a state-action pair to the expected return of an optimal policy
starting by taking the given action at the given state.

Although empirical evidence suggests that model-based algorithms are more sample efficient than
model-free algorithms [Deisenroth and Rasmussen, 2011, Schulman et al., 2015]; model-free ap-
proaches offer several advantages. These include smaller time and space complexity, the absence
of a need to learn an explicit model, and often simpler algorithms. As a result, most of the recent
breakthroughs in deep RL, such as those reported by Mnih et al. [2013], Schulman et al. [2015, 2017],
Haarnoja et al. [2018], have been based on model-free algorithms, with a few notable exceptions,
such as Schrittwieser et al. [2020], Hessel et al. [2021]. Many of these model-free algorithms [Mnih
et al., 2013, Van Hasselt et al., 2016, Lillicrap et al., 2016] are rooted in the well-known Q-learning
algorithm of Watkins and Dayan [1992]. Q-learning is an off-policy learning technique where the
agent follows a behavioral policy while simultaneously incrementally learning the optimal Q-values

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

by combining asynchronous dynamic programming and stochastic approximation. Until recently,
little was known about the sample complexity of Q-learning in the setting where the agent has no
access to a simulator allowing to sample an arbitrary state-action pair. In this work, we consider
such challenging setting where the environment is modelled by an episodic Markov Decision Process
(MDP) of horizon H . After T episodes, the performance of an agent is measured through regret
which is the difference between the cumulative reward the agent could have obtained by acting
optimally and what the agent really obtained during the interaction with the MDP.

This framework poses the famous exploration-exploitation dilemma where the agent must balance the
need to try new state-action pairs to learn an optimal policy against exploiting the current observations
to collect the rewards. One effective approach to resolving this dilemma is to adopt the principle of
optimism in the face of uncertainty. In finite MDPs, this principle has been successfully implemented
in the model-based algorithm using bonuses [Jaksch et al., 2010, Azar et al., 2017, Fruit et al., 2018,
Dann et al., 2017, Zanette and Brunskill, 2019]. Specifically, the upper confidence bounds (UCBs)
on the optimal Q-value are built by adding bonuses and then used for planning. Building on this
approach, Jin et al. [2018] proposed the OptQL algorithm, which applies a similar bonus-based
technique to Q-learning, achieving efficient exploration. Recently, Zhang et al. [2020] introduced a
simple modification to OptQL that achieves optimal sample complexity, making it competitive with
model-based algorithms.

Another class of methods for optimistic exploration is Bayesian-based approaches. An iconic example
among this class is the posterior sampling for reinforcement learning (PSRL,Strens 2000, Osband et al.
2013) algorithm. This model-based algorithm maintains a surrogate Bayesian model of the MDP,
for instance, a Dirichlet posterior on the transition probability distribution if the rewards are known.
At each episode, a new MDP is sampled (i.e., a transition probability for each state-action pair)
according to the posterior distribution of the Bayesian model. Then, the agent plans in this sampled
MDP and uses the resulting policy to interact with the environment. Notably, an optimistic variant
of PSRL, named optimistic posterior sampling for reinforcement learning (OPSRL, Agrawal and Jia,
2017, Tiapkin et al., 2022a) also enjoys an optimal sample complexity [Tiapkin et al., 2022a]. The
random least square value iteration (RLSVI, Osband et al. [2013]) is another well-known model-based
algorithm that leverages a Bayesian-based technique for exploration. Precisely, RLSVI directly sets
a Gaussian prior on the optimal Q-values and then updates the associated posterior trough value
iteration in a model [Osband et al., 2013, Russo, 2019]. A close variant of RLSVI proposed by Xiong
et al. [2022], using a more sophisticated prior/posterior couple, is also proven to be near-optimal.

It is noteworthy that Bayesian-based exploration techniques have shown superior empirical perfor-
mance compared to bonus-based exploration, at least in the tabular setting [Osband et al., 2013,
Osband and Van Roy, 2017]. Furthermore, these techniques have also been successfully applied to
the deep RL setting [Osband et al., 2016, Azizzadenesheli et al., 2018, Fortunato et al., 2018, Li
et al., 2022, Sasso et al., 2023]. Finally, Bayesian methods allow for the incorporation of apriori
information into exploration (e.g. by giving more weight to important states). However, most of the
theoretical studies on Bayesian-based exploration have focused on model-based algorithms, raising
the natural question of whether the PSRL approach can be extended to a provably efficient model-free
algorithm that matches the good empirical performance of its model-based counterparts. Recently,
Dann et al. [2021] proposed a model-free posterior sampling algorithm for structured MDPs, however,
it is not computationally tractable. Therefore, a provably tractable model-free posterior sampling
algorithm has remained a challenge.

In this paper, we aim to resolve this challenge. We propose the randomized Q-learning (RandQL)
algorithm that achieves exploration without bonuses, relying instead on a novel idea of learning rate
randomization. RandQL is a tractable model-free algorithm that updates an ensemble of Q-values
via Q-learning with Beta distributed step-sizes. If tuned appropriately, the noise introduced by the
random learning rates is similar to the one obtained by sampling from the posterior of the PSRL
algorithm. Thus, one can see the ensemble of Q-values as posterior samples from the same induced
posterior on the optimal Q-values as in PSRL. Then, RandQL chooses among these samples in the
same optimistic fashion as OPSRL. We prove that for tabular MDPs, a staged version [Zhang et al.,
2020] of RandQL, named Staged-RandQL enjoys the same regret bound as the OptQL algorithm,
that is, Õ(

√
H5SAT) where S is the number of states and A the number of actions. Furthermore, we

extend Staged-RandQL beyond the tabular setting into the Net-Staged-RandQL algorithm to deal
with metric state-action spaces [Domingues et al., 2021c, Sinclair et al., 2019]. Net-Staged-RandQL
operates similarly to Staged-RandQL but over a fixed discretization of the state-action space and

2

uses a specific prior tuning to handle the effect of discretization. We prove that Net-Staged-RandQL
enjoys a regret bound of order Õ(H5/2T (dc+1)/(dc+2)), where dc denotes the covering dimension.
This rate is of the same order as the one of Adaptive-QL by Sinclair et al. [2019, 2023], an adaptation
of OptQL to metric state-action space and has a better dependence on the budget T than one of the
model-based kernel algorithms such that Kernel-UCBVI by Domingues et al. [2021c]. We also
explain how to adapt Net-Staged-RandQL and its analysis to work with an adaptive discretization
as by Sinclair et al. [2019, 2023]. Finally, we provide preliminary experiments to illustrate the good
performance of RandQL against several baselines in finite and continuous environments.

We highlight our main contributions:

• The RandQL algorithm, a new tractable (provably efficient) model-free Q-learning adaptation of the
PSRL algorithm that explores through randomization of the learning rates.

• A regret bound of order Õ(
√
H5SAT) for a staged version of the RandQL algorithm in finite MDPs

where S is the number of states and A the number of actions, H the horizon and T the budget.
• A regret bound of order Õ(H5/2T (dc+1)/(dc+2)) for an adaptation of RandQL to metric spaces

where dc denotes the covering dimension.
• Adaptive version of metric space extension of RandQL algorithm that achieves a regret bound of

order Õ(H5/2T (dz+1)/(dz+2)), where dz is a zooming dimension.
• Experiments in finite and continuous MDPs that show that RandQL is competitive with model-based

and model-free baselines while keeping a low time-complexity.

2 Setting

We consider an episodic MDP
(
S,A, H, {ph}h∈[H], {rh}h∈[H]

)
, where S is the set of states, A is the

set of actions, H is the number of steps in one episode, ph(s′|s, a) is the probability transition from
state s to state s′ upon taking action a at step h, and rh(s, a) ∈ [0, 1] is the bounded deterministic
reward received after taking the action a in state s at step h. Note that we consider the general case
of rewards and transition functions that are possibly non-stationary, i.e., that are allowed to depend
on the decision step h in the episode.
Policy & value functions A deterministic policy π is a collection of functions πh : S → A for all
h ∈ [H], where every πh maps each state to a single action. The value functions of π, denoted by
V π
h , as well as the optimal value functions, denoted by V ⋆

h are given by the Bellman and the optimal
Bellman equations,

Qπ
h(s, a) = rh(s, a) + phV

π
h+1(s, a) V π

h (s) = πhQ
π
h(s)

Q⋆
h(s, a) = rh(s, a) + phV

⋆
h+1(s, a) V ⋆

h (s) = max
a

Q⋆
h(s, a),

where by definition, V ⋆
H+1 ≜ V π

H+1 ≜ 0. Furthermore, phf > (s, a) ≜ Es′∼ph(·|s,a)[f(s
′)] denotes

the expectation operator with respect to the transition probabilities ph and πhg(s) ≜ g(s, πh(s))
denotes the composition with the policy π at step h.
Learning problem The agent, to which the transitions are unknown (the rewards are assumed to
be known1 for simplicity), interacts with the environment during T episodes of length H , with a
fixed initial state s1.2 Before each episode t the agent selects a policy πt based only on the past
observed transitions up to episode t− 1. At each step h ∈ [H] in episode t, the agent observes a state
sth ∈ S, takes an action πt

h(s
t
h) = ath ∈ A and makes a transition to a new state sth+1 according to

the probability distribution ph(sth, a
t
h) and receives a deterministic reward rh(sth, a

t
h).

Regret The quality of an agent is measured through its regret, that is the difference between what it
could obtain (in expectation) by acting optimally and what it really gets,

RT ≜
T∑

t=1

V ⋆
1 (s1)− V πt

1 (s1) .

1Our work can be extended without too much difficulty to the case of random rewards.
2As explained by Fiechter [1994] if the first state is sampled randomly as s1 ∼ p, we can simply add

an artificial first state s1′ such that for any action a, the transition probability is defined as the distribution
p1′(s1′ , a) ≜ p.

3

Additional notation For N ∈ N++, we define the set [N] ≜ {1, . . . , N}. We denote the uniform
distribution over this set by Unif[N]. We define the beta distribution with parameters α, β as
Beta(α, β). Appendix A references all the notation used.

3 Randomized Q-learning for Tabular Environments

In this section we assume that the state space S is finite of size S as well as the action space A of
size A. We first provide some intuitions for RandQL algorithm.

3.1 Concept

The main idea of RandQL is to perform the usual Q-learning updates but instead of adding bonuses
to the targets as OptQL to drive exploration, RandQL injects noise into the updates of the Q-values
through noisy learning rates. Precisely, for J ∈ N, we maintain an ensemble of size J of Q-
values3 (Q

n,j
)j∈[J] updated with random independent Beta-distributed step-sizes (wn,j)j∈[J] where

wn,j ∼ Beta(H,n). Then, policy Q-values Q
n

are obtained by taking the maximum among the
Q-values of the ensemble

Q
n+1,j

h (s, a) = (1− wn,j)Q
n,j

h (s, a) + wn,j [rh(s, a) + V
n

h+1(s
n
h+1)]

Q
n+1

h (s, a) = max
j∈[J]

Q
n+1,j

h (s, a), V
n+1

h (s) = max
a∈A

Q
n+1

h (s, a),

where snh+1 stands for the next (in time) state after n-th visitation of (s, a) at step h.

Note that the policy Q-values Q
n

are designed to be upper confidence bound on the optimal Q-values.
The policy used to interact with the environment is greedy with respect to the policy Q-values
πn
h(s) ∈ argmaxaQ

n

h(s, a). We provide a formal description of RandQL in Appendix B.

Connection with OptQL We observe that the learning rates of RandQL are in expectation of the
same order E[wn,j] = H/(n+H) as the ones used by the OptQL algorithm. Thus, we can view our
randomized Q-learning as a noisy version of the OptQL algorithm that doesn’t use bonuses.

Connection with PSRL If we unfold the recursive formula above we can express the Q-values
Q

n+1,j
as a weighted sum

Q
n+1,j

h (s, a) =W 0
n,jQ

1,j

h (s, a) +

n∑
k=1

W k
n,j [rh(s, a) + V

k

h+1(s
k
h+1)],

where we define W 0
n,j =

∏n−1
ℓ=0 (1− wℓ,j) and W k

n,j = wk−1,j

∏n−1
ℓ=k (1− wℓ,j).

To compare, we can unfold the corresponding formula for PSRL algorithm using the aggregation
properties of the Dirichlet distribution (see e.g. Section 4 of Tiapkin et al. [2022b] or Appendix C)

Q
n+1

h (s, a) = W̃ 0
nQ

1

h(s, a) +

n∑
k=1

W̃ k
n [rh(s, a) + V

n+1

h+1(s
k
h+1)], (1)

where weights (W̃ 0
n , . . . , W̃

n
n) follows Dirichlet distribution Dir(n0, 1, . . . , 1) and n0 is a weight

for the prior distribution. In particular, one can represent these weights as partial products of other
weights wn ∼ Beta(1, n+ n0). If we use (1) to construct a model-free algorithm, this would require
recomputing the targets rh(s, a) + V

n+1
(skh+1) in each iteration. To make algorithm more efficient

and model-free, we approximate V
n+1

by V
k

, and, as a result, obtain RandQL algorithm with weight
distribution wn,j ∼ Beta(1, n+ n0).

Note that in expectation this algorithm is equivalent to OptQL with the uniform step-sizes which are
known to be sub-optimal due to a high bias (see discussion in Section 3 of [Jin et al., 2018]). There
are two known ways to overcome this sub-optimality for Q-learning: to introduce more aggressive

3We index the quantities by n in this section where n is the number of times the state-action pair (s, a) is
visited. In particular this is different from the global time t since, in our setting, all the state- action pair are not
visited at each episode. See Section 3.2 and Appendix B precise notations.

4

learning rates wn,j ∼ Beta(H,n + n0) leading to RandQL algorithm, or to use stage-dependent
framework by Bai et al. [2019], Zhang et al. [2020] resulting in Staged-RandQL algorithm.

The aforementioned transition from PSRL to RandQL is similar to the transition from UCBVI [Azar
et al., 2017] to Q-learning. To make UCBVI model-free, one has to to keep old targets in Q-values.
This, however, introduces a bias that could be eliminated either by more aggressive step-size [Jin et al.,
2018] or by splitting on stages [Bai et al., 2019]. Our algorithms (RandQL and Staged-RandQL)
perform the similar tricks for PSRL and thus could be viewed as model-free versions of it. Additionally,
RandQL shares some similarities with the OPSRL algorithm [Agrawal and Jia, 2017, Tiapkin et al.,
2022a] in the way of introducing optimism (taking maximum over J independent ensembles of
Q-values). Let us also mention a close connection to the theory of Dirichlet processes in the proof of
optimism for the case of metric spaces (see Remark 1 in Appendix E.4).

Prior As remarked above, in expectation, RandQL has a learning rate of the same order as OptQL. In
particular, it implies that the first (1− 1/H) fraction of the the target will be forgotten exponentially
fast in the estimation of the Q-values, see Jin et al. [2018], Ménard et al. [2021]. Thus we need to
re-inject prior targets, as explained in Appendix B, in order to not forget too quickly the prior and
thus replicate the same exploration mechanism as in the PSRL algorithm.

3.2 Algorithm

In this section, following Bai et al. [2019], Zhang et al. [2020], we present the Staged-RandQL
algorithm a scheduled version of RandQL that is simpler to analyse. The main idea is that instead
of using a carefully tuned learning rate to keep only the last 1/H fraction of the targets we split the
learning of the Q-values in stages of exponentially increasing size with growth rate of order 1 + 1/H .
At a given stage, the estimate of the Q-value relies only on the targets within this stage and resets
at the beginning of the next stage. Notice that the two procedures are almost equivalent. A detail
description of Staged-RandQL is provided in Algorithm 1.

Counts and stages Let nth(s, a) ≜
∑t−1

i=1 1{(sih, aih) = (s, a)} be the number of visits of state-action
pair (s, a) at step h before episode t. We say that a triple (s, a, h) belongs to the k-th stage at the
beginning of episode t if nth(s, a) ∈ [

∑k−1
i=0 ei,

∑k
i=0 ei). Here ek = ⌊(1 + 1/H)k ·H⌋ is the length

of the stage k ≥ 0 and, by convention, e−1 = 0. Let ñth(s, a) ≜ nth(s, a)−
∑k−1

i=0 ei be the number
of visits of state-action pair (s, a) at step h during the current stage k.

Temporary Q-values At the beginning of a stage, let say time t, we initialize J temporary Q-values
as Q̃t,j

h (s, a) = rh(s, a) + r0(H − h− 1) for j ∈ [J] and r0 some pseudo-reward. Then as long as
(sth, a

t
h, h) remains within a stage we update recursively the temporary Q-values

Q̃t+1,j
h (s, a) =

{
(1− wj,ñ)Q̃

t,j
h (s, a) + wj,ñ[rh(s, a) + V

t

h+1(s
t
h+1)], (s, a) = (sth, a

t
h)

Q̃t,j
h (s, a) otherwise,

where ñ = ñth(s, a) is the number of visits, wj,ñ is a sequence of i.i.d. random variables wj,ñ ∼
Beta(1/κ, (ñ + n0)/κ) with κ > 0 being some posterior inflation coefficient and n0 a number of
pseudo-transitions.

Policy Q-values Next we define the policy Q-values that is updated at the end of a stage. Let say
for state-action pair (s, a) at step h an stage ends at time t. This policy Q-values is then given by
the maximum of temporary Q-values Q

t+1

h = maxj∈[J] Q̃
t+1,j
h (s, a). Then the policy Q-values is

constant within a stage. The value used to defined the targets is V
t+1

h (s) = maxa∈AQ
t+1

h (s, a).
The policy used to interact with the environment is greedy with respect to the policy Q-values
πt+1
h (s) ∈ argmaxa∈AQ

t+1

h (s, a) (we break ties arbitrarily).

3.3 Regret bound

We fix δ ∈ (0, 1) and the number of posterior samples J ≜ ⌈cJ · log(2SAHT/δ)⌉, where cJ =
1/ log(2/(1+Φ(1))) and Φ(·) is the cumulative distribution function (CDF) of a normal distribution.
Note that J has a logarithmic dependence on S,A,H, T, and 1/δ.

We now state the regret bound of Staged-RandQL with a full proof in Appendix D.

5

Algorithm 1 Tabular Staged-RandQL
1: Input: inflation coefficient κ, J ensemble size, number of prior transitions n0, prior reward r0.
2: Initialize: V h(s) = Qh(s, a) = Q̃j

h(s, a) = r(s, a) + r0(H − h − 1), initialize counters
ñh(s, a) = 0 for j, h, s, a ∈ [J]× [H]× S ×A and stage qh(s, a) = 0.

3: for t ∈ [T] do
4: for h ∈ [H] do
5: Play ah ∈ argmaxaQh(sh, a).
6: Observe reward and next state sh+1 ∼ ph(sh, ah).
7: Sample learning rates wj ∼ Beta(1/κ, (ñ+ n0)/κ) for ñ = ñh(sh, ah).
8: Update temporary Q-values for all j ∈ [J]

Q̃j
h(sh, ah) := (1− wj)Q̃

j
h(sh, ah) + wj

(
rh(sh, ah) + V h+1(sh+1)

)
.

9: Update counter ñh(sh, ah) := ñh(sh, ah) + 1
10: if ñh(sh, ah) = ⌊(1 + 1/H)qH⌋ for q = qh(sh, ah) being the current stage then
11: Update policy Q-values Qh(sh, ah) := maxj∈[J] Q̃

j
h(sh, ah).

12: Update value function V h(sh) := maxa∈AQh(sh, a)

13: Reset temporary Q-values Q̃j
h(sh, ah) := rh(sh, ah) + r0(H − h− 1).

14: Reset counter ñh(sh, ah) := 0 and change stage qh(sh, ah) := qh(sh, ah) + 1.
15: end if
16: end for
17: end for

Theorem 1. Consider a parameter δ ∈ (0, 1). Let κ ≜ 2(log(8SAH/δ)+3 log(eπ(2T +1))), n0 ≜
⌈κ(c0 + log17/16(T))⌉, r0 ≜ 2, where c0 is an absolute constant defined in (5); see Appendix D.3.
Then for Staged-RandQL, with probability at least 1− δ,

RT = Õ
(√

H5SAT +H3SA
)
.

Discussion The regret bound of Theorem 1 coincides (up to a logarithmic factor) with the bound
of the OptQL algorithm with Hoeffding-type bonuses from Jin et al. [2018]. Up to a H factor, our
regret matches the information-theoretic lower bound Ω(

√
H3SAT) [Jin et al., 2018, Domingues

et al., 2021b]. This bound could be achieved (up to logarithmic terms) in model-free algorithms by
using Bernstein-type bonuses and variance reduction [Zhang et al., 2020]. We keep these refinements
for future research as the main focus of our paper is on the novel randomization technique and its use
to construct computationally tractable model-free algorithms.

Computational complexity Staged-RandQL is a model-free algorithm, and thus gets the Õ(HSA)

space complexity as OptQL, recall that we set J = Õ(1). The per-episode time-complexity is also
similar and of order Õ(H) .

4 Randomized Q-learning for Metric Spaces

In this section we present a way to extend RandQL to general state-action spaces. We start from the
simplest approach with predefined ε-net type discretization of the state-action space S ×A (see Song
and Sun 2019), and then discuss an adaptive version of the algorithm, similar to one presented by
Sinclair et al. [2019].

4.1 Assumptions

To pose the first assumption, we start from a general definition of covering numbers.

Definition 1 (Covering number and covering dimension). Let (M,ρ) be a metric space. A set M of
open balls of radius ε is called an ε-cover of M if M ⊆

⋃
B∈MB. The cardinality of the minimal

ε-cover is called covering number Nε of (M,ρ). We denote the corresponding minimal ε-covering
by Nε. A metric space (M,ρ) has a covering dimension dc if ∀ε > 0 : Nε ≤ CNε

−dc , where CN is
a constant.

6

The last definition extends the definition of dimension beyond vector spaces. For example, is case
of M = [0, 1]d the covering dimension of M is equal to d. For more details and examples see e.g.
Vershynin [2018, Section 4.2].

Next we are ready to introduce the first assumption.
Assumption 1 (Metric Assumption). Spaces S and A are separable compact metric spaces with
the corresponding metrics ρS and ρA. The joint space S ×A endowed with a product metric ρ that
satisfies ρ((s, a), (s′, a′)) ≤ ρS(s, s

′) + ρA(a, a
′). Moreover, the diameter of S ×A is bounded by

dmax, and S ×A has covering dimension dc with a constant CN .

This assumption is, for example, satisfied for the finite state and action spaces endowed with discrete
metrics ρS(s, s′) = 1{s ̸= s′}, ρA(a, a′) = 1{a ̸= a′} with dc = 0, CN = SA and S and A being
the cardinalities of the state and action spaces respectively. The above assumption also holds in the
case S ⊆ [0, 1]dS and A ⊆ [0, 1]dA with dc = dS + dA.

The next two assumptions describe the regularity conditions of transition kernel and rewards.
Assumption 2 (Reparametrization Assumption). The Markov transition kernel could be represented
as an iterated random function. In other words, there exists a measurable space (Ξ,FΞ) and a
measurable function Fh : (S × A) × Ξ → S, such that sh+1 ∼ ph(sh, ah) ⇐⇒ sh+1 =
Fh(sh, ah, ξh) for a sequence of independent random variables {ξh}h∈[H].

This assumption is naturally satisfied for a large family of probabilistic model, see Kingma and
Welling [2014]. Moreover, it has been utilized by the RL community both in theory [Ye and Zhou,
2015] and practice [Heess et al., 2015, Liu et al., 2018]. Essentially, this assumption holds for Markov
transition kernels over a separable metric space, see Theorem 1.3.6 by Douc et al. [2018]. However,
the function Fh could be ill-behaved. To avoid this behaviour, we need the following assumption.
Assumption 3 (Lipschitz Assumption). The function Fh(·, ξh) is LF -Lipschitz in the first argument
for almost every value of ξh. Additionally, the reward function rh : S ×A → [0, 1] is Lr-Lipschitz.

This assumption is commonly used in studies of the Markov processes corresponding to iterated
random functions, see Diaconis and Freedman [1999], Ghosh and Marecek [2022]. Moreover, this
assumption holds for many cases of interest. As main example, it trivially holds in tabular and
Lipschitz continuous deterministic MDPs [Ni et al., 2019]. Notably, this observation demonstrates
that Assumption 3 does not necessitate Lipschitz continuity of the transition kernels in total vari-
ation distance, since deterministic Lipschitz MDPs are not continuous in that sense. Additionally,
incorporation of an additive noise to deterministic Lipschitz MDPs will lead to Assumption 3 with
LF = 1.

Furthermore, it is possible to show that Assumption 3 implies other assumptions stated in the literature.
For example, it implies that the transition kernel is Lipschitz continuous in 1-Wasserstein metric, and
that Q⋆ and V ⋆ are both Lipschitz continuous.
Lemma 1. Let Assumption 1,2,3 hold. Then the transition kernels ph(s, a) are LF -Lipschitz continu-
ous in 1-Wasserstein distance

W1(ph(s, a), ph(s
′, a′)) ≤ LF · ρ((s, a), (s′, a′)),

where 1-Wasserstein distance between two probability measures on the metric space (M,ρ) is defined
as W1(ν, η) = supf is 1−Lipschitz

∫
M
fdν −

∫
M
fdη.

Lemma 2. Let Assumption 1,2,3 hold. Then Q⋆
h and V ⋆

h are Lipschitz continuous with Lipschitz
constant LV,h ≤

∑H
h′=h L

h′−h
F Lr.

The proof of these lemmas is postponed to Appendix E. For a more detailed exposition on 1-
Wasserstein distance we refer to the book by Peyré and Cuturi [2019]. The first assumption was
studied by Domingues et al. [2021c], Sinclair et al. [2023] in the setting of model-based algorithms
in metric spaces. We are not aware of any natural examples of MDPs with a compact state-action
space where the transition kernels are Lipschitz in W1 but fail to satisfy Assumption 3.

4.2 Algorithms

In this section, following Song and Sun [2019], we present Net-Staged-RandQL algorithm that
combines a simple non-adaptive discretization and an idea of stages by Bai et al. [2019], Zhang et al.
[2020].

7

We assume that we have an access to all Lipschitz constants Lr, LF , LV ≜ LV,1. Additionally, we
have access to the oracle that computes ε-cover Nε of the space S ×A for any predefined ε > 04.

Counts and stages Let nth(B) ≜
∑t−1

i=1 1{(sih, aih) ∈ B} be the number of visits of the ball B ∈ Nε

at step h before episode t. Let ek = ⌊(1 + 1/H)k · H⌋ be length of the stage k ≥ 0 and, by
convention, e−1 = 0. We say that (B, h) belongs to the k-th stage at the beginning of episode t if
nth(B) ∈ [

∑k−1
i=0 ei,

∑k
i=0 ei). Let ñth(B) ≜ nth(s, a)−

∑k−1
i=0 ei be the number of visits of the ball

B at step h during the current stage k.

Temporary Q-values At the beginning of a stage, let say time t, we initialize J temporary Q-values
as Q̃t,j

h (B) = r0H for j ∈ [J] and r0 some pseudo-reward. Then within a stage k we update
recursively the temporary Q-values

Q̃t+1,j
h (B) =

{
(1− wj,ñ)Q̃

t,j
h (B) + wj,ñ[rh(s

t
h, a

t
h) + V

t

h+1(s
t
h+1)], (s, a) = (sth, a

t
h)

Q̃1,j
h (B) otherwise,

where ñ = ñth(B) is the number of visits, wj,ñ is a sequence of i.i.d random variables wj,ñ ∼
Beta(1/κ, (ñ+ n0(k))/κ) with κ > 0 some posterior inflation coefficient and n0(k) a number of
pseudo-transitions. The important difference between tabular and metric settings is the dependence
on the pseudo-count n0(k) on k in the latter case, since here the prior is used to eliminate the
approximation error.

Policy Q-values Next, we define the policy Q-values that are updated at the end of a stage. Let us
fix a ball B at step h and suppose that the currents stage ends at time t. Then the policy Q-values
are given by the maximum of the temporary Q-values Q

t+1

h (B) = maxj∈[J] Q̃
t+1,j
h (B). The policy

Q-values are constant within a stage. The value used to define the targets is computed on-flight
using the formula V

t

h(s) = maxa∈AQ
t

h(ψε(s, a)), where ψε : S × A → Nε is a quantization
map, that assigns each state-action pair (s, a) to a ball B ∋ (s, a). The policy used to interact
with the environment is greedy with respect to the policy Q-values and also computed on-flight
πt
h(s) ∈ argmaxa∈AQ

t

h(ψε(s, a)) (we break ties arbitrarily).

A detail description of Net-Staged-RandQL is provided in Algorithm 4 in Appendix E.2.

4.3 Regret Bound

We fix δ ∈ (0, 1), the discretization level ε > 0 and the number of posterior samples

J ≜ ⌈c̃J · (log(2CNHT/δ) + dc log(1/ε))⌉,
where c̃J = 1/ log(4/(3+Φ(1))) and Φ(·) is the cumulative distribution function (CDF) of a normal
distribution. Note that J has a logarithmic dependence on H,T, 1/ε and 1/δ. For the regret-optimal
discretization level ε = T−1/(dc+2), the number J is almost independent of dc . Let us note that the
role of prior in metric spaces is much higher than in the tabular setting. Another important difference
is dependence of the prior count on the stage index. In particular, we have

n0(k) =

⌈
ñ0 + κ+

εL

H − 1
· (ek + ñ0 + κ)

⌉
, ñ0 = (c0 + 1 + log17/16(T)) · κ

where c0 is an absolute constant defined in (5) (see Appendix D.3), κ is the posterior inflation coeffi-
cient andL = Lr+(1+LF)LV is a constant. We now state the regret bound of Net-Staged-RandQL
with a full proof being postponed to Appendix E.
Theorem 2. Suppose that Nε ≤ CNε

−dc for all ε > 0 and some constant CN > 0. Consider
a parameter δ ∈ (0, 1) and take an optimal level of discretization ε = T−1/(dc+2). Let κ ≜
2(log(8HCN/δ)+dc log(1/ε)+3 log(eπ(2T+1))), r0 ≜ 2. Then it holds for Net-Staged-RandQL,
with probability at least 1− δ,

RT = Õ
(
H5/2C

1/2
N T

dc+1
dc+2 +H3CNT

dc
dc+2 + LT

dc+1
dc+2

)
.

We can restore the regret bound in the tabular setting by letting dc = 0 and CN = SA, where S is
the cardinality of the state-space, and A is the cardinality of the action-space.

4Remark that the simple greedy algorithm can generate ε-cover of size Nε/2, that will not affect the
asymptotic behavior of our regret bounds, see Song and Sun [2019].

8

Discussion From the point of view of instance-independent bounds, our algorithm achieves the
same result as Net-QL [Song and Sun, 2019] and Adaptive-QL [Sinclair et al., 2019], that matches
the lower bound Ω(HT

dc+1
dc+2) by Sinclair et al. [2023] in dependence on budget T and covering

dimension dc. Notably, as discussed by Sinclair et al. [2023], the model-based algorithm such
as Kernel-UCBVI [Domingues et al., 2021c] does not achieves optimal dependence in T due to
hardness of the transition estimation problem.

Computational complexity For a fixed level of discretization ε, our algorithm has a space complex-
ity of order Õ(HNε). Assuming that the computation of a quantization map ψε has Õ(1) time com-
plexity, we achieve a per-episode time complexity of Õ(HA) for a finite action space and O(HNε)
for an infinite action space in the worst case due to computation of argmaxa∈AQh(ψε(s, a)).
However, this can be improved to Õ(H) if we consider adaptive discretization [Sinclair et al., 2019].

Adaptive discretization Additionally, we propose a way to combine RandQL with adaptive dis-
cretization by Cao and Krishnamurthy [2020], Sinclair et al. [2023]. This combination results in two
algorithms: Adaptive-RandQL and Adaptive-Staged-RandQL. The second one could achieve
the instance-dependent regret bound that scales with a zooming dimension, the instance-dependent
measure of dimension. We will follow Sinclair et al. [2023] in the exposition of the required notation.

Definition 2. For any (s, a) ∈ S × A, the stage-dependent sub-optimality gap is defined as
gaph(s, a) = V ⋆

h (s)−Q⋆
h(s, a).

This quantity is widely used in the theoretical instance-dependent analysis of reinforcement learning
and contextual bandit algorithms.

Definition 3. The near-optimal set of S ×A for a given value ε defined as Zε
h = {(s, a) ∈ S ×A |

gaph(s, a) ≤ (H + 1)ε}.

The main insight of this definition is that essentially we are interested in a detailed discretization
of the near-optimal set Zε

h for small ε, whereas all other state-action pairs could be discretized in a
more rough manner. Interestingly enough, Zε

h could be a lower dimensional manifold, leading to the
following definition.

Definition 4. The step-h zooming dimension dz,h with a constant CN,h and a scaling factor ρ > 0 is
given by

dz,h = inf
{
d > 0 : ∀ε > 0 Nε(Z

ρ·ε
h) ≤ CN,hε

−d
}
.

Under some additional structural assumptions on Q⋆
h, it is possible to show that the zooming

dimension could be significantly smaller than the covering dimension, see, e.g., Lemma 2.8 in
Sinclair et al. [2023]. However, at the same time, it has been shown that dz,h ≥ dS − 1, where dS is
a covering dimension of the state space. Thus, the zooming dimension allows adaptation to a rich
action space but not a rich state space.

Given this definition, it is possible to define define an adaptive algorithm Adaptive-Staged-RandQL
that attains the following regret guarantees

Theorem 3. Consider a parameter δ ∈ (0, 1). For a value κ that depends on T, dc ad δ, for
Adaptive-Staged-RandQL the following holds with probability at least 1− δ,

RT = Õ
(
H3 +H3/2

H∑
h=1

T
dz,h+1

dz,h+2

)
,

where dz,h is the step-h zooming dimension and we ignore all multiplicative factors in the covering
dimension dc, log(CN), and Lipschitz constants.

We refer to Appendix F to a formal statement and a proof.

5 Experiments
In this section we present the experiments we conducted for tabular environments using rlberry
library [Domingues et al., 2021a]. We also provide experiments in non-tabular environment in
Appendix I.

9

Environment We use a grid-world environment with 100 states (i, j) ∈ [10]× [10] and 4 actions
(left, right, up and down). The horizon is set to H = 50. When taking an action, the agent moves in
the corresponding direction with probability 1 − ε, and moves to a neighbor state at random with
probability ε = 0.2. The agent starts at position (1, 1). The reward equals to 1 at the state (10, 10)
and is zero elsewhere.

0 5000 10000 15000 20000 25000 30000
episode

0

100000

200000

300000

400000

500000

600000

re
gr

et

name

Greedy UCBVI
OptQL
PSRL
Randomized QL
RLSVI
UCBVI

Figure 1: Regret curves of RandQL and baselines
in a grid-world environment for H = 50 and tran-
sition noise ε = 0.2. The average is over 4 seeds.

Variations of randomized Q-learning For
the tabular experiment we use the RandQL algo-
rithm, described in Appendix B as it is the ver-
sion of randomized Q-learning that is the closest
to the baseline OptQL. Note that, we compare
the different versions of randomized Q-learning
in Appendix B.

Baselines We compare RandQL algorithm to
the following baselines: (i) OptQL [Jin et al.,
2018] (ii) UCBVI [Azar et al., 2017] (iii)
Greedy-UCBVI, a version of UCBVI using real–
time dynamic programming [Efroni et al., 2019]
(iv) PSRL [Osband et al., 2013] and (v) RLSVI
[Russo, 2019]. For the hyper-parameters used
for these baselines refer to Appendix I.

Results Figure 1 shows the result of the experiments. Overall, we see that RandQL outperforms
OptQL algorithm on tabular environment, but still degrades in comparison to model-based approaches,
that is usual for model-free algorithms in tabular environments. Indeed, using a model and backward
induction allows new information to be more quickly propagated. But as counterpart, RandQL has a
better time-complexity and space-complexity than model-based algorithm, see Table 2 in Appendix I.

6 Conclusion

This paper introduced the RandQL algorithm, a new model-free algorithm that achieves exploration
without bonuses. It utilizes a novel idea of learning rate randomization, resulting in provable sample
efficiency with regret of order Õ(

√
H5SAT) in the tabular case. We also extend RandQL to the case

of metric state-action space by using proper discretization techniques. The proposed algorithms
inherit the good empirical performance of model-based Bayesian algorithm such that PSRL while
keeping the small space and time complexity of model-free algorithm. Our result rises following
interesting open questions for a further research.

Optimal rate for RandQL We conjecture that RandQL could get optimal regret in the tabular setting
if coupled with variance reductions techniques as used by Zhang et al. [2020]. However, obtaining
such improvements is not straightforward due to the intricate statistical dependencies involved in the
analysis of RandQL.

Beyond one-step learning We observe a large gap in the experiments between Q-learning type algo-
rithm that do one-step planning and e.g. UCBVI algorithm that does full planning or Greedy-UCBVI
that does one-step planning with full back-up (expectation under transition of the model) for all ac-
tions. Therefore, it would interesting to study also algorithms that range between these two extremes
[Efroni et al., 2018, 2019].

Acknowledgments

The work of D. Tiapkin, A. Naumov, and D. Belomestny were supported by the grant for research
centers in the field of AI provided by the Analytical Center for the Government of the Russian
Federation (ACRF) in accordance with the agreement on the provision of subsidies (identifier of
the agreement 000000D730321P5Q0002) and the agreement with HSE University No. 70-2021-
00139. E. Moulines received support from the grant ANR-19-CHIA-002 SCAI and parts of his
work has been done under the auspices of Lagrange Center for maths and computing. P. Ménard
acknowledges the Chaire SeqALO (ANR-20-CHIA-0020-01). This research was supported in part
through computational resources of HPC facilities at HSE University.

10

References
Shipra Agrawal and Navin Goyal. Further optimal regret bounds for thompson sampling. In

Carlos M. Carvalho and Pradeep Ravikumar, editors, Proceedings of the Sixteenth International
Conference on Artificial Intelligence and Statistics, volume 31 of Proceedings of Machine Learning
Research, pages 99–107, Scottsdale, Arizona, USA, 29 Apr–01 May 2013. PMLR. URL https:
//proceedings.mlr.press/v31/agrawal13a.html.

Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-case
regret bounds. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3621f1454cacf995530ea53652ddf8fb-Paper.pdf.

Duncan Alfers and Hermann Dinges. A normal approximation for beta and gamma tail probabilities.
Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 65:399–420, 1984. URL
https://link.springer.com/content/pdf/10.1007/BF00533744.pdf.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for rein-
forcement learning. In International Conference on Machine Learning, 2017. URL https:
//arxiv.org/pdf/1703.05449.pdf.

Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration
through bayesian deep q-networks. In 2018 Information Theory and Applications Workshop, ITA
2018, San Diego, CA, USA, February 11-16, 2018, pages 1–9. IEEE, 2018. doi: 10.1109/ITA.2018.
8503252. URL https://doi.org/10.1109/ITA.2018.8503252.

Yu Bai, Tengyang Xie, Nan Jiang, and Yu-Xiang Wang. Provably efficient q-learning with low
switching cost, 2019. URL https://arxiv.org/abs/1905.12849.

Tongyi Cao and Akshay Krishnamurthy. Provably adaptive reinforcement learning in metric
spaces. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 9736–9744. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
6ef1173b096aa200158bfbc8af3ae8e3-Paper.pdf.

Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying PAC and regret: Uniform PAC
bounds for episodic reinforcement learning. In Neural Information Processing Systems, 2017.
URL https://arxiv.org/pdf/1703.07710.pdf.

Christoph Dann, Mehryar Mohri, Tong Zhang, and Julian Zimmert. A provably efficient
model-free posterior sampling method for episodic reinforcement learning. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages 12040–12051. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
649d45bf179296e31731adfd4df25588-Paper.pdf.

Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th International Conference on International
Conference on Machine Learning, ICML’11, page 465–472, Madison, WI, USA, 2011. Omnipress.
ISBN 9781450306195.

Persi Diaconis and David Freedman. Iterated random functions. SIAM Review, 41(1):45–76, 1999.
doi: 10.1137/S0036144598338446. URL https://doi.org/10.1137/S0036144598338446.

Omar Darwiche Domingues, Yannis Flet-Berliac, Edouard Leurent, Pierre Ménard, Xuedong Shang,
and Michal Valko. rlberry - A Reinforcement Learning Library for Research and Education, 10
2021a. URL https://github.com/rlberry-py/rlberry.

Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, and Michal Valko. Episodic reinforce-
ment learning in finite mdps: Minimax lower bounds revisited. In Vitaly Feldman, Katrina Ligett,
and Sivan Sabato, editors, Proceedings of the 32nd International Conference on Algorithmic Learn-
ing Theory, volume 132 of Proceedings of Machine Learning Research, pages 578–598. PMLR,
16–19 Mar 2021b. URL https://proceedings.mlr.press/v132/domingues21a.html.

11

https://proceedings.mlr.press/v31/agrawal13a.html
https://proceedings.mlr.press/v31/agrawal13a.html
https://proceedings.neurips.cc/paper/2017/file/3621f1454cacf995530ea53652ddf8fb-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3621f1454cacf995530ea53652ddf8fb-Paper.pdf
https://link.springer.com/content/pdf/10.1007/BF00533744.pdf
https://arxiv.org/pdf/1703.05449.pdf
https://arxiv.org/pdf/1703.05449.pdf
https://doi.org/10.1109/ITA.2018.8503252
https://arxiv.org/abs/1905.12849
https://proceedings.neurips.cc/paper_files/paper/2020/file/6ef1173b096aa200158bfbc8af3ae8e3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6ef1173b096aa200158bfbc8af3ae8e3-Paper.pdf
https://arxiv.org/pdf/1703.07710.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/649d45bf179296e31731adfd4df25588-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/649d45bf179296e31731adfd4df25588-Paper.pdf
https://doi.org/10.1137/S0036144598338446
https://github.com/rlberry-py/rlberry
https://proceedings.mlr.press/v132/domingues21a.html

Omar Darwiche Domingues, Pierre Menard, Matteo Pirotta, Emilie Kaufmann, and Michal Valko.
Kernel-based reinforcement learning: A finite-time analysis. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 2783–2792. PMLR, 18–24 Jul 2021c. URL
https://proceedings.mlr.press/v139/domingues21a.html.

Randal Douc, Eric Moulines, Pierre Priouret, and Philippe Soulier. Markov chains. Springer, 2018.

Yonathan Efroni, Gal Dalal, Bruno Scherrer, and Shie Mannor. Multiple-step greedy policies
in approximate and online reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/
paper_files/paper/2018/file/3f998e713a6e02287c374fd26835d87e-Paper.pdf.

Yonathan Efroni, Nadav Merlis, Mohammad Ghavamzadeh, and Shie Mannor. Tight regret bounds for
model-based reinforcement learning with greedy policies. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper_files/paper/2019/file/25caef3a545a1fff2ff4055484f0e758-Paper.pdf.

Thomas S Ferguson. A bayesian analysis of some nonparametric problems. The annals of statistics,
pages 209–230, 1973.

Claude-Nicolas Fiechter. Efficient reinforcement learning. In Conference on Learning
Theory, 1994. URL http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=
7F5F8FCD1AA7ED07356410DDD5B384FE?doi=10.1.1.49.8652&rep=rep1&type=pdf.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alexander
Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and
Shane Legg. Noisy networks for exploration. In Proceedings of the International Conference on
Representation Learning (ICLR 2018), Vancouver (Canada), 2018.

Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Ronald Ortner. Efficient bias-span-constrained
exploration-exploitation in reinforcement learning. In International Conference on Machine
Learning, pages 1578–1586. PMLR, 2018.

Aurélien Garivier, Hédi Hadiji, Pierre Menard, and Gilles Stoltz. Kl-ucb-switch: optimal regret
bounds for stochastic bandits from both a distribution-dependent and a distribution-free viewpoints.
arXiv preprint arXiv:1805.05071, 2018.

Subhashis Ghosal and Aad Van der Vaart. Fundamentals of nonparametric Bayesian inference,
volume 44. Cambridge University Press, 2017.

Ramen Ghosh and Jakub Marecek. Iterated function systems: A comprehensive survey, 2022.

Senlin Guo, Feng Qi, and Hari Srivastava. Necessary and sufficient conditions for two classes of
functions to be logarithmically completely monotonic. Integral Transforms and Special Functions,
18:819–826, 11 2007. doi: 10.1080/10652460701528933.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pages 1861–1870. PMLR, 2018.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learning
continuous control policies by stochastic value gradients. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_
files/paper/2015/file/148510031349642de5ca0c544f31b2ef-Paper.pdf.

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theo-
phane Weber, David Silver, and Hado van Hasselt. Muesli: Combining improvements in pol-
icy optimization. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume
139 of Proceedings of Machine Learning Research, pages 4214–4226. PMLR, 2021. URL
http://proceedings.mlr.press/v139/hessel21a.html.

12

https://proceedings.mlr.press/v139/domingues21a.html
https://proceedings.neurips.cc/paper_files/paper/2018/file/3f998e713a6e02287c374fd26835d87e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/3f998e713a6e02287c374fd26835d87e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/25caef3a545a1fff2ff4055484f0e758-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/25caef3a545a1fff2ff4055484f0e758-Paper.pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7F5F8FCD1AA7ED07356410DDD5B384FE?doi=10.1.1.49.8652&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7F5F8FCD1AA7ED07356410DDD5B384FE?doi=10.1.1.49.8652&rep=rep1&type=pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/148510031349642de5ca0c544f31b2ef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/148510031349642de5ca0c544f31b2ef-Paper.pdf
http://proceedings.mlr.press/v139/hessel21a.html

Junya Honda and Akimichi Takemura. An asymptotically optimal bandit algorithm for bounded
support models. In Adam Tauman Kalai and Mehryar Mohri, editors, COLT, pages 67–79.
Omnipress, 2010. ISBN 978-0-9822529-2-5. URL http://dblp.uni-trier.de/db/conf/
colt/colt2010.html#HondaT10.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 99:1563–1600, 2010. URL http://www.jmlr.
org/papers/volume11/jaksch10a/jaksch10a.pdf.

Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, and Michael I. Jordan. Is Q-learning provably
efficient? In Neural Information Processing Systems, 2018. URL https://arxiv.org/pdf/
1807.03765.pdf.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann
LeCun, editors, 2nd International Conference on Learning Representations, ICLR 2014, Banff,
AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/
abs/1312.6114.

Ziniu Li, Yingru Li, Yushun Zhang, Tong Zhang, and Zhi-Quan Luo. Hyperdqn: A randomized
exploration method for deep reinforcement learning. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.
URL https://openreview.net/forum?id=X0nrKAXu7g-.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua
Bengio and Yann LeCun, editors, 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1509.02971.

Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, and Qiang Liu. Action-dependent
control variates for policy optimization via stein identity. In ICLR 2018 Conference,
February 2018. URL https://www.microsoft.com/en-us/research/publication/
action-dependent-control-variates-policy-optimization-via-stein-identity/.

Pierre Ménard, Omar Darwiche Domingues, Xuedong Shang, and Michal Valko. Ucb momentum q-
learning: Correcting the bias without forgetting. In International Conference on Machine Learning,
pages 7609–7618. PMLR, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. In NIPS Deep
Learning Workshop. 2013.

Chengzhuo Ni, Lin F Yang, and Mengdi Wang. Learning to control in metric space with optimal
regret. In 2019 57th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 726–733. IEEE, 2019.

Ian Osband and Benjamin Van Roy. Bootstrapped thompson sampling and deep exploration. CoRR,
abs/1507.00300, 2015. URL http://arxiv.org/abs/1507.00300.

Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforcement
learning? In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 2701–2710. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/
osband17a.html.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
posterior sampling. Advances in Neural Information Processing Systems, 26, 2013.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep explo-
ration via bootstrapped dqn. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29. Cur-
ran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
8d8818c8e140c64c743113f563cf750f-Paper.pdf.

13

http://dblp.uni-trier.de/db/conf/colt/colt2010.html#HondaT10
http://dblp.uni-trier.de/db/conf/colt/colt2010.html#HondaT10
http://www.jmlr.org/papers/volume11/jaksch10a/jaksch10a.pdf
http://www.jmlr.org/papers/volume11/jaksch10a/jaksch10a.pdf
https://arxiv.org/pdf/1807.03765.pdf
https://arxiv.org/pdf/1807.03765.pdf
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://openreview.net/forum?id=X0nrKAXu7g-
http://arxiv.org/abs/1509.02971
https://www.microsoft.com/en-us/research/publication/action-dependent-control-variates-policy-optimization-via-stein-identity/
https://www.microsoft.com/en-us/research/publication/action-dependent-control-variates-policy-optimization-via-stein-identity/
http://arxiv.org/abs/1507.00300
https://proceedings.mlr.press/v70/osband17a.html
https://proceedings.mlr.press/v70/osband17a.html
https://proceedings.neurips.cc/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf

Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to data science.
Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019. ISSN 1935-8237. doi:
10.1561/2200000073. URL http://dx.doi.org/10.1561/2200000073.

Iosif Pinelis. Optimum Bounds for the Distributions of Martingales in Banach Spaces. The Annals of
Probability, 22(4):1679 – 1706, 1994. doi: 10.1214/aop/1176988477. URL https://doi.org/
10.1214/aop/1176988477.

Daniel Russo. Worst-case regret bounds for exploration via randomized value functions.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
451ae86722d26a608c2e174b2b2773f1-Paper.pdf.

Remo Sasso, Michelangelo Conserva, and Paulo E. Rauber. Posterior sampling for deep reinforcement
learning. CoRR, abs/2305.00477, 2023. doi: 10.48550/arXiv.2305.00477. URL https://doi.
org/10.48550/arXiv.2305.00477.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pages 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://dblp.uni-trier.de/
db/journals/corr/corr1707.html#SchulmanWDRK17.

Max Simchowitz and Kevin G Jamieson. Non-asymptotic gap-dependent regret bounds for tabular
mdps. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf.

Sean R. Sinclair, Siddhartha Banerjee, and Christina Lee Yu. Adaptive discretization for episodic
reinforcement learning in metric spaces. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 3(3):1–44, dec 2019. doi: 10.1145/3366703. URL https://doi.org/10.
1145%2F3366703.

Sean R. Sinclair, Siddhartha Banerjee, and Christina Lee Yu. Adaptive discretization in online
reinforcement learning. Operations Research, 71(5):1636–1652, 2023. doi: 10.1287/opre.2022.
2396. URL https://doi.org/10.1287/opre.2022.2396.

Maciej Skorski. Bernstein-type bounds for beta distribution. Modern Stochastics: Theory and
Applications, 10(2):211–228, 2023. ISSN 2351-6046. doi: 10.15559/23-VMSTA223.

Zhao Song and Wen Sun. Efficient model-free reinforcement learning in metric spaces, 2019.

Malcolm J. A. Strens. A bayesian framework for reinforcement learning. In Proceedings of the
Seventeenth International Conference on Machine Learning, ICML ’00, page 943–950, San
Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1558607072.

R. Sutton and A. Barto. Reinforcement Learning: an Introduction. MIT press, 1998.

Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Remi Munos, Alexey
Naumov, Mark Rowland, Michal Valko, and Pierre Ménard. Optimistic posterior sam-
pling for reinforcement learning with few samples and tight guarantees. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems, volume 35, pages 10737–10751. Curran Associates,
Inc., 2022a. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
45e15bae91a6f213d45e203b8a29be48-Paper-Conference.pdf.

14

http://dx.doi.org/10.1561/2200000073
https://doi.org/10.1214/aop/1176988477
https://doi.org/10.1214/aop/1176988477
https://proceedings.neurips.cc/paper/2019/file/451ae86722d26a608c2e174b2b2773f1-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/451ae86722d26a608c2e174b2b2773f1-Paper.pdf
https://doi.org/10.48550/arXiv.2305.00477
https://doi.org/10.48550/arXiv.2305.00477
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
https://proceedings.neurips.cc/paper_files/paper/2019/file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf
https://doi.org/10.1145%2F3366703
https://doi.org/10.1145%2F3366703
https://doi.org/10.1287/opre.2022.2396
https://proceedings.neurips.cc/paper_files/paper/2022/file/45e15bae91a6f213d45e203b8a29be48-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/45e15bae91a6f213d45e203b8a29be48-Paper-Conference.pdf

Daniil Tiapkin, Denis Belomestny, Eric Moulines, Alexey Naumov, Sergey Samsonov, Yunhao Tang,
Michal Valko, and Pierre Menard. From Dirichlet to rubin: Optimistic exploration in RL without
bonuses. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 21380–21431. PMLR, 17–23
Jul 2022b. URL https://proceedings.mlr.press/v162/tiapkin22a.html.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Chris J. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3-4):279–292, 1992. URL
https://link.springer.com/content/pdf/10.1007/BF00992698.pdf.

Tzu-Tsung Wong. Generalized dirichlet distribution in bayesian analysis. Applied Mathemat-
ics and Computation, 97(2):165–181, 1998. ISSN 0096-3003. doi: https://doi.org/10.1016/
S0096-3003(97)10140-0. URL https://www.sciencedirect.com/science/article/pii/
S0096300397101400.

Zhihan Xiong, Ruoqi Shen, Qiwen Cui, Maryam Fazel, and Simon S Du. Near-optimal randomized
exploration for tabular markov decision processes. Advances in Neural Information Processing
Systems, 35:6358–6371, 2022.

Fan Ye and Enlu Zhou. Information relaxation and dual formulation of controlled markov diffusions.
IEEE Transactions on Automatic Control, 60(10):2676–2691, 2015.

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds. In International Conference on
Machine Learning, 2019. URL https://arxiv.org/pdf/1901.00210.pdf.

Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learning via
reference-advantage decomposition. arXiv preprint arXiv:2004.10019, 2020. ISSN 23318422.
URL https://arxiv.org/pdf/2004.10019.pdf.

15

https://proceedings.mlr.press/v162/tiapkin22a.html
https://link.springer.com/content/pdf/10.1007/BF00992698.pdf
https://www.sciencedirect.com/science/article/pii/S0096300397101400
https://www.sciencedirect.com/science/article/pii/S0096300397101400
https://arxiv.org/pdf/1901.00210.pdf
https://arxiv.org/pdf/2004.10019.pdf

Appendix

Table of Contents
A Notation 17

B Description of RandQL 18
B.1 RandQL algorithm . 18
B.2 Sampled-RandQL algorithm . 19

C Weight Distribution in RandQL 20

D Proofs for Tabular algorithm 22
D.1 Algorithm . 22
D.2 Concentration . 23
D.3 Optimism . 25
D.4 Regret Bound . 27

E Proofs for Metric algorithm 30
E.1 Assumptions . 30
E.2 Algorithm . 30
E.3 Concentration . 32
E.4 Optimism . 33
E.5 Regret Bounds . 36

F Adaptive RandQL 40
F.1 Additional Notation . 40
F.2 Algorithm . 40
F.3 Regret Bound . 42

G Deviation and Anti-Concentration Inequalities 49
G.1 Deviation inequality for Kinf . 49
G.2 Anti-concentration Inequality for Dirichlet Weighted Sums 49
G.3 Rosenthal-type inequality . 50

H Technical Lemmas 52

I Experimental details 52
I.1 Tabular experiments . 52
I.2 Non-tabular experiments . 54

16

A Notation

Table 1: Table of notation use throughout the paper for the tabular setting

Notation Meaning

S state space of size S
A action space of size A
H length of one episode
T number of episodes
J number of posterior samples
rh(s, a) reward
ph(s

′|s, a) probability transition
Qπ

h(s, a) Q-function of a given policy π at step h
V π
h (s) V-function of a given policy π at step h
Q⋆

h(s, a) optimal Q-function at step h
V ⋆
h (s) optimal V-function at step h

RT regret
n0 and n0(k) number of pseudo-transitions
s0 optimistic pseudo-state
r0 pseudo-reward
κ posterior inflation parameter
s t
h state that was visited at h step during t episode
a t
h action that was picked at h step during t episode
B t

h a ball that contains a pair (sth, a
t
h)

nth(s, a) number of visits of state-action at the beginning of episode t
nth(s, a) =

∑t−1
k=1 1

{
(skh, a

k
h) = (s, a)

}
nth(B) number of visits of a ball B at the beginning of episode t
ek length of k-th stage ek = ⌊(1 + 1/H)kH⌋ for k ≥ 0 and e−1 = 0
kth(s, a) index of stage previous to time t at step h and state-action pair (s, a):

kth(s, a) = max{k : nth(s, a) ≥
∑k

i=0 ei}
ñth(s, a) number of visits of state-action during the current stage:

ñth(s, a) = nth(s, a)−
∑kt

h(s,a)
i=0 ei

ñth(B) number of visits of a ball B during the current stage:
V

t

h(s) upper approximation of the optimal V-value
Q

t

h(s, a) upper approximation of the optimal Q-value
Q

t

h(B) upper approximation of the optimal Q-value for all (s, a) ∈ B

Q̃t,j
h (s, a) temporary estimate of the optimal Q-value

Q̃t,j
h (B) temporary estimate of the optimal Q-value for all (s, a) ∈ B

wn,j random learning rates
ρS , ρA, ρ metrics on S,A and S ×A correspondingly
Nε minimal ε-cover if S ×A of size Nε

dc covering dimension of space S ×A: ∀ε > 0 : Nε ≤ CNε
−dc

dmax diameter of S ×A
Fh(s, a, ξh) reparametrization function sh+1 ∼ ph(s, a) ⇐⇒ sh+1 = Fh(s, a, ξh)
Lr, LF Lipschitz constants of rewards and reparametrization function
LV Lipschitz constants of Q⋆

h and V ⋆
h

Let (X,X) be a measurable space and P(X) be the set of all probability measures on this space.
For p ∈ P(X) we denote by Ep the expectation w.r.t. p. For random variable ξ : X → R notation
ξ ∼ p means Law(ξ) = p. We also write Eξ∼p instead of Ep. For independent (resp. i.i.d.) random

variables ξℓ
ind∼ pℓ (resp. ξℓ

i.i.d∼ p), ℓ = 1, . . . , d, we will write E
ξℓ

ind∼ pℓ
(resp.E

ξℓ
i.i.d∼ p

), to denote

expectation w.r.t. product measure on (Xd,X⊗d). For any x ∈ X we denote δx a Dirac measure
supported at point x.

17

For any p, q ∈ P(X) the Kullback-Leibler divergence KL(p, q) is given by

KL(p, q) ≜

{
Ep

[
log dp

dq

]
, p≪ q,

+∞, otherwise.

For any p ∈ P(X) and f : X → R, pf = Ep[f]. In particular, for any p ∈ ∆d and f : {0, . . . , d} →
R, pf =

∑d
ℓ=0 f(ℓ)p(ℓ). Define Varp(f) = Es′∼p

[
(f(s′) − pf)2

]
= p[f2] − (pf)2. For any

(s, a) ∈ S, transition kernel p(s, a) ∈ P(S) and f : S → R define pf(s, a) = Ep(s,a)[f] and
Varp[f](s, a) = Varp(s,a)[f].

Let (X, ρ) be a metric space, then the 1-Wasserstein distance between p, q ∈ P(X) is defined as
W1(p, q) = supf is 1-Lipschitz Ep[f]− Eq[f].

We write f(S,A,H, T) = O(g(S,A,H, T, δ)) if there exist S0, A0, H0, T0, δ0 and constant
Cf,g such that for any S ≥ S0, A ≥ A0, H ≥ H0, T ≥ T0, δ < δ0, f(S,A,H, T, δ) ≤
Cf,g · g(S,A,H, T, δ). We write f(S,A,H, T, δ) = Õ(g(S,A,H, T, δ)) if Cf,g in the previous
definition is poly-logarithmic in S,A,H, T, 1/δ.

For α, β > 0, we define Beta(α, β) as a beta distribution with parameters α, β. For set X such that
|X| <∞ define Unif(X) as a uniform distribution over this set. In particular, Unif[N] is a uniform
distribution over a set [N].

For a measure p ∈ P([0, b]) supported on a segment [0, b] (equipped with a Borel σ-algebra) and a
number µ ∈ [0, b] we define

Kinf(p, µ) ≜ inf{KL(p, q) : q ∈ P([0, b]), p≪ q,EX∼q[X] ≥ µ} .

As the Kullback-Leibler divergence this quantity admits a variational formula by Lemma 18 of
Garivier et al. [2018] up to rescaling for any u ∈ (0, b)

Kinf(p, µ) = max
λ∈[0,1/(b−µ)]

EX∼p[log(1− λ(X − µ))] .

B Description of RandQL

In this appendix we describe RandQL and Sampled-RandQL algorithms.

B.1 RandQL algorithm

We recall that nth(s, a) =
∑t−1

i=1 1{(sih, aih) = (s, a)} is the number of visits of state-action pair
(s, a) at step h before episode t.

We start by initializing the ensemble of Q-values, the policy Q-values, and values to an optimistic value
Q̃t,j

h (s, a) = Q
1

h(s, a) = V
1

h(s, a) = rh(s, a) + r0(H − h) for all (j, h, s, a) ∈ [J]× [H]× S ×A
and r0 > 0 some pseudo-rewards.

At episode t we update the ensemble of Q-values as follows, denoting by n = nth(s, a) the count,
wj,n ∼ Beta(H,n) the independent learning rates,

Q̃t+1,j
h (s, a) =

{
(1− wj,n)Q̃

t,j
h (s, a) + wj,nQ̊

t,j
h (s, a), (s, a) = (sth, a

t
h)

Q̃t,j
h (s, a) otherwise,

where we defined the target Q̊t,j
h (s, a) as a mixture between the usual target and some prior target

with mixture coefficient ẘn,j ∼ Beta(n, n0) and n0 the number of prior samples,

Q̊t,j
h (s, a) = ẘj,n[rh(s, a) + V

t

h+1(s
t
h+1)] + (1− ẘj,n)[rh(s, a) + r0(H − h− 1)] .

It is important to note that in our approach, we need to re-inject prior targets to avoid forgetting their
effects too quickly due to the aggressive learning rate. Indeed, the exponential decay of the prior
effect can hurt exploration. We observe that the ensemble Q-value only averages uniformly over the
last 1/H fraction of the targets, as the expected value of the learning rate is E[wj,n] = H/(n+H).
Since E[1− ẘj,n] = n0(n+ n0) the weight put on the prior sample in expectation, when we unfold

18

the definition of Q̃t+1,j
h , is of order H/n · n/H · n0/(n+ n0) = n0/(n+ n0), which is consistent

with the usual prior forgetting in Bayesian learning. In Staged-RandQL, we avoid forgetting the
prior too quickly by resetting the temporary Q-value to a prior value at the beginning of each stage.

The policy Q-values are obtained by taking the maximum among the ensemble of Q-values

Q
t+1

h (s, a) = max
j∈[J]

Q̃t+1,j
h (s, a) .

The policy is then greedy with respect to the policy Q-values πt+1
h (s) ∈ argmaxa∈AQ

t+1

h (s, a)

and the value is V
t+1

h (s) = maxa∈AQ
t+1

h (s, a). The complete RandQL procedure is detailed in
Algorithm 2.

Algorithm 2 RandQL
1: Input: J ensemble size, number of prior transitions n0, prior reward r0.
2: Initialize: V h(s) = Qh(s, a) = Q̃j

h(s, a) = r(s, a)+r0(H−h), initialize counters nh(s, a) =
0 for h, s, a ∈ [H]× S ×A.

3: for t ∈ [T] do
4: for h ∈ [H] do
5: Play ah ∈ argmaxaQh(sh, a).
6: Observe reward and next state sh+1 ∼ ph(sh, ah).
7: Sample ẘj ∼ Beta(n, n0) for n = nh(sh, ah).
8: Build targets for all j ∈ [J]

Q̊j
h = ẘj [rh(sh, ah) + V h+1(sh+1)] + (1− ẘj)[rh(sh, ah) + r0(H − h)] .

9: Sample learning rates wj ∼ Beta(H,n).
10: Update ensemble Q-functions for all j ∈ [J]

Q̃j
h(sh, ah) := (1− wj)Q̃

j
h(sh, ah) + wjQ̊

j
h .

11: Update policy Q-function Qh(sh, ah) := maxj∈[J] Q̃
j
h(sh, ah).

12: Update value function V h(sh) := maxa∈AQh(sh, a) .
13: end for
14: end for

B.2 Sampled-RandQL algorithm

To create an algorithm that is more similar to PSRL, it is possible to select a Q-value at random from
the ensemble of Q-values, rather than using the maximum Q-value

Q
t

h(s, a) = Q̃t,jt
h (s, a) with jt ∼ Unif[J].

In this case we also need to update each Q-value in the ensemble with its corresponding target, see
Osband and Van Roy [2015],

Q̊t,j
h (s, a) = ẘj,n[rh(s, a) + Ṽ t,j

h+1(s
t
h+1)] + (1− ẘj,n)[rh(s, a) + r0(H − h− 1)]

where Ṽ t,j
h (s) = maxa∈A Q̃

t,j
h (s, a). We name this new procedure Sampled-RandQL and detail it

in Algorithm 3.

19

Algorithm 3 Sampled-RandQL
1: Input: J ensemble size, number of prior transitions n0, prior reward r0.
2: Initialize: V h(s) = Qh(s, a) = Q̃j

h(s, a) = r(s, a)+r0(H−h), initialize counters nh(s, a) =
0 for h, s, a ∈ [H]× S ×A.

3: for t ∈ [T] do
4: Sample ensemble index i ∼ Unif[J]
5: for h ∈ [H] do
6: Play ah ∈ argmaxaQh(sh, a).
7: Observe reward and next state sh+1 ∼ ph(sh, ah).
8: Sample ẘj ∼ Beta(n, n0) for n = nh(sh, ah).
9: Build targets for all j ∈ [J]

Q̊j
h = ẘj [rh(sh, ah) + Ṽ j

h+1(sh+1)] + (1− ẘj)[rh(sh, ah) + r0(H − h)] .

10: Sample learning rates wj ∼ Beta(H,n).
11: Update ensemble Q-functions for all j ∈ [J]

Q̃j
h(sh, ah) := (1− wj)Q̃

j
h(sh, ah) + wjQ̊

j
h .

12: Update value function V h(sh) := maxa∈A Q̃
j
h(sh, a) for all j ∈ [J].

13: Update policy Q-function Qh(sh, ah) := Q̃i
h(sh, ah).

14: end for
15: end for

C Weight Distribution in RandQL

In this section we study the joint distribution of weights over all targets in RandQL algorithm,
described in details in Appendix B. To do it, we describe a very useful distribution, defined by Wong
[1998].
Definition 5. We say that a random vector (X1, . . . , Xn, Xn+1) has a generalized Dirichlet distri-
bution GDir(α1, . . . , αn;β1, . . . , βn) if Xn+1 = 1− (X1 + . . .+Xn) and (X1, . . . , Xn) it has the
following density over the simplex {x1, . . . , xn : x1 + . . .+ xn ≤ 1},

p(x) =

n∏
i=1

1

B(αi, βi)
xαi−1
i (1− x1 − . . .− xi)

γi

for x1 + . . .+ xn ≤ 1, xj ≥ 0 for j = 1, . . . , n, and γj = βj − αj+1 − βj+1 for j = 1, . . . , n− 1
and γn = βn − 1. If we set xn+1 = 1− (x1 + . . .+ xn) then we obtain a homogeneous formula

p(x) =

n∏
i=1

1

B(αi, βi)
xαi−1
i

 n+1∑
j=i+1

xj

γi

Alternative characterization of generalized Dirichlet distribution could be given using independent
beta-distributed random variables Z1, . . . , Zn with Zi ∼ Beta(αi, βi) as follows

X1 = Z1,

Xj = Zj(1−X1 − . . .−Xj−1) = Zj

j−1∏
i=1

(1− Zi) for j = 2, 3, . . . , n

Xn+1 = 1−X1 − . . .−Xn =

n∏
i=1

(1− Zi)

Therefore, for RandQL algorithm without prior re-injection we have the following formula

Q̃t,j
h (s, a) =

nt
h(s,a)∑
i=0

W i
j,n

(
rh(s

ℓi

h , a
ℓi

h) + V
ℓi

h+1(s
ℓi

h+1)

)
,

20

for n = nth(s, a) and weights are defined as follows

W 0
j,n =

n−1∏
q=0

(1− wj,q), W i
j,n = wj,i−1 ·

n−1∏
q=i

(1− wj,q), i ≥ 1.

And, moreover, we have that this vector of weights has the generalized Dirichlet distribution

(Wn
n,j ,W

n−1
n,j , . . . ,W 1

n,j ,W
0
n,j) ∼ GDir(H,H, . . . ,H;n+ n0, . . . , n0 + 1, n0).

That is, weights generated by the RandQL procedure is an inverted generalized Dirichlet random
vector, that induces additional similarities with a usual posterior sampling approaches. Notably, that
for H = 1 we recover exactly usual Dirichlet distribution, as in the setting of Staged-RandQL.

In the setting of the analysis, the main feature of this distribution is asymmetry in attitude to the order
of components. In particular, the expectation of the prior weight W 0

n,j is
∏n

i=1

(
1− H

i+H

)
∼ n−H

that leads to too rapid forgetting of the prior information.

21

D Proofs for Tabular algorithm

D.1 Algorithm

In this section we describe in detail the tabular algorithms and the ways we will analyze them. We
also provide some notations that will be used in the sequel.

Let nth(s, a) be the number of visits of (s, a, h) (i.e., of the state-action pair (s, a) at step h) at the
beginning of episode t: nth(s, a) =

∑t−1
i=1 1{(sih, aih) = (s, a)}. In particular, nT+1

h (s, a) is the
number of visits of (s, a, h) after all episodes.

Let ek = ⌊(1 + 1/H)k · H⌋ be the length of each stage for any k ≥ 0 and, by convention,
e−1 = 0. We will say that at the beginning of episode t a triple (s, a, h) is in k-th stage if nth(s, a) ∈
[
∑k−1

i=0 ei,
∑k

i=0 ei).

Let ñth(s, a) be the number of visits of state-action pair during the current stage at the beginning of
episode t. Formally, it holds ñth(s, a) = nth(s, a)−

∑k−1
i=0 ei, where k is the index of current stage.

Let κ > 0 be the posterior inflation coefficient, n0 be the number of prior transitions, and J be the
number of temporary Q-functions. Let Q̃t,j

h be the j-th temporary Q-function and Q
t

h be the policy
Q-function at the beginning of episode t. We initialize them as follows

Q
1

h(s, a) = rh(s, a) + r0(H − h− 1), Q̃1,j
h (s, a) = rh(s, a) + r0(H − h− 1),

We can treat this initialization as a setting prior over n0 pseudo-transitions to artificial state s0 with
r0 > 1 reward for each interaction.

For each transition we perform the following update of temporary Q-functions

Q̃
t+1/2,j
h (s, a) =

{
(1− wk

j,ñ) · Q̃
t,j
h (s, a) + wk

j,ñ[rh(s, a) + V
t

h+1(s
t
h+1)], (s, a) = (sth, a

t
h)

Q̃t,j
h (s, a) otherwise,

(2)
where ñ = ñth(s, a) is the number of visits of (s, a, h) during the current stage at the beginning of
episode t, k is the index of the current stage, and wk

j,ñ is a sequence of independent beta-distribution
random variables wk

j,ñ ∼ Beta(1/κ, (ñ+ n0)/κ). Here we slightly abuse the notation by dropping
the dependence of weights wk

j,ñ on the triple (h, s, a) in order to simplify the exposition. In the case
that the explicit dependence is required, we will call these weights as wk,h

j,ñ (s, a).

Next we define the stage update as follows

Q
t+1

h (s, a) =

{
maxj∈[J] Q̃

t+1/2,j
h (s, a) ñth(s, a) = ⌊(1 + 1/H)kH⌋

Q
t

h(s, a) otherwise

Q̃t+1,j
h (s, a) =

{
rh(s, a) + r0(H − h+ 1) ñth(s, a) = ⌊(1 + 1/H)kH⌋
Q̃

t+1/2,j
h (s, a) otherwise

V
t+1

h (s) = max
a∈A

Q
t+1

h (s, a)

πt+1
h (s) ∈ argmax

a∈A
Q

t+1

h (s, a),

where k is the current stage. In other words, we update Q
t+1

with temporary values of Q̃t+1/2,j , and
then, if the change of stage is triggered, reinitialize Q̃t+1,j

h (s, a) for all j. For episode t we will call
kth(s, a) the index of stage where Q

t

h(s, a) was updated (and kth(s, a) = −1 if there was no update).
For all t we define τ th(s, a) ≤ t as an episode when the stage update happens. In other words, for any
t the following holds

Q
t+1

h (s, a) = max
j∈[J]

Q̃
τt
h(s,a)+1/2,j

h (s, a),

where τ th(s, a) = 0 and ek = 0 if there was no updates. To simplify the notation we will omit
dependence on (s, a, h) where it is deducible from the context.

22

To simplify the notation, we can extend the state space S by an additional state s0 that will be purely
technical and used in the proofs. This state has the prescribed value function V ⋆

h (s0) = r0(H − h)
and could be treated as a absorbing pseudo-state with reward r0.

We notice that in this case we use ek samples to compute Q̃τt
h(s,a)+1/2,j for k = kth(s, a). For this k

we define ℓik,h(s, a) as a time of i-th visit of state-action pair (s, a) during k-th stage. Then we have
the following decomposition

Q̃
τt+1/2,j
h (s, a) = rh(s, a) +

ek∑
i=0

W i
j,ek,k

V
ℓi

h+1(s
ℓi

h+1), (3)

where we drop dependence on k and (s, a, h) in ℓi to simplify notations, and use the convention

s
ℓ0k,h(s,a)

h+1 = s0, and the following aggregated weights

W 0
j,n,k =

n−1∏
q=0

(1− wk
j,q), W i

j,n,k = wk
j,i−1 ·

n−1∏
q=i

(1− wk
j,q), i ≥ 1.

We will omit the dependent on the stage index k when it is not needed for the statement. However,
we notice that these vectors, for different stage k, will be independent.

By the properties of generalized Dirichlet distribution it is possible to show the following result

Lemma 3. For any fixed n > 0, the random vector (W 0
j,n,W

1
j,n, . . . ,W

n
j,n) has a Dirichlet distribu-

tion Dir(n0/κ, 1/κ, . . . , 1/κ).

Proof. Using the Dirichlet random variate generation from marginal beta distributions, it is sufficient
to prove that for all i ∈ {0, . . . , n}, Wn−i

j,n,k = (1 −Wn
j,n,k − · · · −Wn−i+1

j,n,k)wk
j,n−i−1, with the

convention wk
j,−1 = 1. This is trivial for i = 0, as Wn

j,n,k = wk
j,n−1. Now, if this is true for some i,

then, for i+ 1 ∈ {0, . . . , n}, we have

Wn−i−1
j,n,k = wk

j,n−i−2

n−1∏
q=n−i−1

(1− wk
j,q)

= wk
j,n−i−2(1− wk

j,n−i−1)(1−Wn
j,n,k − · · · −Wn−i+1

j,n,k)

= wk
j,n−i−2(1−Wn

j,n,k − · · · −Wn−i+1
j,n,k − wk

j,n−i−1(1−Wn
j,n,k − · · · −Wn−i+1

j,n,k)︸ ︷︷ ︸
=Wn−i

j,n,k

),

which finishes the proof.

Notably, the expression (3) shows a significant similarity between our method and OPSRL. It is the
reason why we can call this method a model-free posterior sampling, where posterior sampling is
performed over the model in a lazy and model-free fashion.

D.2 Concentration

Let β⋆ : (0, 1) × N → R+ and βB , βconc, β : (0, 1) → R+ be some function defined later on in
Lemma 4. We define the following favorable events

23

E⋆(δ) ≜

{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A, k = kth(s, a) :

Kinf

(
1

ek

ek∑
i=1

δ
V ⋆
h+1(s

ℓi

h+1)
, phV

⋆
h+1(s, a)

)
≤ β⋆(δ, ek)

ek

}
,

EB(δ) ≜

{
∀t ∈ [T],∀h ∈ [H],∀(s, a) ∈ S ×A,∀j ∈ [J], k = kth(s, a) :∣∣∣∣∣
ek∑
i=0

(
W i

j,ek,k
− E[W i

j,ek,k
]
)
V

ℓi

h+1(s
ℓi

h+1)

∣∣∣∣∣ ≤ 60e2

√
r20H

2κβB(δ)

ek + n0κ

+ 1200e
r0Hκ log(ek + n0κ)(β

B(δ))2

ek + n0κ

}
,

Econc(δ) ≜

{
∀t ∈ [T],∀h ∈ [H],∀(s, a) ∈ S ×A, k = kth(s, a) :∣∣∣∣∣ 1ek

ek∑
i=1

V ⋆
h+1(s

ℓik,h(s,a)

h+1)− phV
⋆
h+1(s, a)

∣∣∣∣∣ ≤
√

2r20H
2βconc(δ)

ek

}

E(δ) ≜

{
T∑

t=1

H∑
h=1

(1 + 1/H)H−h
∣∣ph[V ⋆

h+1 − V πt

h+1](s
t
h, a

t
h)− [V ⋆

h+1 − V πt

h+1](s
t
h+1)

∣∣
≤ 2er0H

√
2HTβ(δ).

}
.

We also introduce the intersection of these events, G(δ) ≜ E⋆(δ) ∩ EB(δ) ∩ Econc(δ) ∩ E(δ). We
prove that for the right choice of the functions β⋆, βKL, βconc, β, βVar the above events hold with
high probability.
Lemma 4. For any δ ∈ (0, 1) and for the following choices of functions β,

β⋆(δ, n) ≜ log(8SAH/δ) + 3 log(eπ(2n+ 1)) ,

βB(δ) ≜ log(8SAH/δ) + log(TJ) ,

βconc(δ) ≜ log(8SAH/δ) + log(2T),

β(δ) ≜ log(16/δ),

it holds that

P[E⋆(δ)] ≥ 1− δ/8, P[EB(δ)] ≥ 1− δ/8,

P[Econc(δ)] ≥ 1− δ/8, P[E(δ)] ≥ 1− δ/8.

In particular, P[G(δ)] ≥ 1− δ/2.

Proof. From the fact that sℓ
i

h+1 are i.i.d. generated from ph(s, a), Theorem 4, and union bound
S ×A× [H] it holds P[E⋆(δ)] ≥ 1− δ/8.

Next we fix all t, h, s, a, j, and denote n = ekt
h(s,a)

. First, we define a filtration of σ-algebras Fτ that
is sigma-algebra generated by all random variables appeared untill the update (2) in the episode t and
step h, before newly generated random weights but after receiving new state sth+1. Formally, we can
define it as follows

Ft,h = σ

({
(sτh′ , aτh′ , w

kτ
h′+1,h′

j,ñτ
h′

(sτh′ , aτh′)),∀τ < t, (h′, j) ∈ [H]× [J]
}

∪ {(sth′ , ath′ , sth′+1),∀h′ ≤ h} ∪ {wkt
h′+1,h′

j,ñt
h′

(sth′ , ath′),∀h′ < h, j ∈ [J]}
)
,

24

where we drop dependence on state-action pairs everywhere where it is deducible from the context.

Consider a sequence ℓ1 < . . . < ℓn be an excursion of the state-action pair (s, a) at the step h. Each
ℓi is a stopping time w.r.t Ft,h, so we can consider a stopped filtration (with a shift by 1 in indices)
F̃i−1 = Fℓi,h. In other words, this filtration at time-stamp i− 1 contains all the information that is
available just before generation of random weights for i-th update of temporary Q-functions inside
the last stage. We notice that under this definition we have

E[V ℓi
h+1(s

ℓi
h+1)|F̃i−1] = V

ℓi
h+1(s

ℓi
h+1),

E[W i
j,n,k|F̃i−1] = E

[
wk

j,i−1

n−1∏
ℓ=i

(1− wk
j,ℓ)|Fi−1

]
= E[W i

j,n,k],

Next, we notice that the joint vector of weights follows the Dirichlet distribution, applying aggregation
property and extending the filtration backward by adding fake transitions we can extend sum to
n+ n0 summands defining sℓ

−i

h+1 = s0

n∑
i=0

(
W i

j,n,k − E[W i
j,n,k]

)
V

ℓi

h+1(s
ℓi

h+1) =

n∑
q=−n0+1

(
W̃q − E[W̃q]

)
V

ℓq

h+1(s
ℓq

h+1).

Finally, we notice that marginals of Dirichlet random vector follow Beta distribution, therefore by
Proposition 7 and union bound we conclude P[EB(δ)] ≥ 1− δ/8.

To show that P(Econc(δ)) > 1− δ/8, it is enough to apply Hoeffding inequality for a fixed number
of samples ek used in empirical mean, and then use union bound of all possible values of (s, a, h) ∈
S ×A× [H] and ek ∈ [T].

Next, define the following sequence

Zt,h ≜ (1 + 1/H)H−h
(
[V ⋆

h+1 − V πt

h+1](s
t
h+1)− ph[V

⋆
h+1 − V πt

h+1](s
t
h, a

t
h)
)
, t ∈ [T], h ∈ [H],

It is easy to see that these sequences form a martingale-difference w.r.t filtration Ft,h =
σ
{
{(sℓh′ , aℓh′ , πℓ), ℓ < t, h′ ∈ [H]} ∪ {(sth′ , ath′ , πt), h′ ≤ h}

}
. Moreover, |Zt,h| ≤ 2er0H for all

t ∈ [T] and h ∈ [H]. Hence, the Azuma-Hoeffding inequality implies

P
(∣∣∣ T∑

t=1

H∑
h=1

Zt,h

∣∣∣ > 2er0H
√

2tH · β(δ)
)
≤ 2 exp(−β(δ)) = δ/8,

therefore P[E(δ)] ≥ 1− δ/8.

D.3 Optimism

In this section we prove that our estimate of Q-function Q
t

h(s, a) is optimistic, that is the event

Eopt ≜
{
∀t ∈ [T], h ∈ [H], (s, a) ∈ S ×A : Q

t

h(s, a) ≥ Q⋆
h(s, a)

}
. (4)

holds with high probability on the event E⋆(δ).

Define constants

c0 ≜
8

π

(
4√

log(17/16)
+ 8 +

49 · 4
√
6

9

)2

+ 1. (5)

and

cJ ≜
1

log
(

2
1+Φ(1)

) , (6)

where Φ(·) is a CDF of a normal distribution.

25

Proposition 1. Assume that J = ⌈cJ · log(2SAHT/δ)⌉, κ = 2β⋆(δ, T), r0 = 2, and n0 =
⌈(c0 + 1 + log17/16(T)) · κ⌉. Then conditionally on E⋆(δ) the event

Eanticonc ≜
{
∀t ∈ [T], ∀h ∈ [H], ∀(s, a) ∈ S ×A :

max
j∈[J]

{
ek∑
i=0

W i
j,ek,k

V ⋆
h+1(s

ℓit,h(s,a)

h+1)

}
≥ phV

⋆
h+1(s, a), k = kth(s, a)

}
holds with probability at least 1− δ/2.

Proof. Let us fix t ∈ [T], h ∈ [H], (s, a) ∈ S × A, and j ∈ [J]. By Lemma 3, we have that the
vector (W i

j,ek,k
)i=0,...,ek has Dirichlet distribution. Note that V ⋆

h+1(s
ℓ0

h+1) = r0(H − h − 1) is an
upper bound on V -function and the weight of the first atom is α0 ≜ n0/κ ≥ c0 + log17/16(T) for
c0 defined in (5). Define a measure ν̄ek = n0−1

ek+n0−1δV ⋆
h+1(s0)

+
∑ek

i=1
1

ek+n0−1δV ⋆
h+1(s

ℓi

h+1)
. Since

phV
⋆
h+1(s, a) ≤ H−h−1, we can apply Lemma 10 with a fixed ε = 1/2 conditioned on independent

samples {sℓih+1}
ek
i=1 from ph(s, a)

P
[ek∑
i=0

W i
j,ek,k

V ⋆
h+1(s

ℓit,h(s,a)

h+1) ≥ phV
⋆
h+1(s, a) | {s

ℓi
h+1}

ek
i=1

]

≥ 1

2

1− Φ

√2(ek + n0 − κ)Kinf
(
ν̄ek , phV

⋆
h+1(s, a)

)
κ

, (7)

where Φ is a CDF of a normal distribution. Combining Lemma 12 and the event E⋆(δ)

(ek + n0 − κ)Kinf
(
ν̄ek , phV

⋆
h+1(s, a)

)
≤ ek Kinf

(
ν̂ek , phV

⋆
h+1(s, a)

)
≤ β⋆(δ, T),

where ν̂ek = 1
ek

∑ek
i=1 δV ⋆

h+1(s
ℓi

h+1)
, and, as a corollary

P

[
ek∑
i=0

W i
j,ek,kV

⋆
h+1(s

ℓit,h(s,a)

h+1) ≥ phV
⋆
h+1(s, a) | E⋆(δ), {sℓ

i

h+1}eki=1

]
≥ 1

2

(
1− Φ

(√
2β⋆(δ, T)

κ

))
.

By taking κ = 2β⋆(δ, T) we have a constant probability of being optimistic

P

(
ek∑
i=0

W i
j,ek,k

V ⋆
h+1(s

ℓit,h(s,a)

h+1) ≥ phV
⋆
h+1(s, a) | E⋆(δ)

)
≥ 1− Φ(1)

2
≜ γ.

Next, using a choice J = ⌈log(2SAHT/δ)/ log(1/(1− γ))⌉ = ⌈cJ · log(2SAHT/δ)⌉

P

[
max
j∈[J]

{
ek∑
i=0

W i
j,ek,k

V ⋆
h+1(s

ℓit,h(s,a)

h+1)

}
≥ phV

⋆
h+1(s, a) | E⋆(δ)

]
≥ 1− (1− γ)J ≥ 1− δ

2SAHT
·

By a union bound we conclude the statement.

Next we provide a connection between Eanticonc and Eopt.
Proposition 2. It holds that Eopt ⊆ Eanticonc.

Proof. We proceed by a backward induction over h. Base of induction h = H + 1 is trivial. Next by
Bellman equations for Q

t

h and Q⋆
h

[Q
t

h −Q⋆
h](s, a) = max

j∈[J]

{
n∑

i=0

W i
j,nV

ℓi

h+1(s
ℓi

h+1)

}
− phV

⋆
h+1(s, a),

where n = ekt
h(s,a)

and we drop dependence on k, t, h, s, a in ℓi. By induction hypothesis we have

V
ℓi

h+1(s
′) ≥ Q

ℓi

h+1(s
′, π⋆(s′)) ≥ Q⋆

h+1(s
′, π⋆(s′)) = V ⋆

h+1(s
′) for any i, thus

[Q
t

h −Q⋆
h](s, a) ≥ max

j∈[J]

{
n∑

i=0

W i
j,nV

⋆
h+1(s

ℓi

h+1)

}
− phV

⋆
h+1(s, a).

By the definition of event Eanticonc(δ) we conclude the statement.

26

Proposition 3 (Optimism). Assume that J = ⌈cJ · log(2SAHT/δ)⌉, κ = 2β⋆(δ, T), r0 = 2,
and n0 = ⌈(c0 + 1 + log17/16(T)) · κ⌉, where c0 is defined in (5) and cJ is defined in (6). Then
P(Eopt | E⋆(δ)) ≥ 1− δ/2.

D.4 Regret Bound

Let us define the main event G′(δ) = G(δ)∩ Eopt. On this event we have the following corollary that
connects RandQL with OptQL with Hoeffding bonuses.

Define the following quantity

βmax(δ) = max
{
κ, n0/κ, β

B(δ), βconc(δ), β(δ), log(T + n0)
}
= O(log(SATH/δ)).

Corollary 1. Assume conditions of Proposition 3 hold. Let t ∈ [T], h ∈ [H], (s, a) ∈ S ×A. Define
k = kth(s, a) and let ℓ1 < . . . < ℓek be a excursions of (s, a, h) until the previous stage. Then on the
event G′(δ) the following bound holds for k ≥ 0

0 ≤ Q
t

h(s, a)−Q⋆
h(s, a) ≤

1

n

n∑
i=1

[V
ℓi

h+1(s
ℓi

h+1)− V ⋆
h+1(s

ℓi

h+1)] + Bt
h(k),

where

Bt
h(k) = 61e2

r0H(βmax(δ))
√
ek

+ 1201e
r0H(βmax(δ))4

ek
.

Proof. The lower bound follows from the definition of the event Eopt. For the upper bound we first
apply the decomposition for Q

t

h(s, a) and the definition of event EB(δ) from Lemma 4

Q
t

h(s, a) = rh(s, a) + max
j∈[J]

{
ek∑
i=0

W i
j,ek

V
ℓi

h+1(s
ℓi

h+1)

}

≤ rh(s, a) +
1

ek + n0

ek∑
i=1

V
ℓi

h+1(s
ℓi

h+1) +
n0κ · r0H
ek + n0

+ 60e2

√
r20H

2κβB(δ)

ek + n0

+ 1200e
r0Hκ log(ek + n0)(β

B(δ))2

ek + n0
.

Then, by Bellman equations,

Q
t

h(s, a)−Q⋆
h(s, a) ≤

1

ek

ek∑
i=1

[
V

ℓi

h+1 − V ⋆
h+1

]
(sℓ

i

h+1) +
1

ek

ek∑
i=1

[
V ⋆
h+1(s

ℓi

h+1)− phV
⋆
h+1(s, a)

]
+ (1200e + 1)

r0H(βmax(δ))4

ek + n0
+ 60e2 · r0Hβ

max(δ)√
ek + n0

By the definition of event Econc(δ) we conclude the statement.

Let us define δth = V
t

h(s
t
h)− V πt

h (sth) and ζth = V
t

h(s
t
h)− V ⋆

h (s
t
h).

Lemma 5. Assume conditions of Proposition 3 hold. Then on event G′(δ) = G(δ) ∩ Eopt, where
G(δ) is defined in Lemma 4, the following upper bound on regret holds

RT ≤ eH

T∑
t=1

H∑
h=1

1{kth(sth, ath) = −1}+
T∑

t=1

H∑
h=1

(1 + 1/H)H−hξth + e

T∑
t=1

H∑
h=1

Bt
h,

where ξth = ph[V
⋆
h+1−V πt

h+1](s
t
h, a

t
h)−[V ⋆

h+1−V πt

h+1](s
t
h+1) and Bt

h = Bt
h(s

t
h, a

t
h)·1{kth(sth, ath) ≥

0} for Bt
h defined in Corollary 1.

Proof. We notice that on the event Eopt the following upper bound holds

RT ≤
T∑

t=1

δt1. (8)

27

Next we analyze δth. By the choice of ath = argmaxa∈AQ
t

h(s
t
h, a), Corollary 1, and Bellman

equations, we have

δth = V
t

h(s
t
h)− V πt

h (sth) = Q
t

h(s
t
h, a

t
h)−Qπt

h (sth, a
t
h)

= Q
t

h(s
t
h, a

t
h)−Q⋆

h(s
t
h, a

t
h) +Q⋆

h(s
t
h, a

t
h)−Qπt

h (sth, a
t
h)

≤ H1{N t
h = 0}+ 1{N t

h > 0}

 1

N t
h

Nt
h∑

i=1

ζ
ℓit,h
h+1 + Bt

h(s
t
h, a

t
h) + ph[V

⋆
h+1 − V πt

h+1](s
t
h, a

t
h)

.
where kth = kth(s

t
h, a

t
h),N

t
h = ekt

h
, ℓit,h is episode of the i-th visitation of the state-action pair (sth, a

t
h)

during the stage kth, and additionally by the convention 0/0 = 0. Let ξth = ph[V
⋆
h+1−V πt

h+1](s
t
h, a

t
h)−

[V ⋆
h+1 − V πt

h+1](s
t
h+1) be a martingale-difference sequence, and Bt

h = Bt
h(s

t
h, a

t
h)1{N t

h > 0} then

δth ≤ H1{N t
h = 0}+ 1{N t

h > 0}
N t

h

Nt
h∑

i=1

ζ
ℓit,h
h+1 − ζth+1 + δth+1 + ξth + Bt

h.

and, as a result

T∑
t=1

δth ≤ H

T∑
t=1

1{N t
h = 0}+

T∑
t=1

1{N t
h > 0}
N t

h

Nt
h∑

i=1

ζ
ℓit,h
h+1

−
T∑

t=1

ζth+1 +

T∑
t=1

δth+1 +

T∑
t=1

ξth +

T∑
t=1

Bt
h.

Next we have to analyze the second term, following the approach by Zhang et al. [2020],

T∑
t=1

1{N t
h > 0}
N t

h

Nt
h∑

i=1

ζ
ℓit,h
h+1 =

T∑
q=1

T∑
t=1

1{N t
h > 0}
N t

h

Nt
h∑

i=1

ζ
ℓit,h
h+11{ℓ

i
t,h = q}

=

T∑
q=1

ζqh+1 ·
T∑

t=1

1{kth ≥ 0}
N t

h

Nt
h∑

i=1

1{ℓit,h = q}.

Notice that
∑Nt

h
i=1 1{ℓit,h = q} ≤ 1 since all visitations are increasing in i, and, moreover, it turns to

equality if and only if (sqh, a
q
h) = (sth, a

t
h) and this visitation happens in stage kth, where kth is equal

to the stage of episode q with respect to (sqh, a
q
h, h). Since the sum is over all the next episodes with

respect to stage of q, we have that the number of non-zero elements in the sum over t is bounded by
(1 + 1/H)N t

h. Thus

T∑
q=1

ζqh+1 ·
T∑

t=1

1{kth ≥ 0}
N t

h

Nt
h∑

i=1

1{ℓit,h = q} ≤
(
1 +

1

H

) T∑
q=1

ζqh+1.

After a simple algebraic manipulations and using the fact that ζth ≤ δth,

T∑
t=1

δth ≤ H

T∑
t=1

1{N t
h = 0}+

T∑
t=1

(1 + 1/H)ζth+1 −
T∑

t=1

ζth+1 +

T∑
t=1

δth+1 +

T∑
t=1

ξth +

T∑
t=1

Bt
h

≤ H

T∑
t=1

1{N t
h = 0}+

(
1 +

1

H

) T∑
t=1

δth+1 +

T∑
t=1

ξth +

T∑
t=1

Bt
h.

By rolling out the upper bound on regret (8) and using inequality (1 + 1/H)H−h ≤ e we have

RT ≤ eH

T∑
t=1

H∑
h=1

1{N t
h = 0}+

T∑
t=1

H∑
h=1

(1 + 1/H)H−hξth + e

T∑
t=1

H∑
h=1

Bt
h.

28

Proof of Theorem 1. First, we notice that the event G′(δ) defined in Lemma 5, holds with probability
at least 1− δ by Lemma 4 and Proposition 3. Thus, we may assume that G′(δ) holds.

We start from the decomposition given by Lemma 5

RT ≤ eH

T∑
t=1

H∑
h=1

1{kth(sth, ath) = −1}+
T∑

t=1

H∑
h=1

(1 + 1/H)H−hξth + e

T∑
t=1

H∑
h=1

Bt
h.

The first term is upper bounded by eSAH3, since there is no more than H visits of each state-action-
step triple before the update for the first stage. The second term is bounded by Õ(

√
H3T) by a

definition of the event E(δ) in Lemma 4. To upper bound the last term we have to analyze the
following sum

T∑
t=1

H∑
h=1

1{ekt
h(s

t
h,a

t
h)
> 0}

√ekt
h(s

t
h,a

t
h)

≤
∑

(s,a,h)∈S×A×[H]

kT+1
h (s,a)∑
k=0

ek+1√
ek
,

where

ek =

⌊(
1 +

1

H

)k

H

⌋
⇒ ek+1√

ek
≤ 2

√
ek,

therefore by Cauchy inequality

kT+1
h

(s,a)∑
k=0

ek+1√
ek

≤ 2

kT+1
h

(s,a)∑
k=0

√
ek ≤ 2

√
kT+1
h (s, a)

√√√√√kT+1
h

(s,a)∑
k=0

ek ≤ 2

√
log(T)

log(1 + 1/H)

√
nT+1
h (s, a),

where we used the definition of the previous stage kT+1
h (s, a)

NT+1
h (s, a) ≥

kT+1
h (s,a)∑
k=0

ek,

thus by Cauchy inequality and inequality log(1 + 1/H) ≥ 1/(4H) for H ≥ 1

T∑
t=1

H∑
h=1

1{ekt
h(s

t
h,a

t
h)>0}

√ekt
h(s

t
h,a

t
h)

≤ 2
√
H log(T)

∑
(s,a,h)∈S×A×[H]

√
NT+1

h (s, a) + 1

≤ 4
√
SAH2 log(T)

√ ∑
(s,a,h)

(NT+1
h (s, a) + 1)

≤ 4
√
SAH3T log(T) + 4SAH2 log(T).

Using this upper bound, we have

T∑
t=1

H∑
h=1

Bt
h = Õ

(
H

T∑
t=1

H∑
h=1

1{ekt
h(s

t
h,a

t
h)
> 0}

√ekt
h(s

t
h,a

t
h)

)
= Õ

(√
H5SAT + SAH3

)
.

Combining this upper bound with the previous ones, we conclude the statement.

29

E Proofs for Metric algorithm

E.1 Assumptions

In this section we proof Lemma 2 and Lemma 1.

Proof of Lemma 1. By the dual formula for 1-Wasserstein distance (see e.g. Section 6 of Peyré and
Cuturi [2019]) we have

W1(ph(s, a), ph(s
′, a′)) = sup

f is 1−Lipchitz
{phf(s, a)− phf(s

′, a′)}.

By Assumption 2 we have

phf(s, a)− phf(s
′, a′) = Eξh [f(Fh(s, a, ξh))− f(Fh(s

′, a′, ξh))] ≤ LF ρ((s, a), (s
′, a′)).

Proof of Lemma 2. Let us proceed by a backward induction over h. For h = H + 1 we have
Q⋆

H+1(s, a) = V ⋆
H+1(s) = 0, therefore they are 0-Lipchitz.

Next we assume that have for any h′ > h the statement of Lemma 2 holds. Then by Bellman
equations

|Q⋆
h(s, a)−Q⋆

h(s
′, a′)| ≤ |rh(s, a) + rh(s

′, a′)|+ |phV ⋆
h+1(s, a)− phV

⋆
h+1(s

′, a′)|.

By Assumption 2 we can represent the action of the transition kernel as follows

phV
⋆
h+1(s, a)− phV

⋆
h+1(s

′, a′) = Eξh

[
V ⋆
h+1(Fh(s, a, ξh))− V ⋆

h+1(Fh(s
′, a′, ξh)

]
.

Since by induction hypothesis V ⋆
h+1 is

∑H
h′=h+1 L

h′−h
F Lr-Lipschitz and Fh(·, ξh) is LF -Lipschitz,

therefore

|Q⋆
h(s, a)−Q⋆

h(s
′, a′)| ≤

(
Lr + LF ·

H∑
h′=h+1

Lh′−h
F Lr

)
ρ((s, a), (s′, a′))

≤

(
H∑

h′=h

Lh′−h
F Lr

)
ρ((s, a), (s′, a′))

To show that V ⋆
h is also Lipchitz, we have that there is some action a⋆ equal to π⋆(s) or π⋆(s′), such

that

|V ⋆
h (s)− V ⋆

h (s
′)| ≤ |Q⋆

h(s, a
⋆)−Q⋆

h(s
′, a⋆)| ≤ LV,h · ρ((s, a⋆), (s′, a⋆)) ≤ LV,h · ρS(s, s′),

where in the end we used the sub-additivity assumption on metric over joint space (see Assumption 1).

E.2 Algorithm

Next we describe a simple non-adaptive version of our algorithm that works with metric spaces. We
assume that for any ε > 0 we can compute a minimal ε-cover of state-action space Nε.5

Next we will use the same notation but with state-action pairs replaces with balls from a fixed cover
Nε. To unify the notation, we define ψε : S ×A → Nε that maps any point (s, a) to any ball from
ε-cover that contains it.

For any t, h we define Bt
h = ψε(s

t
h, a

t
h). Next, let nth(B) be a number of visits of ball B before the

episode t: nth(B) =
∑t−1

k=1 1{Bk
h = B}.

Let ek = ⌊(1+1/H)k·H⌋ be length of each stage for any k ≥ 0 and, by convention, e−1 = 0. We will
call that in the beginning of episode t a pair (B, h) is in k-th stage if nth(B) ∈ [

∑k−1
i=0 ei,

∑k
i=0 ei).

5Remark that the greedy algorithm can easily generate ε-cover of size Nε/2, that will not affect the asymptotic
behavior of regret bounds, see Song and Sun [2019].

30

Algorithm 4 Metric Net-Staged-RandQL
1: Input: inflation coefficient κ, J ensemble size, number of prior transitions n0(k), prior reward
r0, dicretization level ε.

2: Initialize: ε-net Nε, Qh(B) = Q̃j
h(B) = r0H, initialize counters ñh(B) = 0 for j, h,B ∈

[J]× [H]×Nε, stage qh(B) = 0, quantization map ψε : S ×A → Nε.
3: for t ∈ [T] do
4: for h ∈ [H] do
5: Play ah ∈ argmaxaQh(ψε(sh, a)) and define Bh = ψε(sh, ah).
6: Observe reward and next state sh+1 ∼ ph(sh, ah).
7: Sample learning rates wj ∼ Beta(1/κ, (ñ+ n0(qh(Bh))/κ) for ñ = ñh(Bh).
8: Compute value function V h+1(sh+1) = maxa∈AQh+1(ψε(sh+1, a)).
9: Update temporary Q-values for all j ∈ [J]

Q̃j
h(B) := (1− wj)Q̃

j
h(B) + wj

(
rh(sh, ah) + V h+1(sh+1)

)
.

10: Update counter ñh(Bh) := ñh(Bh) + 1
11: if ñh(Bh) = ⌊(1 + 1/H)qH⌋ for q = qh(Bh) is the current stage then
12: Update policy Q-values Qh(Bh) := maxj∈[J] Q̃

j
h(Bh).

13: Reset temporary Q-values Q̃j
h(Bh) := r0H .

14: Reset counter ñh(Bh) := 0 and change stage kh(Bh) := kh(Bh) + 1.
15: end if
16: end for
17: end for

Let ñth(B) be a number of visits of state-action pair during the current stage in the beginning of
episode t. Formally, ñth(B) = nth(B)−

∑k−1
i=0 ei, where k is an index of current stage.

Define κ > 0 be a posterior inflation coefficient, n0 is a number of pseudo-transitions, and J as a
number of temporary Q-functions. Let Q̃t,j

h be a j-th temporary Q-value and Q
t

h be a policy Q-value
at the beginning of episode t, defined over the ε-cover. We initialize them as follows

Q
1

h(B) = r0H, Q̃1,j
h (s, a) = r0H.

Additionally, we define to the value function as follows

V
t

h(s) = max
a∈A

Q
t

h(ψε(s, a)).

Notice that we cannot precomute it as in the tabular setting, however, it is possible to use its values in
lazy fashion.

For each transition we preform the following update of temporary Q-values over balls B ∈ Nε

Q̃
t+1/2,j
h (B) =

{
(1− wj,ñ) · Q̃t,j

h (B) + wj,ñ[rh(s
t
h, a

t
h) + V

t

h+1(s
t
h+1)], B = Bt

h

Q̃t,j
h (B) otherwise,

where ñ = ñth(B) is the number of visits of (B, h) in the beginning of episode t, and wj,ñ is a
sequence of independent beta-distribution random variables wj,ñ ∼ Beta(1/κ, (ñ+ n0)/κ).

Next we define the stage update as follows

Q
t+1

h (B) =

{
maxj∈[J] Q̃

t+1/2,j
h (B) ñth(B) = ⌊(1 + 1/H)kH⌋

Q
t

h(B) otherwise

Q̃t+1,j
h (B) =

{
r0H nth(B) ∈ ñth(B) = ⌊(1 + 1/H)kH⌋
Q̃

t+1/2,j
h (B) otherwise

V
t+1

h (s) = min{r0(H − h),max
a∈A

Q
t+1

h (ψε(s, a))};

πt+1
h (s) ∈ argmax

a∈A
Q

t+1

h (ψε(s, a)),

31

where k is the current stage. A detailed description of the algorithm is presented in Algorithm 4.

For episode t we will call kth(B) the index of stage where Q
t

h(B) were updated (and kth(B) = −1 if
there was no update). For all t we define τ th(B) ≤ t as the episode when the stage update happens.
In other words, for any t the following holds

Q
t+1

h (B) = max
j∈[J]

Q̃
τt
h(B)+1/2,j

h (B),

where τ th(B) = 0 and ek = 0 if there was no updates. To simplify the notation we will omit
dependence on (s, a, h) where it is deducible from the context.

We notice that in this case we use ek samples to compute Q̃τt
h(B)+1/2,j for k = kth(s, a). For this

k we define ℓik,h(s, a) as the time of i-th visit of state-action pair (s, a) during k-th stage. Then we
have the following decomposition

Q̃
τt+1/2,j
h (B) =

ek∑
i=0

W i
j,ek

(
rh(s

ℓi

h , a
ℓi

h) + V
ℓi

h+1(s
ℓi

h+1)

)
, (9)

where we drop dependence on k and (B, h) in ℓi to simplify notations, using the convention

rh(s
ℓ0

h , a
ℓ0

h) = r0 , V
ℓ0

h+1(s
ℓ0

h+1) = r0(H − 1) and the following aggregated weights

W 0
j,n =

n−1∏
q=0

(1− wj,q), W i
j,n = wj,i−1 ·

n−1∏
q=i

(1− wj,q), i ≥ 1.

E.3 Concentration

Let β⋆ : (0, 1)×N× (0, dmax) → R+ and βB , βconc, β : (0, 1)× (0, dmax) → R+ be some function
defined later on in Lemma 6. We define the following favorable events

E⋆(δ, ε) ≜

{
∀t ∈ N,∀h ∈ [H],∀B ∈ Nε, k = kth(B), (s, a) = center(B) :

Kinf

(
1

ek

ek∑
i=1

δ
V ⋆
h+1(Fh(s,a,ξℓ

i

h+1))
, phV

⋆
h+1(s, a)

)
≤ β⋆(δ, ek, ε)

ek

}
,

EB(δ, ε) ≜

{
∀t ∈ [T],∀h ∈ [H],∀B ∈ Nε,∀j ∈ [J], k = kth(B) :∣∣∣∣∣
ek∑
i=0

(
W i

j,ek,k
− E[W i

j,ek,k
]
)(
rh(s

ℓi

h , a
ℓi

h) + V
ℓi

h+1(s
ℓi

h+1)

)∣∣∣∣∣
≤ 60e2

√
r20H

2κβB(δ, ε)

ek + n0(k)
+ 1200e

r0Hκ log(ek + n0(k))(β
B(δ, ε))2

ek + n0(k)

}
,

Econc(δ, ε) ≜

{
∀t ∈ [T],∀h ∈ [H],∀B ∈ Nε, k = kth(B) :∣∣∣∣∣ 1ek

ek∑
i=1

V ⋆
h+1(s

ℓik,h(B)

h+1)− phV
⋆
h+1(s

ℓik,h(B)

h , a
ℓik,h(B)

h)

∣∣∣∣∣ ≤
√

2r20H
2βconc(δ, ε)

ek

}

E(δ) ≜

{
T∑

t=1

H∑
h=1

(1 + 1/H)H−h
∣∣ph[V ⋆

h+1 − V πt

h+1](s
t
h, a

t
h)− [V ⋆

h+1 − V πt

h+1](s
t
h+1)

∣∣
≤ 2er0H

√
2HTβ(δ).

}
.

32

We also introduce the intersection of these events, G(δ) ≜ E⋆(δ) ∩ EB(δ) ∩ Econc(δ) ∩ E(δ). We
prove that for the right choice of the functions β⋆, βKL, βconc, β, βVar the above events hold with
high probability.

Lemma 6. For any δ ∈ (0, 1) and ε ∈ (0, dmax) and for the following choices of functions β,

β⋆(δ, n, ε) ≜ log(8H/δ) + log(Nε) + 3 log(eπ(2n+ 1)) ,

βB(δ, ε) ≜ log(8H/δ) + log(Nε) + log(TJ) ,

βconc(δ, ε) ≜ log(8H/δ) + log(Nε) + log(2T),

β(δ) ≜ log(16/δ),

it holds that

P[E⋆(δ, ε)] ≥ 1− δ/8, P[EB(δ, ε)] ≥ 1− δ/8,

P[Econc(δ, ε)] ≥ 1− δ/8, P[E(δ)] ≥ 1− δ/8.

In particular, P[G(δ)] ≥ 1− δ/2.

Proof. Let us describe the changes from the similar statement in Lemma 4.

Regarding event E⋆(δ, ε), for any fixed ball B we have exactly the same structure of the problem
thanks to Assumption 2 and a sequence of i.i.d. random variables ξℓ

i

h . Thus, Theorem 4 combined
with a union bound over B ∈ Nε and H ∈ [H] concludes P(E⋆(δ, ε)) ≥ 1− δ/8.

The proof for the event EB(δ, ε) remains the almost the same, with two differences: the predictable
weights slightly changed but the upper bound for them remain the same, and we have take a union
bound not over all state-action pairs (s, a) ∈ S ×A but all over balls B ∈ Nε.

To show that P(Econc(δ, ε)) ≥ 1 − δ/8, let us fix B ∈ Nε, h ∈ [H] and ek ∈ [T]. Then we can
define a filtration Ft,h = σ

{
{(sℓh′ , aℓh′ , πℓ), ℓ < t, h′ ∈ [H]} ∪ {(sth′ , ath′ , πt), h′ ≤ h}

}
and, since

ℓik,h(B) are stopping times for all i = 1, . . . , ek, we can define the stopped filtration F̃i = Fℓi,h.

Then we notice thatXi = V ⋆
h+1(s

ℓik,h(B)

h+1)−phV ⋆
h+1(s

ℓik,h(B)

h , a
ℓik,h(B)

h) forms a martingale-difference
sequence with respect to F̃i,h. Thus, by Azuma-Hoeffding inequality and a union bound we have
P(Econc(δ, ε)) ≥ 1− δ/8.

The proof of P(E(δ)) ≥ 1− δ/8 remains exactly the same as in Lemma 4.

E.4 Optimism

In this section we prove that our estimate of Q-function Q
t

h(s, a) is optimistic that is the event

Eopt(ε) ≜
{
∀t ∈ [T], h ∈ [H], (s, a) ∈ S ×A : Q

t

h(ψε(s, a)) ≥ Q⋆
h(s, a)

}
. (10)

holds with high probability on the event E⋆(δ, ε).

Define constants

c0 ≜
8

π

(
4√

log(17/16)
+ 8 +

49 · 4
√
6

9

)2

+ 1. (11)

and slightly another constant

c̃J ≜
1

log
(

4
3+Φ(1)

) , (12)

where Φ(·) is a CDF of a normal distribution.

Proposition 4. Define a constant L = Lr + LV (1 + LF). Assume that J = ⌈c̃J · (log(2HT/δ) +
log(Nε)⌉, κ = 2β⋆(δ, T, ε), r0 = 2, and a prior count n0(k) = ⌈ñ0 + κ + εL

H−1 · (ek + ñ0 + κ)⌉
dependent on the stage k, where ñ0 = (c0 + 1 + log17/16(T)) · κ .

33

Then on event E⋆(δ, ε) the following event

Eanticonc ≜

{
∀t ∈ [T] ∀h ∈ [H] ∀B ∈ Nε : for k = kth(B), (s, a) = center(B) :

max
j∈[J]

{
W 0

j,ek,k
r0(H − 1) +

ek∑
i=1

W i
j,ek,k

V ⋆
h+1(Fh(s, a, ξ

ℓi

h))

}
≥ phV

⋆
h+1(s, a) + Lε

}

holds with probability at least 1− δ/2.

Remark 1. We notice that the obtained result is connected to the theory of Dirichlet processes.

First, let us define the Dirichlet process, following Ferguson [1973]. The stochastic process G,
indexed by elements B of X, is a Dirichlet Process with parameter ν (G ∼ DP(ν)) if

G(B1), . . . , G(Bd) ∼ Dir(ν(B1), . . . , ν(Bd)),

for any measurable partition (B1, . . . , Bd) of X.

Let P̂n = 1
n

∑n
i=1 δZi

be an empirical measure of an i.i.d. sample Z1, . . . , Zn ∼ P . Let ν be a finite
(not necessarily probability) measure on X and P̃n ∼ DP(ν + nP̂n). Then we have the following
representation for the expectations of a function f : X → R over a sampled measure P̃n (see Theorem
14.37 of Ghosal and Van der Vaart [2017] with σ = 0 for a proof)

P̃nf = Vn ·Qf + (1− Vn)

n∑
i=1

Wif(Zi),

where Vn ∼ Beta(|ν|, n), Q ∼ DP(ν), and a vector (W1, . . . ,Wn) follows uniform Dirichlet
distribution Dir(1, . . . , 1). If we take ν = n0 · δZ0

for some Z0 ∈ X such that f(Z0) = r0(H − 1)6,
then by a stick-breaking process representation of the Dirichlet distribution we have

P̃nf = W̃0r0(H − 1) +

n∑
i=1

W̃1f(Zi), (W̃0, . . . , W̃1) ∼ Dir(n0, 1, . . . , 1).

By taking an appropriate X and f we have that Proposition 4 could be interpret as a deriving a lower
bound on the probability of P[P̃nf ≥ Pf + εL | {Zi}ni=1].

Proof. First for all, let us fix t ∈ [T], h ∈ [H] and B ∈ Nε and, consequently, k = kth(B).
Also, let fix j ∈ [J]. To simplify the notation in the sequel, define X0 = r0(H − 1) and Xi =

V ⋆
h+1(Fh(s, a, ξ

ℓi

h)) for i > 0. Notice that Xi for i > 0 is a sequence of i.i.d. random variables
supported on [0, H − h− 1].

By Lemma 3 we have (W 0
j,ek,k

, . . . ,W ek
j,ek,k

) ∼ Dir(n0(k)/κ, 1/κ, . . . , 1/κ). Then we use the

aggregation property of Dirichlet distribution: there is a vector (W̃−1
j , . . . , W̃ ek

j) ∼ Dir((n0(k)−
ñ0)/κ, ñ0/κ, 1/κ, . . . , 1/κ) such that

ek∑
i=0

W i
j,ek,k

Xi = W̃−1
j X0 +

ek∑
i=0

W̃ i
jXi.

Next we are going to represent the Dirichlet random vector W̃ by a stick breaking process (or,
equivalently, represent via the generalized Dirichlet distribution)

W̃−1
j = ξj ξj ∼ Beta((n0(k)− ñ0)/κ, (ek + ñ0)/κ),

(W̃ 0
j , . . . , W̃

ek
j) = (1− ξj) · (Ŵ 0

j , . . . , Ŵ
ek
j), Ŵj ∼ Dir(ñ0/κ, 1/κ, . . . , 1/κ),

6We can augment the space X with this additional point if needed

34

where ξj and Ŵj are independent. Therefore, we have the final decomposition
ek∑
i=0

W i
j,ek,k

Xi − phV
⋆
h+1(s, a)− εL = ξj

(
r0(H − 1)− phV

⋆
h+1(s, a)

)
− εL︸ ︷︷ ︸

Tapprox

+ (1− ξj) ·

(
ek∑
i=0

Ŵ i
jXi − phV

⋆
h+1(s, a)

)
︸ ︷︷ ︸

Tstoch

.

By independence of ξj and Ŵj we have

P

[
ek∑
i=0

W i
j,ek,k

Xi ≥ phV
⋆
h+1(s, a) + εL|{Xi}eki=1

]
≥ P[Tapprox ≥ 0] · P[Tstoch ≥ 0].

We split our problem to lower bound the two separate probabilities.

Approximation error To deal with approximation error, we first of all notice that phV ⋆
h+1(s, a) ≤

H − 1, therefore we have

P[Tapprox ≥ 0] = P
[
ξj ≥

εL

H − 1

]
.

Next we assume that ε < (H − 1)/L, since ξj ∼ Beta((n0(k) − ñ0)/κ, (ek + ñ0)/κ), we may
apply Alfers and Dinges [1984, Theorem 1.2”]

P[Tapprox ≥ 0] ≥ Φ
(
−sign(p− µ) ·

√
2α kl(p, µ)

)
,

where p = (n0(k)− ñ0 −κ)/(ek + ñ0 −κ) and µ = εL/(H − 1). Since n0(k) = ⌈ñ0 +κ+ εL
H−1 ·

(ek + ñ0 + κ)⌉, we have P[Tapprox ≥ 0] ≥ 1/2.

Stochastic error Since X0 = r0(H − 1) is an upper bound on V -function, and we have that the
weight of the first atom α0 ≜ ñ0/κ− 1 = c0 + log17/16(T)− 1 for c0 defined in (11).

Define a measure ν̄ek = ñ0−κ
ek+ñ0−κδX0 +

∑ek
i=1

1
ek+n0−1δXi . Since phV ⋆

h+1(s, a) ≤ H − h− 1, we
can apply Lemma 10 with a fixed ε = 1/2 conditioned on independent random variables Xi

P
[ek∑
i=0

Ŵ i
jXi ≥ phV

⋆
h+1(s, a) | {Xi}eki=1

]

≥ 1

2

1− Φ

√2(ek + n0 − κ)Kinf
(
ν̄ek , phV

⋆
h+1(s, a)

)
κ

,
where Φ is a CDF of a normal distribution. By Lemma 12 and the event E⋆(δ, ε)

(ek + n0 − κ)Kinf
(
ν̄ek , phV

⋆
h+1(s, a)

)
≤ ek Kinf

(
ν̂ek , phV

⋆
h+1(s, a)

)
≤ β⋆(δ, T, ε),

where ν̂ek = 1
ek

∑ek
i=1 δV ⋆

h+1(F (s,a,ξℓ
i

h+1))
, and, as a corollary

P

[
ek∑
i=0

Ŵ i
jXi ≥ phV

⋆
h+1(s, a) | E⋆(δ, ε), {Xi}eki=1

]
≥ 1

2

(
1− Φ

(√
2β⋆(δ, T, ε)

κ

))
.

By taking κ = 2β⋆(δ, T, ε) we have a constant probability of being optimistic for stochastic error

P[Tstoch ≥ 0 | E⋆(δ, ε)] ≥ 1− Φ(1)

2
.

Overall, combining two lower bound for approximation and stochastic terms, we have

P

[
ek∑
i=0

W i
j,ek,k

Xi ≥ phV
⋆
h+1(s, a) + εL|E⋆(δ, ε)

]
≥ 1− Φ(1)

4
= γ.

35

Next, using a choice J = ⌈(log(2HT/δ) + log(Nε))/ log(1/(1 − γ))⌉ = ⌈c̃J · (log(2HT/δ) +
log(Nε))⌉

P

[
max
j∈[J]

{
ek∑
i=0

W i
j,ek,k

Xi

}
≥ phV

⋆
h+1(s, a) + εL|E⋆(δ, ε)

]
≥ 1− (1− γ)J ≥ 1− δ

2NεHT
.

By a union bound we conclude the statement.

Next we provide a connection between Eanticonc and Eopt.
Proposition 5. It holds Eopt ⊆ Eanticonc.

Proof. We proceed by a backward induction over h. Base of induction h = H + 1 is trivial. Fix
state-action pair (s, a) and let us call (s′, a′) a center of the ball ψε(s, a) that is the ball where (s, a)
contains.

Next by the update formula for Q
t

h, and Bellman equations

Q
t

h(ψε(s, a))−Q⋆
h(s, a) = max

j∈[J]

{ n∑
i=0

W i
j,n[rh(s

ℓi

h , a
ℓi

h)− rh(s
′, a′)]

+

n∑
i=0

W i
j,nV

ℓi

h+1(s
ℓi

h+1)− phV
⋆
h+1(s

′, a′)

}
+[Q⋆

h(s, a)−Q⋆
h(s

′, a′)],

where n = ekt
h(B) and we drop dependence on k, t, h, s, a in ℓi. By induction hypothesis we have

V
ℓi

h+1(s
′) ≥ Q

ℓi

h+1(ψε(s
′, π⋆(s′))) ≥ Q⋆

h+1(s
′, π⋆(s′)) = V ⋆

h+1(s
′) for any i, thus combining it

with Lipchitz continuity of reward function and Q⋆, and the value of rh(sℓ
0

, aℓ
0

) = r0 > rh(s, a),

Q
t

h(ψε(s, a))−Q⋆
h(s, a) ≥max

j∈[J]

{
W 0

j,nr0(H − 1) +

n∑
i=1

W i
j,nV

⋆
h+1(Fh(s

ℓi

h , a
ℓi

h , ξ
ℓi

h))

}
− phV

⋆
h+1(s

′, a′)− (Lr + LV)ε.

Next we apply Lipschitz continuity of Fh and V ⋆
h+1 and obtain

Q
t

h(ψε(s, a))−Q⋆
h(s, a) ≥max

j∈[J]

{
W 0

j,nr0(H − 1) +

n∑
i=1

W i
j,nV

⋆
h+1(Fh(s

′, a′, ξℓ
i

h))

}
− phV

⋆
h+1(s

′, a′)− (Lr + LV (1 + LF))ε.

By the definition of event Eanticonc we conclude the statement.

Proposition 6 (Optimism). Define a constant L = Lr + LV (1 + LF). Assume that J = ⌈c̃J ·
(log(2HT/δ) + log(Nε)⌉, κ = 2β⋆(δ, T, ε), r0 = 2, and a prior count n0(k) = ⌈ñ0 + κ + εL

H−1 ·
(ek + ñ0 + κ)⌉ dependent on the stage k, where ñ0 = (c0 + 1 + log17/16(2ek)) · κ, c0 is defined in
(11), c̃J is defined in (12). Then P(Eopt | E⋆(δ, ε)) ≥ 1− δ/2.

E.5 Regret Bounds

As in the tabular setting, we first connect our algorithm to the algorithm by Song and Sun [2019],
using the following corollary. Define an event G′(δ, ε) = G(δ, ε) ∩ Eopt.

Let us define the logarithmic term as follows

βmax(δ, ε) = max{κ, ñ0/κ, βB(δ, ε), β(δ, ε), βconc(δ, ε)}
that has dependence of order O(log(TH/δ) + logNε).
Corollary 2. Fix ε ∈ (0, LV /H) and assume conditions of Proposition 6. Let t ∈ [T], h ∈ [H], B ∈
Nε. Define k = kth(B) and let ℓ1 < . . . < ℓek be a excursions of (B, h) till the end of the previous
stage. Then on the event G′(δ) the following bound holds for k ≥ 0 and any (s, a) ∈ B

0 ≤ Q
t

h(B)−Q⋆
h(s, a) ≤

1

ek

ek∑
i=1

[V
ℓi

h+1(s
ℓi

h+1)− V ⋆
h+1(s

ℓi

h+1)] + Bt
h(k),

36

where

Bt
h(k) = 121e2 ·

√
H2(βmax(δ, ε))2

ek
+ 2401e · H(βmax(δ, ε))4

ek
+ 3(Lr + (1 + LF)LV)ε.

Proof. The lower bound follows from the definition of the event Eopt. For the upper bound we first
apply the decomposition for Q

t

h(s, a) and the definition of event EB(δ, ε) from Lemma 6

Q
t

h(B) = max
j∈[J]

{
ek∑
i=0

W i
j,n

(
rh(s

ℓi

h , a
ℓi

h) + V
ℓi

h+1(s
ℓi

h+1)

)}

≤ 1

ek + n0(k)

ek∑
i=1

(
rh(s

ℓi

h , a
ℓi

h) + V
ℓi

h+1(s
ℓi

h+1)

)
+
n0(k) · 2H
ek + n0(k)

+ 120e2

√
H2κβB(δ, ε)

ek + n0(k)
+ 2400e

Hκ log(n+ n0(k))(β
B(δ, ε))2

ek + n0(k)
.

Additionally, by Bellman equations

Q⋆
h(s, a) =

1

ek

ek∑
i=1

Q⋆
h(s

ℓi

h , a
ℓi

h) +
1

ek

ek∑
i=1

(
Q⋆

h(s, a)−Q⋆
h(s

ℓi

h , a
ℓi

h)
)

≥ 1

ek

ek∑
i=1

(
rh(s

ℓi

h , a
ℓi

h) + phV
⋆
h+1(s

ℓi

h , a
ℓi

h)
)
− 2εLV .

Combining and using the fact that n0(k) ≤ Lε
H−1 · (ek +n0(k))+ ñ0+κ for L = Lr +(1+LF)LV

Q
t

h(s, a)−Q⋆
h(s, a) ≤

1

ek

ek∑
i=1

[
V

ℓi

h+1 − V ⋆
h+1

]
(sℓ

i

h+1) +
1

ek

ek∑
i=1

[
V ⋆
h+1(s

ℓi

h+1)− phV
⋆
h+1(s

ℓi

h , a
ℓi

h)
]

+ 120e2 ·

√
H2(βmax(δ, ε))2

ek
+ (2400e + 2)

H(βmax(δ, ε))4

ek
+ 3Lε.

Finally, the applications of event Econc(δ, ε) concludes the statement.

Let us define δth = V
t

h(s
t
h)− V πt

h (sth) and ζth = V
t

h(s
t
h)− V ⋆

h (s
t
h).

Lemma 7. Assume conditions of Proposition 6. Then on event G′(δ, ε) = G(δ, ε) ∩ Eopt, where
G(δ, ε) is defined in Lemma 6, the following upper bound on regret holds

RT ≤ 2eH

T∑
t=1

H∑
h=1

1{N t
h = 0}+

t∑
t=1

H∑
h=1

(1 + 1/H)H−hξth + e

T∑
t=1

H∑
h=1

Bt
h.

where ξth = ph[V
⋆
h+1 − V πt

h+1](s
t
h, a

t
h) − [V ⋆

h+1 − V πt

h+1](s
t
h+1) and Bt

h = Bt
h(k

t
h(s

t
h, a

t
h)) ·

1{kth(sth, ath) ≥ 0} for Bt
h defined in Corollary 2.

Proof. As in the tabular setting, we notice that on the event Eopt we can upper bound the regret in
terms of δt1.

RT ≤
T∑

t=1

δt1. (13)

Next we analyze δth. Since ath = argmaxa∈AQ
t

h(ψε(s
t
h, a)), we can use Corollary 2 and Bellman

equations in the following way

δth = V
t

h(s
t
h)− V πt

h (sth) = Q
t

h(B
t
h)−Qπt

h (sth, a
t
h)

= Q
t

h(B
t
h)−Q⋆

h(s
t
h, a

t
h) +Q⋆

h(s
t
h, a

t
h)−Qπt

h (sth, a
t
h)

≤ r0H1{N t
h = 0}+ 1{N t

h > 0}

 1

N t
h

Nt
h∑

i=1

ζ
ℓit,h
h+1 + Bt

h(k
t
h) + ph[V

⋆
h+1 − V πt

h+1](s
t
h, a

t
h)

.
37

where kth = kth(B
t
h), N

t
h = ekt

h
, ℓit,h is an i-th visitation of the ball Bt

h during an stage kth, and
additionally by a convention 0/0 = 0.

Define ξth = ph[V
⋆
h+1 − V πt

h+1](s
t
h, a

t
h) − [V ⋆

h+1 − V πt

h+1](s
t
h+1) a martingale-difference sequence,

and Bt
h = Bt

h(k
t
h)1{N t

h > 0} then

δth ≤ r0H1{N t
h = 0}+ 1{N t

h > 0}
N t

h

Nt
h∑

i=1

ζ
ℓit,h
h+1 − ζth+1 + δth+1 + ξth + Bt

h.

and, as a result

T∑
t=1

δth ≤ r0H

T∑
t=1

1{N t
h = 0}+

T∑
t=1

1{N t
h > 0}
N t

h

Nt
h∑

i=1

ζ
ℓit,h
h+1

−
T∑

t=1

ζth+1 +

T∑
t=1

δth+1 +

T∑
t=1

ξth +

T∑
t=1

Bt
h.

For the second term we may repeat arguments as in the proof of Lemma 5 and obtain

T∑
q=1

ζqh+1 ·
T∑

t=1

1{kth ≥ 0}
N t

h

Nt
h∑

i=1

1{ℓit,h = q} ≤
(
1 +

1

H

) T∑
q=1

ζqh+1.

After a simple algebraic manipulations and using the fact that ζth ≤ δth

T∑
t=1

δth ≤ H

T∑
t=1

1{N t
h = 0}+

T∑
t=1

(1 + 1/H)ζth+1 −
T∑

t=1

ζth+1 +

T∑
t=1

δth+1 +

T∑
t=1

ξth +

T∑
t=1

Bt
h

≤ H

T∑
t=1

1{N t
h = 0}+

(
1 +

1

H

) T∑
t=1

δth+1 +

T∑
t=1

ξth +

T∑
t=1

Bt
h.

By rolling out the upper bound on regret (13) we have

RT ≤ 2eH

T∑
t=1

H∑
h=1

1{N t
h = 0}+

t∑
t=1

H∑
h=1

(1 + 1/H)H−hξth + e

T∑
t=1

H∑
h=1

Bt
h.

Proof of Theorem 2. First, we notice that the event G′(δ, ε) defined in Lemma 7, holds with probabil-
ity at least 1− δ by Lemma 6 and Proposition 6. Thus, we may assume that G′(δ, ε) holds for ε > 0
that we will specify later.

By Lemma 7

RT ≤ 2eH

T∑
t=1

H∑
h=1

1{kth = −1}+
t∑

t=1

H∑
h=1

(1 + 1/H)H−hξth + e

T∑
t=1

H∑
h=1

Bt
h.

The first term is upper bounded by 2eH3 ·Nε, since there is no more than H visits of each ball in
ε-net before the update for the first stage. The second term is bounded by O(

√
H3Tβmax(δ, ε)) by a

definition of the event E(δ) in Lemma 6.

To analyze the last term, consider the following sum

T∑
t=1

H∑
h=1

1{ekt
h(B

t
h)
> 0}

√ekt
h(B

t
h)

≤
∑

(B,h)∈Nε×[H]

kT
h (B)∑
k=0

ek+1√
ek
,

38

where

ek =

⌊(
1 +

1

H

)k

H

⌋
⇒ ek+1√

ek
≤ 2

√
H

(
1 +

1

H

)k/2

,

therefore
kT
h (B)∑
h=0

ek+1√
ek

≤ 4
√
H

(1 + 1/H)(k
T
h (B)+1)/2√

1 + 1/H − 1
= 4H

√
ek

T
h (B)+1. (14)

Notice that

NT+1
h (B) ≥

kT
h (B)∑
k=0

ek = H(ek
T
h (B)+1 − 1) ⇒ ek

T
h (B)+1 ≤

NT+1
h (B) + 1

H

thus from the Cauchy-Schwarz inequality

T∑
t=1

H∑
h=1

1{ekt
h(B

t
h)>0}

√ekt
h(B

t
h)

≤ 4
√
H

∑
(B,h)∈Nε×[H]

√
NT+1

h (B) + 1

≤ 4
√
SAH2

√∑
(B,h)

(NT+1
h (B) + 1) ≤ 4

√
H3T ·Nε + 4NεH

2.

By the similar arguments we have

T∑
t=1

H∑
h=1

1{ekt
h(B

t
h)
> 0}

ekt
h(B

t
h)

≤ O(HNε log(T)).

Using this upper bound, we have for L = Lr + (1 + LF)LV

T∑
t=1

H∑
h=1

Bt
h = O

(
Hβmax(δ, ε)

T∑
t=1

H∑
h=1

1{ekt
h(s

t
h,a

t
h)
> 0}

√ekt
h(s

t
h,a

t
h)

)

+O

(
H(βmax(δ, ε))4

T∑
t=1

H∑
h=1

1{ekt
h(s

t
h,a

t
h)
> 0}

√ekt
h(s

t
h,a

t
h)

)
+O(LTHε)

≤ O
(√

H5TNε · (βmax(δ, ε))2 +H3Nε(β
max(δ, ε))4 + LTHε

)
.

Overall, for any fixed ε > 0 we have

RT ≤ O
(√

H5TNε · (βmax(δ, ε))2 +H3Nε(β
max(δ, ε))4 + LTHε+

√
H3T

)
.

Next we finally use that S × A have covering dimension dc that meansNε ≤ CN · ε−dc , thus our
regret bound transforms as follows

RT ≤ O
(√

H5TCNε−dc · (log(TCNH/δ) + dc log(1/ε))2

+H3CNε
−dc(log(TCNH/δ) + dc log(1/ε))

4 + LTHε

)
.

By taking ε = T−1/(dc+2) we conclude the statement

39

F Adaptive RandQL

In this section we describe how to improve the dependence in our algorithm from covering dimension
to zooming dimension, and describe all required notation.

F.1 Additional Notation

In this section we introduce an additional notation that is needed for introducing an adaptive version
of RandQL algorithm for metric spaces.

Hierarchical partition Next, we define all required notation to describe an adaptive partition,
as Sinclair et al. [2019, 2023]. Finally, we define the following general framework of hierarchical
partition. Instead of balls, we will use a more general notion of regions that will induce a better
structure from the computational point of view. We recall for any compact set A ⊆ S ×A we call
diam(A) = maxx,y∈A ρ(x, y).

Definition 6. A hierarchical partition of S × A of a depth d > 0 is a collection of regions Pd and
their centers such that

• Each region B ∈ Pd is of the form S(B)×A(B), where S(B) ⊆ S,A(B) ⊆ A;

• Pd is a cover of S ×A:
⋃

B∈Pd
B = S ×A;

• For every B ∈ Pd, we have diam(B) ≤ dmax · 2−d;

• Let B1, B2 ∈ Pd. If B1 ̸= B2 then ρ(center(B1), center(B2)) ≥ dmax · 2−d;

• For any B ∈ Pd, there exists a unique A ∈ Pd−1 (called the parent of B) such that B ⊆ A.

and, for d = 0 we define it as P0 = {S × A}.

We call the tree generated by the structure of T = {Pd}d≥0 a tree of this hierarchical partition. The
main example of this partition is the dyadic partition of S×A in the case of S = [0, 1]dS ,A = [0, 1]dA

and the metric induced by the infinity norm ρ((s, a), (s′, a′)) = max{∥s− s′∥∞, ∥a− a′∥∞}. For
examples we refer to [Sinclair et al., 2023].

F.2 Algorithm

In this section we describe two algorithms: Adaptive-RandQL which is an adaptive metric coun-
terpart of RandQL, and Adaptive-Staged-RandQL which is an adaptive metric counterpart of
Staged-RandQL. First, we start from the notation and algorithmic parts that will be common for
both algorithms.

Algorithms maintain an adaptive partition Pt
h of S × A, that is a sub-tree of an (infinite) tree of

the hierarchical partition T = {Pd}d≥0. We initialize P1
h = {P0}, and then we refine the tree Pt

h
be adding new nodes that corresponding to nodes of T . The leaf nodes of Pt

h represent the active
balls, and for B ∈ Pt

h the set of its inactive parent balls is defined as {B′ ∈ Pt
h | B ⊂ B′}. For any

B ∈ Pt
h we define d(B) as a depth of B in the tree under a convention d(S ×A) = 0.

Additionally, we need to define so-called selection rule and splitting rule. For any state s ∈ S we
define the set of all relevant balls as Rt

h(s) = { active b ∈ Pt
h | (s, a) ∈ B for some a ∈ A}.

Then for the current state sth we define the current ball as Bt
h = argmaxB∈Rt

h(s
t
h)
Q

t

h(B) and the
corresponding action as ath. To define the splitting rule we maintain the counters nth(B) for all
B ∈ Pt

h as a number of visits of a node B and all its parent nodes. Then we will perform splitting of
the current ball Bt

h if
√
d2max/n

t
h(B

t
h) ≤ diam(Bt

h). During splitting, we extend Pt+1
h by its child

nodes in the hierarchical partition tree T . For more details we refer to [Sinclair et al., 2023], up to
small changes in notation. In particular, their constant C̃ is equal to dmax in our setting to make
the construction exactly the same for both Adaptive-RandQL and Adaptive-Staged-RandQL
algorithms.

40

Algorithm 5 Adaptive-RandQL
1: Input: ensemble size J , number of prior transitions n0, prior reward r0.
2: Initialize: Qh(B) = Q̃j

h(B) = r0H, initialize counters nh(s, a) = 0 for h, s, a ∈ [H]×S×A.

3: for t ∈ [T] do
4: for h ∈ [H] do
5: Compute Bh = argmaxB∈Rt

h(sh)
Qh(B) and play ah for (sh, ah) = center(Bh);

6: Observe reward and next state sh+1 ∼ ph(sh, ah).
7: Sample ẘj ∼ Beta(n, n0) for n = nh(Bh).
8: Compute value V h+1(sh+1) = maxB∈Rt

h(sh+1)Qh+1(B).
9: Build targets for all j ∈ [J]

Q̊j
h = ẘj [rh(sh, ah) + V h+1(sh+1)] + (1− ẘj)r0H .

10: Sample learning rates wj ∼ Beta(H,n).
11: Update ensemble Q-functions for all j ∈ [J]

Q̃j
h(Bh) := (1− wj)Q̃

j
h(sh, ah) + wjQ̊

j
h .

12: Update policy Q-function Qh(sh, ah) := maxj∈[J] Q̃
j
h(sh, ah).

13: Update counters nh(Bh) := nh(Bh) + 1;
14: If

√
d2max/nh(Bh) ≤ diam(Bh), then refine partition Bh (see Sinclair et al. [2023]).

15: end for
16: end for

Adaptive-RandQL This algorithm is an adaptive metric version of RandQL algorithm. We recall
that for B ∈ Pt

h we define nth(B) =
∑t−1

i=1 1{(Bi
h) is a parent of B} is the number of visits of the

ballB and its parent balls at step h before episode t. We start by initializing the ensemble of Q-values,
the policy Q-values, and values to an optimistic value Q̃t,j

h (B) = Q
1

h(B) = V
1

h(B) = r0H for all
(j, h) ∈ [J]× [H] and the unique ball in the partition B = S ×A and r0 > 0 some pseudo-rewards.

At episode t we update the ensemble of Q-values as follows, denoting by n = nth(B) the count,
wj,n ∼ Beta(H,n) the independent learning rates,

Q̃t+1,j
h (B) =

{
(1− wj,n)Q̃

t,j
h (B) + wj,nQ̊

t,j
h (sth, a

t
h), B = Bt

h

Q̃t,j
h (B) otherwise,

where we defined the target Q̊t,j
h (sth, a

t
h) as a mixture between the usual target and some prior target

with mixture coefficient ẘn,j ∼ Beta(n, n0) and n0 the number of prior samples,

Q̊t,j
h (sth, a

t
h) = ẘj,n[rh(s

t
h, a

t
h) + V

t

h+1(s
t
h+1)] + (1− ẘj,n)r0H .

For a discussion on prior re-injection we refer to Appendix B. The value function is computed
on-flight by the rule V

t

h(s) = maxB∈Rt
h
Q

t

h(B).

The policy Q-values are obtained by taking the maximum among the ensemble of Q-values

Q
t+1

h (B) = max
j∈[J]

Q̃t+1,j
h (B) .

The policy is then greedy with respect to the policy Q-values and selection rule (s, πt+1
h (s)) =

center(B), where B = argmaxB∈Rt+1
h

Q
t+1

h (B). After the update of Q-values, algorithm verifies
the splitting rule. If the splitting rule is triggered, then all new balls are defined by counter and
Q-values of its parent. We notice that all Q-values could be efficiently computed on the nodes of the
adaptive partition. The complete and detailed description is presented in Algorithm 6.

Adaptive-Staged-RandQL The notation for this algorithm is very close to Net-Staged-RandQL
and we describe only differences between them. The main difference is a way to com-
pute value V

t

h(s) = maxB∈Rt
h(s)

Q
t

h(B) and policy (s, πt
h(s)) = center(B) for B =

41

Algorithm 6 Adaptive-Staged-RandQL
1: Input: inflation coefficient κ, J ensemble size, number of prior transitions n0(k), prior reward
r0.

2: Initialize: Qh(B) = Q̃j
h(B) = r0H, initialize counters ñh(B) = 0 for j, h,B ∈ [J]×[H]×Nε,

stage qh(B) = 0.
3: for t ∈ [T] do
4: for h ∈ [H] do
5: Compute Bh = argmaxB∈Rt

h(sh)
Qh(B) and play ah for (sh, ah) = center(Bh);

6: Observe reward and next state sh+1 ∼ ph(sh, ah).
7: Sample learning rates wj ∼ Beta(1/κ, (ñ+ n0(qh(Bh))/κ) for ñ = ñh(Bh).
8: Compute value V h+1(sh+1) = maxB∈Rt

h(sh+1)Qh+1(B).
9: Update temporary Q-values for all j ∈ [J]

Q̃j
h(B) := (1− wj)Q̃

j
h(B) + wj

(
rh(sh, ah) + V h+1(sh+1)

)
.

10: Update counters ñh(Bh) := ñh(Bh) + 1 and nh(Bh) := nh(Bh) + 1.
11: if ñh(Bh) = ⌊(1 + 1/H)qH⌋ for q = qh(Bh) is the current stage then
12: Update policy Q-values Qh(Bh) := maxj∈[J] Q̃

j
h(Bh).

13: Reset temporary Q-values Q̃j
h(Bh) := r0H .

14: Reset counter ñh(Bh) := 0 and change stage kh(Bh) := kh(Bh) + 1.
15: end if
16: If

√
d2max/nh(Bh) ≤ diam(Bh), then refine partition Bh (see Sinclair et al. [2023]).

17: end for
18: end for

argmaxB∈Rt
h(s)

Q
t

h(B). Additionally, all counters including temporary will move to the child
nodes after splitting, as it performed in Adaptive-RandQL. The detailed description is presented in
Algorithm 6.

F.3 Regret Bound

In this section we state the regret bounds for Adaptive-Staged-RandQL and derive a proof. The
given proof shares a lot of similarities with the proof of Net-Staged-RandQL in the first half and to
the proof of Adaptive-QL by Sinclair et al. [2023] in the second half.

We fix δ ∈ (0, 1), and the number of posterior samples

J ≜ ⌈c̃J · (log(2CNHT/δ) + dc log2(8T/dmax))⌉, (15)

where c̃J = 1/ log(4/(3+Φ(1))) and Φ(·) is the cumulative distribution function (CDF) of a normal
distribution.

Additionally we select

n0(k) =

⌈
ñ0 + κ+

L · dmax

H − 1
· ek + ñ0 + κ√

Hek − k −H2

⌉
, ñ0 = (c0 + 1 + log17/16(T)) · κ

where c0 is an absolute constant defined in (5) (see Appendix D.3), κ is the posterior inflation
coefficient and L = Lr + (1 + LF)LV is a constant. Next we restate the regret bound result for
Adaptive-Staged-RandQL algorithm.

Theorem (Restatement of Theorem 3). Consider a parameter δ ∈ (0, 1). Let κ ≜ 2(log(8HCN/δ)+

dc log2(8T/dmax) + 3 log(eπ(2T + 1))), r0 ≜ 2. Then it holds for Adaptive-Staged-RandQL,
with probability at least 1− δ,

RT = Õ
(
LH3/2

H∑
h=1

T
dz,h+1

dz,h+2

)
,

where dz,h is the step-h zooming dimension and we ignore all multiplicative factors in the covering
dimension dc.

42

Proof. We divide the proof to four main parts, a little bit different proof of Staged-RandQL and
Net-Staged-RandQL since we also need to apply clipping techniques.

Concentration events We can define (almost) the same set of events as in Appendix E.3, where
union bound over balls is taken over all the hierarchical partition tree up to depth D that we define as
TD.

E⋆(δ) ≜

{
∀t ∈ N,∀h ∈ [H],∀B ∈ TD, k = kth(B), (s, a) = center(B) :

Kinf

(
1

ek

ek∑
i=1

δ
V ⋆
h+1(Fh(s,a,ξℓ

i

h+1))
, phV

⋆
h+1(s, a)

)
≤ β⋆(δ, ek, ε)

ek

}
,

EB(δ, T) ≜

{
∀t ∈ [T],∀h ∈ [H],∀B ∈ TD,∀j ∈ [J], k = kth(B) :∣∣∣∣∣
ek∑
i=0

(
W i

j,ek,k
− E[W i

j,ek,k
]
)(
rh(s

ℓi

h , a
ℓi

h) + V
ℓi

h+1(s
ℓi

h+1)

)∣∣∣∣∣
≤ 60e2

√
r20H

2κβB(δ, ε)

ek + n0(k)
+ 1200e

r0Hκ log(ek + n0(k))(β
B(δ, ε))2

ek + n0(k)

}
,

Econc(δ, T) ≜

{
∀t ∈ [T],∀h ∈ [H],∀B ∈ TD, k = kth(B) :∣∣∣∣∣ 1ek

ek∑
i=1

V ⋆
h+1(s

ℓik,h(B)

h+1)− phV
⋆
h+1(s

ℓik,h(B)

h , a
ℓik,h(B)

h)

∣∣∣∣∣ ≤
√

2r20H
2βconc(δ, ε)

ek

}
,

E(δ) ≜

{
T∑

t=1

H∑
h=1

(1 + 3/H)H−h
∣∣ph[V ⋆

h+1 − V πt

h+1](s
t
h, a

t
h)− [V ⋆

h+1 − V πt

h+1](s
t
h+1)

∣∣
≤ 2e3r0H

√
2HTβ(δ).

To apply the union bound argument, we have to bound the size of TD. First, we notice that relation
between centers of balls in each layer Pd implies that there at least |Pd| non-intersecting balls of
radius dmax · 2−d−2. Thus, the size of this sub-tree could be bounded as

|TD| ≤
D∑

d=0

Ndmax2−d−2 ≤ CN

D∑
d=0

(
2d+2/dmax

)dc ≤ (8/dmax)
dcCN · 2dc·D.

using the relation between covering and packing numbers, see e.g. Lemma 4.2.8 by Vershynin [2018].
The only undefined quantity here is D, that can be upper-bounded given budget T . To do it, we apply
Lemma B.2 by Sinclair et al. [2023] for any B ∈ Pt

h(
dmax

2 · diam(B)

)2

≤ nth(B) ≤
(

dmax

diam(B)

)2

. (16)

Our goal is to find a value D such that PT+1
h ⊆ TD for any MDPs and correct interactions. To do it,

we notice that it is equivalent to show that diam(B) ≥ dmax2
−D, that could be guaranteed since

diam(B) ≥ dmax

2
√
nT+1
h (B)

≥ dmax

2T
,

which implies that D = 1 + log2(T) is enough. Finally, since for the value of interest

log |TD| ≤ dc log2(T) + logCN + dc log(8/dmax),

we can define the β-functions as follows follows

43

β⋆(δ) ≜ log(8CNH/δ) + dc log2(8T/dmax) + 3 log(eπ(2n+ 1)) ,

βB(δ, T) ≜ log(8CNH/δ) + dc log2(8T/dmax) + log(TJ) ,

βconc(δ, T) ≜ log(8CNH/δ) + dc log2(8T/dmax) + log(2T),

β(δ) ≜ log(16CNH/δ) + dc log2(8T/dmax),

and following line-by-line the proof of Lemma 6, for an event G(δ) = E⋆(δ)∩EB(δ, T)∩Econc(δ, T)∩
E(δ) we have P(G(δ)) ≥ 1− δ/2.

Optimism Next, we state the required analog of Proposition 4. We can show that with probability
at least 1− δ/2 on the event E⋆(δ) the following event

Eanticonc ≜

{
∀t ∈ [T] ∀h ∈ [H] ∀B ∈ TD : for k = kth(B), (s, a) = center(B) :

max
j∈[J]

{
W 0

j,ek,k
r0(H − 1) +

ek∑
i=1

W i
j,ek,k

V ⋆
h+1(Fh(s, a, ξ

ℓi

h))

}
≥ phV

⋆
h+1(s, a) + L · diam(Bt

h)

}
under the choice J = ⌈c̃J · (log(2HT/δ) + log(|TD|))⌉, κ = 2β⋆(δ, T), r0 = 2, and a prior count

n0(k) = ⌈ñ0 + κ+
L · dmax

H − 1
· ek + ñ0 + κ√

Hek − k −H2
⌉

dependent on the stage k, where ñ0 = (c0 + 1 + log17/16(T)) · κ, L = Lr + LV (1 + LF). In
particular, the proof exactly the same as the proof of Proposition 4 for ε dependent on k.

At the same time, it is possible to show that Eanticonc implies

Eopt ≜
{
∀t ∈ [T], h ∈ [H],∀B ∈ Pt

h,∀(s, a) ∈ B : Q
t

h(B) ≥ Q⋆
h(s, a)

}
. (17)

Indeed, in the proof of Proposition 5 we actively uses the bound ρ((sℓ
i

h , a
ℓi

h), (s, a)) ≤ ε. In the
adaptive setting, we have to, at first, use an upper bound ρ((sℓ

i

h , a
ℓi

h), (s, a)) ≤ diam(Bℓi

h) by a
construction B ⊆ Bℓi

h , and then apply Lemma B.2 by Sinclair et al. [2023] by defining an upper
bound

diam(Bℓi

h) ≤ dmax√
n
ℓih
h (Bℓi

h)

≤ dmax√∑k−1
i=0 ei

≤ dmax√
H
∑k−1

i=0 (1 + 1/H)i − k
≤ dmax√

Hek − k −H2

for k = kth(B) for a particular ball B ∈ Pt
h in the case Hek − k −H2 ≥ 0.

By combining event Eopt and the event EB(δ) we can prove the same statement as Corollary 2.

Let t ∈ [T], h ∈ [H], B ∈ Pt
h. Define k = kth(B) and let ℓ1 < . . . < ℓek be a excursions of (B, h)

till the end of the previous stage. Then on the event G′(δ) = G(δ) ∩ Eopt the following bound holds
for k ≥ 0 and for any (s, a) ∈ B

0 ≤ Q
t

h(B)−Q⋆
h(s, a) ≤ H1{Hek/2 ≤ k+H2}+ 1

ek

ek∑
i=1

[V
ℓi

h+1(s
ℓi

h+1)−V ⋆
h+1(s

ℓi

h+1)]+Bt
h, (18)

where

Bt
h = 121e2 ·

√
H2(βmax(δ, T))2

ek
+ 2401e · H(βmax(δ, T))4

ek
+

5L · dmax√
Hek

(19)

where k = kth(B
t
h) and βmax(δ, T) = max{β⋆(δ, T), βB(δ), βconc(δ), β(δ)}. Also we can express

this bound in terms of a diameter of Bt
h as follows

diam(Bt
h) ≥

dmax

2
√
nth(B

t
h)

≥ dmax

2
√∑k

i=0 ei

≥ dmax

2
√
H
∑k

i=0(1 + 1/H)i
≥ dmax

2
√
H

≥ dmax

2
√
H2(1 + 1/H)k+1

≥ dmax

2
√
2Hek

,

44

thus
1√
Hek

≤ 3diam(Bt
h)

dmax
,

and we have

Bt
h ≤ 7566e2H3/2(βmax(δ, T))4diam(Bt

h)/dmax + 15Ldiam(Bt
h)

≤ ρ(H, δ, L) · diam(Bt
h),

(20)

where we define ρ(H, δ, L) ≜ 7566e2H3/2(βmax(δ, T))4/dmax + 15L.

As a additional corollary, we have for all t ∈ [T], h ∈ [H]

V
t

h(s) = max
B∈Rt

h(s)
Q

t

h(B) = Q
t

h(B
⋆) ≥ Q⋆

h(s, π
⋆(s)) = V ⋆

h (s), (21)

where B⋆ is a ball that contains a pair (s, π⋆(s)).

This upper and lower bound have the similar structure as Lemma D.2 by Sinclair et al. [2023] and the
rest of the proof directly follows [Sinclair et al., 2023].

Clipping techniques Next we introduce the required clipping techniques developed by Sim-
chowitz and Jamieson [2019], Cao and Krishnamurthy [2020]. Definition 2 introduces the
quantity gaph(s, a) = V ⋆

h (s) − Q⋆
h(s, a), and for any compact set B ⊆ S × A we define

gaph(B) = min(s,a)∈B gaph(s, a). Finally, we define clipping operator for any µ, ν ∈ R

clip(µ|ν) = µ1{µ ≤ ν}. (22)

In particular, this operator satisfies the following important property

Lemma 8 (Lemma E.2. of Sinclair et al. [2023]). Suppose that gaph(B) ≤ ψ ≤ µ1 + µ2 for any
ψ, µ1, µ2. Then

ψ ≤ clip

[
µ1

∣∣∣∣gaph(B)

H + 1

]
+

(
1 +

1

H

)
µ2

Now we apply this lemma to our update rules, producing a result similar to Lemma E.3 of Sinclair
et al. [2023]. We notice that

gaph(B
t
h) ≤ gaph(s

t
h, a

t
h) = V ⋆

h (s
t
h)−Q⋆

h(s
t
h, a

t
h)

≤ V
t

h(s
t
h)−Q⋆

h(s
t
h, a

t
h) = Q

t

h(B
t
h)−Q⋆

h(s
t
h, a

t
h).

Thus, denoting ψ = Q
t

h(B
t
h)−Q⋆

h(s
t
h, a

t
h) and, by (18),

µ1 = H1{Hekt
h
/2 > kth +H2}+ Bt

h, µ2 =
1

ek

ek∑
i=1

[V
ℓi

h+1(s
ℓi

h+1)− V ⋆
h+1(s

ℓi

h+1)]

we apply Lemma 8 and obtain

V
t

h(s
t
h)−Q⋆

h(s
t
h, a

t
h) ≤ clip

[
H1{Hekt

h
/2 ≤ kth +H2}+ Bt

h|
gaph(B

t
h)

H + 1

]
+

(
1 +

1

H

)
1

ek

ek∑
i=1

[V
ℓi

h+1(s
ℓi

h+1)− V ⋆
h+1(s

ℓi

h+1)]

(23)

for kth = kth(B
t
h) and Bt

h defined in (19).

Regret decomposition The rest of the analysis we preform conditionally on event G′(δ) = G(δ) ∩
Eopt that holds with probability at least 1− δ.

By defining δth = V
t

h(s
t
h)− V πt

(sth) and ζth = V
t

h(s
t
h)− V ⋆

h (s
t
h) we have

RT =

T∑
t=1

V ⋆
1 (s

t
1)− V πt

1 (st1) ≤
T∑

t=1

δt1,

45

and, at the same time, by Bellman equations

δth = V
t

h(s
t
h)−Qπt

h(sth, a
t
h) = V

t

h(s
t
h)−Q⋆

h(s
t
h, a

t
h) +Q⋆

h(s
t
h, a

t
h)−Qπt

(sth, a
t
h)

= V
t

h(s
t
h)−Q⋆

h(s
t
h, a

t
h) + V ⋆

h+1(s
t
h+1)− V πt

h (sth+1) + ξth

= V
t

h(s
t
h)−Q⋆

h(s
t
h, a

t
h) + δth+1 − ζth+1 + ξth,

where ξth = ph[V
⋆
h+1 − V πt

h+1](s
t
h, a

t
h)− [V ⋆

h+1 − V πt

h+1](s
t
h+1) is a martingale-difference sequence.

By (23) we have

T∑
t=1

δth =

T∑
t=1

V
t

h(s
t
h)−Q⋆

h(s
t
h, a

t
h) + δth+1 − ζth+1 + ξth

≤
(
1 +

1

H

) T∑
t=1

1

ekt
h

ekt
h∑

i=1

ζ
ℓi
kt
h

h+1 +

T∑
t=1

δth+1 −
T∑

t=1

ζth+1 +

T∑
t=1

ξth

+

T∑
t=1

clip

[
H1{Hekt

h
/2 > kth +H2}+ Bt

h(k
t
h)
∣∣gaph(Bt

h)

H + 1

]
where kth = kth(B

t
h). Repeating argument of Lemma 5 and Zhang et al. [2020]

(
1 +

1

H

) T∑
t=1

1

ekt
h

ekt
h∑

i=1

ζ
ℓi
kt
h

h+1 ≤
(
1 +

1

H

)2 T∑
t=1

ζth+1 ≤
(
1 +

3

H

) T∑
t=1

ζth+1.

Using an upper bound ζth ≤ δth we have for any h ≥ 1

T∑
t=1

δth ≤
(
1 +

3

H

) T∑
t=1

δth+1 +

T∑
t=1

ξth

+

T∑
t=1

clip

[
H1{Hekt

h
/2 ≤ kth +H2}+ Bt

h

∣∣gaph(Bt
h)

H + 1

]
,

and, rolling out starting with h = 1 we have the following regret decomposition

RT ≤ e3
T∑

t=1

H∑
h=1

H1{Hekt
h
/2 ≤ kth +H2} = (A)

+ e3
T∑

t=1

H∑
h=1

clip

[
Bt
h

∣∣gaph(Bt
h)

H + 1

]
= (B)

+

T∑
t=1

H∑
h=1

(1 + 3/H)H−hξth. = (C)

Term (A) For this term we notice that for any fixed h the following event

Hekt
h
≤ 2(kth +H2) ⇐⇒ H⌊H(1 + 1/H)

kt
h⌋ ≤ 2(kth +H2),

that is guaranteed if

(1 + 1/H)
kt
h ≤ 2T + 3 ⇐⇒ kth log(1 + 1/H) ≤ log(2T/H2 + 3).

Thus, indicator can be equal to 1 no more than H log(2T + 3) times for any t ∈ [T]. As a result,

(A) ≤ e2H3 log(2T + 3).

46

Term (B) Let us rewrite this term using a definition of clipping operator and use the definition of
near-optimal set (see Definition 3)

(B) = e3
T∑

t=1

H∑
h=1

Bt
h1
{
(H + 1)Bt

h ≥ gaph(B
t
h)
}
≤ e3

T∑
t=1

H∑
h=1

Bt
h1{center(Bt

h) ∈ Z
Bt

h

h }.

Next we consider the summation for a fixed h. Here we follow Theorem F.3 by Sinclair et al. [2023]
and obtain

T∑
t=1

Bt
h1{center(Bt

h) ∈ Z
Bt

h

h } =
∑
r

∑
B:diam(B)=r

∑
t:Bt

h=B

Bt
h1{center(B) ∈ Z

Bt
h

h },

where we applied an additional rescaling by a function ρ defined in (20).

Next we fix a constant r0 > 0 and break a summation into two parts: r ≥ r0 and r ≤ r0.

1. Case r ≤ r0. In this situation we have can apply (20)∑
r≤r0

∑
B:diam(B)=r

∑
t:Bt

h=B

Bt
h1{center(B) ∈ Z

Bt
h

h }

= O(Tr0ρ(H, δ, L)).

2. Case r ≥ r0. In this situation we also apply (20) under the indicator function∑
r≥r0

∑
B:diam(B)=r

∑
t:Bt

h=B

Bt
h1{center(B) ∈ Z

Bt
h

h }

≤
∑
r≥r0

∑
B:diam(B)=r·ρ(H,δ,L)

1{center(B) ∈ Z
ρ(H,δ,L)·r
h }

∑
t:Bt

h=B

Bt
h.

To upper bound the last sum we repeat the argument of (14) and apply (16), using the fact
that diam(B) = r · ρ(H, δ, L)

∑
t:Bt

h=B

1
√
ek

≤
kT
h (B)∑
k=0

ek+1√
ek

≤ 4H
√
ek

T
h (B)+1

≤ 4

√
H(nT+1

h (B) + 1) ≤ 4
√
2H · dmax

diam(B)
=

√
32H · dmax

r
.

As a result, we have by (19)∑
t:Bt

h=B

Bt
h ≤

√
32H · dmax

r
·
(
2522e2H(βmax(δ, T))4 + 5Ldmax/

√
H
)

and∑
r≥r0

∑
B:diam(B)=r

∑
t:Bt

h=B

Bt
h1{center(B) ∈ Z

Bt
h

h }

= O

∑
r≥r0

Nr(Z
ρ(H,δ,L)·r
h) · H

3/2dmax(β
max(δ, T))4 + Ld2max

r

.
Finally, by an arbitrary choice of r0 and a definition of zooming dimension with a scaling
ρ = ρ(H, δ, L) (Definition 4)

(B) = O

(H3/2dmax(β
max(δ, T))4 + Ld2max) ·

H∑
h=1

inf
r̃0

Tr0 + ∑
r≥r0

CN,h

r̃dz,h+1

.

47

Term (C) For this term we just apply definition of the main event G(δ) ⊇ E(δ) and obtain

(C) = O
(√

H3Tβmax(δ, T)
)
.

Final regret bound First, we notice that βmax(δ,T) = Õ(dc), therefore we have

RT = Õ

H3dc + (H3/2d4c + L)

H∑
h=1

inf
r0>0

Tr0 + ∑
r≥r0

CN,h

rdz,h+1

+
√
H3Tdc

.
Taking r0 = K−dz,h+1/2 for each h and summing the geometric series we conclude the statement.

48

G Deviation and Anti-Concentration Inequalities

G.1 Deviation inequality for Kinf

For a measure ν ∈ P([0, b]) supported on a segment [0, b] (equipped with a Borel σ-algebra) and a
number µ ∈ [0, b] we recall the definition of the minimum Kullback-Leibler divergence

Kinf(ν, µ) ≜ inf{KL(ν, η) : η ∈ P([0, b]), ν ≪ η,EX∼η[X] ≥ µ} .

As the Kullback-Leibler divergence this quantity admits a variational formula.

Lemma 9 (Lemma 18 by Garivier et al., 2018). For all ν ∈ P([0, b]), u ∈ [0, b),

Kinf(ν, u) = max
λ∈[0,1]

EX∼ν

[
log

(
1− λ

X − u

b− u

)]
,

moreover if we denote by λ⋆ the value at which the above maximum is reached, then

EX∼ν

[
1

1− λ⋆ X−u
b−u

]
≤ 1 .

Remark 2. Contrary to Garivier et al. [2018] we allow that u = 0 but in this case Lemma 9 is
trivially true, indeed

Kinf(ν, 0) = 0 = max
λ∈[0,1]

EX∼ν

[
log

(
1− λ

X

b

)]
.

Let (Xt)t∈N⋆ be i.i.d. samples from a measure ν supported on [0, b]. We denote by ν̂n ∈ P([0, b])
the empirical measure ν̂n =

∑n
i=1 δXi

, where δXi
is a Dirac measure on Xi ∈ [0, b].

We are now ready to state the deviation inequality for the Kinf by Tiapkin et al. [2022b] which is
a self-normalized version of Proposition 13 by Garivier et al. [2018]. Notice that this inequality is
stated in terms of slightly less general definition of Kinf, however, the proof remains completely the
same.

Theorem 4. For all ν ∈ P([0, b]) and for all δ ∈ [0, 1],

P
(
∃n ∈ N⋆, nKinf(ν̂n,EX∼ν [X]) > log(1/δ) + 3 log(eπ(1 + 2n))

)
≤ δ.

G.2 Anti-concentration Inequality for Dirichlet Weighted Sums

In this section we state anti-concentration inequality by Tiapkin et al. [2022a] in terms of slightly
different definition of Kinf.

c0(ε) =

(
4√

log(17/16)
+ 8 +

49 · 4
√
6

9

)2
2

π · ε2
+ log17/16

(
5

32 · ε2

)
. (24)

Theorem 5 (Lower bound). For any α = (α0 + 1, α1, . . . , αm) ∈ Rm+1
++ define p ∈ ∆m such

that p(ℓ) = αℓ/α, ℓ = 0, . . . ,m, where α =
∑m

j=0 αj . Let ε ∈ (0, 1). Assume that α0 ≥
c0(ε) + log17/16(α) for c0(ε) defined in (24), and α ≥ 2α0. Then for any f : {0, . . . ,m} → [0, b0]

such that f(0) = b0, f(j) ≤ b < b0/2, j ∈ {1, . . . ,m} and µ ∈ (pf, b0)

Pw∼Dir(α)[wf ≥ µ] ≥ (1− ε)Pg∼N (0,1)

g ≥

√√√√2αKinf

(
m∑
i=0

p(i) · δf(i), µ

).
Next we formulate a simple corollary of Theorem 5, that slightly relaxes assumptions of this theorem
under assumption µ < b ≤ b0/2.

49

Lemma 10. For any α = (α0+1, α1, . . . , αm) ∈ Rm+1
++ define p ∈ ∆m such that p(ℓ) = αℓ/α, ℓ =

0, . . . ,m, where α =
∑m

j=0 αj . Also define a measure ν̄ =
∑m

i=0 p(i) · δf(i).

Let ε ∈ (0, 1). Assume that α0 ≥ c0(ε) + log17/16(2(α− α0)) for c0(ε) defined in (24). The for any
f : {0, . . . ,m} → [0, b0] such that f(0) = b0, f(j) ≤ b ≤ b0/2, j ∈ [m], and any µ ∈ (0, b)

Pw∼Dir(α)[wf ≥ µ] ≥ (1− ε)Pg∼N (0,1)

[
g ≥

√
2αKinf(ν̄, µ)

]
.

Proof. Assume that assumption α ≥ 2α0 holds.

Then we show that the Theorem 5 also holds for µ ≤ pf . First, we notice that for any γ > 0

Pw∼Dir(α)[wf ≥ µ] ≥ Pw∼Dir(α)[wf ≥ pf + γ] ≥ (1− ε)Pg∼N (0,1)

[
g ≥

√
2αKinf(ν̄, pf + γ)

]
.

By continuity of Kinf in its second argument (see Theorem 7 by Honda and Takemura [2010]) we can
tend γ to zero, and then use an equality Kinf(ν̄, pf) = Kinf(ν̄, µ) = 0.

Next, assume α ≤ 2α0. In this case we have pf ≥ b, thus for any 0 ≤ µ ≤ b

Pw∼Dir(α)[wf ≥ µ] ≥ Pξ∼Beta(α0+1,α−α0)[b0ξ ≥ µ] ≥ Pξ∼Beta(α0+1,α−α0)

[
ξ ≥ 1

2

]
,

where we first apply a lower bound f(j) ≥ 0 for all j > 0 and f(0) = b0, and second apply a bound
µ ≤ b0/2. Here we may apply the result of Alfers and Dinges [1984, Theorem 1.2”] and obtain the
following lower bound

Pw∼Dir(α)[wf ≥ µ] ≥ Φ
(
−sign(α0/α− 1/2) ·

√
2α kl(α0/α, 1/2)

)
≥ (1− ε)Pg∼N (0,1)[g ≥ 0]

where we used α0/α > 1/2.

G.3 Rosenthal-type inequality

In this section we state Rosenthal-type inequality for martingale differences by [Pinelis, 1994,
Theorem 4.1]. The exact constants could be derived from the proof.
Theorem 6. LetX1, . . . , Xn be a martingale-difference sequence adapted to a filtration {Fi}i=1,...,n:
E[Xi|Fi] = 0. Define Vi = E[X2

i |Fi−1]. Then for any p ≥ 2 the following holds

E1/p

[∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p]

≤ C1p
1/2E1/p

∣∣∣∣∣
n∑

i=1

Vi

∣∣∣∣∣
p/2
+ 2C2pE1/p

[
max
i∈[n]

|Xi|p
]
,

where C1 = 60e, C2 = 60.

Additionally, we need some additional lemma to use this inequality in our setting.
Definition 7. A random variable X is called sub-exponential with parameters (σ2, b) if the following
tail condition holds for any t > 0

P[|X − E[X]| ≥ t] ≤ 2 exp

(
− t2

2σ2 + 2bt

)
.

By Theorem 1 of Skorski [2023] we have for any ξ ∈ B(α, β) with β ≥ α and any t > 0

P[|ξ − E[ξ]| ≥ t] ≤ 2 exp

(
− t2

2(v + ct/3)

)
,

where

v =
αβ

(α+ β)2(α+ β + 1)
≤ α

(α+ β)2
, c =

2(β − α)

(α+ β)(α+ β + 2)
≤ 2

α+ β
,

so ξ is (α/(α+ β)2, 2/(3(α+ β))) sub-exponential.

50

Lemma 11. Let X1, . . . , Xn be a sequence of centred (σ2, b) sub-exponential random variables, not
necessarily independent. Then for any p ≥ 2

E
[
max
ℓ∈[n]

|Xℓ|p
]
≤ max{

√
8σ2 log n, 8b log n}p + e(2σ)ppp/2 + 2e(8b)ppp.

Proof. By Fubini theorem we have for any η ≥ 0: E[ηp] = p
∫∞
0
up−1P[η ≥ u]du, thus for any

a > 0 the following holds

E
[
max
ℓ∈[n]

|Xℓ|p
]
= p

∫ ∞

0

up−1P
[
max
ℓ∈[n]

|Xℓ − E[Xℓ]| ≥ u

]
du

≤ ap + p

∫ ∞

a

up−1P[∃ℓ ∈ [n] : |Xℓ| ≥ u]du

≤ ap + 2p

∫ ∞

a

up−1n exp

(
− u2

2(σ2 + bu)

)
du.

By selecting a = max{
√
8σ2 log n, 8b log n} we have

n exp

(
− u2

2(σ2 + bu)

)
≤ exp

(
− u2

4(σ2 + bu)

)
≤ exp

(
− u2

8σ2

)
+ exp

(
− u

8b

)
for any u ≥ a, thus

E
[
max
ℓ∈[n]

|Xℓ|p
]
≤ max{

√
8σ2 log n, 8b log n}p

+ 2p

∫ ∞

a

up−1 exp

(
− u2

8σ2

)
du+ 2p

∫ ∞

a

up−1 exp
(
− u

8b

)
du

≤ max{
√
8σ2 log n, 8b log n}p + p(2

√
2σ)pΓ(p/2) + 2p(8b)pΓ(p).

By the bounds on Gamma-function we have

pΓ(p/2) = Γ(p/2 + 1) ≤ (p+ 1)(p+1)/22−(p+1)/2e1−p/2 ≤ epp/22−p/2

and pΓ(p) = Γ(p+ 1) ≤ (p+ 1/2)p+1/2e1−p ≤ epp (see Guo et al. [2007]), thus

E
[
max
ℓ∈[n]

|Xℓ|p
]
≤ max{

√
8σ2 log n, 8b log n}p + e(2σ)ppp/2 + 2e(8b)ppp.

Proposition 7. Let W1, . . . ,Wn be a sequence of Beta-distributed random variables Wi ∼
Beta(1/κ, (n − 1)/κ) for κ > 0. Let {Fi}i∈[n] be a filtration such that Wi is independent from
Fi−1 : E[Wi|Fi−1] = E[Wi], and X1, . . . , Xn be a sequence of bounded predictable random
variables: E[Xi|Fi−1] = Xi, |Xi| ≤ B.

Then with probability at least 1− δ the following holds∣∣∣∣∣
n∑

i=1

WiXi −
1

n

n∑
i=1

Xi

∣∣∣∣∣ ≤ 60e2B

√
κ log(1/δ)

n
+ 1200eB

κ log(n) log2(1/δ)

n

Proof. First we notice that Zi = (Wi − E[Wi]) · Xi forms a martingale-difference sequence:
E[Zi|Fi−1] = 0. Therefore, we can apply Theorem 6

E1/p

[∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣
p]

≤ 60e
√
p · E1/p

∣∣∣∣∣
n∑

i=1

Vi

∣∣∣∣∣
p/2
+ 120p · E1/p

[
max
i∈[n]

|Zi|p
]
,

where Vi = E[Z2
i |Fi−1] = X2

i Var(Wi). We can easily upper bound the variance of Beta-distributed
random variable and obtain

E1/p

∣∣∣∣∣
n∑

i=1

Vi

∣∣∣∣∣
p/2
 ≤ E1/p

∣∣∣∣∣
n∑

i=1

κX2
i

n2

∣∣∣∣∣
p/2
 ≤

√
κB2

n
.

51

For the second term we apply Lemma 11 since Wi are (κ/n2, 2κ/(3n))-sub-exponential

E1/p

[
max
i∈[n]

|Zi|p
]
≤ B

(
max

{√
8κ log n

n2
,
16κ log n

3n

}
+ e1/p

√
κ

n2
√
p+ (2e)1/p

16κ

3n
· p

)

≤ 20Bκ · p · log n
n

.

Therefore we have

E1/p

[∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣
p]

≤ 60e · p1/2
√
κB2

n
+ 1200 · p2Bκ · log n

n
.

Next we turn from moments to tails. By Markov inequality with p = log(1/δ)

P

[∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ ≥ t

]
≤

(
E1/p

[
|
∑n

i=1 Zi|
p]

t

)p

≤

(
60eB

√
κ log(1/δ)/n+ 1200 log2(1/δ)Bκ log(n)/n

t

)log(1/δ)

.

Taking t = 60e2B
√

κ log(1/δ)
n + 1200eB κ log(n) log2(1/δ)

n we conclude the statement.

H Technical Lemmas

Lemma 12. Let ν ∈ P([0, b]) be a probability measure over the segment [0, b] and let ν̄ = (1 −
α)δb0 + α · ν be a mixture between ν and a Dirac measure on b0 > b. Then for any µ ∈ (0, b)

Kinf(ν̄, µ) ≤ (1− α)Kinf(ν, µ).

Proof. By a variational formula for Kinf (see Lemma 9)

Kinf(ν̄, µ) = max
λ∈[0,1/(b0−µ)]

EX∼ν̄ [log(1− λ(X − µ))].

Since ν̄ is a mixture, we have for any λ ∈ [0, 1/(b0 − µ)]

EX∼ν̄ [log(1− λ(X − µ))] = (1− α)EX∼ν̄ [log(1− λ(X − µ))] + α log(1− λ(b0 − µ)).

Notice that maxλ>0 log(1 − λ(b0 − µ)) = 0. Thus, maximizing each term separately over λ, we
have

Kinf(ν̄, µ) ≤ (1− α) max
λ∈[0,1/(b0−µ)]

EX∼ν̄ [log(1− λ(X − µ))]

≤ (1− α) max
λ∈[0,1/(b−µ)]

EX∼ν̄ [log(1− λ(X − µ))] = (1− α)Kinf(ν, µ).

I Experimental details

In this section we detail the experiments we conducted for tabular and non-tabular environments. For
all experiments we used 2 CPUs (Intel Xeon CPU 2.20GHz), and no GPU was used. Each experiment
took approximately one hour.

I.1 Tabular experiments

In our initial experiment, we investigated a simple grid-world environment.

52

0 5000 10000 15000 20000 25000 30000
episode

0

100000

200000

300000

400000

500000

600000

700000

800000

re
gr

et

name

Randomized QL
Randomized QL with stage
Sampled randomized QL

Figure 2: Regret curves of RandQL, Staged-RandQL and Sampled-RandQL on a grid-world envi-
ronment with 100 states and 4 actions for H = 50 an transitions noise 0.2. We show average over 4
seeds.

Environments For tabular experiments we use two environments.

The first one is a grid-world environment with 100 states (i, j) ∈ [10] × [10] and 4 actions (left,
right, up and down). The horizon is set to H = 50. When taking an action, the agent moves in
the corresponding direction with probability 1 − ε, and moves to a neighbor state at random with
probability ε = 0.2. The agent starts at position (1, 1). The reward equals to 1 at the state (10, 10)
and is zero elsewhere.

The second one is a chain environment described by Osband et al. [2016] with L = 15 states and 2
actions (left or right). The horizon is equal to 30, the probability of moving into wrong direction is
equal to 0.1. The agent starts in the leftmost state with reward 0.05, also the largest reward is equal
to 1 is the rightmost state.

Variations of randomized Q-learning First we compare the different variations of randomized
Q-learning on grid-world environment. Precisely we consider:

• RandQL a randomized version of OptQL, detailed in Appendix B.
• Staged-RandQL a staged version of RandQL, described in Section 3.2.
• Sampled-RandQL a version of RandQL which samples one Q-value function in the ensemble

to act, described in Appendix B.

For these algorithms we used the same parameters: posterior inflation κ = 1.0, n0 = 1/S prior
sample (same as PSRL, see below), ensemble size J = 10. We use a similar ensemble size as the one
used for the experiments with OPSRL by Tiapkin et al. [2022a]. For Staged-RandQL we use stage of
sizes

(
(1 + 1/H)k

)
k≥1

without the H factor, in order to have several epochs per state-action pair
even for few episodes.

The comparison is presented in Figure 2. We observe that RandQL and Sampled-RandQL behave
similarly with slightly better performance for Sampled-RandQL. This is coherent with the experiment
on the comparison between OPSRL and PSRL Tiapkin et al. [2022a] where the optimistic version
performs worst than the fully randomized algorithm. We also note that even with the aggressive stage
schedule, Staged-RandQL needs more episode to converge. We conclude that despite that stage
simplifies the analysis, it artificially slows down the learning in practice.

To ease the comparison with the baselines, for the rest of the experiments we only use RandQL
because of its similarity with OptQL.

Baselines We compare RandQL algorithm to the following baselines:

• OptQL [Jin et al., 2018] a model-free optimistic Q-learning.

53

0 5000 10000 15000 20000 25000 30000
episode

0

100000

200000

300000

400000

500000

600000

re
gr

et

name

Greedy UCBVI
OptQL
PSRL
Randomized QL
RLSVI
UCBVI

0 2000 4000 6000 8000 10000
episode

0

2500

5000

7500

10000

12500

15000

17500

re
gr

et

name
Greedy UCBVI
OptQL
PSRL
Randomized QL
RLSVI
UCBVI

Figure 3: Regret curves of RandQL and several baselines in (left) a grid-world environment with 100
states and 4 actions for H = 50 an transitions noise 0.2, and (right) in a chain environment of length
L = 15, 2 actions for H = 30 with transition noise 0.1: smaller is better. We show average and error
bars over 4 seeds.

• UCBVI [Azar et al., 2017] a model-based optimistic dynamic programming.

• Greedy-UCBVI [Efroni et al., 2019] optimistic real-time dynamic programming.

• PSRL [Osband et al., 2013] model-based posterior sampling.

• RLSVI [Russo, 2019] model-based randomized dynamic programming.

The selection of parameters can have a significant impact on the empirical regrets of an algorithm.
For example, adjusting the multiplicative constants in the bonus of UCBVI or the scale of the noise in
RLSVI can result in vastly different regrets. To ensure a fair comparison between algorithms, we have
made the following parameter choices:

• For bonus-based algorithm, UCBVI, OptQL we use simplified bonuses from an idealized
Hoeffding inequality of the form

βt
h(s, a) ≜ min

(√
1

nth(s, a)
+
H − h+ 1

nth(s, a)
, H − h+ 1

)
. (25)

As explained by Ménard et al. [2021], this bonus does not necessarily result in a true upper-
confidence bound on the optimal Q-value. However, it is a valid upper-confidence bound for
nth(s, a) = 0 which is important in order to discover new state-action pairs.

• For RLSVI we use the variance of Gaussian noise equal to simplified Hoeffding bonuses
described above in (25).

• For PSRL, we use a Dirichlet prior on the transition probability distribution with parameter
(1/S, . . . , 1/S) and for the rewards a Beta prior with parameter (1, 1). Note that since the
reward r is not necessarily in {0, 1} we just sample a new randomized reward r′ ∼ Ber(r)
accordingly to a Bernoulli distribution of parameter r, to update the posterior, see Agrawal
and Goyal [2013].

Results Figure 3 shows the result of the experiments. Overall, we see that RandQL outperforms
OptQL algorithm on tabular environment, but still degrades in comparison to model-based approaches,
that is usual for model-free algorithms in tabular environments. Indeed, as explained by Ménard et al.
[2021], using a model and backward induction allows new information to be more quickly propagated.
For example UCBVI needs only one episode to propagate information about the last step h = H to
the first step h = 1 whereas OptQL or RandQL need at least H episodes. But as counterpart, RandQL
has a better time-complexity and space- complexity than model based algorithm, see Table 2.

I.2 Non-tabular experiments

The second experiment was performed on a set of two dimensional continuous environments
[Domingues et al., 2021a] with levels of increasing exploration difficulty.

54

Algorithm Time-complexity (per episode) Space complexity
UCBVI [Azar et al., 2017]

Õ(HS2A) Õ(HS2A)
PSRL [Osband et al., 2013]

RLSVI [Russo, 2019]

Greedy-UCBVI [Efroni et al., 2019] Õ(HSA)

OptQL [Jin et al., 2018] Õ(H) Õ(HSA)

RandQL (this paper) Õ(H) Õ(HSA)

Table 2: Time- and space- complexity of several tabular algorithms.

Environment We use a ball environment with the 2-dimensional unit Euclidean ball as state-space
S = {s ∈ R2, ∥s∥2 ≤ 1} and of horizon H = 30. The action space is a list of 2-dimensional vectors
A = {[0.0, 0.0], [−0.05, 0.0], [0.05, 0.0], [0.0, 0.05], [0.0,−0.05]} that can be associated with the
action of staying at the same place, moving left, right, up or down. Given a state sh and an action ah
the next state is

sh+1 = projS(sh + ah + σzh)

where zh ∼ N ([0, 0], I2) is some independent Gaussian noise with zero mean and identity covariance
matrix and projB is the euclidean projection on the unit ball S. The initial position s1 = σ1z1 with
z1 ∼ N ([0, 0], I2) and σ1 = 0.001, is sampled at random from a Gaussian distribution. The reward
function independent of the action and the step

rh(s, a) = max(0, 1− ∥s− s′∥/c)
where s′ = [0.5, 0.5] ∈ S is the reward center and c > 0 is some smoothness parameter. We
distinguish 3 levels by increasing exploration difficulty:

• Level 1, dense reward and small noise. The smoothness parameter is c = 0.5 ·
√
2 ≈ 0.71

and the transition standard deviation is σ = 0.01.
• Level 2, sparse reward and small noise. The smoothness parameter is c = 0.2 and the

transition standard deviation is σ = 0.01.
• Level 3, sparse reward and large noise. The smoothness parameter is c = 0.2 and the

transition standard deviation is σ = 0.025.

RandQL algorithm Among the different versions of RandQL for continuous state-action space, see
Section 4, we pick the Adaptive-RandQL algorithm, described in Appendix F, as it is the closest
version to the Adaptive-QL algorithm. It combines the RandQL algorithm and adaptive discretization.
For Adaptive-RandQL we used an ensemble of size J = 10 ≈ log(T), κ = 10 ≈ log(T) and
a prior number of samples of n0 = 0.33. Note that we increased the number of prior samples in
comparison to the tabular case as explained in Section 4.

Baselines We compare Adaptive-RandQL algorithm to the following baselines:

• Adaptive-QL [Sinclair et al., 2019, 2023], an adaptation of OptQL algorithm to continuous
state-space thanks to adaptive discretization;

• Kernel-UCBVI [Domingues et al., 2021c], a kernel-based version of the UCBVI algorithm;
• DQN [Mnih et al., 2013], a deep RL algorithm;
• BootDQN [Osband and Van Roy, 2015], a deep RL algorithm with an additional exploration

given by bootstraping several Q-networks;

For Adaptive-QL and Kernel-UCBVI baselines we employ the same simplified bonuses (25) used
for the tabular experiments. For Kernel-UCBVI we used Gaussian kernel of bandwidth 0.025 and
the representative states technique, with 300 representative states, described by Domingues et al.
[2021c].

For DQN and BootDQN we use as netwrok a 2-layer multilayer perceptron (MLP) with hidden layer
size equals to 64. For exploration, DQN utilizes ε-greedy exploration with coefficient annealing from
1.0 to 0.1 during the first 10, 000 steps. For BootDQN we use ensemble of 10 heads and do not use
ε-greedy exploration.

55

0 2500 5000 7500 10000 12500 15000 17500 20000
episode

0

50000

100000

150000

200000

250000

300000

cu
m

ul
ta

tiv
e

re
wa

rd

name

Adaptive Randomized QL
Adaptive Q-Learning
Bootstrap DQN
DQN
Kernel UCBVI

0 2500 5000 7500 10000 12500 15000 17500 20000
episode

0

20000

40000

60000

80000

100000

120000

cu
m

ul
ta

tiv
e

re
wa

rd

name

Adaptive Randomized QL
Adaptive Q-Learning
Bootstrap DQN
DQN
Kernel UCBVI

0 2500 5000 7500 10000 12500 15000 17500 20000
episode

0

20000

40000

60000

80000

100000

120000

cu
m

ul
ta

tiv
e

re
wa

rd

name
Adaptive Randomized QL
Adaptive Q-Learning
Bootstrap DQN
DQN
Kernel UCBVI

Figure 4: Cumulative rewards (higher is better) of Adaptive-RandQL and several baselines in ball
environments with increasing exploration difficulty: Upper Left displays Level 1, Upper Right shows
Level 2, Down shows Level 3. We show average and error bars over 4 seeds.

Algorithm Episode time (second)

Adaptive-RandQL 5.780e−02

Adaptive-QL 4.213e−02

Kernel-UCBVI 1.523e−01

Table 3: Average time of one episode in second (averaged over 20000 episodes).

Results Figure 4 shows the results of non-tabular experiments. Overall, we see that
Adaptive-RandQL outperforms Adaptive-QL in all environments, especially in the sparse reward
setting. However, we see that model-based algorithm is much more sample efficient than model-free
algorithm, as it was shown by Domingues et al. [2021c]. This is connected to low dimension of the
presented environment, where the difference in theoretical regret bounds is not so large. However,
this performance come at the price of 3-times larger time complexity, see Table 3.

Regarding the comparison to neural-network based algorithms, we see that approaches based on
adaptive discretization always outperforms DQN and BootDQN on an environment with non-sparse
rewards. We connect this phenomenon to the fact that neural network algorithms are solving two
problems at the same time: exploration and optimization, whereas discretization-based approaches
solve only exploration problem.

In the setup of sparse rewards it turns out that neural network-based approaches are competitive
with Adaptive-QL and Adaptive-RandQL. Notably, DQN shows itself as the worst one, whereas
Adaptive-RandQL and BootDQN show similar performance, additionally justifying exploration
effect of ensemble learning and randomized exploration.

56

	Introduction
	Setting
	Randomized Q-learning for Tabular Environments
	Concept
	Algorithm
	Regret bound

	Randomized Q-learning for Metric Spaces
	Assumptions
	Algorithms
	Regret Bound

	Experiments
	Conclusion
	 Appendix
	Notation
	Description of RandQL
	[alg:RandQL]RandQL algorithm
	[alg:SampledRandQL]Sampled-RandQL algorithm

	Weight Distribution in [alg:RandQL]RandQL
	Proofs for Tabular algorithm
	Algorithm
	Concentration
	Optimism
	Regret Bound

	Proofs for Metric algorithm
	Assumptions
	Algorithm
	Concentration
	Optimism
	Regret Bounds

	Adaptive RandQL
	Additional Notation
	Algorithm
	Regret Bound

	Deviation and Anti-Concentration Inequalities
	Deviation inequality for `3́9`42`"̇613A``45`47`"603AKinf
	Anti-concentration Inequality for Dirichlet Weighted Sums
	Rosenthal-type inequality

	Technical Lemmas
	Experimental details
	Tabular experiments
	Non-tabular experiments

