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A Caption Construction and Threshold Determination in VALOR1

We provide detailed explanations on how we devise input captions for each event to be used with2

CLIP and CLAP. For the CLIP’s input captions, we add the prompt "A photo of" before each event3

name and modify some of the captions to make them sound reasonable, e.g. changing "A photo4

of speech" to "A photo of people talking." As for CLAP, we add the prompt "This is a sound of"5

before each event name. All input captions devised for CLAP and CLIP are included in Table 1 for6

reference.7

Furthermore, the determination of class-dependent threshold values, θCLIP for CLIP and θCLAP for8

CLAP, is based on the visual and audio segment-level F-score, respectively. This score is achieved by9

comparing the segment-level pseudo labels generated by the respective models against the ground10

truth labels.11

Table 1: The List of Input Captions and Thresholds for CLIP and CLAP. We add the prompt “A
photo of” before each event name to make CLIP’s input captions and the prompt “This is a sound of”
to make CLAP’s input captions.

Events Input Captions thresholds θ
CLIP CLAP θCLIP θCLAP

Speech A photo of people talking. This is a sound of speech 20 0
Car A photo of a car. This is a sound of car 15 0

Cheering A photo of people cheering. This is a sound of cheering 18 1
Dog A photo of a dog. This is a sound of dog 14 4
Cat A photo of a cat. This is a sound of cat 15 6

Frying_(food) A photo of frying food. This is a sound of frying (food) 18 -2
Basketball_bounce A photo of people playing basketball. This is a sound of basketball bounce 18 4

Fire_alarm A photo of a fire alarm. This is a sound of fire alarm 15 4
Chainsaw A photo of a chainsaw. This is a sound of chainsaw 15 2

Cello A photo of a cello. This is a sound of cello 15 2
Banjo A photo of a banjo. This is a sound of banjo 15 2

Singing A photo of people singing. This is a sound of singing 18 1
Chicken_rooster A photo of a chicken or a rooster. This is a sound of chicken, rooster 15 2

Violin_fiddle A photo of a violin. This is a sound of violin fiddle 15 3
Vacuum_cleaner A photo of a vaccum cleaner. This is a sound of vacuum cleaner 15 0
Baby_laughter A photo of a laughing baby. This is a sound of baby laughter 15 2

Accordion A photo of an accordion. This is a sound of accordion 15 2
Lawn_mower A photo of a lawnmower. This is a sound of lawn mower 15 2
Motorcycle A photo of a motorcycle. This is a sound of motorcycle 15 0
Helicopter A photo of a helicopter. This is a sound of helicopter 16 2

Acoustic_guitar A photo of a acoustic guiter. This is a sound of acoustic guitar 14 -1
Telephone_bell_ringing A photo of a ringing telephone. This is a sound of telephone bell ringing 15 2

Baby_cry_infant_cry A photo of a crying baby. This is a sound of baby cry, infant cry 15 3
Blender A photo of a blender. This is a sound of blender 15 3

Clapping A photo of hands clapping. This is a sound of clapping 18 0
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B More AVVP Implementation Details12

In our experiments, we apply two different model architectures: 1) the standard model architecture,13

which is employed in VALOR, consists of a single HAN layer with a hidden dimension of = 512;14

2) the variant model architecture, which is used in VALOR+ and VALOR++, is a thinner yet deeper15

HAN model, comprising four HAN layers with a hidden dimension of = 256. Both models contain16

approximately the same number of trainable parameters. The above details are summarized in Table 217

below. The models are trained using the AdamW optimizer, configured with β1 = 0.5, β2 = 0.999,18

and weight decay set to 0.001. We employ a learning rate scheduling approach that initiates with a19

linear warm-up phase over 10 epochs, rises to the peak learning rate, and then decays according to a20

cosine annealing schedule to the minimum learning rate. We set the batch size to 64 and train for 6021

epochs in total. We clip the gradient norm at 1.0 during training. We attach the code containing our22

model and loss functions to the supplementary files.23

Table 2: Two Different HAN Model Architectures. The “standard” model architecture is used in
VALOR. The “variant” model architecture is used in VALOR+ and VALOR++.

HAN model standard variant

Model Arch. Hyper-parameters
hidden dim 512 256

hidden layers 1 4
trainable params 5.1M 5.05M

Training Hyper-parameters
peak learning rate 1e-4 3e-4
min learning rate 1e-6 3e-6

C Additional Analysis: The Fidelity of Our Segment-level Labels24

To examine the fidelity of our generated segment-level pseudo labels in both modalities, we compare25

our labels, ŷa
t and ŷv

t , with naive segment-level labels, which are obtained by copying the video-level26

label y of a video and assigning it to all segments. In other words, we assume that an event occurs in27

both modalities and all segments if it occurs in the video. As depicted in Table 3, the segment-level28

F-scores of our generated segment-level audio and visual pseudo labels are superior to those of the29

respective naive ones. Notably, our segment-level visual F-score is 10 points higher than the naive30

one. Moreover, we evaluate the fidelity of the audio-visual event labels by performing element-wise31

AND operation on the segment-level audio and visual labels. The segment-level F-score of our32

audio-visual labels significantly surpasses that of the naive ones. These findings present the reliability33

of our segment-level pseudo labels, which can provide more accurate segment-level information to34

facilitate model training.35

Table 3: The Fidelity of Our Segment-level Labels. We compare the segment-level labels generated
from our method with the naive segment-level labels directly copied from the video-level labels,
where we assume the events occurring in a video will occur in both modalities and every segment.
We can see that the segment-level labels generated by our method VALOR are more accurate than the
naive segment-level labels.

Methods Audio Visual Audio-Visual

video labels as segment labels 79.33 69.30 60.69
VALOR-generated segment labels 84.92 (+5.59) 82.80 (+13.50) 76.37 (+15.68)

D VALOR with Pseudo Label Denoising36

In this section, we explore the application of Pseudo Label Denoising (PLD), as proposed in37

VPLAN [5], to refine the segment-level labels generated by our method. The hyperparameters38

for the PLD, specifically K = 4 and α = 6 for the visual modality, and K = 10 and α = 10 for39

the audio modality, are chosen based on the visual and audio F-scores on the validation split. From40
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Table 4, we can see that PLD is less effective in refining our pseudo labels compared to VPLAN’s41

pseudo labels (+1.5 v.s. +2.22 in segment-level metrics and +2.28 v.s. +3.41 in event-level metrics).42

However, it’s worth noting the visual segment-level labels derived from our method before PLD are43

nearly as accurate as those from VPLAN after PLD (72.34 v.s. 72.51). Although we do implement44

PLD in the audio modality, no noticeable improvement is recorded for any audio pseudo labels.45

Referring to Table 5, the model trained with our denoised segment-level labels improves marginally.46

Nevertheless, we outperform VPLAN on Type@AV and Event@AV F-scores in segment-level and47

event-level metrics.48

Table 4: PLD refinement. We evaluate the fidelity (F-score) of the segment-level pseudo labels
before and after pseudo label denoising (PLD). PLD is less effective in refining our pseudo labels
compared to VPLAN’s pseudo labels. However, the visual segment-level labels generated from our
method before PLD are nearly as accurate as those generated from VPLAN after PLD (72.34 v.s.
72.51). Results are reported on the validation split.

Methods PLD Audio Visual
Seg Event Seg Event

VALOR ✘ 80.78 71.69 72.34 66.36
VALOR ✔ 80.78 71.69 73.84 (+1.5) 68.64 (+2.28)

VPLAN [5] ✘ - - 70.29 64.68
VPLAN [5] ✔ - - 72.51 (+2.22) 68.09 (+3.41)

Table 5: Results of Training with Denoised Labels. We outperform VPLAN on Type@AV and
Event@AV F-scores in segment-level and event-level metrics with and without PLD. Results are
reported on the testing split.

Methods PLD Segment-level Event-level
Type Event Type Event

VALOR ✘ 62.0 61.5 56.7 54.2
VALOR ✔ 62.2 61.9 56.6 53.7

VPLAN [5] ✘ 61.2 59.4 54.7 50.8
VPLAN [5] ✔ 62.0 60.1 55.6 51.3

E Qualitative Comparison with Previous AVVP Works49

Aside from quantitative comparison with previous AVVP works, we perform a qualitative evaluation50

as well. In Figure 1, we qualitatively compare with the baseline method HAN [4] and the state-of-51

the-art method JoMoLD [1]. In the top video example, JoMoLD erroneously predicts a “Speech”52

audio event, while all other methods accurately identify the audio events. In the bottom example,53

HAN produces identical temporal annotations for the “Speech” event in both modalities, despite the54

event only occurring audibly. Additionally, our method provides annotations that more closely align55

with the ground truth than either HAN or JoMoLD when the events occur intermittently, which is a56

challenging task for models to generate accurate predictions.57

F More Audio-Visual Event Localization Details58

Baseline Method We adopt the baseline model HAN to aggregate unimodal and cross-modal59

temporal information as we have done in the AVVP task. For brevity, we introduce our baseline60

method from the procedure after feature aggregation. The segment-level audio features and visual61

features, f̂a
t and f̂v

t (∈ Rd), output from HAN are processed through a 2-layer feed-forward network62

(FFN) to yield the unimodal segment-level predictions (logits), za
t and zv

t (∈ R(C+1)), respectively:63

zm
t = FFN(f̂m

t ), m ∈ {a, v}, (1)

where C + 1 denotes the number of event classes and the “background” event. Since segment-64

level labels are not available in the weakly-supervised setting, we simply infer video-level logits65
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Figure 1: Qualitative Comparison with Previous AVVP Works. “GT” denotes the ground truth
annotations. We compare with HAN [4] and JoMoLD [1]. In general, the predictions generated by
our method VALOR are more accurate than those produced by the other methods.

z ∈ RC+1 by averaging all logits over time dimension t and modality dimension m. Finally, the66

binary cross-entropy loss is applied to train the model:67

Lave
video = BCE(Sigmoid(z),y), z =

1

2T

∑
t

∑
m

zm
t (2)

Harvesting Training Signals The main idea of our method is to leverage large-scale open-68

vocabulary pre-trained models to provide modality-specific segment-level pseudo labels. We elaborate69

on how these pseudo labels are generated. Initially, segment-level audio logits and visual logits,70

zCLAP
t and zCLIP

t (∈ RC ), are generated in a manner identical to the AVVP task. Then, we use two sets71

of class-dependent thresholds, ϕCLAP and ϕCLIP (∈ RC), to construct the uni-modal segment-level72

labels ŷa
t and ŷv

t (∈ RC), respectively:73

ŷm
t = y ∧ {zP

t > ϕP }, (m,P ) ∈ {(v,CLIP), (a,CLAP)} (3)

In addition, we append an additional event “background” to the end of the segment-level labels ŷv
t74

to expand the dimension to RC+1. If ŷm
t consists solely of zeros, we assign the last dimension75

(“background”) a value of one; otherwise, we assign it a value of zero. In other words, if an event76

could possibly occur in a video and the pre-trained model has a certain confidence that the event is77

present in a specific video segment, that segment will be labeled as containing the event; otherwise,78

the segment will be labeled as “background”. Having prepared the segment-level pseudo labels ŷa
t79

and ŷv
t , we compute binary cross-entropy loss in individual modality and combine them to optimize80

the whole model instead of using the video-level loss Lave
video:81

Lave
VALOR = BCE(Sigmoid(za

t ), ŷ
a
t ) + BCE(Sigmoid(zv

t ), ŷ
v
t ) (4)

Dataset & Evaluation Metrics The Audio-Visual Event (AVE) Dataset [3] is composed of 414382

10-second video clips from AudioSet [2] that cover 28 real-world event categories, such as human83
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activities, musical instruments, vehicles, and animals. Each clip contains an event and is uniformly84

split into ten segments. Each segment is annotated with an event category if the event can be detected85

through both visual and auditory cues; otherwise, the segment is labeled as background. However, we86

only use video-level labels indicating which event occurs in the video during training. We follow [3]87

to split the AVE dataset into training, validation, and testing split and report the results on the88

testing split. Following the previous work [3], we use the accuracy of segment-level event category89

predictions as the evaluation metric.90

Implementation Details The pre-trained large ViT-based CLIP and R(2+1)D are used to extract91

2D and 3D visual features, respectively, which are then concatenated to represent low-level visual92

features. The pre-trained HTSAT-RoBERTa fusion-based CLAP is used to extract audio features. We93

adopt the standard HAN model (1-layer and 512-dim) in this task. AdamW optimizer with β1 = 0.5,94

β1 = 0.999, and weight decay = 1e − 3 is used to train the model. A learning rate scheduling of95

linear warm-up for 10 epochs to the peak learning rate of 3e− 4 and cosine annealing decay to the96

minimum learning rate of 3e− 6 is adopted. The batch size and the number of total training epochs97

are 16 and 120, respectively. We clip the gradient norm at 1.0 during training.98
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