A Complexity Analysis of STA

In this subsection, we analyze the time complexity of SubTree Attention (STA). STA has two key
components: the feature map and the HopAggregation function. Both of these components offer a
wide range of potential options for consideration. Different options will affect the time complexity of
STA. In the following analysis, we will adopt the configuration used by STAGNN, i.e., we choose
¢(x) = elu(x) + 1 as the feature map and use GPR-like aggregation as the HopAggregation function.

The computation of STA can be seen as an aggregation of {STA, };c[1, k7, which refer to the attention-
based aggregation of each level of the rooted subtree. Therefore, we can start by analyzing the time
complexity of STA.
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Figure 6: Efficient algorithm of SubTree Attention

The calculation of STA, can be divided into three steps. In the first step, we compute ¢(K;.) and
#(K;.)T'V;. for each node. The time complexity of this step depends on the feature map. In our
model, we chose ¢(z) = elu(x) + 1 as the feature map. Thus, the time complexity of computing
#(K;.) is O(Ndy). We also need to compute ¢(K;.)? V. for each node, the time complexity of this
part is O(Ndyd,). Therefore, the overall time complexity of the first step is O(Ndy + Ndyd,).

In the second step, we let ¢(K;.) and ¢(K;.)T V. propagate on the graph. For STA;, we need
to propagate k times. The time complexity of propagating ¢(K;.) once is O(dy), and the time
complexity of ¢(K;.)T'V;. propagating once is O(dxd,,). The message propagation occurs on each
edge. Considering that there are in total || edges and k times propagation, the overall time complexity
of this step is O(k|E|dy, + k|E|dkdy).

In the third step, we use the information Zjvzl Al ¢(K;)TV;, and Zjvzl Al ¢(K ;)T aggregated
by each node, along with the node’s own query ¢(Q;.), to complete the computation of STA. For
each node, we need to calculate ¢(Q;.) Zjvzl Afj #(K;.)T'V ., the time comple)iity of this part is
O(Ndyd,). At the same time, for each node, we need to calculate ¢(Q;.) Zjvzl Afj #(K;.)T, the
time complexity of this part is O(Ndy). So the total time complexity of this step is O(Ndy + Ndyd,, ).

In summary, the total time complexity of STAy, is O(2Ndy, + 2Ndyd, + k|E|dy, + k|E|dkd,).

Next, we analyze the time complexity of STA when the height of the rooted subtree is K. It should be
noted that {STAi}iE[[L K7 can be viewed as a nested process, calculated one after another. Therefore,
the first two steps of the above-mentioned calculation of STA;, do not need to be repeated. We only
need to complete the full calculation of STA i and perform the third step mentioned above K times.
Therefore, the time complexity of calculating STA is O((K + 1)Ndj, + (K + 1)Ndyd, + K|E|dy, +
K|€|dkd,). In general, we can think of the time complexity of STA as O(K|E|dyd.).
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B Proof for Theorem 1

B.1 Proof for

Let A denote the random walk matrix of a connected and non-bipartite graph, and let Ay, denote the
symmetric normalized adjacency matrix. Let 1 = Ay > - -+ > Ay be the eigenvalues of A, which are

also the eigenvalues of Ay [26]. Let vq, va,. .., vy be the corresponding orthonormal eigenvectors
(v1,Va,...,Vy here are column vectors). Let w; = % and d(i) denotes the degree of the i
i=1 g

node. A = 1 — max{\s, |\,|} denotes the corresponding spectral gap, and let D be the diagonal
degree matrix. ? denotes an all-ones column vector.

In this subsection, we prove the following results:

Vi,j € [1,N]? Ve >0, 3Ky € N, Vk > Ko, |A¥, — ;| < e

N
And for a given e, the smallest K that satisfies the condition above is at most O (%) .

We begin by considering an arbitrary distribution p; € R, which is a column vector and ||p;|2 = 1.

Notice that vq,va, ..., v, form an orthonormal basis, we can rewrite D’%pi as:
N
1
D 2p; = ZCiVi (13)
i=1

We next consider the new distribution obtained when p; undergoes k-step random walk. Notice that
A—AD"' =D (D"}AD }) D% = D¥AyD %, Thus we have:

~ k
Akpi = (D%AsymD_%) Pi

1 ~1
=D2AF D 2p;

sym

N
1
=Dz2AF E CiVi
i=1

sym
(14)

sym 1

N
1
= E CiDQAk Vi
i=1

N
1 1
=cD2AL vi + § cDzAF vy

sym
=2

. —
We now consider ¢;DZ A* v;. As we know that D 1

sym is an eigenvector of Ay, with eigenvalue
1. We then have:

L= —— (15)
D= 1|
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Notice that [Dz 1 ||, = Zf\;l d(i). Using the fact that vq,va, ..., vy, form an orthonormal basis

and D_%pi = Zfil ¢;vi, we then have:

AT
cL = (Dfépi) vy

=pi’D2 ﬁDf?
Dz 1|,
_ piT?
DT
_ 1
D=1 |
1

YL, d(i)

Notice that Afymvl = A¥v; and \; = 1. Thus we have:

1 1
ClD2Ak V1 = 01D2)\11€V1

sym

1
= 61D2V1

Considering [Equation 14|and [Equation 17} we have:

sym ' 1

N
Afp; =m + ZciD%Ak Vi
i=2
and immediately:
N
~ 1 .
1A*p; — 7[5 = D eD=AL,vill3
i=2

N
1
= ||D2 Z CiAfymVng
1=2

N
1 k
<D 11> Ak vill3
i=2

1
where |||[Dz |||, = sup ”ﬂ;ﬁ“"’ = \/dmax. Thus we have:
z€RN

N
1A i — 7013 < dunax ) ciAGmvill3
i=2
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And using the fact that vi,va,..., vy, are orthonormal and 1 — A = max{\o, |An|} =
max{|Az|, |As], ..., |An]|}, we then have:

N
1A* i — 713 < dua|Y_ cidlvill3

1=2

N
= dnax Y _ AP
port 1)

N
S dmax(1 - S‘)Qk Z sz
=2

= dyax (1 — )2 [| D~ 2 3 I3

Notice that [D~2p;||3 < [||D~2]||? ||pi||3 = 7~ Therefore:

. inax .
[AFp; — 73 < 7= (1— A)?F (22)

dmin
and immediately:

A dmax 1
|Afps — ]y < S (1= )

< VN(1 - B (23)
< \/Nefkj‘

Using Cauchy—Schwarz, we then have:

|A*p; — 7|y < VN[ AFp; — m|]y < Ne™* (24)
N

e

In conclusion, given an arbitrarily small positive number e, for all ky greater than or equal to i log

the L1 norm of the difference between A¥ pi and the vector 7t is less than or equal to €. This result
establishes that i log % indeed serves as an upper bound.

Notice that the vector p; is an arbitrary distribution. Thus, we may consider p; to be one of
the 4 unit basis vector in the N-dimensional space: {pi,Ppa,--., PN}, Where each vector has
only one element equal to 1 (the ™ element) and all other elements equal to 0. Thus we have

HAkpj -7l = vazl \Afj — m;|. Then given € > 0, we have that:
1, N & .
Vi € [1, N], szilog?7 S JAY - <e (25)
i=1

which demonstrates immediately the first part of Theorem 1:

1. N
Vi, j € [1, N]?, vk > Xlog—, |Af, — ;| <e (26)
€

B.2 Proof for

In this subsection, we prove the following results: if V' is computed by V = o (XWy,) where o is a
non-negative activation function, then:

1"‘77_ SA(Q,K,V)” _1_77

holds true when none of the denominators is equal to zero. And for a given 7, the smallest K that

Vi, j € [1,N]?, ¥n €]0,1[, 3K, € N, Vk > K,

log %

satisfies the condition shown in[Equation 11|is at most O <1_max{/\2|)\n|} .

This result can, indeed, be viewed as a straightforward corollary of Equation (I0). The crucial
prerequisite is that all elements of the vector V must be positive. Importantly, there are no specific
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requirements imposed on the non-negative activation function o, meaning it can be any function that
ensures non-negativity.

STA, and SA are defined as follows:
Z] 1 Afj Sim(Qi:) K])V

STAL(Q, K, V)i, = 2
Zj:l Afj Slm(Qi:v Kj:) (27)
N )
AQ.K, V)i = > i1 ™ sim(Q;, K ) V.
' S misim(Qi, K
shows their form as row vectors. Their j™ elements are:
STAk-(Q K V)” _ Zt 1 Avt SIm(Qi'aKti)th
Zt 1 Azt sim(Q;:, Ky.) (28)
A(Q K V) _ Zt:l T; Slm(Qi:7Kt:)th
’ Zivzl ™5 Sim(Qi:a Kt:)
Hence, we have:
STAk(Qa Ka V)’L] Et 1 A"Lt SIm(Qi:a Kt:)th x Ziv 1 ™5 Sim(Qi:a Kt:) (29)

SA(Q,K,V);; thl 7, sim(Q;:, Ki.) Vi, Zt 1 Alt sim(Q;., K;.)

For clarity, we proceed under the assumption that none of the denominators equal zero, which is
reasonable considering the context. Let §;; represent the difference between Af’t and 7r;: AZ =
7; + 0;t. Given 7 €]0, 1], we aim to determine an upper bound of the convergence rate between
STA; and SA.

Using [Equation 10} we take ¢ = 3% and we have immediately:

_ ) ZIOgE n
Vi, t € [1, N]*, Vk > 1_5\ AR — 7| = 64| Se:m (30)

We can rewrite [Equation 29|as

STA(Q.K, V)i; _ 300, (mi + 0i) sim(Que Ko )Viy 30,70, m; sim(Qi, Kr.)
SA(Q, K, V);; SN sim(Qi, Ki) Vi SN (i + 0y) sim(Qi, Ko

3D

Soie St sim(Qu: Ky ) Vi
S s sim(Qr K )V, in the first part of

[Equation 31| Using IEquation 30|and the fact that sim(Q;., K;.) and V; are all positive, we have:

Assuming that £ >

2log ,ﬁ . . .
- Considering the fraction

|Z 3¢ sim Qz K th| = Z|5zt\ sim Qz K )th

t=1 t=1
v (32)
<> ~z S im(Qi:, Ki:) Vi,
t=1
Notice that V¢ € [1, N], m; > . Hence, we have:
N N
i i i:aK:V" ) i:aK:V" 33
|;wm@ WVi| > ;Nmm 2Vi; (33)
Therefore:
Ziv:1 i sim(Qy:, Kyp.) Vi |Zt 1 0t sim(Qi, K. )th‘ <p<1 (34)
Sy misim(Qi Ki) Vi | [y sim(Qi, Ki ) Vi |
Thus we have N
i+ 04t) si iy Ki:) Vi
1_77S Zi&:l(Tr + t)SIm(Q. t) tj §1+n (35)

Ei\]:l ™ Sim(Qi:v Kt:)vtj
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Table 3: Statistics on datasets

Dataset Context #Nodes #Edges # Features # Classes
Cora Citation 2,708 5,429 1,433 7
Citeseer Citation 3,327 4,732 3,703 6
Deezer Social Connection 28,281 92,752 31,241 2
Actor Co-occurrence 7,600 29,926 931 5
Pubmed Citation 19,717 44,324 500 3
CoraFull Citation 19,793 126,842 8,710 70
Computer  Co-purchasing 13,752 491,722 767 10
Photo Co-purchasing 7,650 238,163 745 8
CS Co-authorship 18,333 163,788 6,805 15
Physics Co-authorship 34,493 495,924 8,415 5

Sy i sim(Qi Ki:)
SN (witdir) sim(Qi:, Ky:)

Considering the second part of [Equation 31} Utilizing the same line of

reasoning, we can obtain:
N .
Zt:l dir sim(Q;., Ky.)

; <n<l (36)
Zi\;l ™ Slm(Qi:a Kt:)
and N
1 < NEt:1 ™ Slm(Qi:7 Kt:) < 1 (37)
1+ N Zt:l(ﬂi + 6lt) Sim(Qi:a Kt:) 1- n
Considering [Equation 35| [Equation 37]and [Equation 31} we finally prove that:
1- STAL(Q,K,V),;; 1

U < k(Q7 ) ) J < + n (38)

1+~ SAQK,V);; ~1-n9

which proves the second part of Theorem 1.

C Dataset Information

In this section, we present the datasets used in our experiments. These different types of data provide
a robust platform to evaluate the performance of our methods.

The detailed information for each dataset is presented in These datasets are drawn from the
areas of citation networks, co-purchasing networks, co-authorship networks, and social networks:
Citation Networks: The citation networks datasets include Cora, Citeseer, Pubmed, and CoraFull.
Nodes in these networks correspond to scientific publications, while the edges represent citations
between these documents. In addition to the topological structure, each node carries a binary attribute
vector, encoding the presence or absence of specific words from a pre-determined dictionary. The
dimensionality of these attribute vectors varies from 1,433 in Cora to 8,710 in CoraFull. Moreover,
each document node is associated with a unique class label, signifying the document’s overarching
scientific discipline. e Co-authorship Networks: We utilize the CoauthorCSDataset and Coauthor-
PhysicsDataset that capture co-authorship relationships in Computer Science and Physics domains,
respectively. Nodes represent individual authors and edges encode co-authorship relations, thus
creating an undirected graph. e Co-purchasing Networks: We utilize the AmazonCoBuyComputer-
Dataset and AmazonCoBuyPhotoDataset, derived from Amazon’s co-purchasing network. Nodes
denote products and edges symbolize frequent co-purchase incidents. Moreover, the nodes can carry
diverse product-specific information. e Social Networks: The Deezer-Europe dataset is a dataset
representing a social network of Deezer users collected via the public API in March 2020. The nodes
in this network symbolize Deezer users hailing from various European countries, while the edges
represent reciprocal follower relationships between these users. The features of each node are derived
from the preferences of the users, specifically, the artists they have expressed an interest in. The task
associated with this graph involves binary node classification, wherein the objective is to predict
the user’s gender. @ Co-occurrence Networks: We utilize the Actor dataset, a type of co-occurrence
network based on the Microsoft Academic Graph. Nodes represent actors, and an edge signifies their
co-appearance on the same Wikipedia page.
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D Implementation Details

Positional Encoding We use Laplacian positional encoding to capture the structural information.
As positional encoding is not the focus of our work, we use a simple approach to combine positional
encoding with the original features of the nodes, which is also applied by [6]. Formally, we first
calculate the eigenvectors corresponding to the smallest m eigenvalues of the Laplace matrix to
construct the matrix P € R"*"™. Then we take X’ = [X, P] as the new input, where [ ] denotes
row-wise concatenation. For all the datasets, we set m = 3.

D.1 Node Classification

Training Details We choose two recent studies [43} 6] and we adhere to their experimental config-
urations. The metrics for the baselines are also derived from these works [43}16]. For Cora, Citeseer,
Deezer and Actor, we apply the same random splits with train/valid/test ratios of 50%/25%/25%
as [43]. We conduct 5 runs with different splits and take the mean accuracy and standard deviation
for comparison. For Pubmed, Corafull, Computer, Photo, CS and Physics, we apply the same random
splits with train/valid/test ratios of 60%/20%/20% as [6]. We conduct 10 runs with different splits and
take the mean accuracy and standard deviation for comparison. Specifically, we utilize the ROC-AUC
measure for binary classification on the Deezer dataset. For other datasets containing more than
two classes, we opt for Accuracy as the metric. We employ the Adam optimizer for gradient-based
optimization. The training procedure can at most repeat until a given budget of 3000 epochs and we
set the patience of early stop to 200 epochs. We report the test accuracy of the epoch which has the
highest accuracy on the validation set.

Hyperparameters For the model configuration of STAGNN, we fix the number of hidden channels
at 64. We use grid search for hyper-parameter settings. The learning rate is searched within
{0.001,0.01}, dropout probability searched within {0.0,0.2,0.4,0.6}, weight decay searched within
{0.0001,0.0005,0.001,0.005}, height of the rooted subtree K searched within {3,5,10}, number of
attention heads searched within {1,2,4,6,8}. The best hyper-parameters are provided in supplementary
materials.

D.2 Study on the Necessity of SubTree Attention in the Presence of Global Attention

In this experiment, we extend STAGNN by replacing the STA module with global attention enhanced
by 0, 1, 2, or 3 hop/hops subtree attention. We now present a detailed mathematical description of the
experimental configurations. Formally, we compare the performance of the STAGNN-based model
equipped with four different attention strategies: Global Attn Only, 1-hop STA + GA, 2-hops STA
+ GA and 3-hops STA + GA on six datasets: Pubmed, Corafull, Computer, Photo, CS and Physics,

with the same experiment setting described in

First, we calculate keys, queries and values.
Q=HW,, K=HWg, V=HWy, H=MLP(X) (39)

Next, the output of the four different models (equipped with global attention enhanced by subtree
attention of different heights) can be described as:

o Global Attn Only:

0 = SA(Q,K,V) (40)
e /-hop STA + GA:
1
0 =arSA(Q K, V) + ) auSTAL(Q K, V) (41)
k=0
e 2-hops STA + GA:
2
0 =arSA(Q. K, V) + ) aSTAL(QK, V) (42)
k=0
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e 3-hops STA + GA:

3
0 =arSA(Q.K, V) + ) aSTAL(QK, V) (43)
k=0

ar here represents the coefficient of teleportation, because we can regard the global attention
enhanced by subtree attention here as the random walk with teleportation. The only difference
between these models is that they use subtree attention of different heights as an auxiliary to global
attention. As shown in [lable 2| we can observe that 2-hops STA + GA and 3-hops STA + GA
outperform Global Attn Only by a large margin.

D.3 Study on HopAggregation Methods

In this experiment, we investigate different choices of the HopAggregation functions within the STA
module. We compare GPR-like aggregation with sum, concat [[18]], and attention-based readout [6].
We now present a detailed mathematical description of the experimental configurations. Formally, we
compare the performance of the following four models: STAGNN-GPR (origin STAGNN), STAGNN-
SUM, STAGNN-CONCAT and STAGNN-ATTN on four datasets: Cora, Citeseer, Deezer-Europe

and Actor, with the same experiment setting described in

First, we calculate keys, queries and values.
Q=HW,, K=HWg, V=HWy, H=MLP(X) (44)

Next, the output of the four different models (STAGNN with different HopAggregation methods) can
be described as:

o STAGNN-GPR (origin STAGNN):

K
0 =) mSTAL(QK,V) (45)
k=0
o STAGNN-SUM:
K
0 =) STAL(Q,K,V) (46)
k=0
o STAGNN-CONCAT:
0= [STAO(Qa K7 V)? STAl(Q7 K7 V) RS STAK(Qa Ka V)] WO (47)
where Wy is a linear projection matrix.
o STAGNN-ATTN:
K
b=l (48)

exp ([STAO(Qa Ka V)v STAk(Q7 Kv V)} WZ)
S exp ([STAG(Q, K, V),STA,(Q, K, V)| W)

B =
where W, is a linear projection matrix and [ | denotes row-wise concatenation.

E More Visualizations of GPR Weights

We conduct more visualizations of the GPR weights on Cora and Actor, with heights K of the rooted
subtrees ranging from 3 to 75. The results are shown in [Figure 7

In the case of Cora, we observe that as the depth K of the rooted subtree increases, STA keeps
increasing the GPR weights of the local neighborhood in order to preserve the local information from
being covered up by the global information.
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Figure 7: GPR weights of STAGNN when the heights K of the subtree ranging from 3 to 75.

F Further discussion of the Gate Mechanism within the Mixture of Attention
Heads

In this subsection, we conduct an ablation study of the gate mechanism within the mixture of attention
heads. The sub-tree attention module with multiple attention heads is defined as follows:
o MSTA w/ gate vector g, w/ softmax (origin STAGNN):
MSTA(Q, K, V) = AGGR ({MSTA(Q,K, V) | k € [0, K]})
MSTAL(Q, K, V) = [headi, ... head? | Wo  VE € [1,K], MSTA(Q,K,V)=V (49
head] = §P' STAL(Q", K®, V®) Vh e [1,H], ¢, = softmax(g,)

The hop-wise gate vector here g, € R is an H-dimensional vector and g} is its h™ element.
Compared to STA with a single attention head, we introduce in total H x K additional learnable

parameters: {g, }ic[1,k]-

For comparison, we consider two variants.

o MSTA w/ gate vector g,,, w/o softmax:
MSTA(Q, K, V) = AGGR ({MSTA,(Q,K, V) | k € [0, K]})
MSTA,(Q, K, V) = [head,lc, .. head? | Wo Wk € [1, K], MSTA(Q.K,V)=V (50)
head] = g STA,(Q", K", V) Vh e [1,H]

o MSTA w/o gate vector g;:
MSTA(Q, K, V) = AGGR ({MSTA;(Q,K,V) | k € [0, K]})
MSTAL(Q, K, V) = [head,i, o headf} Wo Vke[l,K], MSTANQ,K,V)=V (51)
head] = STA,(Q", K®, V®) Vh e [1,H]

The experimental results are shown in[Table 4] We find that the performance of MSTA w/ gate vector
gy, w/o softmax and MSTA w/o gate vector g,, are almost the same, which means that using the gate
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Table 4: Ablation study of the gate mechanism within the mixture of attention heads
Method Pubmed CoraFull Computer Photo CS Physics

STAGNN (origin) 90.46+0.22 72.65+0.36 91.7240.30 95.64+0.27 95.77+0.16 97.09+0.18

w/ gate, w/o softmax 90.3710.23 71.6240.39 91.891027 95.37+10.30 94.7210.19 96.9610.20
W/O gate 90-31i0.25 71-67i0.36 91.80io_23 95.32i0_23 94.70i0,13 96.97i0,1s

vector without softmax is approximately equivalent to not using the gate vector. In fact, on closer
examination, we find that without softmax, the learned gate vector would be a vector with all equal
elements, which means that it is difficult for the model to learn different weights of attention heads
at each hop without the help of softmax. Additionally, we observe that for most datasets, using the
gating mechanism leads to improvement of the overall performance.

G Potential Impacts

Besides learning better node representations, our proposed Subtree Attention (STA) has potential
impacts on various aspects of graph learning. Compared to global attention, STA can help the model
to better learn the hierarchical structure of the graph. Therefore, STA can be utilized as a plug-in
module for designing local-aware Transformers on graph, acting as a competitor of all the GNN-
assisted Transformers. STA opens new avenues for model design by combining the message-passing
scheme with fully-attentional architectures, which can significantly enhance both the computational
efficiency and expressive power of fully-attentional models on graph data. Furthermore, STA bridges
the gap between local and global graph attention methods. This opens up possibilities for the design
and application of hierarchical attention models that can leverage both local neighborhood and global
structural information from graph data.
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