
A Algorithm Description544

The pseudocode of VGDF is presented in Algorithm 1. We utilize SAC [20] as our backbone545

algorithm. We employ a fixed entropy temperature coefficient in all experiments, demonstrating546

sufficient empirical performance. The training of the dynamics model ensemble follows prior547

works [8, 26] with the MLE loss. The calculation of the Fictitious Value Proximity follows Eq. (6)548

proposed in Section 5.1. Furthermore, the pseudocode of VGDF + BC is presented in Algorithm 2.549

We introduce the value-normalized tradeoff between the behavior cloning loss and the policy gradient550

following the prior work [18].551

Algorithm 1 Value-Guided Data Filtering (VGDF)
Input: Source domain Msrc, target domain Mtar, and transition ratio � (= 10) (source vs. target).
Initialization: Policy ⇡, exploration policy ⇡E, value functions {Q✓i}i=1,2, replay buffers
{Dsrc, Dtar}, dynamics model ensemble {T�i}

M
i=1, data selection ratio ⇠, batch size B, entropy

temperature coefficient �.

1: for t = 1, 2, . . . do
2: # Interact with the source domain

3: Sample transition (ssrc, asrc, rsrc, s0src) using ⇡E in Msrc

4: Dsrc Dsrc [(ssrc, asrc, rsrc, s0src)

5: # Interact with the target domain

6: if t % � == 0 then
7: Sample transition (star, atar, rtar, s0tar) using ⇡ in Mtar

8: Dtar Dtar [(star, atar, rtar, s0tar)

9: end if
10: Optimize dynamics ensemble {T�i}

M
i=1 with Dtar via Eq. (13)

11: Sample bsrc := {(s, a, r, s0)}Bsrc from Dsrc

12: Sample btar := {(s, a, r, s0)}Btar from Dtar

13: Obtain Fictitious Value Proximity (FVP) {⇤(s, a, s0)}B via Eq. (6) for transitions in bsrc

14: Obtain FVP quantile ⇤⇠% of {⇤(s, a, s0)}B

15: # Optimize value function with data filtering

16: ✓i=1,2 � argmin
✓i

1

2B

P
btar

h
(Q✓i � T Q✓i)

2
i
+

17:
1

b2B · ⇠%c

P
bsrc

h
1
�
⇤(s, a, s0) > ⇤⇠%

�
(Q✓i � T Q✓i)

2
i

18: # Optimize policies

19: ⇡E
 argmax

⇡E

1

2B

P
btar[bsrc

h
max {Q✓1(s, a), Q✓2(s, a)} |a⇠⇡E(·|s) + �H[⇡E]

i

20: ⇡ argmax
⇡

1

2B

P
btar[bsrc

⇥
min {Q✓1(s, a), Q✓2(s, a)} |a⇠⇡(·|s) + �H[⇡]

⇤

21: end for

B Proofs of the Performance Guarantees552

This section presents the proof of our main results. Specifically, we propose that the value discrepancy553

can be leveraged for the performance guarantee across different domains Lemma C.3. In Theorem B.1,554

we convert the performance bound induced by the value discrepancy into a novel form for the offline555

source domain setting.556

Theorem B.1. (Performance bound controlled by dynamics discrepancy.) Denote the source557

domain and target domain with different dynamics as Msrc and Mtar, respectively. We have the558

15

Algorithm 2 Value-Guided Data Filtering + Behavior Cloning (VGDF + BC)
Input: Source domain offline dataset Dsrc, target domain Mtar, max interaction steps with the
target domain Tmax, and transition ratio � (:= |Dsrc|

Tmax
= 10) (source vs. target).

Initialization: Policy ⇡, value functions {Q✓i}i=1,2, target domain replay buffer Dtar, dynamics
model ensemble {T�i}

M
i=1, data selection ratio ⇠, batch size B, entropy temperature coefficient �,

train repeat K, behavior cloning constant ↵.

1: for t = 1, 2, . . . , Tmax do
2: # Interact with the target domain

3: Sample transition (star, atar, rtar, s0tar) using ⇡ in Mtar

4: Dtar Dtar [(star, atar, rtar, s0tar)

5: # Repeat training for K times per step

6: for k = 1, 2, . . . , K do
7: Optimize dynamics ensemble {T�i}

M
i=1 with Dtar via Eq. (13)

8: Sample bsrc := {(s, a, r, s0)}Bsrc from Dsrc

9: Sample btar := {(s, a, r, s0)}Btar from Dtar

10: Obtain Fictitious Value Proximity (FVP) {⇤(s, a, s0)}B via Eq. (6) for transitions in bsrc

11: Obtain FVP quantile ⇤⇠% of {⇤(s, a, s0)}B

12: # Optimize value function with data filtering

13: ✓i=1,2 � argmin
✓i

1

2B

P
btar

h
(Q✓i � T Q✓i)

2
i
+

14:
1

b2B · ⇠%c

P
bsrc

h
1
�
⇤(s, a, s0) > ⇤⇠%

�
(Q✓i � T Q✓i)

2
i

15: # Optimize policy with behavior cloning regularization

16: � = ↵/
n

1
2B

P
btar[bsrc

h���min {Q✓1(s, a), Q✓2(s, a)}a⇠⇡(·|s)

���
io

17: ⇡ argmax
⇡

�

2B

P
btar[bsrc

h
min {Q✓1(s, a), Q✓2(s, a)}a⇠⇡(·|s) + �H[⇡]

i
�

18:
1

B

P
(s,a)⇠bsrc

h
(⇡(s)� a)2

i

19: end for
20: end for

performance difference of any policy ⇡ evaluated under Msrc and Mtar be bounded as below,559

⌘Mtar (⇡) � ⌘Msrc(⇡)�
2�rmax

(1� �)2
· E⇢⇡src [DTV (Psrc(·|s, a)kPtar(·|s, a))] .

Proof. We have560

⌘src(⇡)� ⌘tar(⇡) =
�

1� �
E⇢⇡src(s,a)

Z

s0
Psrc(s

0
|s, a)V ⇡

tar(s
0)�

Z

s0
Ptar(s

0
|s, a)V ⇡

tar(s
0)ds0

�
(Lemma C.1)

=
�

1� �
E⇢⇡src(s,a)

Z

s0
(Psrc(s

0
|s, a)� Ptar(s

0
|s, a))V ⇡

tar(s
0)ds0

�


�

1� �
E⇢⇡src(s,a)

Z

s0
|(Psrc(s

0
|s, a)� Ptar(s

0
|s, a))V ⇡

tar(s
0)| ds0

�


�

1� �
·
rmax

1� �
E⇢⇡src(s,a)

Z

s0
|Psrc(s

0
|s, a)� Ptar(s

0
|s, a)| ds0

�

=
2�rmax

(1� �)2
E⇢⇡src(s,a) [DTV (Psrc(·|s, a)kPtar(·|s, a))] . (9)

561

16

Theorem B.2. (Performance bound controlled by value difference.) Denote the source domain562

and target domain as Msrc and Mtar, respectively. We have the performance guarantee of any563

policy ⇡ over the two MDPs:564

⌘Mtar (⇡) � ⌘Msrc(⇡)�
�

1� �
· E⇢⇡Msrc

����EPsrc

⇥
V ⇡
Mtar

(s0)
⇤
� EPtar

⇥
V ⇡
Mtar

(s0)
⇤����

�
.

Proof. We have565

⌘src(⇡)� ⌘tar(⇡) =
�

1� �
E⇢⇡src(s,a)

Z

s0
Psrc(s

0
|s, a)V ⇡

tar(s
0)�

Z

s0
Ptar(s

0
|s, a)V ⇡

tar(s
0)ds0

�
(Lemma C.1)

=
�

1� �
E⇢⇡src(s,a)

Z

s0
(Psrc(s

0
|s, a)� Ptar(s

0
|s, a))V ⇡

tar(s
0)ds0

�


�

1� �
E⇢⇡src(s,a)

����
Z

s0
(Psrc(s

0
|s, a)� Ptar(s

0
|s, a))V ⇡

tar(s
0)ds0

����

�

=
�

1� �
· E⇢⇡Msrc

����EPsrc

⇥
V ⇡
Mtar

(s0)
⇤
� EPtar

⇥
V ⇡
Mtar

(s0)
⇤����

�

566

Theorem B.3. Under the setting with offline source domain dataset D whose empirical estimation567

of the data collection policy is ⇡D(a|s) :=
P

D 1(s,a)P
D 1(s) , let Msrc and Mtar denote the source and568

target domain, respectively. We have the performance guarantee of any policy ⇡ over the two MDPs:569

⌘Mtar (⇡) � ⌘Msrc(⇡)�
4�rmax

(1� �)2
E⇢⇡D

Msrc
,Psrc

[DTV (⇡D||⇡)]�
�

1� �
E⇢⇡D

Msrc

h���⇣(s, a)
���
i
, (10)

where ⇣(s, a) := EPsrc,⇡

⇥
Q⇡

Mtar
(s0, a0)

⇤
� EPtar,⇡

⇥
Q⇡

Mtar
(s0, a0)

⇤
.570

Proof. We have

⌘Mtar (⇡)� ⌘Msrc(⇡) =
⇣
⌘Msrc(⇡D)� ⌘Msrc(⇡)

⌘

| {z }
(a)

�

⇣
⌘Msrc(⇡D)� ⌘Mtar (⇡)

⌘

| {z }
(b)

.

According to Lemma C.2, we have571

⌘Msrc(⇡D)� ⌘Msrc(⇡) � �
1

1� �
E s,a⇠⇢⇡D

Msrc

s0⇠Psrc(·|s,a)

h ��Ea0⇠⇡D(·|s0)
⇥
Q⇡

Msrc
(s0, a0)

⇤
� Ea0⇠⇡(·|s0)

⇥
Q⇡

Msrc
(s0, a0)

⇤��
i

= �
1

1� �
E s,a⇠⇢⇡D

Msrc

s0⇠Psrc(·|s,a)

"�����
X

A
(⇡D(a0|s0)� ⇡(a0|s0))Q⇡

Msrc
(s0, a0)

�����

#

� �
1

1� �
E s,a⇠⇢⇡D

Msrc

s0⇠Psrc(·|s,a)

"�����
X

A
(⇡D(a0|s0)� ⇡(a0|s0))

rmax

1� �

�����

#

� �
rmax

(1� �)2
E s,a⇠⇢⇡D

Msrc

s0⇠Psrc(·|s,a)

"
X

A
|⇡D(a0|s0)� ⇡(a0|s0)|

#

= �
2rmax

(1� �)2
E s,a⇠⇢⇡D

Msrc

s0⇠Psrc(·|s,a)

[DTV (⇡D(·|s0) k ⇡(·|s0))] ,

17

and572

�

⇣
⌘Msrc(⇡D)� ⌘Mtar (⇡)

⌘

= �
�

1� �
Es,a⇠⇢⇡D

Msrc

h
G
⇡1,⇡2

M1,M2
(s, a)

i

� �
2�rmax

(1� �)2
E s,a⇠⇢⇡D

Msrc

s0⇠Psrc(·|s,a)

[DTV (⇡D(·|s0) k ⇡(·|s0))]

�
�

1� �
Es,a⇠⇢⇡D

Msrc

⇥��Es0,a0⇠Psrc,⇡

⇥
Q⇡

Mtar
(s0, a0)

⇤
� Es0,a0⇠Ptar,⇡

⇥
Q⇡

Mtar
(s0, a0)

⇤��⇤ . (Lemma C.3)

Combining the two inequalities above completes the proof.573

C Proofs of Lemmas574

This section provides proof of several lemmas used for our theoretical results. The first lemma is575

adopted from [40], and the proof is essentially the same as the original paper. Lemma C.2 and576

Lemma C.3 support the derivation of the performance difference bound in Theorem B.3.577

Lemma C.1. (Telescoping Lemma, Lemma 4.3 in [40].) Let M1 := (S,A, P1, r, �) and M2 :=
(S,A, P2, r, �) be two MDPs with different dynamics P1 and P2. Given a policy ⇡, let

G
⇡
M1,M2

(s, a) := Es0⇠P1

⇥
V ⇡
M2

(s0)
⇤
� Es0⇠P2

⇥
V ⇡
M2

(s0)
⇤
,

we have
⌘M1(⇡)� ⌘M2(⇡) =

�

(1� �)
Es,a⇠⇢⇡M1

⇥
G
⇡
M1,M2

(s, a)
⇤
.

Proof. Define Wj as the expected return when executing ⇡ on M1 for the first j steps, then switching
to ⇡ and M2 for the remainder. That is

Wj :=
1X

t=0

�tE t<j:st,at⇠P1,⇡
t�j:st,at⇠P2,⇡2

[r(st, at)] = Et<j:st,at⇠P1,⇡
t�j:st,at⇠P2,⇡

" 1X

t=0

�tr(st, at)

#
.

Then we have578

W0 = Es,a⇠⇢M2,⇡ [r(st, at)] = ⌘M2(⇡),

and W1 = Es,a⇠⇢M1,⇡ [r(st, at)] = ⌘M1(⇡).

Thus we can obtain579

⌘M1(⇡)� ⌘M2(⇡) =
1X

j=0

(Wj+1 �Wj). (11)

Convert Wj and Wj+1 as following:580

Wj = Rj + Esj ,aj⇠P1,⇡

⇥
Esj+1⇠P2

⇥
�j+1V ⇡

M2
(sj+1)

⇤⇤

Wj+1 = Rj + Esj ,aj⇠P1,⇡

⇥
Esj+1⇠P1

⇥
�j+1V ⇡

M2
(sj)

⇤⇤

Plug back to Eq.11 and we obtain581

⌘M1(⇡)� ⌘M2(⇡) =
1X

j=0

(Wj+1 �Wj)

=
1X

j=0

�j+1Es,a⇠P⇡
M1,j

h
Es0⇠P1

⇥
V ⇡
M2

(s0)
⇤
� Es0⇠P2

⇥
V ⇡
M2

(s0)
⇤ i

=
�

(1� �)
Es,a⇠⇢⇡M1

h
Es0⇠P1

⇥
V ⇡
M2

(s0)
⇤
� Es0⇠P2

⇥
V ⇡
M2

(s0)
⇤ i

=
�

(1� �)
Es,a⇠⇢⇡M1

h
G
⇡
M1,M2

(s, a)
i
.

582

18

Lemma C.2. (Extension of Telescoping Lemma.) Let M1 := (S,A, P1, r, �) and M2 :=
(S,A, P2, r, �) be two MDPs with different dynamics P1 and P2. Given two policies ⇡1, ⇡2, let

G
⇡1,⇡2

M1,M2
(s, a) := Es0,a0⇠P1,⇡1

⇥
Q⇡2

M2
(s0, a0)

⇤
� Es0,a0⇠P2,⇡2

⇥
Q⇡2

M2
(s0, a0)

⇤
,

we have

⌘M1(⇡1)� ⌘M2(⇡2) =
1

(1� �)
Es,a⇠⇢⇡1

M1

h
G
⇡1,⇡2

M1,M2
(s, a)

i
.

Proof. Define Wj as the expected return when executing ⇡1 on M1 for the first j steps, then switching
to ⇡2 and M2 for the remainder. That is

Wj :=
1X

t=0

�tEt<j:st,at⇠P1,⇡1
t�j:st,at⇠P2,⇡2

[r(st, at)] = Et<j:st,at⇠P1,⇡1
t�j:st,at⇠P2,⇡2

" 1X

t=0

�tr(st, at)

#
.

Then we have583

W0 = Es,a⇠⇢M2,⇡2
[r(st, at)] = ⌘M2(⇡2),

and W1 = Es,a⇠⇢M1,⇡1
[r(st, at)] = ⌘M2(⇡1).

Thus we can obtain584

⌘M1(⇡1)� ⌘M2(⇡2) =
1X

j=0

(Wj+1 �Wj). (12)

Convert Wj and Wj+1 as following:585

Wj = Rj + Esj ,aj⇠P1,⇡1

⇥
Esj+1,aj+1⇠P2,⇡2

⇥
�j+1Q⇡2

M2
(sj+1, aj+1)

⇤⇤

Wj+1 = Rj + Esj ,aj⇠P1,⇡1

⇥
Esj+1,aj+1⇠P1,⇡1

⇥
�j+1Q⇡2

M2
(sj+1, aj+1)

⇤⇤

Plug back to Eq.12 and we obtain586

⌘M1(⇡1)� ⌘M2(⇡2) =
1X

j=0

(Wj+1 �Wj)

=
1X

j=0

�j+1Es,a⇠P⇡1
M1,j

h
Es0,a0⇠P1,⇡1

⇥
Q⇡2

M2
(s0, a0)

⇤
� Es0,a0⇠P2,⇡2

⇥
Q⇡2

M2
(s0, a0)

⇤ i

=
�

(1� �)
Es,a⇠⇢⇡1

M1

h
Es0,a0⇠P1,⇡1

⇥
Q⇡2

M2
(s0, a0)

⇤
� Es0,a0⇠P2,⇡2

⇥
Q⇡2

M2
(s0, a0)

⇤ i

=
�

(1� �)
Es,a⇠⇢⇡1

M1

h
G
⇡1,⇡2

M1,M2
(s, a)

i
.

587

Lemma C.3. (Bound of G⇡1,⇡2

M1,M2
(s, a).) Let

G
⇡1,⇡2

M1,M2
(s, a) := Es0,a0⇠P1,⇡1

⇥
Q⇡2

M2
(s0, a0)

⇤
� Es0,a0⇠P2,⇡2

⇥
Q⇡2

M2
(s0, a0)

⇤
,

we have588

G
⇡1,⇡2

M1,M2
(s, a) 

2rmax

1� �
Es0⇠P1 [DTV (⇡1(·|s

0) k ⇡2(·|s
0))]

+
���Es0,a0⇠P1,⇡2

⇥
Q⇡2

M2
(s0, a0)

⇤
� Es0,a0⇠P2,⇡2

⇥
Q⇡2

M2
(s0, a0)

⇤���.

19

Proof. We have589

G
⇡1,⇡2

M1,M2
(s, a) :=Es0,a0⇠P1,⇡1

⇥
Q⇡2

M2
(s0, a0)

⇤
� Es0,a0⇠P2,⇡2

⇥
Q⇡2

M2
(s0, a0)

⇤

=Es0,a0⇠P1,⇡1

⇥
Q⇡2

M2
(s0, a0)

⇤
� Es0,a0⇠P1,⇡2

⇥
Q⇡2

M2
(s0, a0)

⇤
| {z }

(a)

+ Es0,a0⇠P1,⇡2

⇥
Q⇡2

M2
(s0, a0)

⇤
� Es0,a0⇠P2,⇡2

⇥
Q⇡2

M2
(s0, a0)

⇤
| {z }

(b)

.

For (a), we have590

(a) = Es0⇠P1

"
X

a0

⇡1(a
0
|s0)Q⇡2

M2
(s0, a0)� ⇡2(a

0
|s0)Q⇡2

M2
(s0, a0)

#

 Es0⇠P1

"
X

a0

|⇡1(a
0
|s0)� ⇡2(a

0
|s0)|

rmax

1� �

#

=
rmax

1� �
Es0⇠P1

"
X

a0

|⇡1(a
0
|s0)� ⇡2(a

0
|s0)|

#

=
2rmax

1� �
Es0⇠P1 [DTV (⇡1(·|s

0) k ⇡2(·|s
0))] .

For (b), we have591

(b) = Es0,a0⇠P1,⇡2

⇥
Q⇡2

M2
(s0, a0)

⇤
� Es0,a0⇠P2,⇡2

⇥
Q⇡2

M2
(s0, a0)

⇤



���Es0,a0⇠P1,⇡2

⇥
Q⇡2

M2
(s0, a0)

⇤
� Es0,a0⇠P2,⇡2

⇥
Q⇡2

M2
(s0, a0)

⇤���.

Adding these two bounds together yields the desired result.592

D Detailed Environment Setting593

D.1 Grid World594

In the grid world environment, the agent obtains the X-Y coordination as the state and executes one595

of the four actions (Up, Down, Left, Right) at each time step. A non-zero reward 1.0 is provided only596

if the agent reaches the goal. Each episode terminates when the agent reaches the goal or the episode597

length of 256 is reached. The source domain and the target domain of the grid world are shown in598

Figure 9. For each algorithm, the agent interacts with the source and target domains for 5e5 and 5e4599

steps, respectively.

Figure 9: The source domain (Left) and the target domain (Right) of the grid world environments.
600

D.2 Mujoco Environments601

To investigate the performance of the algorithm thoroughly, we design eight environments based602

on four Mujoco [66] benchmarks from Gym [5] including HalfCheetah-v2, Ant-v4, Walker2D-v2,603

20

Source Domains

Target Domains with
Kinematic shifts

Target Domains with
Morphology shifts

Figure 10: Illustration of all environments, including all source domains (Top), all target domains
with kinematic shifts (Middle), and all target domains with morphology shifts (Bottom).

and Hopper-v2. For each benchmark, we propose two variants with kinematic shift or morphology604

shift. We run all experiments with the original environment as the source domain and the variation605

environment as the target domain. Detailed modifications of the environments are shown below, and606

the illustration of the environments is shown in Figure 10. For algorithms that access interactions607

with both domains, the agent interacts with the source and target domains for 106 and 105 steps,608

respectively.609

Detailed modifications of the environments with kinematic shifts are shown below:610

HalfCheetah - broken back thigh: We modify the rotation range of the joint on the thigh of the611

back leg from [�0.52, 1.05] to [�0.0052, 0.0105].612

Ant - broken hips: We modify the rotation range of the joints on the hip of leg 1 and leg 2 from613

[�30, 30] to [�0.3, 0.3].614

Walker - broken right foot: We modify the rotation range of the joint on the foot of the right leg615

from [�45, 45] to [�0.45, 0.45].616

Hopper - broken joints: We modify the rotation range of the joint on the head from [�150, 0] to617

[�0.15, 0] and the joint on foot from [�45, 45] to [�18, 18].618

Detailed modifications of the environments with morphology shifts are shown below:619

HalfCheetah - no thighs: We modify the size of both thighs. Detailed modifications of the xml file620

are:621

1 <geom fromto="0 0 0 -0.0001 0 -0.0001" name="bthigh" size="0.046" type622

="capsule"/>623

2 <body name="bshin" pos=" -0.0001 0 -0.0001">624

1 <geom fromto="0 0 0 0.0001 0 0.0001" name="fthigh" size="0.046" type="625

capsule"/>626

2 <body name="fshin" pos="0.0001 0 0.0001">627

Ant - short feet: We modify the size of feet on leg 1 and leg 2. Detailed modifications of the xml file628

are:629

1 <geom fromto="0.0 0.0 0.0 0.1 0.1 0.0" name="left_ankle_geom" size="630

0.08" type="capsule"/>631

1 <geom fromto="0.0 0.0 0.0 -0.1 0.1 0.0" name="right_ankle_geom" size="632

0.08" type="capsule"/>633

Walker - no right thigh: We modify the size of thigh on the right leg. Detailed modifications of the634

xml file are:635

21

1 <body name="thigh" pos="0 0 1.05">636

2 <joint axis="0 -1 0" name="thigh_joint" pos="0 0 1.05" range=" -150637

0" type="hinge"/>638

3 <geom friction="0.9" fromto="0 0 1.05 0 0 1.045" name="thigh_geom"639

size="0.05" type="capsule"/>640

4 <body name="leg" pos="0 0 0.35">641

5 <joint axis="0 -1 0" name="leg_joint" pos="0 0 1.045" range="642

-150 0" type="hinge"/>643

6 <geom friction="0.9" fromto="0 0 1.045 0 0 0.3" name="leg_geom"644

size="0.04" type="capsule"/>645

7 <body name="foot" pos="0.2 0 0">646

8 <joint axis="0 -1 0" name="foot_joint" pos="0 0 0.3" range="647

-45 45" type="hinge"/>648

9 <geom friction="0.9" fromto=" -0.0 0 0.3 0.2 0 0.3" name="649

foot_geom" size="0.06" type="capsule"/>650

10 </body>651

11 </body>652

12 </body>653

Hopper - big head: We modify the size of the head. Detailed modifications of the xml file are:654

1 <geom friction="0.9" fromto="0 0 1.45 0 0 1.05" name="torso_geom" size655

="0.125" type="capsule"/>656

E Algorithms and Implementation Details657

E.1 Implementation Details658

The details of our algorithm and baseline methods are specified as follows:659

SAC: We first specify the implementation of the shared backbone algorithm SAC utilized in all660

algorithms. The policy and the value function are two-layer MLP with 256 hidden units using ReLU661

activation. The learning rate is 3e�4. Discount � is set as 0.99 in all environments. The temperature662

coefficient is fixed as 0.2. The batch size is 128. The smoothing coefficient of the target networks is663

0.005. The training delay of the policy is set as 2. The replay buffer size is 1e6.664

VGDF: We use a five-layer MLP with 200 units as the dynamics model using Swish activation665

following prior works [8, 26]. The ensemble size is 7. We set the data selection ratio ⇠% as 25% in666

the experiments shown in Section 6.1. For each probabilistic dynamics model T�i(st+1, rt|st, at) =667

N (µ�i(st, at),⌃�i(st, at)), i = 1, . . . ,M , we train the model by maximizing the objective:668

J(�i) := E(st,at,rt,st+1)⇠Dtar

⇥⇥
µ�i(st, at)�

(st+1, rt)
⇤>

⌃�1
�i

(st, at) [µ�i(st, at)� (st+1, rt)] + log det⌃�i(st, at)
⇤
. (13)

The exploration policy is a two-layer MLP with 256 hidden units. We warm-start the algorithm by669

utilizing samples from both domains without selection for the first 1e5 steps in the source domain.670

DARC: We follow the default configurations of the public implementation (https://github.671

com/google-research/google-research/tree/master/darc). The domain classifiers672

q SAS (st, at, st+1), q SA(st, at) are trained by maximizing the cross-entropy losses:673

J(SAS) := E(st,at,st+1)⇠Dtar
[log q SAS (tar|st, at, st+1)]

+ E(st,at,st+1)⇠Dsrc
[log(1� q SAS (tar|st, at, st+1))] ,

J(SA) := E(st,at)⇠Dtar
[log q SA(tar|st, at)] + E(st,at)⇠Dsrc

[log(1� q SA(tar|st, at))] .

Following the original implementation, we use the standard Gaussian noise for the domain classifier
training. During training, a reward correction �r(st, at) is augmented to the original reward r(st, at)
of each source domain transition, i.e. r̃(st, at) := r(st, at) +�r(st, at). The reward correction is
calculated by:

�r(st, at) := log
q SAS (tar|s, a, s

0)

q SAS (src|s, a, s
0)

q SA(src|s, a)

q SA(tar|s, a)
.

22

https://github.com/google-research/google-research/tree/master/darc
https://github.com/google-research/google-research/tree/master/darc
https://github.com/google-research/google-research/tree/master/darc

Table 2: Hyperparameters. "-" denotes the hyperparameter is not used in the algorithm. " " denotes
the same choice as the algorithm in the first column.

Hyperparameters VGDF DARC GARAT IW Clip Finetune

Hidden layers (Policy) 2

Hidden units per layer (Policy) 256

Hidden layers (Value) 2

Hidden units per layer (Value) 256

Hidden layers (Classifier) - 2 - 2 -
Hidden units per layer (Classifier) - 256 - 256 -
Hidden layers (Dynamics model) 5 - - - -
Hidden units per layer (Dynamics model) 200 - - - -
Ensemble size 7 - - - -
Learning rate 3e�4

Batch size 128

Fixed temperature coefficient 0.2

Target smoothing coefficient 0.005

Policy training delay 2

Buffer size 1e6

Data selection ratio ⇠% 25% - - - -
Warm-start steps 1e5 1e5 - 1e5 -
Importance weight clipping range - - - [1e�4, 1] -
Interactions with grounded src environment - - 1e5 - -

We warm-start the algorithm by training with samples from both domains for the first 105 steps674

following the original implementation.675

GARAT: We use the author implementation with default configura-676

tions (Supplemental in https://proceedings.neurips.cc/paper/2020/hash/677

28f248e9279ac845995c4e9f8af35c2b-Abstract.html). We add the XML files of our678

customized environments to rl_gat/envs/assets/ folder. We limit the extra interactions with the679

grounded source environments as 105 for fair comparisons with other algorithms.680

Importance Weighting Clip (IW Clip): We use the domain classifiers same as DARC to calculate
the importance weight w(s, a, s0). The importance weighting is calculated by:

w(s, a, s0) :=
Ptar(s0|s, a)

Psrc(s0|s, a)
⇡

q SAS (tar|s, a, s
0)

q SAS (src|s, a, s
0)

q SA(src|s, a)

q SA(tar|s, a)
,

where q SAS and q SA are the domain classifiers proposed in [13]. We use the importance weighing
to reweight the value training with source domain samples. Specifically,

✓ argmin
✓

1

2
E(s,a,r,s0)⇠Dsrc

⇥
w(s, a, s0)(Q✓ � T Q✓)

2
⇤
.

To stabilize training, we clip the importance weight between [1e�4, 1], same as the prior work [45].681

Finetune: We first train a policy in the source domain with 106 steps. Then we transfer the policy to682

the target domain and further train the policy for 105 steps.683

The detailed hyperparameters of all algorithms are listed in Table. 2, and we use the same hyperpa-684

rameters across all environments.685

E.2 Implementation Details of the Offline-Online Experiments686

To evaluate the performance of our algorithm in the offline source online target setting, we use687

medium datasets from D4RL [16] for three environments (i.e., HalfCheetah, Hopper, Walker). We688

use the same source domain offline dataset for each environment’s two different target domains. For689

the algorithms performing online learning using offline data (i.e., Symmetric sampling, H2O, VGDF690

+ BC), we perform the online interactions with the target domain for 105 steps and use 106 source691

23

https://proceedings.neurips.cc/paper/2020/hash/28f248e9279ac845995c4e9f8af35c2b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/28f248e9279ac845995c4e9f8af35c2b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/28f248e9279ac845995c4e9f8af35c2b-Abstract.html

domain transitions, the training is repeated for 10 times per step in the target domain. The details of692

the methods are specified as follows:693

Offline only: We directly transfer the policy learned through CQL [31] with the source domain694

offline dataset. For the CQL implementation, we follow the suggested configurations in a public695

CQL implementation (https://github.com/tinkoff-ai/CORL). We perform training for 106696

steps with the offline dataset and report the zero-shot performance of the learned policy in the target697

domain.698

Symmetric sampling [2]: We perform the value function training by combining CQL optimization699

(with offline transitions) and SAC optimization (with online transitions). For each training step, we700

sample 50% of the data from the target domain replay buffer and the remaining 50% from the source701

domain offline dataset. The CQL and SAC loss is computed with the corresponding transitions.702

H2O [45]: We follow the original implementation that learns the classifiers to estimate the dynamics703

discrepancy across domains and perform the clipped importance weighting on the CQL loss on the704

source domain data. Same as Symmetric sampling, we repeat the training for 10 times per step in the705

target domain.706

VGDF + BC: We adapt VGDF to the Offline-Online setting by simply integrating the behavior707

cloning loss following (10). The training is repeated for 10 times per step with the target domain the708

same as the baseline methods. For the trade-off between the policy gradient and behavior cloning, we709

use the value-normalized regularization following the TD3 + BC [18] work and set the constant ↵ as710

5. Furthermore, we remove the exploration policy proposed in Section 5.1 since the online access to711

the source domain is no longer available in the offline-online setting.712

F Additional Experiment Results713

F.1 Quantifying Dynamics Shifts via FVP714

In this section, we investigate whether the estimation of the value differences can quantify the715

difference across domains. Specifically, in different target domains of the same source domain,716

we demonstrate the estimation of FVP in two target domains. As the results show in Figure 11,717

the FVP differs in environments with different dynamics shifts (Kinematic or morphology). We718

observe that the FVP values in two target domains gradually approach each other in three out of four719

environments (HalfCheetah, Walker, Hopper), while the values in Ant remain relatively stationary.720

Furthermore, the FVP values in target domains with kinematic shifts are lower than those with721

morphology shifts across all four environments, which could result from the mismatched state space722

due to the limited joint ranges of robots in the target domain. Given the differences across different723

environments, we believe the FVP estimation could be used to quantify the domain differences.724

Figure 11: Quantification analysis of the approximated FVP in all environments with different
dynamics shifts. The dots are averaged values, and the error bars indicate the standard error across
five runs.

F.2 Sensitivity to Ensemble Size725

We have introduced the dynamics model ensemble to capture the epistemic uncertainty induced726

by the limited samples from the target domain. However, training the ensemble of the dynamics727

model takes extra computation resources. Unlike prior works in model-based RL [26, 57] that utilize728

24

https://github.com/tinkoff-ai/CORL

Figure 12: Performance of the variants with different ensemble size values M . The results validate
that a smaller ensemble size is sufficient to achieve competitive asymptotic performance compared to
the variant with a large ensemble size in most environments.

the generated samples for training, we measure the value difference with the help of the generated729

samples. Therefore, we aim to investigate whether a smaller ensemble size is sufficient to achieve730

competitive asymptotic performance. Here we set the ensemble size as different values (M = 7731

in the original implementation) and run experiments in four environments. As the results show732

in Figure 12, variants with a small ensemble size (e.g., M = 3 or M = 5) can achieve identical733

asymptotic performance compared to the variant with a large ensemble size (e.g., M = 7) in three734

out of four environments.735

F.3 What about Importance Weighting via FVP instead of Rejection Sampling?736

Figure 13: Performance of the variants with rejection sampling or importance weighting technique.
The results demonstrate that the original algorithm using rejection sampling outperforms the variant
using importance weighting via FVP in almost all environments.

In the case of data selection based on the estimated FVP (fictitious value proximity in Eq. (6), one may737

wonder about using importance weighting via the FVP rather than rejection sampling, which might738

be sample-inefficient due to the discarded partial data. Here we implement a variant of our algorithm739

that performs importance weighting with the estimated fictitious value proximity. Specifically, we740

train the value functions following:741

✓i=1,2 argmin
✓i

1

2B

X

{(s,a,r,s0)}B
tar

h
(Q✓i � T Q✓i)

2
i
+

1

2B

X

{(s,a,r,s0)}B
src

"
⇤(s, a, s0)P

{s,a,s0}B ⇤(s, a, s0)
(Q✓i � T Q✓i)

2

#
.

We compare the variant with the original algorithm using rejection sampling in all eight environments742

and demonstrate the results in Figure 13. The original algorithm using rejection sampling outperforms743

25

the variant with importance weighting in almost all environments. The accuracy of the value proximity744

depends on the generated state and the value function. Thus, the estimation of FVP could be biased745

due to the inaccurate dynamics models and value functions in the early training stage, in which case746

naively utilizing the source domain samples weighted by the FVP can harm the policy performance747

concerning the target domain. In contrast, rejection sampling that only utilizes a small portion of748

source domain samples alleviates the negative effect of the source domain samples.749

F.4 What about Data Filtering via Value instead of FVP?750

Figure 14: Performance of the variants that employ data filtering based on Value or FVP. The results
demonstrate that the original algorithm outperforms the variant using data filtering via Value in four
of eight environments.

Prior works have examined sharing data across tasks with different reward functions rather than751

dynamics [70]. To investigate whether selectively sharing data with a high Q value can address the752

online dynamics adaptation problem, we propose a variant of our algorithm that shares partial data753

with a relatively high Q value from the source domain. Specifically, we train the value functions754

following:755

✓i=1,2 argmin
✓i

1

2B

X

{(s,a,r,s0)}B
tar

h
(Q✓i � T Q✓i)

2
i
+

1

b2B · ⇠%c

X

{(s,a,r,s0)}B
src

h
1
�
Q✓i(s, a) > Q⇠%

�
(Q✓i � T Q✓i)

2
i
,

where Q⇠% is the top ⇠-quantile Q value of a batch of source domain samples. We set ⇠% as 25%,756

the same as our implementation. We compare the variant with the original algorithm in all eight757

environments and demonstrate the results in Figure 14. The results demonstrate that the original758

algorithm outperforms the variant using data filtering via value in four of eight environments. Due to759

the dynamics mismatch, a state-action pair from the source domain will lead to inconsistent states760

concerning two domains. Therefore, directly utilizing the transitions with high Q value without761

considering the consistency of the next state would provide a counterfactual value target for the762

state-action pair, which can result in an improper value estimation for learning.763

F.5 Comparison with Dynamics-guided Data Filtering764

To investigate the effect of value consistency, we perform the ablation study by comparing VGDF765

to a variant that shares partial data based on dynamics discrepancies, i.e., Dynamics-guided Data766

Filtering (DGDF). Specifically, we estimate the dynamics discrepancy via the learned classifiers767

following the prior works [13, 45]. Same as VGDF, we share the source domain transitions whose768

estimated dynamics difference is smaller than the quantile value. We set the selection ratios as 25%,769

26

Figure 15: Comparison with the variant performing data filtering based on estimated dynamics
discrepancies. The results demonstrate that the original algorithm outperforms the variant using data
filtering via Value in four of eight environments, validating the effect of the value consistency.

the same as our implementation. The results demonstrate that the original algorithm outperforms770

the variant in three out of four environments, validating the superior effect of the value consistency771

compared to the dynamics discrepancy.772

27

	Introduction
	Related Work
	Preliminaries and Problem Statement
	 Guaranteeing Policy Performance from a Value Difference Perspective
	Motivation Example
	Theoretical Interpretations and Value Discrepancy Perspective

	Value-Guided Data Filtering
	Dynamics Adaptation by Selective Data Sharing
	Adaptation with Offline Dataset of Source Domain

	Experiments
	Adaptation Performance Evaluation
	Ablation Studies
	Performance under Offline Source with Online Target
	Quantifying Dynamics Mismatch via Fictitious Value Proximity

	Conclusion
	Algorithm Description
	Proofs of the Performance Guarantees
	Proofs of Lemmas
	Detailed Environment Setting
	Grid World
	Mujoco Environments

	Algorithms and Implementation Details
	Implementation Details
	Implementation Details of the Offline-Online Experiments

	Additional Experiment Results
	Quantifying Dynamics Shifts via FVP
	Sensitivity to Ensemble Size
	What about Importance Weighting via FVP instead of Rejection Sampling?
	What about Data Filtering via Value instead of FVP?
	Comparison with Dynamics-guided Data Filtering

