BanditPAM++: Faster k-medoids Clustering

Abstract

Clustering is a fundamental task in data science with wide-ranging applications. In k-medoids clustering, cluster centers must be actual datapoints and arbitrary distance metrics may be used; these features allow for greater interpretability of the cluster centers and the clustering of exotic objects in k-medoids clustering, respectively. k-medoids clustering has recently grown in popularity due to the discovery of more efficient k-medoids algorithms. In particular, recent research has proposed BanditPAM, a randomized k-medoids algorithm with state-of-the-art complexity and clustering accuracy. In this paper, we present BanditPAM++, which accelerates BanditPAM via two algorithmic improvements, and is $O(k)$ faster than BanditPAM in complexity and substantially faster than BanditPAM in wall-clock runtime. First, we demonstrate that BanditPAM has a special structure that allows the reuse of clustering information within each iteration. Second, we demonstrate that BanditPAM has additional structure that permits the reuse of information across different iterations. These observations inspire our proposed algorithm, BanditPAM++, which returns the same clustering solutions as BanditPAM but often several times faster. For example, on the CIFAR10 dataset, BanditPAM++ returns the same results as BanditPAM but runs over $10\times$ faster. Finally, we provide a high-performance C++ implementation of BanditPAM++, callable from Python and R, that may be of interest to practitioners at https://github.com/motiwari/BanditPAM. Auxiliary code to reproduce all of our experiments via a one-line script is available at https://github.com/ThrunGroup/BanditPAM_plusplus_experiments/.

1 Introduction

Clustering is a critical and ubiquitous task in data science and machine learning. Clustering aims to separate a dataset \mathcal{X} of n datapoints into k disjoint sets that form a partition of the original dataset. Intuitively, datapoints within a cluster are similar and datapoints in different clusters are dissimilar. Clustering problems and algorithms have found numerous applications in textual data [20], social network analysis [18], biology [28], and education [28].

A common objective function used in clustering is Equation 1:

\[
L(C) = \sum_{j=1}^{n} \min_{c \in C} d(c, x_j). \tag{1}
\]

Under this loss function, the goal becomes to minimize the distance, defined by the distance function \(d\), from each datapoint to its nearest cluster center \(c\) among the set of cluster centers \(C\). Note that this formulation is general and does not require the datapoints to be vectors or assume a specific functional form of the distance function \(d\).

Specific choices of \(C\), dataset \(\mathcal{X}\), and distance function \(d\) give rise to different clustering problems. Perhaps one of the most commonly used clustering methods is \(k\)-means clustering [17, 16]. In \(k\)-means clustering, each datapoint is a vector in \(\mathbb{R}^p\) and the distance function \(d\) is usually taken to be squared \(L_2\) distance; there are no constraints on \(C\) other than that it is a subset of \(\mathbb{R}^p\). Mathematically, the \(k\)-means objective function is

\[
L(C) = \sum_{j=1}^{n} \min_{c \in C} \|x_j - c\|_2^2 \tag{2}
\]

subject to \(|C| = k\).

The most common algorithm for the \(k\)-means problem is Lloyd iteration [16], which has been improved by other algorithms such as \(k\)-means++ [2]. These algorithms are widely used in practice due to their simplicity and computational efficiency. Despite widespread use in practice, \(k\)-means clustering suffers from several limitations. Perhaps its most significant restriction is the choice of \(d\) as the squared \(L_2\) distance. This choice of \(d\) is for computational efficiency – as the mean of many points can be efficiently computed under squared \(L_2\) distance – but prevents clustering with other distance metrics that may be preferred in other contexts [22, 8, 5]. For example, \(k\)-means is difficult to use on textual data that necessitates string edit distance [20], or sparse datasets (such as those found in recommendation systems [15]) that lend themselves to other distance functions. While \(k\)-means algorithms have been adapted to specific other metrics, e.g., cosine distance [23], these methods are bespoke to the metric and not readily generalizable. Another limitation of \(k\)-means clustering is that the set of cluster centers \(C\) may often be uninterpretable, as each cluster center is (generally) a linear combination of datapoints. This limitation can be especially problematic when dealing with structured data, such as parse trees in context-free grammars, where the mean of trees is not necessarily well-defined, or images in computer vision, where the mean image can appear as random noise [28, 15].

In contrast with \(k\)-means clustering, \(k\)-medoids clustering [10, 11] requires the cluster centers to be actual datapoints, i.e., requires \(\hat{C} \subset \mathcal{X}\). More formally, the objective is to find a set of medoids \(\mathcal{M} \subset \mathcal{X}\) (versus \(\mathbb{R}^p\) in \(k\)-means) that minimizes

\[
L(\mathcal{M}) = \sum_{j=1}^{n} \min_{m \in \mathcal{M}} d(m, x_j) \tag{3}
\]

subject to \(|\mathcal{M}| = k\). Note that there is no restriction on the distance function \(d\).

\(k\)-medoids clustering has several advantages over \(k\)-means. Crucially, the requirement that each cluster center is a datapoint leads to greater interpretability of the cluster centers because each cluster center can be inspected. Furthermore, \(k\)-medoids supports arbitrary dissimilarity measures; the distance function \(d\) in Equation (3) need not be a proper metric, i.e., may be negative, asymmetric, or violate the triangle inequality. Because \(k\)-medoids supports arbitrary dissimilarity measures, it can also be used to cluster “exotic” objects that are not vectors in \(\mathbb{R}^p\), such as trees and strings [28], without embedding them in \(\mathbb{R}^p\).

The \(k\)-medoids clustering problem in Equation (3) is a combinatorial optimization algorithm that is NP-hard in general [25]; as such, algorithms for \(k\)-medoids clustering are restricted to heuristic solutions. A popular early heuristic solution for the \(k\)-medoids problem was the Partitioning Around Medoids (PAM) algorithm [11]; however, PAM is quadratic in dataset size \(n\) in each iteration, which
is prohibitively expensive on large dataset. Improving the computational efficiency of these heuristic solutions is an active area of research. Recently, [28] proposed BanditPAM, the first subquadratic algorithm for the k-medoids problem that matched prior state-of-the-art solutions in clustering quality. In this work, we propose BanditPAM++, which improves the computational efficiency of BanditPAM while maintaining the same results. We anticipate these computational improvements will be important in the era of big data, when k-medoids clustering is used on huge datasets.

Contributions: We propose a new algorithm, BanditPAM++, that is significantly more computationally efficient than PAM and BanditPAM but returns the same clustering results with high probability. BanditPAM++ is $O(k)$ faster than BanditPAM in complexity and substantially faster than BanditPAM in actual runtime wall-clock runtime. Consequently, BanditPAM++ is faster than prior state-of-the-art k-medoids algorithms while maintaining the same clustering quality. BanditPAM++ is based on two observations about the structure of BanditPAM and the k-medoids problem, described in Section 4.

The first observation leads to a technique that we call Virtual Arms (VA). The second observation leads to a technique that we refer to as Permutation-Invariant Caching (PIC). We combine these techniques in BanditPAM++ and prove (in Section 5) and experimentally validate (in Section 6) that BanditPAM++ returns the same solution to the k-medoids problem as PAM and BanditPAM with high probability, but is more computationally efficient. In some instances, BanditPAM++ is over 10× faster than BanditPAM. Additionally, we provide a highly optimized implementation of BanditPAM++ in C++ that is callable from Python and R and may be of interest to practitioners.

2 Related Work

As discussed in Section 1, global optimization of the k-medoids problem (Equation (3)) is NP-hard in general [25]. Recent work attempts to perform attempts global optimization and is able to achieve an optimality gap of 0.1% on one million datapoints, but is restricted to L_2 distance and takes several hours to run on commodity hardware [24].

Because of the difficulty of global optimization of the k-medoids problem, many heuristic algorithms have been developed for the k-medoids problem that scale polynomially with the dataset size and number of clusters. The complexity of these algorithms is measured by their sample complexity, i.e., the number of pairwise distance computations that are computed; these computations have been observed to dominate runtime costs and, as such, sample complexity translates to wall-clock time via an approximately constant factor [28] (this is also consistent with our experiments in Section 6 and Appendix 1).

Among the heuristic solutions for the k-medoids problem, the algorithm with the best clustering loss is Partitioning Around Medoids (PAM) [10, 11], which consists of two phases: the BUILD phase and the SWAP phase. However, the BUILD phase and each SWAP iteration of PAM perform $O(kn^2)$ distance computations, which can be impractical for large datasets or when distance computations are expensive. We provide greater details about the PAM algorithm in Section 5 because it is an important baseline against which we assess the clustering quality of new algorithms.

Though PAM achieves the best clustering loss among heuristic algorithms, the era of huge data has necessitated the development of faster k-medoids algorithms in recent years. These algorithms have typically been divided into two categories: those that agree with PAM and recover the same solution to the k-medoids problem but scale quadratically in n, and those that sacrifice clustering quality for runtime improvements. In the former category, [25] proposed a deterministic algorithm called FastPAM1, which maintains the same output as PAM but reduces the computational complexity of each SWAP iteration from $O(kn^2)$ to $O(n^2)$. However, this algorithm still scales quadratically in n in every iteration, which is prohibitively expensive on large datasets.

Faster heuristic algorithms have been proposed but these usually sacrifice clustering quality; such algorithms include CLARA [11], CLARANS [21], and FastPAM [25]. While these algorithms scale subquadratically in n, they return substantially worse solutions than PAM [28]. Other algorithms with better sample complexity, such as optimizations for Euclidean space and those based on tabu search heuristics [6] also return worse solutions. Finally, [11] attempts to minimize the number of unique pairwise distances or adaptively estimate these distances or coordinate-wise distances in specific settings [14, 5], but all these approaches sacrifice clustering quality for runtime.
Recently, [28] proposed BanditPAM, a state-of-the-art k-medoids algorithm that arrives at the same solution as PAM with high probability in $O(kn \log n)$ time. BanditPAM borrows techniques from the multi-armed bandit literature to sample pairwise distance computations rather than compute all $O(n^2)$. In this work, we show that BanditPAM can be made more efficient by reusing distance computations both within iterations and across iterations.

We note that the use of adaptive sampling techniques and multi-armed bandits to accelerate algorithms has also had recent successes in other work, e.g., to accelerate the training of Random Forests [27], solve the Maximum Inner Product Search problem [27], and more [26].

3 Preliminaries and Background

Notation: We consider a dataset \mathcal{X} of size n (that may contain vectors in \mathbb{R}^p or other objects). Our goal is to find a solution to the k-medoids problem, Equation (4). We are also given a dissimilarity function d that measures the dissimilarity between two objects in \mathcal{X}. Note that we do not assume a specific functional form of d. We use $[n]$ to denote the set $\{1, \ldots, n\}$, and $a \land b$ (respectively, $a \lor b$) to denote the minimum (respectively, maximum) of a and b.

Partitioning Around Medoids (PAM): The original Partitioning Around Medoids (PAM) algorithm [10] consists of two main phases: BUILD and SWAP. In the BUILD phase, PAM iteratively initializes each medoid in a greedy, one-by-one fashion: in each iteration, it selects the next medoid that would reduce the k-medoids clustering loss (Equation (3)) the most, given the prior choices of medoids. More precisely, given the current set of t medoids $\mathcal{M}_t = \{m_1, \ldots, m_t\}$, the next point to add as a medoid is:

$$m^* = \arg \min_{x \in \mathcal{X} \setminus \mathcal{M}_t} \sum_{j=1}^{n} \left[d(x, x_j) \land \min_{m' \in \mathcal{M}_t} d(m', x_j) \right]$$

(4)

The output of the BUILD step is an initial set of the k medoids, around which a local search is performed by the SWAP phase. The SWAP phase involves iteratively examining all $k(n-k)$ medoid-nonmedoid pairs and performs the swap that would lower the total loss the most. More precisely, with \mathcal{M} the current set of k medoids, PAM finds the best medoid-nonmedoid pair to swap:

$$\left(m^*, x^*\right) = \arg \min_{(m, x) \in \mathcal{M} \times (\mathcal{X} \setminus \mathcal{M})} \sum_{j=1}^{n} \left[d(x, x_j) \land \min_{m' \in \mathcal{M} \setminus \{m\}} d(m', x_j) \right]$$

(5)

PAM requires $O(kn^2)$ distance computations for the k greedy searches in the BUILD step and $O(kn^2)$ distance computations for each SWAP iteration [28]. The quadratic complexity of PAM makes it prohibitively expensive to run on large datasets. Nonetheless, we describe the PAM algorithm because it has been observed to have the best clustering loss among heuristic solutions to the k-medoids problem. More recent algorithms, such as BanditPAM [28], achieve the same clustering loss but have a significantly improved complexity of $O(kn \log n)$ in each step. Our proposed algorithm, BanditPAM++, improves upon the computational complexity of BanditPAM by a factor of $O(k)$.

Sequential Multi-Armed Bandits: BanditPAM [28] improves the computational complexity of PAM by converting each step of PAM to a multi-armed bandit problem. A multi-armed bandit problem (MAB) is defined as a collection of random variables $\{R_1, \ldots, R_n\}$, called actions or arms. We are commonly interested in the best-arm identification problem, which is to identify the arm with the highest mean, i.e., $\arg \max_i \mathbb{E}[R_i]$, with a given probability of possible error δ. Many algorithms for this problem exist, each of which make distributional assumptions about the random variables $\{R_1, \ldots, R_n\}$; popular ones include the upper confidence bound (UCB) algorithm and successive elimination. For an overview of common algorithms, we refer the reader to [9].

We define a sequential multi-armed bandit problem to be an ordered sequence of multi-armed bandit problems $Q = \{B_1, \ldots, B_T\}$ where each individual multi-armed bandit problem $B_t = \{R_{t1}, \ldots, R_{tn}\}$ has the same number of arms n, with respective, timestep-dependent means $\mu_{t1}, \ldots, \mu_{tn}$. At each timestep t, our goal is to determine (and take) the best action $a_t = \arg \max_i \mathbb{E}[R_{ti}]$. Crucially, our choices of a_t will affect the rewards at future timesteps, i.e., the $R_{t'}$ for $t' > t$. Our definition of a sequential multi-armed bandit problem is similar to non-stationary multi-armed bandit problems, with the added restriction that the only non-stationary in the problem comes from our previous actions.
We now make a few assumptions for tractability. We assume that each R_t^i is observed by sampling an element from a set S with S possible values. We refer to the values of S as the reference points, where each possible reference point is sampled with equal probability and determines the observed reward. With some abuse of notation, we write $R_t^i(x_s)$ for the reward observed from arm R_t^i when the latent variable from S is observed to be x_s. We refer to a sequential multi-armed bandit as permutation-invariant, or as a SPIMAB (for Sequential, Permutation-Invariant Multi-Armed Bandit), if the following conditions hold:

1. For every arm i and timestep t, $R_t^i = f(D_i, \{a_0, a_1, \ldots, a_{t-1}\})$ for some known function f and some random variable D_i with mean $\mu_i := \mathbb{E}[D_i] = \frac{1}{k} \sum_{s=1}^{S} D_i(x_s)$.
2. There exists a common set of reference points, S, shared amongst each D_i.
3. It is possible to sample each D_i in $O(1)$ time by drawing from the points in S without replacement, and
4. f is computable in $O(1)$ time given its inputs.

Intuitively, the conditions above require that at each timestep, each random variable R_t^i is expressible as a known function of another random variable D_i and the prior actions taken in the sequential multi-armed bandit problem. Crucially, D_i does not depend on the timestep; R_t^i is only permitted to depend on the timestep through the agent’s previously taken actions $\{a_0, a_1, \ldots, a_{t-1}\}$. The SPIMAB conditions imply that if $\mathbb{E}[D_i] = \mu_i$ is known for each i, then $\mu_i := \mathbb{E}[R_t^i]$ is also computable in $O(1)$ time for each i and t, i.e., for each arm and timestep.

BanditPAM: BanditPAM [28] reduces the scaling with n of each step of the PAM algorithm by reformulating each step as a best-arm identification problem. In PAM, each of the k BUILD steps has complexity $O(n^2)$ and each SWAP iteration has complexity $O(kn^2)$. In contrast, the complexity of BanditPAM is $O(n \log n)$ for each of the k BUILD steps and $O(kn \log n)$ for each SWAP iteration. Fundamentally, BanditPAM achieves this reduction in complexity by sampling distance computations instead of using all $O(n^2)$ pairwise distances in each iteration. We note that all k BUILD steps of BanditPAM (respectively, PAM) have the same complexity as each SWAP iteration of BanditPAM (respectively, PAM). Since the number of SWAP iterations is usually $O(k)$ [28], see also our experiments in the Appendix [3], most of BanditPAM’s runtime is spent in the SWAP iterations; this suggests improvements to BanditPAM should focus on expediting its SWAP phase.

4 BanditPAM++: Algorithmic Improvements to BanditPAM

In this section, we discuss two improvements to the BanditPAM algorithm. We first show how each SWAP iteration of BanditPAM can be improved via a technique we call Virtual Arms (VA). With this improvement, the modified algorithm can be cast as a SPIMAB. The conversion to a SPIMAB permits a second improvement via a technique we call the Permutation-Invariant Cache (PIC). Whereas the VA technique improves only the SWAP phase, the PIC technique improves both the BUILD and SWAP phases. The VA technique improves the complexity of each SWAP iteration by a factor of $O(k)$, whereas the PIC improves the wall-clock runtime of both the BUILD and SWAP phases.

4.1 Virtual Arms (VA)

As discussed in Section[3] most of the runtime of BanditPAM is spent in the SWAP iterations. When evaluating a medoid-nonmedoid pair (m, x_i) to potentially swap, BanditPAM estimates the quantity:

$$\Delta L_{m, x_i} = \frac{1}{n} \sum_{s=1}^{n} \Delta l_{m, x_i}(x_s),$$ \hspace{1cm} (6)$$

for each medoid m and candidate nonmedoid x_i, where

$$\Delta l_{m, x_i}(x_s) = \left(d(x_i, x_s) - \min_{m' \in M \setminus \{m\}} d(m', x_s) \right) \land 0$$ \hspace{1cm} (7)$$

is the change in clustering loss (Equation [3]) induced on point x_s for swapping medoid m with nonmedoid x_i in the set of medoids M. Crucially, we will find that for a given x_s, each $\Delta l_{m, x_i}(x_s)$ for $m = 1, \ldots, k$, except possibly one, is equal. We state this observation formally in Theorem[1].
We formalize the reduction of BanditPAM++ to a SPIMAB in Table 1. In the SPIMAB formulation which we call a permutation-invariant cache (PIC) where we are the first to provide a formal statement and proof of Theorem 1 and demonstrate its use in an Theorem 1.

The observation that BanditPAM++ is a SPIMAB allows us to develop an intelligent cache design, Theorem 1. Let $\Delta l_{m,x_i}(x_s)$ be the change in clustering loss induced on point x_s by swapping medoid m with nonmedoid x_i, given in Equation (7), with x_s and x_i fixed. Then the values $\Delta l_{m,x_i}(x_s)$ for $m = 1, \ldots, k$ are equal, except possibly where m is the medoid for reference point x_s.

Theorem 1 is proven in Appendix 2. Crucially, Theorem 1 tells us that when estimating $\Delta l_{m,x_i}$ in Equation (7) for fixed x_i and various values of m, we can reuse a significant number of the summands across different indices m (across k medoids). We note that Theorem 1 has been observed in alternate forms, e.g., as the “FastPAM1” trick, in prior work [28]. However, to the best of our knowledge, we are the first to provide a formal statement and proof of Theorem 1 and demonstrate its use in an adaptive sampling scheme inspired by multi-armed bandits.

Motivated by Theorem 1, we present the SWAP step of our algorithm, BanditPAM++, in Algorithm 1. BanditPAM++ uses the VA technique to improve the complexity of each SWAP iteration by a factor of $O(k)$. We call the technique “virtual arms” because it uses only a constant number of distance computations to update each of the k “virtual” arms for each of the “real” arms, where a “real” arm corresponds to a datapoint.

4.2 Permutation-Invariant Caching (PIC):

The original BanditPAM algorithms considers each of the $k(n-k)$ medoid-nonmedoid pairs as arms. With the VA technique described in Section 4.1 BanditPAM++ instead considers each of the n datapoints (including existing medoids) as arms in each SWAP iteration. Crucially, this implies that the BUILD phase and each SWAP iteration of BanditPAM++ consider the same set of arms. It is this observation, induced by the VA technique, that allows us to cast BanditPAM++ as a SPIMAB and implement a second improvement. We call this second improvement the Permutation-Invariant Cache (PIC).

We formalize the reduction of BanditPAM++ to a SPIMAB in Table 1. In the SPIMAB formulation of BanditPAM++, the set of reference points S is the same as the set of datapoints \mathcal{X}. Each D_i is a random variable representing the distance from point x_i to one of the sampled reference points and can be sampled in $O(1)$ time without replacement. Each $\mu_i = \mathbb{E}[D_i]$ corresponds to the average distance from point x_i to all the points in the dataset \mathcal{X}. Each arm R_i^k corresponds to the point that we would add to the set of medoids (for $t \leq k$) or swap in to the set of medoids (for $t > k$), of which there are n at each possible timestep. Similarly, the actions $\{a_0, \ldots, a_p, \ldots, a_t\}$ correspond to points added to the set of medoids (for $t \leq k$) or swaps performed (for $t > k$). Equation (8) provides the functional forms of f for each of the BUILD and SWAP steps.

$$f(D_i(x_s), A) = \left(d(x_i, x_s) - \min_{m' \in \mathcal{M}} d(m', x_s) \right) \land 0. \quad (8)$$

where \mathcal{M} is a set of medoids. For the BUILD step, A is a sequence of t actions that results in a set of medoids of size $t \leq k$, and, for the SWAP step, A is a set of actions that results in a set of medoids \mathcal{M} of size k.

The observation that BanditPAM++ is a SPIMAB allows us to develop an intelligent cache design, which we call a permutation-invariant cache (PIC). We may choose a permutation π of the reference points $S = \mathcal{X}$ and sample distance computations to these reference points in the order of the permutation. Since we only need to sample some of the reference points, and not all of them, we do not need to compute all $O(n^2)$ pairwise distances. Crucially, we can also reuse distance computations across different steps of BanditPAM++ to save on computational cost and runtime.
We prove that the full BanditPAM++ algorithm returns the same results as BanditPAM and PAM in Theorem 2. Theorem 1 and the VA technique which says that if the BUILD step of BanditPAM++, we may choose a fixed permutation π of [n], then the full BanditPAM++ algorithm is given in Algorithm 1. Crucially, for each candidate point x, we only perform 3 distance computations (not k) to update all k arms, each of which has a mean and confidence interval (CI), on Lines 13-15. This is permitted by Theorem 1 and the VA technique which says that k − 1 “virtual” arms for a fixed i will get the same update. The PIC technique allows us to choose a permutation of reference points (the x’s) and reuse those x’s across calls leading to more cache hits.

In this section, we demonstrate that PIC does not affect the results of BanditPAM++ in Theorem 2:

Algorithm 1 BanditPAM++ SWAP Step (f_j(D_j, {a_1, ..., a_t}), δ, σ, permutation π of [n])

1: S_solution ← [n] ▷ Set of potential solutions to MAB
2: t' ← 0 ▷ Number of reference points evaluated
3: For all (i, j) ∈ [n] x [k], set μ_i,j ← 0, C_i,j ← ∞ ▷ Initial means and CIs for all swaps
4: while t' < n and |S_solution| > 1 do
5: s ← π(t') ▷ Uses PIC
6: for all i ∈ S_solution do
7: Let c(s) and c(2/s) be the indices of x’s closest and second closest medoids ▷ Cached
8: Compute distance to x’s closest medoid d_1 := d(m(c(s)), x) ▷ Cached
9: Compute distance to x’s second closest medoid d_2 := d(m(c(2/s)), x) ▷ Cached
10: Compute d_i := d(x_i, x) ▷ Reusing x’s across calls leads to more cache hits
11: μ_i,c(s) ← t'μ_i,c(s)−d_i+min(d_1,d_2) t'+1 ▷ Update running mean for x’s medoid
12: C_i,c(s) ← σ_1√log(t'+1 t'+1) ▷ Update confidence interval for x’s medoid
13: for all j ∈ {1, ..., k} \ {c(s)} do
14: μ_i,j ← t'μ_i,j+δ(D(x_i,x_1,...,a_k)) ▷ Update running means; does not depend on j
15: C_i,j ← σ_1√log(t'+1 t'+1) ▷ Update confidence intervals; does not depend on j
16: S_solution ← {i : j s.t. μ_i,j − C_i,j ≤ min_i,j(μ_i,j + C_i,j)} ▷ Filter suboptimal arms
17: t' ← t' + 1
18: if |S_solution| = 1 then
19: return i* ∈ S_solution and j* = arg min_j μ_i,j ▷ At most 3n distance computations
20: else
21: Compute μ_i,j exactly for all i ∈ S_solution ▷ At most 3n distance computations
22: return (i*, j*) = arg min_i,j∈S_solution μ_i,j ▷ At most 3n distance computations

The full BanditPAM++ algorithm is given in Algorithm 1. Crucially, for each candidate point x_i to swap into the set of medoids on Line 6, we only perform 3 distance computations (not k) to update all k arms, each of which has a mean and confidence interval (CI), on Lines 13-15. This is permitted by Theorem 1 and the VA technique which says that k − 1 “virtual” arms for a fixed i will get the same update. The PIC technique allows us to choose a permutation of reference points (the x’s) and reuse those x’s across calls leading to more cache hits. As such, many values of d(x_i, x) can be cached.

We emphasize that BanditPAM++ uses the same BUILD step as the original BanditPAM algorithm, but with the PIC. The PIC is also used during the SWAP step of BanditPAM++, as is the VA technique. We prove that the full BanditPAM++ algorithm returns the same results as BanditPAM and PAM in Section 5 and demonstrate the empirical benefits of both the PIC and VA techniques in Section 6.

5 Analysis of the Algorithm

In this section, we demonstrate that, with high probability, BanditPAM++ returns the same answer to the k-medoids clustering problem as PAM and BanditPAM while improving the SWAP complexity of BanditPAM by O(k) and substantially decreasing its runtime. Since the BUILD step of BanditPAM is the same as the BUILD step of BanditPAM++, it is sufficient to show that each SWAP step of BanditPAM++ returns the same swap as the corresponding step of BanditPAM (and PAM). All of the following theorems are proven in Appendix 2.

First, we demonstrate that PIC does not affect the results of BanditPAM++ in Theorem 2.

Theorem 2. Let X = {x_1, ..., x_S} be the reference points of D, and let π be a random permutation of [1, ..., S]. Then for any c ≤ S, \[\sum_{q=1}^{c} D(x_{π(q)}) \] has the same distribution as \[\sum_{q=1}^{c} D(x_{π(q)}) \], where each q is drawn uniformly without replacement from [1, ..., S].

Intuitively, Theorem 2 says that instead of randomly sampling new reference points at each iteration of BanditPAM++, we may choose a fixed permutation π in advance and sample in permutation order at each step of the algorithm. This allows us to reuse computation across different steps of the algorithm.
We now show that BanditPAM++ returns the same result as BanditPAM (and PAM) in every SWAP iteration and has the same complexity in n as BanditPAM. First, we consider a single call to Algorithm 1. Let $\mu_i := \min_{j \in [k]} \mu_{i,j}$ and let $i^* := \arg \min_{i \in [n]} \mu_i$ be the optimal point to swap in to the set of medoids, so that the medoid to swap out is $j^* := \arg \min_{j \in [k]} \mu_{i^*,j}$. For another candidate point $i \in [n]$ with $i \neq i^*$, let $\Delta_i := \mu_i - \mu_{i^*}$, and for $i = i^*$, let $\Delta_i := \min_{j} (\mu_{i,j} - \mu_{i^*,j})$, where $\min_{j} (\cdot)$ denotes the second smallest value over the indices j. To state the following results, we will assume that, for a fixed candidate point i and a randomly sampled reference point x_s, the random variable $f(D_i(x_s), A)$ is σ_i-sub-Gaussian for some known parameter σ_i (which, in practice, can be estimated from the data $[28]$):

Theorem 3. For $\delta = 1/kn^3$, with probability at least $1 - \frac{2}{n}$, Algorithm 1 returns the optimal swap to perform using a total of M distance computations, where

$$E[M] \leq 6n + \sum_{i \in [n]} \min \left[\frac{12}{\Delta_i^2} (\sigma_i + \sigma_{i^*})^2 \log kn + B, 3n \right].$$

Intuitively, Theorem 3 states that with high probability, each SWAP iteration of BanditPAM++ returns the same result as BanditPAM and PAM. Since the BUILD step of BanditPAM++ is the same as the BUILD step of BanditPAM, this implies that BanditPAM++ follows the exact same optimization trajectories as BanditPAM and PAM over the entire course of the algorithm with high probability. We formalize this observation in Theorem 4.

Theorem 4. If BanditPAM++ is run on a dataset X with $\delta = 1/kn^3$, then it returns the same set of k medoids as PAM with probability $1 - o(1)$. Furthermore, the total number of distance computations M_{total} required satisfies

$$E[M_{\text{total}}] = O(n \log kn).$$

Note on assumptions: For Theorem 3, we assumed that the data is generated in a way such that the observations $f(D_i(x_s), A)$ follow a sub-Gaussian distribution. Furthermore, for Theorem 4, we assume that the Δ_i's are not all close to 0, i.e., that we are not in the degenerate arm setting where many of the swaps are equally optimal, and assume that the σ_i's are bounded (we formalize these assumptions in Appendix 2). These assumptions have been found to hold in many real-world datasets $[28]$; see Section 7 and Appendices 1.1 and 2 for more formal discussions.

Additionally, we assume that both BanditPAM and BanditPAM++ place a hard constraint T on the maximum number of SWAP iterations that are allowed. While the limit on the maximum number of swap steps T may seem restrictive, it is not uncommon to place a maximum number of iterations on iterative algorithms. Furthermore, T has been observed empirically to be $O(k)$ $[25]$, consistent with our experiments in Section 6 and Appendix 3.

We note that statements similar to Theorems 3 and 4 can be proven for other values of δ. We provide additional experiments to understand the effects of the hyperparameters T and δ in Appendix 3.

Complexity in k: The original BanditPAM algorithm scales as $O(kc(k)n \log kn)$, where $c(k)$ is a problem-dependent function of k. Intuitively, $c(k)$ governs the “hardness” of the problem as a function of k; as more medoids are added, the average distance from each point to its closest medoid will decrease and the arm gaps (the Δ_i's) will decrease, increasing the sample complexity in Theorem 3. With the VA technique, BanditPAM++ removes the explicit factor of k: each SWAP iteration has complexity $O(c(k)n \log kn)$. The implicit dependence on k may still enter through the term $c(k)$ for a fixed dataset, which we observe in our experiments in Section 6.

6 Empirical Results

Setup: BanditPAM++ consists of two improvements upon the original BanditPAM algorithm: the VA and PIC techniques. We measure the gains of each technique by presenting an ablation study in which we compare the original BanditPAM algorithm (BP), BanditPAM with only the VA technique (BP+VA), BanditPAM with only the PIC (BP+PIC), and BanditPAM with both the VA and PIC techniques (BP++, the final BanditPAM++ algorithm).

First, we demonstrate that all algorithms achieve the same clustering solution and loss as BanditPAM across a variety of datasets and dataset sizes. In particular, this implies that BanditPAM++ matches...
Table 2: Clustering loss of BanditPAM++, normalized to clustering loss of BanditPAM, across a variety of datasets, metrics, and dataset sizes. In all scenarios, BanditPAM++ matches the loss of BanditPAM (in fact, returns the exact same solution).

![Table 2: Clustering loss of BanditPAM++, normalized to clustering loss of BanditPAM, across a variety of datasets, metrics, and dataset sizes. In all scenarios, BanditPAM++ matches the loss of BanditPAM (in fact, returns the exact same solution).](image)

prior state-of-the-art in clustering quality. Next, we investigate the scaling of all four algorithms in both n and k across a variety of datasets and metrics. We present our results in both sample-complexity and wall-clock runtime. BanditPAM++ outperforms BanditPAM by up to $10\times$. Furthermore, our results demonstrate that each of the VA and PIC techniques improves the runtime of the original BanditPAM algorithm.

For an experiment on a dataset of size n, we sampled n datapoints from the original dataset with replacement. In all experiments using the PIC technique, we allowed the algorithm to store up to 1,000 distance computations per point. For the wall-clock runtime and sample complexity metrics, we divide the result of each experiment by the number of swap iterations +1, where the +1 accounts for the complexity of the BUILD step.

Datasets: We conduct experiments on several public, real-world datasets to evaluate BanditPAM++’s performance: the MNIST dataset, the CIFAR10 dataset, and the 20 Newsgroups dataset. The MNIST dataset [13] contains 70,000 black-and-white images of handwritten digits. The CIFAR10 dataset [12] comprises 60,000 images, where each image consists of 32×32 pixels and each pixel has 3 colors. The 20 Newsgroups dataset [19] consists of approximately 18,000 posts on 20 topics split in two subsets: train and test. We used a fixed subsample of 10,000 training posts and embedding them into 385-dimensional vectors using a sentence transformer from HuggingFace [7]. We use the L_2, L_1, and cosine distances across the MNIST, CIFAR10, and 20 Newsgroups datasets, respectively.

6.1 Clustering/loss quality

First, we assess the solution quality all four algorithms across various datasets, metrics, and dataset sizes. Table 2 shows the relative losses of BanditPAM++ with respect to the loss of BanditPAM; the results for BP+PIC and BP+VA are identical and omitted for clarity. All four algorithms return identical solutions; this demonstrates that neither the VA nor the PIC technique affect solution quality. In particular, this implies that BanditPAM++ matches the prior state-of-the-art algorithms, BanditPAM and PAM, in clustering quality.

6.2 Scaling with k

Figure 1 compares the wall-clock runtime scaling with k of BP, BP+PIC, BP+VA, and BP++ on same datasets as Figure 1. Across all data subset sizes, metrics, and values of k, BP++ outperforms each of BP+VA and BP+PIC, both of which in turn outperform BP. As k increases, the performance gap between algorithms using the VA technique and the other algorithms increases. For example, on the CIFAR10 dataset with $k = 15$, BanditPAM++ is over $10\times$ faster than BanditPAM. This provides empirical evidence for our claims in Section 5 that the VA technique improves the scaling of the BanditPAM algorithm with k.

We provide similar experiments that demonstrate the scaling with n of BanditPAM++ and each of the baseline algorithms in Appendix 3. The results are qualitatively similar to those shown here; in particular, BanditPAM++ outperforms BP+PIC and BP+VA, which both outperform the original BanditPAM algorithm.

7 Conclusions and Limitations

We proposed BanditPAM++, an improvement upon BanditPAM that produces state-of-the-art results for the k-medoids problem. BanditPAM++ improves upon BanditPAM using the Virtual Arms
Figure 1: Average wall-clock runtime versus k for various dataset sizes, metrics, and subsample sizes n. BP++ outperforms BP+PIC and BP+VA, both of which outperform BP. Negligible error bars are omitted for clarity.

Acknowledgements

We would like to thank the anonymous Reviewers, PCs, and ACs for their helpful feedback on our paper. Mo Tiwari was supported by a Stanford Interdisciplinary Graduate Fellowship (SIGF) and a Standard Data Science Scholarship. The work of Ilan Shomorony was supported in part by the National Science Foundation (NSF) under grant CCF-2046991. Martin Zhang is supported by NIH R01 MH115676.
References

Appendix

1 BanditPAM: Additional Details

In this section, we provide additional information about the original BanditPAM algorithm. BanditPAM uses a bandit-based randomized algorithm to cast the BUILD and SWAP steps of the original PAM algorithm in terms of the following equation:

\[
\arg\min_{x \in S} \frac{1}{|S_{\text{ref}}|} \sum_{x_j \in S_{\text{ref}}} g_x(x_j)
\]

for target points \(S_{\text{tar}} \), reference points \(S_{\text{ref}} \), and an objective function \(g_x(\cdot) \) that depends on the target point \(x \). Both the BUILD and SWAP problems can be written as instances of Problem (9) with:

BUILD:
\[
S_{\text{tar}} = \mathcal{X} \setminus M_l, \quad S_{\text{ref}} = \mathcal{X}, \quad g_x(x_j) = \left(d(x, x_j) - \min_{m' \in M_l} d(m', x_j) \right) \land 0.
\]

SWAP:
\[
S_{\text{tar}} = M \times (\mathcal{X} \setminus M), \quad S_{\text{ref}} = \mathcal{X}, \quad g_x(x_j) = \left(d(x, x_j) - \min_{m' \in M \setminus \{m\}} d(m', x_j) \right) \land 0.
\]

where \(M_l \) is the current set of \(l \leq k \) medoids.

Crucially, in the SWAP search, each pair of medoid-and-nonmedoid points \((m, x)\) is treated as one target point (i.e. arm) in \(S_{\text{tar}} \) in the original BanditPAM formulation. The Adaptive-Search algorithm, Algorithm 2, is then used for best-arm identification (finding the optimal element of \(S_{\text{tar}} \)) for each of the BUILD and SWAP steps.

We also present the Adaptive-Search algorithm, Algorithm 2, specialized for the SWAP step explicitly in Algorithm 3 for ease of comparison to Algorithm 1. We note the differences between the SWAP step of BanditPAM (Algorithm 2) and the SWAP step of BanditPAM++ (Algorithm 1).

Whereas the original BanditPAM algorithm considers each medoid-nonmedoid pair as an arm in the best-arm identification problem, BanditPAM++ only considers each nonmedoid as an arm. (This change, in turn, allows BanditPAM++ to be formulated as a SPIMAB.) Furthermore, whereas the original BanditPAM algorithm may compute \(k \) distances to update all \(k \) arms for a fixed nonmedoid (Lines 6-8 of Algorithm 2), BanditPAM++ only computes a maximum of three distances (Lines 8-10 of Algorithm 1). This is what removes the explicit dependence on \(k \) from the computational complexity of BanditPAM++, as discussed in Section 5.

Algorithm 2 Adaptive-Search \((S_{\text{tar}}, S_{\text{ref}}, g_x(\cdot), \delta, \sigma_x)\)

1. \(S_{\text{solution}} \leftarrow S_{\text{tar}} \) \hspace{1cm} \(\triangleright \) Set of potential solutions to Problem (2)
2. \(t' \leftarrow 0 \) \hspace{1cm} \(\triangleright \) Number of reference points evaluated
3. For all \(x \in S_{\text{tar}} \), set \(\hat{\mu}_x \leftarrow 0 \), \(C_x \leftarrow \infty \) \hspace{1cm} \(\triangleright \) Initial mean and confidence interval for each arm
4. while \(t' < |S_{\text{ref}}| \) and \(|S_{\text{solution}}| > 1 \) do
5. \hspace{1cm} Draw a reference point \(s \) from \(S_{\text{ref}} \)
6. \hspace{2cm} for all \(x \in S_{\text{solution}} \) do
7. \hspace{3cm} \(\hat{\mu}_x \leftarrow \frac{t' \hat{\mu}_x + g_x(s)}{t' + 1} \) \hspace{1cm} \(\triangleright \) Update running mean
8. \hspace{2cm} \(C_x \leftarrow \sigma_x \sqrt{\frac{\log(2)}{t' + 1}} \) \hspace{1cm} \(\triangleright \) Update confidence interval
9. \hspace{2cm} \(S_{\text{solution}} \leftarrow \{ x : \hat{\mu}_x - C_x \leq \min_y (\hat{\mu}_y + C_y) \} \) \hspace{1cm} \(\triangleright \) Remove suboptimal points
10. \hspace{1cm} \(t' \leftarrow t' + 1 \)
11. if \(|S_{\text{solution}}| = 1 \) then
12. \hspace{1cm} return \(x^* \in S_{\text{solution}} \)
13. else
14. \hspace{1cm} Compute \(\mu_x \) exactly for all \(x \in S_{\text{solution}} \)
15. \hspace{2cm} return \(x^* = \arg\min_{x \in S_{\text{solution}}} \mu_x \)
We emphasize that the same distributional assumptions are made by both BanditPAM and Bandit-PAM++. We refer the reader to [28] and references therein. This assumption holds, for example, for any bounded dataset and has been found to hold in many real-world datasets [28].

Another assumption of BanditPAM++ that is made to achieve computational gains over PAM++ is that there is a hard limit on the number of swaps performed. This is a common restriction in iterative algorithms and empirically has not been found to significantly degrade clustering results for $T = O(k)$. In our additional experiments in Appendix 3, we empirically validate this observation in several settings.

1.1 Distributional assumptions and violations

For BanditPAM++ to have computational gains over the original PAM algorithm, several distributional assumptions must be met. First, we assume that the observations R_{ij}^t are $\sigma_{i,t}$-sub-Gaussian for some values of $\sigma_{i,t}$. Intuitively, this implies that the samples we observe for R_{ij}^t are representative of their true mean and that the sample mean concentrates about its true mean by Hoeffding’s inequality. This assumption holds, for example, for any bounded dataset and has been found to hold in many real-world datasets [28].

Another assumption of BanditPAM++ that is made to achieve $O(n \log n)$ complexity is about the distribution of arm means and gaps (the Δ_i's). More specifically, we assume we are never in the degenerate setting where all Δ_i's are 0, i.e., where all potential swaps are equally good. Reasonable distributions of the Δ_i's are often observed in practice; for examples and a more formal discussion, we refer the reader to [28] and references therein.

Finally, we also assume that there is a hard limit T on the number of swaps performed. This is a common restriction in iterative algorithms and empirically has not been found to significantly degrade clustering results for $T = O(k)$. In our additional experiments in Appendix 3, we empirically validate this observation in several settings.

We emphasize that the same distributional assumptions are made by both BanditPAM and BanditPAM+++. More specifically, both algorithms will demonstrate superiority over PAM under exactly the same, rather general conditions. Furthermore, under those conditions, BanditPAM++ will generally outperform BanditPAM.

2 Proofs of Theorems 1, 2, 3 and 4

In this Appendix, we provide proofs for Theorems 1, 2, 3 and 4.

Theorem 1. Let $\Delta l_{m,x_i}(x_s)$ be the change in clustering loss induced on point x_s by swapping medoid m with nonmedoid x_i, given in Equation (1), with x_s and x_i fixed. Then the values $\Delta l_{m,x_i}(x_s)$ for $m = 1, \ldots, k$ are equal, except possibly where m is the medoid for reference point x_s.

Proof. Consider the effect of swapping medoid m with nonmedoid x_i on point x_s. To compute $\Delta l_{m,x_i}(x_s)$, we must consider four possible cases depending on whether point x_s was assigned to medoid m as its closest medoid before the swap and whether x_s would be assigned to medoid x_i after the swap. We denote by $m_{c(a)}$ the medoid x_s is assigned to before the swap, and by $m_{c(2)}(x_s)$ the second-closest medoid to x_s before the swap.

Case 1: m is the current medoid for reference point x_s, i.e., $m = m_{c(s)}$, and x_i would become the medoid for x_s after the swap. Then $\Delta l_{m,x_i}(x_s) = d(x_i, x_s) - d(m, x_s) = d(x_i, x_s) - d(m_{c(s)}, x_s)$. The algorithm for computing a PAM solution is as follows:

Algorithm 3 BanditPAM SWAP Step $(f_j(D_j, a_1, \ldots, a_k), \delta, \sigma_x,)$

1: $\mathcal{S}_{solution} \leftarrow [n] \times [k] = \{(1,1), \ldots, (1,k), (2,1), \ldots, (n,k)\}$ \hspace{1cm} \triangleright Potential swaps
2: $t' \leftarrow 0$ \hspace{1cm} \triangleright Number of reference points evaluated
3: For all $(i, j) \in \mathcal{S}_{tar}$, set $\hat{\mu}_{i,j} \leftarrow 0$, $C_{i,j} \leftarrow \infty$ \hspace{1cm} \triangleright Initial mean and confidence intervals
4: while $t' < |\mathcal{S}_{ref}|$ and $|\mathcal{S}_{solution}| > 1$ do
5: \hspace{1cm} Draw the next sample x_t from $[n]$ randomly
6: \hspace{1cm} for all $(i, j) \in \mathcal{S}_{solution}$ do
7: \hspace{2cm} $\hat{\mu}_{i,j} \leftarrow t' \hat{\mu}_{i,j} + f(D_t(x_t), a_1, \ldots, a_k)$ \hspace{1cm} \triangleright Update running mean; special case when j is $c(s)$
8: \hspace{2cm} $C_{i,j} \leftarrow \sigma_{i,j} \sqrt{\log(\frac{k}{t'+1})}$ \hspace{1cm} \triangleright Update confidence interval
9: \hspace{1cm} $\mathcal{S}_{solution} \leftarrow \{i, j : \hat{\mu}_{i,j} - C_{i,j} \leq \min_{i,j} (\hat{\mu}_{i,j} + C_{i,j})\}$ \hspace{1cm} \triangleright Remove suboptimal swaps
10: $t' \leftarrow t' + 1$
11: if $|\mathcal{S}_{solution}| = 1$ then
12: \hspace{1cm} return $(i^*, j^*) \in \mathcal{S}_{solution}$
13: else
14: \hspace{1cm} Compute $\mu_{i,j}$ exactly for all $(i^*, j^*) \in \mathcal{S}_{solution}$
15: \hspace{1cm} return $(i^*, j^*) = \arg \min_{(i,j) \in \mathcal{S}_{solution}} \mu(i,j)$

14
We can condense these four cases into a single expression as:

$$\Delta l_{m,x_i}(x_s) = -d(m_c(x_s), x_s) + \mathbb{1}_{x_s \in C_m} \min\{d(m_c(x_s), d(x_i, x_s)) + \mathbb{1}_{x_s \notin C_m} \min\{d(m_c(x_s), d(x_i, x_s))\}$$

(12)

(13)

where C_m denotes the set of points whose closest medoid is m and $d(m_c(x_s), x_s)$ and $d(m_c(x_s), x_s)$ are the distance from x_s to its nearest and second nearest medoid, respectively, before the swap is performed.

Note that Equation (12) depends only on m via the terms $\mathbb{1}_{x_s \in C_m}$ and $\mathbb{1}_{x_s \notin C_m}$, so for the $k - 1$ values of m for which $x_s \notin C_m$, we must have that $\Delta l_{m,x_i}(x_s)$ is equal (for fixed x_i and x_s).

Theorem 2. Let $X = \{x_1, \ldots, x_S\}$ be the reference points of D_c, and let π be a random permutation of $\{1, \ldots, S\}$. Then for any $c \leq S$, $\sum_{c=1}^c D_i(x_{\pi(p_q)})$ has the same distribution as $\sum_{c=1}^c D_i(x_{p_q})$, where each p_q is drawn uniformly without replacement from $\{1, \ldots, S\}$.

Proof. Since π is a permutation drawn uniformly at random over the set of possible permutations, the probability that any integer p_q appears in the first c elements of the ordered sequence $\{\pi(1), \ldots, \pi(S)\}$ is $\frac{c}{S}$. This is the same as the probability that any integer p_q occurs in the first c elements of the ordered sequence $\{1, \ldots, S\}$. This, in turn, implies that $\pi(p_q)$ and p_q have the same distribution for all q. Since the indices $\pi(p_q)$ and p_q have the same distribution, so do the term-wise elements of each of the sums $\sum_{c=1}^c D_i(x_{\pi(p_q)})$ and $\sum_{c=1}^c D_i(x_{p_q})$.

The proofs of Theorems 2 and 3 are similar to those for the original BanditPAM algorithm; however, they must now be adapted to the modified algorithm that uses Theorem 1 to change the best-arm identification problem.

Theorem 3. For $\delta = 1/kn^3$, with probability at least $1 - \frac{2}{n}$, Algorithm 2 returns the optimal swap to perform using a total of M distance computations, where

$$E[M] \leq 6n + \sum_{i \in [n]} \min \left[\frac{12}{\Delta_i^2} (\sigma_i + \sigma_i) \log kn + B, 3n\right].$$

Proof. The proof is similar to that of the original BanditPAM algorithm [28]; however, it must be adapted for the Virtual Arms technique.

First, we show that, with probability at least $1 - \frac{2}{n}$, all confidence intervals computed throughout the algorithm are true confidence intervals, in the sense that they contain the true parameters $\mu_{i,j}$. To see this, notice that for a fixed i, j and a fixed iteration of the algorithm, $\hat{\mu}_{i,j}$ is the average of t i.i.d. samples of a σ_i-sub-Gaussian distribution. From Hoeffding’s inequality,

$$\Pr(|\hat{\mu}_{i,j} - \mu_{i,j}| > C_{i,j}) \leq 2 \exp \left(-\frac{tC_{i,j}^2}{2\sigma_i^2}\right) =: 2\delta.$$

where we used $E[\hat{\mu}_{i,j}] = \mu_{i,j}$ by Theorem 2.

Note that there are at most kn^2 such confidence intervals computed across all arms and all steps of the algorithm. With $\delta = 1/kn^3$, we see that $\mu_{i,j} \in [\hat{\mu}_{i,j} - C_{i,j}, \hat{\mu}_{i,j} + C_{i,j}]$ for every i, j and for every step of the algorithm with probability at least $1 - \frac{2}{n}$, by the union bound over at most kn^2 confidence intervals.
Next, we prove the correctness of Algorithm 1. Let \((i^*, j^*) = \arg\min_{i,j} \mu_{i,j}\) be the desired output of the algorithm. First, observe that the main while loop in the algorithm can only run \(n\) times, so the algorithm must terminate. Furthermore, if all confidence intervals throughout the algorithm are correct, it is impossible for \((i^*, j^*)\) to be removed from the set of candidate target points. Hence, \((i^*, j^*)\) (or some \((i', j')\) with \(\mu_{i', j'} = \mu_{i^*, j^*}\)) must be returned upon termination with probability at least \(1 - \frac{2}{n}\).

Finally, we consider the complexity of Algorithm 1. Let \(t\) be the total number of arm pulls computed for each of the arms remaining in the set of candidate arms at some point in the algorithm. As in Section 5, let \(\mu_i := \min_{j \in [k]} \mu_{i,j}\), let \(i^* := \arg\min_{i \in [n]} \mu_i\) be the optimal point to swap in to the set of medoids, so that the medoid to swap out is \(j^* := \arg\min_{j \in [k]} \mu_{i^*, j}\), and for another candidate point \(i \in [n]\) with \(i \neq i^*\), let \(\Delta_i := \mu_i - \mu_{i^*}\). Furthermore, for \(i = i^*\), let \(\Delta_i := \min_{j} (\mu_{i,j} - \min_{j} \mu_{i,j}\), where \(\min_{j}\) denotes the second largest value over the indices \(j\). Notice that, for any suboptimal arm \((i, j) \neq (i^*, j^*)\), we must have \(C_{i,j} = \sigma_i \sqrt{\log(\frac{1}{\delta})/t}\). With \(\delta = 1/kn^3\) as above and \(\Delta_{i,j} := \mu_{i,j} - \mu_{i^*, j^*}\), if \(t > \frac{12}{\Delta_i} (\sigma_i + \sigma_{i^*})^2 \log kn\), then

\[
2(C_{i,j} + C_{i^*, j^*}) = 2 (\sigma_i + \sigma_{i^*}) \sqrt{\log(kn^3)/t} < \Delta_i, \tag{14}
\]

\[
:= \min_{j'} \Delta_{i,j'} \tag{15}
\]

\[
\leq \Delta_{i,j} \tag{16}
\]

\[
= \mu_{i,j} - \mu_{i^*, j^*}, \tag{17}
\]

for all \(j\), and so

\[
\hat{\mu}_{i,j} - C_{i,j} > \mu_{i,j} - 2C_{i,j} = \mu_{i^*, j^*} + \Delta_{i,j} - 2C_{i,j} \geq \mu_{i^*, j^*} + 2C_{i^*, j^*} > \hat{\mu}_{i^*, j^*} + C_{i^*, j^*}, \tag{18}
\]

implying that \((i, j)\) must be removed from the set of candidate arms by iteration \(t\). Hence, the number of distance computations \(M_t\) required to exclude all arms \((i, j)\) where \(i \neq i^*\), or for all \((i, j)\) with \(i = i^*\) but \(j \neq j^*\), is at most

\[
M_t \leq \min \left[\frac{12}{\Delta_i} (\sigma_i + \sigma_{i^*})^2 \log kn + 1, 3n \right].
\]

Notice that this holds simultaneously for all \((i, j)\) with probability at least \(1 - \frac{2}{n}\). We conclude that the total number of distance computations \(M\) satisfies

\[
E[M] \leq E[M | \text{all confidence intervals are correct}] + \frac{2}{n} (3n^2)
\]

\[
\leq 6n + \sum_{i \in [n]} \min \left[\frac{12}{\Delta_i} (\sigma_i + \sigma_{i^*})^2 \log kn + 1, 3n \right]
\]

where we used the fact that the maximum number of distance computations per target point is \(3n\).

Theorem 4. If BanditPAM++ is run on a dataset \(\mathcal{X}\) with \(\delta = 1/kn^3\), then it returns the same set of \(k\) medoids as PAM with probability \(1 - o(1)\). Furthermore, the total number of distance computations \(M_{\text{total}}\) required satisfies

\[
E[M_{\text{total}}] = O(n \log kn).
\]

Proof. This proof is similar to that for the original BanditPAM algorithm. Since the BUILD step of BanditPAM++ is the same as the BUILD step of the original BanditPAM algorithm, it suffices to use the fact from Theorem 3 that each SWAP step of BanditPAM++ agrees with each SWAP step of BanditPAM and PAM.
From Theorem 3, the probability that Algorithm 1 does not return the target point \(i, j \) with the smallest value of \(\mu_{i,j} \) in a single call, i.e. that the result of Algorithm 1 will differ from the corresponding step in PAM, is at most \(2/n \). By the union bound over all \(T \) calls to Algorithm 1, the probability that BanditPAM++ does not return the same set of \(k \) medoids as PAM is at most \(2T/n = o(1) \), since \(T \) is taken a predefined constant. This proves the first claim of Theorem 4.

It remains to show that \(E[M_{\text{total}}] = O(n \log kn) \). Note that, if a random variable is \(\sigma \)-sub-Gaussian, it is also \(\sigma' \)-sub-Gaussian for \(\sigma' > \sigma \). Hence, if we have a universal upper bound \(\sigma_{\text{ub}} > \sigma_i \) for all \(i, j \), Algorithm 1 can be run with \(\sigma_{\text{ub}} \) replacing each \(\sigma_i \). In that case, a direct consequence of Theorem 3 is that the total number of distance computations per call to Algorithm 1 satisfies

\[
E[M] \leq 6n + \sum_{i \in [n]} 48 \frac{\sigma_{\text{ub}}^2}{\Delta_i} \log kn + 1 \leq 6n + 48 \left(\frac{\sigma_{\text{ub}}}{\min_i \Delta_i} \right)^2 n \log kn. \tag{19}
\]

Furthermore, as proven in Appendix 2 of [4], such an instance-wise bound, which depends on the \(\Delta_i \)'s, converts to an \(O(n \log kn) \) bound when the \(\mu_{i,j} \)'s follow a sub-Gaussian distribution. Moreover, since at most \(T \) calls to Algorithm 1 are made, from (19) we see that the total number of distance computations \(M_{\text{total}} \) required by BanditPAM++ satisfies \(E[M_{\text{total}}] = O(n \log kn) \).

3 Additional Experiments

In this appendix, we provide additional experiments, including results moved here from the main text due to space constraints. First, we present the wall-clock runtimes and sample complexities of various algorithms, including BanditPAM++, across a variety of datasets and metrics, for different dataset sizes \(n \). We then show that BanditPAM++ is not sensitive to the choice of error probability \(\delta \). We then demonstrate that the loss of various real-world problems stops decreasing after approximately \(T = k \) swaps, as has been observed in prior work [28, 25]. Finally, we provide a breakdown of the speedups across both the BUILD and SWAP steps of BanditPAM++ over BanditPAM.

3.1 Scaling with \(n \)

Appendix Figure 1 compares the wall-clock runtime scaling with \(n \) of BP, BP+PIC, BP+VA, and BP++ on the MNIST (\(L_2 \) distance, \(k = 10 \)), CIFAR10 (\(L_1 \) distance, \(k = 10 \)), and 20 Newsgroups (cosine distance, \(k = 5 \)) datasets. Across all data subset sizes, metrics, and values of \(k \), BP++ outperforms each of BP+VA and BP+PIC, both of which in turn outperform BP.

We also show the results of the same experiments as in Appendix 1 but where we measure sample complexity (number of distance computations) instead of wall-clock runtime, in Appendix Figure 2. Appendix Figure 3 compares the sample complexity versus data subsample size \(n \) of each algorithm for the same experimental settings as in Appendix Figure 1. In these experiments, the cost of a distance computation is set to 1 and the cost of a cache hit is set to 0. The results are qualitatively similar to those in Appendix Figure 1.

3.2 Loss of BanditPAM++ with varying \(\delta \)

We now demonstrate that BanditPAM++ is not sensitive to the choice of error probability hyperparameter \(\delta \). Appendix Table 1 shows the loss of BanditPAM++, normalized to the loss of BanditPAM, across various values of \(\delta \). The original BanditPAM algorithm has been shown to be insensitive to \(\delta \) and agrees with PAM [28]. Therefore, Appendix Table 1 implies that BanditPAM++ agrees with PAM as well.

3.3 Loss of BanditPAM++ with varying \(T \)

We now demonstrate that the choice of maximum swap steps \(T = k \) is reasonable in practice. It has been observed in prior work that after \(k \) swap steps, the clustering loss (Equation 1) does not significantly decrease [28, 25]. Appendix Figure 3 demonstrates the clustering loss of BanditPAM++ as \(T \) increases. Beyond \(T = k \), the clustering loss decreases much more slowly.
Appendix Figure 1: Average wall-clock runtime versus dataset size n for various dataset sizes, metrics, and values of k. BP++ outperforms BP+PIC and BP+VA, both of which outperform BP. Negligible error bars are omitted for clarity.

Appendix Table 1: Loss of BanditPAM++, normalized to loss of BanditPAM, with δ ranging from $10^{-2}, 10^{-3}, 10^{-5},$ and 10^{-10}. BanditPAM++ has the exact same clustering loss with BanditPAM (and therefore PAM) for various values δ.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>10^{-2}</th>
<th>10^{-3}</th>
<th>10^{-5}</th>
<th>10^{-10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST (L_2, $k = 10$)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CIFAR10 (L_1, $k = 10$)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>20 Newsgroups (Cosine, $k = 5$)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

3.4 Speedups of BUILD and SWAP steps

We now present the average speedups for both the BUILD and SWAP steps for BanditPAM++ compared to the original BanditPAM algorithm, to separately assess the impacts of the Virtual Arms and Permutation-Invariant Caching techniques. Whereas the VA only improves the SWAP step, the PIC improves both the BUILD and SWAP steps.

In Appendix Table 2 we present the wall-clock speedup of BanditPAM++ compared to BanditPAM across the MNIST, CIFAR10, and 20 Newsgroups datasets described in Section 6. BanditPAM++ shows significant gains over BanditPAM in both phases of the algorithm, with the gains in the SWAP phase more pronounced.
Appendix Figure 2: Average sample complexity versus dataset size n for various dataset sizes, metrics, and values of k. BP++ outperforms BP+PIC and BP+VA, both of which outperform BP. Negligible error bars are omitted for clarity.

Appendix Table 2: Average Runtime Speedup Summary: Wall-clock speedup of BanditPAM++ compared to BanditPAM on the four datasets MNIST, CIFAR10, and 20 Newsgroups. Results are for $n = 10,000$ for the BUILD and SWAP weighted average, SWAP phase only, and BUILD phase only. The BUILD phase only leverages permutation-invariant caching, whereas the other two settings also leverage Virtual Arms. The three speedup values in each cell correspond to experiments where $k = 5, 10, \text{ and } 15$ respectively.
Appendix Figure 3: Clustering loss versus maximum number of SWAP iterations, T, for the MNIST, CIFAR10, and 20 Newsgroups datasets for various values of k. Beyond $T = k$, the loss shows very little change. BanditPAM++ and BanditPAM have the same loss for all T and track the same optimization trajectory.